Use LLVM_DELETED_FUNCTION for copy constructors and copy assignment operators that...
[oota-llvm.git] / include / llvm / DerivedTypes.h
1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declarations of classes that represent "derived
11 // types".  These are things like "arrays of x" or "structure of x, y, z" or
12 // "function returning x taking (y,z) as parameters", etc...
13 //
14 // The implementations of these classes live in the Type.cpp file.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_DERIVED_TYPES_H
19 #define LLVM_DERIVED_TYPES_H
20
21 #include "llvm/Type.h"
22 #include "llvm/Support/DataTypes.h"
23
24 namespace llvm {
25
26 class Value;
27 class APInt;
28 class LLVMContext;
29 template<typename T> class ArrayRef;
30 class StringRef;
31
32 /// Class to represent integer types. Note that this class is also used to
33 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
34 /// Int64Ty.
35 /// @brief Integer representation type
36 class IntegerType : public Type {
37   friend class LLVMContextImpl;
38   
39 protected:
40   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
41     setSubclassData(NumBits);
42   }
43 public:
44   /// This enum is just used to hold constants we need for IntegerType.
45   enum {
46     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
47     MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
48       ///< Note that bit width is stored in the Type classes SubclassData field
49       ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
50   };
51
52   /// This static method is the primary way of constructing an IntegerType.
53   /// If an IntegerType with the same NumBits value was previously instantiated,
54   /// that instance will be returned. Otherwise a new one will be created. Only
55   /// one instance with a given NumBits value is ever created.
56   /// @brief Get or create an IntegerType instance.
57   static IntegerType *get(LLVMContext &C, unsigned NumBits);
58
59   /// @brief Get the number of bits in this IntegerType
60   unsigned getBitWidth() const { return getSubclassData(); }
61
62   /// getBitMask - Return a bitmask with ones set for all of the bits
63   /// that can be set by an unsigned version of this type.  This is 0xFF for
64   /// i8, 0xFFFF for i16, etc.
65   uint64_t getBitMask() const {
66     return ~uint64_t(0UL) >> (64-getBitWidth());
67   }
68
69   /// getSignBit - Return a uint64_t with just the most significant bit set (the
70   /// sign bit, if the value is treated as a signed number).
71   uint64_t getSignBit() const {
72     return 1ULL << (getBitWidth()-1);
73   }
74
75   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
76   /// @returns a bit mask with ones set for all the bits of this type.
77   /// @brief Get a bit mask for this type.
78   APInt getMask() const;
79
80   /// This method determines if the width of this IntegerType is a power-of-2
81   /// in terms of 8 bit bytes.
82   /// @returns true if this is a power-of-2 byte width.
83   /// @brief Is this a power-of-2 byte-width IntegerType ?
84   bool isPowerOf2ByteWidth() const;
85
86   // Methods for support type inquiry through isa, cast, and dyn_cast.
87   static inline bool classof(const IntegerType *) { return true; }
88   static inline bool classof(const Type *T) {
89     return T->getTypeID() == IntegerTyID;
90   }
91 };
92
93
94 /// FunctionType - Class to represent function types
95 ///
96 class FunctionType : public Type {
97   FunctionType(const FunctionType &) LLVM_DELETED_FUNCTION;
98   const FunctionType &operator=(const FunctionType &) LLVM_DELETED_FUNCTION;
99   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
100
101 public:
102   /// FunctionType::get - This static method is the primary way of constructing
103   /// a FunctionType.
104   ///
105   static FunctionType *get(Type *Result,
106                            ArrayRef<Type*> Params, bool isVarArg);
107
108   /// FunctionType::get - Create a FunctionType taking no parameters.
109   ///
110   static FunctionType *get(Type *Result, bool isVarArg);
111   
112   /// isValidReturnType - Return true if the specified type is valid as a return
113   /// type.
114   static bool isValidReturnType(Type *RetTy);
115
116   /// isValidArgumentType - Return true if the specified type is valid as an
117   /// argument type.
118   static bool isValidArgumentType(Type *ArgTy);
119
120   bool isVarArg() const { return getSubclassData(); }
121   Type *getReturnType() const { return ContainedTys[0]; }
122
123   typedef Type::subtype_iterator param_iterator;
124   param_iterator param_begin() const { return ContainedTys + 1; }
125   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
126
127   // Parameter type accessors.
128   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
129
130   /// getNumParams - Return the number of fixed parameters this function type
131   /// requires.  This does not consider varargs.
132   ///
133   unsigned getNumParams() const { return NumContainedTys - 1; }
134
135   // Methods for support type inquiry through isa, cast, and dyn_cast.
136   static inline bool classof(const FunctionType *) { return true; }
137   static inline bool classof(const Type *T) {
138     return T->getTypeID() == FunctionTyID;
139   }
140 };
141
142
143 /// CompositeType - Common super class of ArrayType, StructType, PointerType
144 /// and VectorType.
145 class CompositeType : public Type {
146 protected:
147   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { }
148 public:
149
150   /// getTypeAtIndex - Given an index value into the type, return the type of
151   /// the element.
152   ///
153   Type *getTypeAtIndex(const Value *V);
154   Type *getTypeAtIndex(unsigned Idx);
155   bool indexValid(const Value *V) const;
156   bool indexValid(unsigned Idx) const;
157
158   // Methods for support type inquiry through isa, cast, and dyn_cast.
159   static inline bool classof(const CompositeType *) { return true; }
160   static inline bool classof(const Type *T) {
161     return T->getTypeID() == ArrayTyID ||
162            T->getTypeID() == StructTyID ||
163            T->getTypeID() == PointerTyID ||
164            T->getTypeID() == VectorTyID;
165   }
166 };
167
168
169 /// StructType - Class to represent struct types.  There are two different kinds
170 /// of struct types: Literal structs and Identified structs.
171 ///
172 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
173 /// always have a body when created.  You can get one of these by using one of
174 /// the StructType::get() forms.
175 ///  
176 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
177 /// uniqued.  The names for identified structs are managed at the LLVMContext
178 /// level, so there can only be a single identified struct with a given name in
179 /// a particular LLVMContext.  Identified structs may also optionally be opaque
180 /// (have no body specified).  You get one of these by using one of the
181 /// StructType::create() forms.
182 ///
183 /// Independent of what kind of struct you have, the body of a struct type are
184 /// laid out in memory consequtively with the elements directly one after the
185 /// other (if the struct is packed) or (if not packed) with padding between the
186 /// elements as defined by TargetData (which is required to match what the code
187 /// generator for a target expects).
188 ///
189 class StructType : public CompositeType {
190   StructType(const StructType &) LLVM_DELETED_FUNCTION;
191   const StructType &operator=(const StructType &) LLVM_DELETED_FUNCTION;
192   StructType(LLVMContext &C)
193     : CompositeType(C, StructTyID), SymbolTableEntry(0) {}
194   enum {
195     // This is the contents of the SubClassData field.
196     SCDB_HasBody = 1,
197     SCDB_Packed = 2,
198     SCDB_IsLiteral = 4,
199     SCDB_IsSized = 8
200   };
201
202   /// SymbolTableEntry - For a named struct that actually has a name, this is a
203   /// pointer to the symbol table entry (maintained by LLVMContext) for the
204   /// struct.  This is null if the type is an literal struct or if it is
205   /// a identified type that has an empty name.
206   /// 
207   void *SymbolTableEntry;
208 public:
209   ~StructType() {
210     delete [] ContainedTys; // Delete the body.
211   }
212
213   /// StructType::create - This creates an identified struct.
214   static StructType *create(LLVMContext &Context, StringRef Name);
215   static StructType *create(LLVMContext &Context);
216   
217   static StructType *create(ArrayRef<Type*> Elements,
218                             StringRef Name,
219                             bool isPacked = false);
220   static StructType *create(ArrayRef<Type*> Elements);
221   static StructType *create(LLVMContext &Context,
222                             ArrayRef<Type*> Elements,
223                             StringRef Name,
224                             bool isPacked = false);
225   static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements);
226   static StructType *create(StringRef Name, Type *elt1, ...) END_WITH_NULL;
227
228   /// StructType::get - This static method is the primary way to create a
229   /// literal StructType.
230   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
231                          bool isPacked = false);
232
233   /// StructType::get - Create an empty structure type.
234   ///
235   static StructType *get(LLVMContext &Context, bool isPacked = false);
236   
237   /// StructType::get - This static method is a convenience method for creating
238   /// structure types by specifying the elements as arguments.  Note that this
239   /// method always returns a non-packed struct, and requires at least one
240   /// element type.
241   static StructType *get(Type *elt1, ...) END_WITH_NULL;
242
243   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
244   
245   /// isLiteral - Return true if this type is uniqued by structural
246   /// equivalence, false if it is a struct definition.
247   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
248   
249   /// isOpaque - Return true if this is a type with an identity that has no body
250   /// specified yet.  These prints as 'opaque' in .ll files.
251   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
252
253   /// isSized - Return true if this is a sized type.
254   bool isSized() const;
255   
256   /// hasName - Return true if this is a named struct that has a non-empty name.
257   bool hasName() const { return SymbolTableEntry != 0; }
258   
259   /// getName - Return the name for this struct type if it has an identity.
260   /// This may return an empty string for an unnamed struct type.  Do not call
261   /// this on an literal type.
262   StringRef getName() const;
263   
264   /// setName - Change the name of this type to the specified name, or to a name
265   /// with a suffix if there is a collision.  Do not call this on an literal
266   /// type.
267   void setName(StringRef Name);
268
269   /// setBody - Specify a body for an opaque identified type.
270   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
271   void setBody(Type *elt1, ...) END_WITH_NULL;
272   
273   /// isValidElementType - Return true if the specified type is valid as a
274   /// element type.
275   static bool isValidElementType(Type *ElemTy);
276   
277
278   // Iterator access to the elements.
279   typedef Type::subtype_iterator element_iterator;
280   element_iterator element_begin() const { return ContainedTys; }
281   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
282
283   /// isLayoutIdentical - Return true if this is layout identical to the
284   /// specified struct.
285   bool isLayoutIdentical(StructType *Other) const;  
286   
287   // Random access to the elements
288   unsigned getNumElements() const { return NumContainedTys; }
289   Type *getElementType(unsigned N) const {
290     assert(N < NumContainedTys && "Element number out of range!");
291     return ContainedTys[N];
292   }
293
294   // Methods for support type inquiry through isa, cast, and dyn_cast.
295   static inline bool classof(const StructType *) { return true; }
296   static inline bool classof(const Type *T) {
297     return T->getTypeID() == StructTyID;
298   }
299 };
300
301 /// SequentialType - This is the superclass of the array, pointer and vector
302 /// type classes.  All of these represent "arrays" in memory.  The array type
303 /// represents a specifically sized array, pointer types are unsized/unknown
304 /// size arrays, vector types represent specifically sized arrays that
305 /// allow for use of SIMD instructions.  SequentialType holds the common
306 /// features of all, which stem from the fact that all three lay their
307 /// components out in memory identically.
308 ///
309 class SequentialType : public CompositeType {
310   Type *ContainedType;               ///< Storage for the single contained type.
311   SequentialType(const SequentialType &) LLVM_DELETED_FUNCTION;
312   const SequentialType &operator=(const SequentialType &) LLVM_DELETED_FUNCTION;
313
314 protected:
315   SequentialType(TypeID TID, Type *ElType)
316     : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
317     ContainedTys = &ContainedType;
318     NumContainedTys = 1;
319   }
320
321 public:
322   Type *getElementType() const { return ContainedTys[0]; }
323
324   // Methods for support type inquiry through isa, cast, and dyn_cast.
325   static inline bool classof(const SequentialType *) { return true; }
326   static inline bool classof(const Type *T) {
327     return T->getTypeID() == ArrayTyID ||
328            T->getTypeID() == PointerTyID ||
329            T->getTypeID() == VectorTyID;
330   }
331 };
332
333
334 /// ArrayType - Class to represent array types.
335 ///
336 class ArrayType : public SequentialType {
337   uint64_t NumElements;
338
339   ArrayType(const ArrayType &) LLVM_DELETED_FUNCTION;
340   const ArrayType &operator=(const ArrayType &) LLVM_DELETED_FUNCTION;
341   ArrayType(Type *ElType, uint64_t NumEl);
342 public:
343   /// ArrayType::get - This static method is the primary way to construct an
344   /// ArrayType
345   ///
346   static ArrayType *get(Type *ElementType, uint64_t NumElements);
347
348   /// isValidElementType - Return true if the specified type is valid as a
349   /// element type.
350   static bool isValidElementType(Type *ElemTy);
351
352   uint64_t getNumElements() const { return NumElements; }
353
354   // Methods for support type inquiry through isa, cast, and dyn_cast.
355   static inline bool classof(const ArrayType *) { return true; }
356   static inline bool classof(const Type *T) {
357     return T->getTypeID() == ArrayTyID;
358   }
359 };
360
361 /// VectorType - Class to represent vector types.
362 ///
363 class VectorType : public SequentialType {
364   unsigned NumElements;
365
366   VectorType(const VectorType &) LLVM_DELETED_FUNCTION;
367   const VectorType &operator=(const VectorType &) LLVM_DELETED_FUNCTION;
368   VectorType(Type *ElType, unsigned NumEl);
369 public:
370   /// VectorType::get - This static method is the primary way to construct an
371   /// VectorType.
372   ///
373   static VectorType *get(Type *ElementType, unsigned NumElements);
374
375   /// VectorType::getInteger - This static method gets a VectorType with the
376   /// same number of elements as the input type, and the element type is an
377   /// integer type of the same width as the input element type.
378   ///
379   static VectorType *getInteger(VectorType *VTy) {
380     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
381     assert(EltBits && "Element size must be of a non-zero size");
382     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
383     return VectorType::get(EltTy, VTy->getNumElements());
384   }
385
386   /// VectorType::getExtendedElementVectorType - This static method is like
387   /// getInteger except that the element types are twice as wide as the
388   /// elements in the input type.
389   ///
390   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
391     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
392     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
393     return VectorType::get(EltTy, VTy->getNumElements());
394   }
395
396   /// VectorType::getTruncatedElementVectorType - This static method is like
397   /// getInteger except that the element types are half as wide as the
398   /// elements in the input type.
399   ///
400   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
401     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
402     assert((EltBits & 1) == 0 &&
403            "Cannot truncate vector element with odd bit-width");
404     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
405     return VectorType::get(EltTy, VTy->getNumElements());
406   }
407
408   /// isValidElementType - Return true if the specified type is valid as a
409   /// element type.
410   static bool isValidElementType(Type *ElemTy);
411
412   /// @brief Return the number of elements in the Vector type.
413   unsigned getNumElements() const { return NumElements; }
414
415   /// @brief Return the number of bits in the Vector type.
416   /// Returns zero when the vector is a vector of pointers.
417   unsigned getBitWidth() const {
418     return NumElements * getElementType()->getPrimitiveSizeInBits();
419   }
420
421   // Methods for support type inquiry through isa, cast, and dyn_cast.
422   static inline bool classof(const VectorType *) { return true; }
423   static inline bool classof(const Type *T) {
424     return T->getTypeID() == VectorTyID;
425   }
426 };
427
428
429 /// PointerType - Class to represent pointers.
430 ///
431 class PointerType : public SequentialType {
432   PointerType(const PointerType &) LLVM_DELETED_FUNCTION;
433   const PointerType &operator=(const PointerType &) LLVM_DELETED_FUNCTION;
434   explicit PointerType(Type *ElType, unsigned AddrSpace);
435 public:
436   /// PointerType::get - This constructs a pointer to an object of the specified
437   /// type in a numbered address space.
438   static PointerType *get(Type *ElementType, unsigned AddressSpace);
439
440   /// PointerType::getUnqual - This constructs a pointer to an object of the
441   /// specified type in the generic address space (address space zero).
442   static PointerType *getUnqual(Type *ElementType) {
443     return PointerType::get(ElementType, 0);
444   }
445
446   /// isValidElementType - Return true if the specified type is valid as a
447   /// element type.
448   static bool isValidElementType(Type *ElemTy);
449
450   /// @brief Return the address space of the Pointer type.
451   inline unsigned getAddressSpace() const { return getSubclassData(); }
452
453   // Implement support type inquiry through isa, cast, and dyn_cast.
454   static inline bool classof(const PointerType *) { return true; }
455   static inline bool classof(const Type *T) {
456     return T->getTypeID() == PointerTyID;
457   }
458 };
459
460 } // End llvm namespace
461
462 #endif