[C++11] More 'nullptr' conversion. In some cases just using a boolean check instead...
[oota-llvm.git] / include / llvm / CodeGen / ScheduleDAGInstrs.h
1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ScheduleDAGInstrs class, which implements
11 // scheduling for a MachineInstr-based dependency graph.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
17
18 #include "llvm/ADT/SparseMultiSet.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/CodeGen/ScheduleDAG.h"
21 #include "llvm/CodeGen/TargetSchedule.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24
25 namespace llvm {
26   class MachineFrameInfo;
27   class MachineLoopInfo;
28   class MachineDominatorTree;
29   class LiveIntervals;
30   class RegPressureTracker;
31   class PressureDiffs;
32
33   /// An individual mapping from virtual register number to SUnit.
34   struct VReg2SUnit {
35     unsigned VirtReg;
36     SUnit *SU;
37
38     VReg2SUnit(unsigned reg, SUnit *su): VirtReg(reg), SU(su) {}
39
40     unsigned getSparseSetIndex() const {
41       return TargetRegisterInfo::virtReg2Index(VirtReg);
42     }
43   };
44
45   /// Record a physical register access.
46   /// For non-data-dependent uses, OpIdx == -1.
47   struct PhysRegSUOper {
48     SUnit *SU;
49     int OpIdx;
50     unsigned Reg;
51
52     PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
53
54     unsigned getSparseSetIndex() const { return Reg; }
55   };
56
57   /// Use a SparseMultiSet to track physical registers. Storage is only
58   /// allocated once for the pass. It can be cleared in constant time and reused
59   /// without any frees.
60   typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t>
61   Reg2SUnitsMap;
62
63   /// Use SparseSet as a SparseMap by relying on the fact that it never
64   /// compares ValueT's, only unsigned keys. This allows the set to be cleared
65   /// between scheduling regions in constant time as long as ValueT does not
66   /// require a destructor.
67   typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap;
68
69   /// Track local uses of virtual registers. These uses are gathered by the DAG
70   /// builder and may be consulted by the scheduler to avoid iterating an entire
71   /// vreg use list.
72   typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2UseMap;
73
74   /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of
75   /// MachineInstrs.
76   class ScheduleDAGInstrs : public ScheduleDAG {
77   protected:
78     const MachineLoopInfo &MLI;
79     const MachineDominatorTree &MDT;
80     const MachineFrameInfo *MFI;
81
82     /// Live Intervals provides reaching defs in preRA scheduling.
83     LiveIntervals *LIS;
84
85     /// TargetSchedModel provides an interface to the machine model.
86     TargetSchedModel SchedModel;
87
88     /// isPostRA flag indicates vregs cannot be present.
89     bool IsPostRA;
90
91     /// True if the DAG builder should remove kill flags (in preparation for
92     /// rescheduling).
93     bool RemoveKillFlags;
94
95     /// The standard DAG builder does not normally include terminators as DAG
96     /// nodes because it does not create the necessary dependencies to prevent
97     /// reordering. A specialized scheduler can override
98     /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
99     /// it has taken responsibility for scheduling the terminator correctly.
100     bool CanHandleTerminators;
101
102     /// State specific to the current scheduling region.
103     /// ------------------------------------------------
104
105     /// The block in which to insert instructions
106     MachineBasicBlock *BB;
107
108     /// The beginning of the range to be scheduled.
109     MachineBasicBlock::iterator RegionBegin;
110
111     /// The end of the range to be scheduled.
112     MachineBasicBlock::iterator RegionEnd;
113
114     /// Instructions in this region (distance(RegionBegin, RegionEnd)).
115     unsigned NumRegionInstrs;
116
117     /// After calling BuildSchedGraph, each machine instruction in the current
118     /// scheduling region is mapped to an SUnit.
119     DenseMap<MachineInstr*, SUnit*> MISUnitMap;
120
121     /// After calling BuildSchedGraph, each vreg used in the scheduling region
122     /// is mapped to a set of SUnits. These include all local vreg uses, not
123     /// just the uses for a singly defined vreg.
124     VReg2UseMap VRegUses;
125
126     /// State internal to DAG building.
127     /// -------------------------------
128
129     /// Defs, Uses - Remember where defs and uses of each register are as we
130     /// iterate upward through the instructions. This is allocated here instead
131     /// of inside BuildSchedGraph to avoid the need for it to be initialized and
132     /// destructed for each block.
133     Reg2SUnitsMap Defs;
134     Reg2SUnitsMap Uses;
135
136     /// Track the last instruction in this region defining each virtual register.
137     VReg2SUnitMap VRegDefs;
138
139     /// PendingLoads - Remember where unknown loads are after the most recent
140     /// unknown store, as we iterate. As with Defs and Uses, this is here
141     /// to minimize construction/destruction.
142     std::vector<SUnit *> PendingLoads;
143
144     /// DbgValues - Remember instruction that precedes DBG_VALUE.
145     /// These are generated by buildSchedGraph but persist so they can be
146     /// referenced when emitting the final schedule.
147     typedef std::vector<std::pair<MachineInstr *, MachineInstr *> >
148       DbgValueVector;
149     DbgValueVector DbgValues;
150     MachineInstr *FirstDbgValue;
151
152     /// Set of live physical registers for updating kill flags.
153     BitVector LiveRegs;
154
155   public:
156     explicit ScheduleDAGInstrs(MachineFunction &mf,
157                                const MachineLoopInfo &mli,
158                                const MachineDominatorTree &mdt,
159                                bool IsPostRAFlag,
160                                bool RemoveKillFlags = false,
161                                LiveIntervals *LIS = nullptr);
162
163     virtual ~ScheduleDAGInstrs() {}
164
165     bool isPostRA() const { return IsPostRA; }
166
167     /// \brief Expose LiveIntervals for use in DAG mutators and such.
168     LiveIntervals *getLIS() const { return LIS; }
169
170     /// \brief Get the machine model for instruction scheduling.
171     const TargetSchedModel *getSchedModel() const { return &SchedModel; }
172
173     /// \brief Resolve and cache a resolved scheduling class for an SUnit.
174     const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
175       if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
176         SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
177       return SU->SchedClass;
178     }
179
180     /// begin - Return an iterator to the top of the current scheduling region.
181     MachineBasicBlock::iterator begin() const { return RegionBegin; }
182
183     /// end - Return an iterator to the bottom of the current scheduling region.
184     MachineBasicBlock::iterator end() const { return RegionEnd; }
185
186     /// newSUnit - Creates a new SUnit and return a ptr to it.
187     SUnit *newSUnit(MachineInstr *MI);
188
189     /// getSUnit - Return an existing SUnit for this MI, or NULL.
190     SUnit *getSUnit(MachineInstr *MI) const;
191
192     /// startBlock - Prepare to perform scheduling in the given block.
193     virtual void startBlock(MachineBasicBlock *BB);
194
195     /// finishBlock - Clean up after scheduling in the given block.
196     virtual void finishBlock();
197
198     /// Initialize the scheduler state for the next scheduling region.
199     virtual void enterRegion(MachineBasicBlock *bb,
200                              MachineBasicBlock::iterator begin,
201                              MachineBasicBlock::iterator end,
202                              unsigned regioninstrs);
203
204     /// Notify that the scheduler has finished scheduling the current region.
205     virtual void exitRegion();
206
207     /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are
208     /// input.
209     void buildSchedGraph(AliasAnalysis *AA,
210                          RegPressureTracker *RPTracker = nullptr,
211                          PressureDiffs *PDiffs = nullptr);
212
213     /// addSchedBarrierDeps - Add dependencies from instructions in the current
214     /// list of instructions being scheduled to scheduling barrier. We want to
215     /// make sure instructions which define registers that are either used by
216     /// the terminator or are live-out are properly scheduled. This is
217     /// especially important when the definition latency of the return value(s)
218     /// are too high to be hidden by the branch or when the liveout registers
219     /// used by instructions in the fallthrough block.
220     void addSchedBarrierDeps();
221
222     /// schedule - Order nodes according to selected style, filling
223     /// in the Sequence member.
224     ///
225     /// Typically, a scheduling algorithm will implement schedule() without
226     /// overriding enterRegion() or exitRegion().
227     virtual void schedule() = 0;
228
229     /// finalizeSchedule - Allow targets to perform final scheduling actions at
230     /// the level of the whole MachineFunction. By default does nothing.
231     virtual void finalizeSchedule() {}
232
233     void dumpNode(const SUnit *SU) const override;
234
235     /// Return a label for a DAG node that points to an instruction.
236     std::string getGraphNodeLabel(const SUnit *SU) const override;
237
238     /// Return a label for the region of code covered by the DAG.
239     std::string getDAGName() const override;
240
241     /// \brief Fix register kill flags that scheduling has made invalid.
242     void fixupKills(MachineBasicBlock *MBB);
243   protected:
244     void initSUnits();
245     void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
246     void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
247     void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
248     void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
249
250     /// \brief PostRA helper for rewriting kill flags.
251     void startBlockForKills(MachineBasicBlock *BB);
252
253     /// \brief Toggle a register operand kill flag.
254     ///
255     /// Other adjustments may be made to the instruction if necessary. Return
256     /// true if the operand has been deleted, false if not.
257     bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO);
258   };
259
260   /// newSUnit - Creates a new SUnit and return a ptr to it.
261   inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
262 #ifndef NDEBUG
263     const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
264 #endif
265     SUnits.push_back(SUnit(MI, (unsigned)SUnits.size()));
266     assert((Addr == nullptr || Addr == &SUnits[0]) &&
267            "SUnits std::vector reallocated on the fly!");
268     SUnits.back().OrigNode = &SUnits.back();
269     return &SUnits.back();
270   }
271
272   /// getSUnit - Return an existing SUnit for this MI, or NULL.
273   inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
274     DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
275     if (I == MISUnitMap.end())
276       return nullptr;
277     return I->second;
278   }
279 } // namespace llvm
280
281 #endif