Use getEdgeProbability() instead of getEdgeWeight() in BFI and remove getEdgeWeight...
[oota-llvm.git] / include / llvm / CodeGen / ScheduleDAGInstrs.h
1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ScheduleDAGInstrs class, which implements
11 // scheduling for a MachineInstr-based dependency graph.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
17
18 #include "llvm/ADT/SparseMultiSet.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/CodeGen/ScheduleDAG.h"
21 #include "llvm/CodeGen/TargetSchedule.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24
25 namespace llvm {
26   class MachineFrameInfo;
27   class MachineLoopInfo;
28   class MachineDominatorTree;
29   class RegPressureTracker;
30   class PressureDiffs;
31
32   /// An individual mapping from virtual register number to SUnit.
33   struct VReg2SUnit {
34     unsigned VirtReg;
35     LaneBitmask LaneMask;
36     SUnit *SU;
37
38     VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
39       : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
40
41     unsigned getSparseSetIndex() const {
42       return TargetRegisterInfo::virtReg2Index(VirtReg);
43     }
44   };
45
46   /// Mapping from virtual register to SUnit including an operand index.
47   struct VReg2SUnitOperIdx : public VReg2SUnit {
48     unsigned OperandIndex;
49
50     VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
51                       unsigned OperandIndex, SUnit *SU)
52       : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
53   };
54
55   /// Record a physical register access.
56   /// For non-data-dependent uses, OpIdx == -1.
57   struct PhysRegSUOper {
58     SUnit *SU;
59     int OpIdx;
60     unsigned Reg;
61
62     PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
63
64     unsigned getSparseSetIndex() const { return Reg; }
65   };
66
67   /// Use a SparseMultiSet to track physical registers. Storage is only
68   /// allocated once for the pass. It can be cleared in constant time and reused
69   /// without any frees.
70   typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t>
71   Reg2SUnitsMap;
72
73   /// Use SparseSet as a SparseMap by relying on the fact that it never
74   /// compares ValueT's, only unsigned keys. This allows the set to be cleared
75   /// between scheduling regions in constant time as long as ValueT does not
76   /// require a destructor.
77   typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap;
78
79   /// Track local uses of virtual registers. These uses are gathered by the DAG
80   /// builder and may be consulted by the scheduler to avoid iterating an entire
81   /// vreg use list.
82   typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMultiMap;
83
84   typedef SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>
85     VReg2SUnitOperIdxMultiMap;
86
87   /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of
88   /// MachineInstrs.
89   class ScheduleDAGInstrs : public ScheduleDAG {
90   protected:
91     const MachineLoopInfo *MLI;
92     const MachineFrameInfo *MFI;
93
94     /// TargetSchedModel provides an interface to the machine model.
95     TargetSchedModel SchedModel;
96
97     /// True if the DAG builder should remove kill flags (in preparation for
98     /// rescheduling).
99     bool RemoveKillFlags;
100
101     /// The standard DAG builder does not normally include terminators as DAG
102     /// nodes because it does not create the necessary dependencies to prevent
103     /// reordering. A specialized scheduler can override
104     /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
105     /// it has taken responsibility for scheduling the terminator correctly.
106     bool CanHandleTerminators;
107
108     /// Whether lane masks should get tracked.
109     bool TrackLaneMasks;
110
111     /// State specific to the current scheduling region.
112     /// ------------------------------------------------
113
114     /// The block in which to insert instructions
115     MachineBasicBlock *BB;
116
117     /// The beginning of the range to be scheduled.
118     MachineBasicBlock::iterator RegionBegin;
119
120     /// The end of the range to be scheduled.
121     MachineBasicBlock::iterator RegionEnd;
122
123     /// Instructions in this region (distance(RegionBegin, RegionEnd)).
124     unsigned NumRegionInstrs;
125
126     /// After calling BuildSchedGraph, each machine instruction in the current
127     /// scheduling region is mapped to an SUnit.
128     DenseMap<MachineInstr*, SUnit*> MISUnitMap;
129
130     /// After calling BuildSchedGraph, each vreg used in the scheduling region
131     /// is mapped to a set of SUnits. These include all local vreg uses, not
132     /// just the uses for a singly defined vreg.
133     VReg2SUnitMultiMap VRegUses;
134
135     /// State internal to DAG building.
136     /// -------------------------------
137
138     /// Defs, Uses - Remember where defs and uses of each register are as we
139     /// iterate upward through the instructions. This is allocated here instead
140     /// of inside BuildSchedGraph to avoid the need for it to be initialized and
141     /// destructed for each block.
142     Reg2SUnitsMap Defs;
143     Reg2SUnitsMap Uses;
144
145     /// Tracks the last instruction(s) in this region defining each virtual
146     /// register. There may be multiple current definitions for a register with
147     /// disjunct lanemasks.
148     VReg2SUnitMultiMap CurrentVRegDefs;
149     /// Tracks the last instructions in this region using each virtual register.
150     VReg2SUnitOperIdxMultiMap CurrentVRegUses;
151
152     /// PendingLoads - Remember where unknown loads are after the most recent
153     /// unknown store, as we iterate. As with Defs and Uses, this is here
154     /// to minimize construction/destruction.
155     std::vector<SUnit *> PendingLoads;
156
157     /// DbgValues - Remember instruction that precedes DBG_VALUE.
158     /// These are generated by buildSchedGraph but persist so they can be
159     /// referenced when emitting the final schedule.
160     typedef std::vector<std::pair<MachineInstr *, MachineInstr *> >
161       DbgValueVector;
162     DbgValueVector DbgValues;
163     MachineInstr *FirstDbgValue;
164
165     /// Set of live physical registers for updating kill flags.
166     BitVector LiveRegs;
167
168   public:
169     explicit ScheduleDAGInstrs(MachineFunction &mf,
170                                const MachineLoopInfo *mli,
171                                bool RemoveKillFlags = false);
172
173     ~ScheduleDAGInstrs() override {}
174
175     /// \brief Get the machine model for instruction scheduling.
176     const TargetSchedModel *getSchedModel() const { return &SchedModel; }
177
178     /// \brief Resolve and cache a resolved scheduling class for an SUnit.
179     const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
180       if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
181         SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
182       return SU->SchedClass;
183     }
184
185     /// begin - Return an iterator to the top of the current scheduling region.
186     MachineBasicBlock::iterator begin() const { return RegionBegin; }
187
188     /// end - Return an iterator to the bottom of the current scheduling region.
189     MachineBasicBlock::iterator end() const { return RegionEnd; }
190
191     /// newSUnit - Creates a new SUnit and return a ptr to it.
192     SUnit *newSUnit(MachineInstr *MI);
193
194     /// getSUnit - Return an existing SUnit for this MI, or NULL.
195     SUnit *getSUnit(MachineInstr *MI) const;
196
197     /// startBlock - Prepare to perform scheduling in the given block.
198     virtual void startBlock(MachineBasicBlock *BB);
199
200     /// finishBlock - Clean up after scheduling in the given block.
201     virtual void finishBlock();
202
203     /// Initialize the scheduler state for the next scheduling region.
204     virtual void enterRegion(MachineBasicBlock *bb,
205                              MachineBasicBlock::iterator begin,
206                              MachineBasicBlock::iterator end,
207                              unsigned regioninstrs);
208
209     /// Notify that the scheduler has finished scheduling the current region.
210     virtual void exitRegion();
211
212     /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are
213     /// input.
214     void buildSchedGraph(AliasAnalysis *AA,
215                          RegPressureTracker *RPTracker = nullptr,
216                          PressureDiffs *PDiffs = nullptr,
217                          bool TrackLaneMasks = false);
218
219     /// addSchedBarrierDeps - Add dependencies from instructions in the current
220     /// list of instructions being scheduled to scheduling barrier. We want to
221     /// make sure instructions which define registers that are either used by
222     /// the terminator or are live-out are properly scheduled. This is
223     /// especially important when the definition latency of the return value(s)
224     /// are too high to be hidden by the branch or when the liveout registers
225     /// used by instructions in the fallthrough block.
226     void addSchedBarrierDeps();
227
228     /// schedule - Order nodes according to selected style, filling
229     /// in the Sequence member.
230     ///
231     /// Typically, a scheduling algorithm will implement schedule() without
232     /// overriding enterRegion() or exitRegion().
233     virtual void schedule() = 0;
234
235     /// finalizeSchedule - Allow targets to perform final scheduling actions at
236     /// the level of the whole MachineFunction. By default does nothing.
237     virtual void finalizeSchedule() {}
238
239     void dumpNode(const SUnit *SU) const override;
240
241     /// Return a label for a DAG node that points to an instruction.
242     std::string getGraphNodeLabel(const SUnit *SU) const override;
243
244     /// Return a label for the region of code covered by the DAG.
245     std::string getDAGName() const override;
246
247     /// \brief Fix register kill flags that scheduling has made invalid.
248     void fixupKills(MachineBasicBlock *MBB);
249   protected:
250     void initSUnits();
251     void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
252     void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
253     void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
254     void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
255
256     /// \brief PostRA helper for rewriting kill flags.
257     void startBlockForKills(MachineBasicBlock *BB);
258
259     /// \brief Toggle a register operand kill flag.
260     ///
261     /// Other adjustments may be made to the instruction if necessary. Return
262     /// true if the operand has been deleted, false if not.
263     bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO);
264
265     /// Returns a mask for which lanes get read/written by the given (register)
266     /// machine operand.
267     LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
268
269     void collectVRegUses(SUnit *SU);
270   };
271
272   /// newSUnit - Creates a new SUnit and return a ptr to it.
273   inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
274 #ifndef NDEBUG
275     const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
276 #endif
277     SUnits.emplace_back(MI, (unsigned)SUnits.size());
278     assert((Addr == nullptr || Addr == &SUnits[0]) &&
279            "SUnits std::vector reallocated on the fly!");
280     SUnits.back().OrigNode = &SUnits.back();
281     return &SUnits.back();
282   }
283
284   /// getSUnit - Return an existing SUnit for this MI, or NULL.
285   inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
286     DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
287     if (I == MISUnitMap.end())
288       return nullptr;
289     return I->second;
290   }
291 } // namespace llvm
292
293 #endif