Use 'override/final' instead of 'virtual' for overridden methods
[oota-llvm.git] / include / llvm / CodeGen / MachineScheduler.h
1 //==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides an interface for customizing the standard MachineScheduler
11 // pass. Note that the entire pass may be replaced as follows:
12 //
13 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
14 //   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
15 //   ...}
16 //
17 // The MachineScheduler pass is only responsible for choosing the regions to be
18 // scheduled. Targets can override the DAG builder and scheduler without
19 // replacing the pass as follows:
20 //
21 // ScheduleDAGInstrs *<Target>PassConfig::
22 // createMachineScheduler(MachineSchedContext *C) {
23 //   return new CustomMachineScheduler(C);
24 // }
25 //
26 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
27 // scheduling while updating the instruction stream, register pressure, and live
28 // intervals. Most targets don't need to override the DAG builder and list
29 // schedulier, but subtargets that require custom scheduling heuristics may
30 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
31 // selecting the highest priority node from the list:
32 //
33 // ScheduleDAGInstrs *<Target>PassConfig::
34 // createMachineScheduler(MachineSchedContext *C) {
35 //   return new ScheduleDAGMI(C, CustomStrategy(C));
36 // }
37 //
38 // The DAG builder can also be customized in a sense by adding DAG mutations
39 // that will run after DAG building and before list scheduling. DAG mutations
40 // can adjust dependencies based on target-specific knowledge or add weak edges
41 // to aid heuristics:
42 //
43 // ScheduleDAGInstrs *<Target>PassConfig::
44 // createMachineScheduler(MachineSchedContext *C) {
45 //   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
46 //   DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
47 //   return DAG;
48 // }
49 //
50 // A target that supports alternative schedulers can use the
51 // MachineSchedRegistry to allow command line selection. This can be done by
52 // implementing the following boilerplate:
53 //
54 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
55 //  return new CustomMachineScheduler(C);
56 // }
57 // static MachineSchedRegistry
58 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
59 //                     createCustomMachineSched);
60 //
61 //
62 // Finally, subtargets that don't need to implement custom heuristics but would
63 // like to configure the GenericScheduler's policy for a given scheduler region,
64 // including scheduling direction and register pressure tracking policy, can do
65 // this:
66 //
67 // void <SubTarget>Subtarget::
68 // overrideSchedPolicy(MachineSchedPolicy &Policy,
69 //                     MachineInstr *begin,
70 //                     MachineInstr *end,
71 //                     unsigned NumRegionInstrs) const {
72 //   Policy.<Flag> = true;
73 // }
74 //
75 //===----------------------------------------------------------------------===//
76
77 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
78 #define LLVM_CODEGEN_MACHINESCHEDULER_H
79
80 #include "llvm/CodeGen/MachinePassRegistry.h"
81 #include "llvm/CodeGen/RegisterPressure.h"
82 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
83 #include <memory>
84
85 namespace llvm {
86
87 extern cl::opt<bool> ForceTopDown;
88 extern cl::opt<bool> ForceBottomUp;
89
90 class AliasAnalysis;
91 class LiveIntervals;
92 class MachineDominatorTree;
93 class MachineLoopInfo;
94 class RegisterClassInfo;
95 class ScheduleDAGInstrs;
96 class SchedDFSResult;
97 class ScheduleHazardRecognizer;
98
99 /// MachineSchedContext provides enough context from the MachineScheduler pass
100 /// for the target to instantiate a scheduler.
101 struct MachineSchedContext {
102   MachineFunction *MF;
103   const MachineLoopInfo *MLI;
104   const MachineDominatorTree *MDT;
105   const TargetPassConfig *PassConfig;
106   AliasAnalysis *AA;
107   LiveIntervals *LIS;
108
109   RegisterClassInfo *RegClassInfo;
110
111   MachineSchedContext();
112   virtual ~MachineSchedContext();
113 };
114
115 /// MachineSchedRegistry provides a selection of available machine instruction
116 /// schedulers.
117 class MachineSchedRegistry : public MachinePassRegistryNode {
118 public:
119   typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);
120
121   // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
122   typedef ScheduleDAGCtor FunctionPassCtor;
123
124   static MachinePassRegistry Registry;
125
126   MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
127     : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
128     Registry.Add(this);
129   }
130   ~MachineSchedRegistry() { Registry.Remove(this); }
131
132   // Accessors.
133   //
134   MachineSchedRegistry *getNext() const {
135     return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
136   }
137   static MachineSchedRegistry *getList() {
138     return (MachineSchedRegistry *)Registry.getList();
139   }
140   static void setListener(MachinePassRegistryListener *L) {
141     Registry.setListener(L);
142   }
143 };
144
145 class ScheduleDAGMI;
146
147 /// Define a generic scheduling policy for targets that don't provide their own
148 /// MachineSchedStrategy. This can be overriden for each scheduling region
149 /// before building the DAG.
150 struct MachineSchedPolicy {
151   // Allow the scheduler to disable register pressure tracking.
152   bool ShouldTrackPressure;
153
154   // Allow the scheduler to force top-down or bottom-up scheduling. If neither
155   // is true, the scheduler runs in both directions and converges.
156   bool OnlyTopDown;
157   bool OnlyBottomUp;
158
159   MachineSchedPolicy(): ShouldTrackPressure(false), OnlyTopDown(false),
160     OnlyBottomUp(false) {}
161 };
162
163 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
164 /// ScheduleDAGMI.
165 ///
166 /// Initialization sequence:
167 ///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
168 class MachineSchedStrategy {
169   virtual void anchor();
170 public:
171   virtual ~MachineSchedStrategy() {}
172
173   /// Optionally override the per-region scheduling policy.
174   virtual void initPolicy(MachineBasicBlock::iterator Begin,
175                           MachineBasicBlock::iterator End,
176                           unsigned NumRegionInstrs) {}
177
178   /// Check if pressure tracking is needed before building the DAG and
179   /// initializing this strategy. Called after initPolicy.
180   virtual bool shouldTrackPressure() const { return true; }
181
182   /// Initialize the strategy after building the DAG for a new region.
183   virtual void initialize(ScheduleDAGMI *DAG) = 0;
184
185   /// Notify this strategy that all roots have been released (including those
186   /// that depend on EntrySU or ExitSU).
187   virtual void registerRoots() {}
188
189   /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
190   /// schedule the node at the top of the unscheduled region. Otherwise it will
191   /// be scheduled at the bottom.
192   virtual SUnit *pickNode(bool &IsTopNode) = 0;
193
194   /// \brief Scheduler callback to notify that a new subtree is scheduled.
195   virtual void scheduleTree(unsigned SubtreeID) {}
196
197   /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
198   /// instruction and updated scheduled/remaining flags in the DAG nodes.
199   virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
200
201   /// When all predecessor dependencies have been resolved, free this node for
202   /// top-down scheduling.
203   virtual void releaseTopNode(SUnit *SU) = 0;
204   /// When all successor dependencies have been resolved, free this node for
205   /// bottom-up scheduling.
206   virtual void releaseBottomNode(SUnit *SU) = 0;
207 };
208
209 /// Mutate the DAG as a postpass after normal DAG building.
210 class ScheduleDAGMutation {
211   virtual void anchor();
212 public:
213   virtual ~ScheduleDAGMutation() {}
214
215   virtual void apply(ScheduleDAGMI *DAG) = 0;
216 };
217
218 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
219 /// schedules machine instructions according to the given MachineSchedStrategy
220 /// without much extra book-keeping. This is the common functionality between
221 /// PreRA and PostRA MachineScheduler.
222 class ScheduleDAGMI : public ScheduleDAGInstrs {
223 protected:
224   AliasAnalysis *AA;
225   std::unique_ptr<MachineSchedStrategy> SchedImpl;
226
227   /// Topo - A topological ordering for SUnits which permits fast IsReachable
228   /// and similar queries.
229   ScheduleDAGTopologicalSort Topo;
230
231   /// Ordered list of DAG postprocessing steps.
232   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
233
234   /// The top of the unscheduled zone.
235   MachineBasicBlock::iterator CurrentTop;
236
237   /// The bottom of the unscheduled zone.
238   MachineBasicBlock::iterator CurrentBottom;
239
240   /// Record the next node in a scheduled cluster.
241   const SUnit *NextClusterPred;
242   const SUnit *NextClusterSucc;
243
244 #ifndef NDEBUG
245   /// The number of instructions scheduled so far. Used to cut off the
246   /// scheduler at the point determined by misched-cutoff.
247   unsigned NumInstrsScheduled;
248 #endif
249 public:
250   ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
251                 bool IsPostRA)
252       : ScheduleDAGInstrs(*C->MF, C->MLI, IsPostRA,
253                           /*RemoveKillFlags=*/IsPostRA, C->LIS),
254         AA(C->AA), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU), CurrentTop(),
255         CurrentBottom(), NextClusterPred(nullptr), NextClusterSucc(nullptr) {
256 #ifndef NDEBUG
257     NumInstrsScheduled = 0;
258 #endif
259   }
260
261   // Provide a vtable anchor
262   ~ScheduleDAGMI() override;
263
264   /// Return true if this DAG supports VReg liveness and RegPressure.
265   virtual bool hasVRegLiveness() const { return false; }
266
267   /// Add a postprocessing step to the DAG builder.
268   /// Mutations are applied in the order that they are added after normal DAG
269   /// building and before MachineSchedStrategy initialization.
270   ///
271   /// ScheduleDAGMI takes ownership of the Mutation object.
272   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
273     Mutations.push_back(std::move(Mutation));
274   }
275
276   /// \brief True if an edge can be added from PredSU to SuccSU without creating
277   /// a cycle.
278   bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
279
280   /// \brief Add a DAG edge to the given SU with the given predecessor
281   /// dependence data.
282   ///
283   /// \returns true if the edge may be added without creating a cycle OR if an
284   /// equivalent edge already existed (false indicates failure).
285   bool addEdge(SUnit *SuccSU, const SDep &PredDep);
286
287   MachineBasicBlock::iterator top() const { return CurrentTop; }
288   MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
289
290   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
291   /// region. This covers all instructions in a block, while schedule() may only
292   /// cover a subset.
293   void enterRegion(MachineBasicBlock *bb,
294                    MachineBasicBlock::iterator begin,
295                    MachineBasicBlock::iterator end,
296                    unsigned regioninstrs) override;
297
298   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
299   /// reorderable instructions.
300   void schedule() override;
301
302   /// Change the position of an instruction within the basic block and update
303   /// live ranges and region boundary iterators.
304   void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
305
306   const SUnit *getNextClusterPred() const { return NextClusterPred; }
307
308   const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
309
310   void viewGraph(const Twine &Name, const Twine &Title) override;
311   void viewGraph() override;
312
313 protected:
314   // Top-Level entry points for the schedule() driver...
315
316   /// Apply each ScheduleDAGMutation step in order. This allows different
317   /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
318   void postprocessDAG();
319
320   /// Release ExitSU predecessors and setup scheduler queues.
321   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
322
323   /// Update scheduler DAG and queues after scheduling an instruction.
324   void updateQueues(SUnit *SU, bool IsTopNode);
325
326   /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
327   void placeDebugValues();
328
329   /// \brief dump the scheduled Sequence.
330   void dumpSchedule() const;
331
332   // Lesser helpers...
333   bool checkSchedLimit();
334
335   void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
336                              SmallVectorImpl<SUnit*> &BotRoots);
337
338   void releaseSucc(SUnit *SU, SDep *SuccEdge);
339   void releaseSuccessors(SUnit *SU);
340   void releasePred(SUnit *SU, SDep *PredEdge);
341   void releasePredecessors(SUnit *SU);
342 };
343
344 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
345 /// machine instructions while updating LiveIntervals and tracking regpressure.
346 class ScheduleDAGMILive : public ScheduleDAGMI {
347 protected:
348   RegisterClassInfo *RegClassInfo;
349
350   /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
351   /// will be empty.
352   SchedDFSResult *DFSResult;
353   BitVector ScheduledTrees;
354
355   MachineBasicBlock::iterator LiveRegionEnd;
356
357   // Map each SU to its summary of pressure changes. This array is updated for
358   // liveness during bottom-up scheduling. Top-down scheduling may proceed but
359   // has no affect on the pressure diffs.
360   PressureDiffs SUPressureDiffs;
361
362   /// Register pressure in this region computed by initRegPressure.
363   bool ShouldTrackPressure;
364   IntervalPressure RegPressure;
365   RegPressureTracker RPTracker;
366
367   /// List of pressure sets that exceed the target's pressure limit before
368   /// scheduling, listed in increasing set ID order. Each pressure set is paired
369   /// with its max pressure in the currently scheduled regions.
370   std::vector<PressureChange> RegionCriticalPSets;
371
372   /// The top of the unscheduled zone.
373   IntervalPressure TopPressure;
374   RegPressureTracker TopRPTracker;
375
376   /// The bottom of the unscheduled zone.
377   IntervalPressure BotPressure;
378   RegPressureTracker BotRPTracker;
379
380 public:
381   ScheduleDAGMILive(MachineSchedContext *C,
382                     std::unique_ptr<MachineSchedStrategy> S)
383       : ScheduleDAGMI(C, std::move(S), /*IsPostRA=*/false),
384         RegClassInfo(C->RegClassInfo), DFSResult(nullptr),
385         ShouldTrackPressure(false), RPTracker(RegPressure),
386         TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
387
388   ~ScheduleDAGMILive() override;
389
390   /// Return true if this DAG supports VReg liveness and RegPressure.
391   bool hasVRegLiveness() const override { return true; }
392
393   /// \brief Return true if register pressure tracking is enabled.
394   bool isTrackingPressure() const { return ShouldTrackPressure; }
395
396   /// Get current register pressure for the top scheduled instructions.
397   const IntervalPressure &getTopPressure() const { return TopPressure; }
398   const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
399
400   /// Get current register pressure for the bottom scheduled instructions.
401   const IntervalPressure &getBotPressure() const { return BotPressure; }
402   const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
403
404   /// Get register pressure for the entire scheduling region before scheduling.
405   const IntervalPressure &getRegPressure() const { return RegPressure; }
406
407   const std::vector<PressureChange> &getRegionCriticalPSets() const {
408     return RegionCriticalPSets;
409   }
410
411   PressureDiff &getPressureDiff(const SUnit *SU) {
412     return SUPressureDiffs[SU->NodeNum];
413   }
414
415   /// Compute a DFSResult after DAG building is complete, and before any
416   /// queue comparisons.
417   void computeDFSResult();
418
419   /// Return a non-null DFS result if the scheduling strategy initialized it.
420   const SchedDFSResult *getDFSResult() const { return DFSResult; }
421
422   BitVector &getScheduledTrees() { return ScheduledTrees; }
423
424   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
425   /// region. This covers all instructions in a block, while schedule() may only
426   /// cover a subset.
427   void enterRegion(MachineBasicBlock *bb,
428                    MachineBasicBlock::iterator begin,
429                    MachineBasicBlock::iterator end,
430                    unsigned regioninstrs) override;
431
432   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
433   /// reorderable instructions.
434   void schedule() override;
435
436   /// Compute the cyclic critical path through the DAG.
437   unsigned computeCyclicCriticalPath();
438
439 protected:
440   // Top-Level entry points for the schedule() driver...
441
442   /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
443   /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
444   /// region, TopTracker and BottomTracker will be initialized to the top and
445   /// bottom of the DAG region without covereing any unscheduled instruction.
446   void buildDAGWithRegPressure();
447
448   /// Move an instruction and update register pressure.
449   void scheduleMI(SUnit *SU, bool IsTopNode);
450
451   // Lesser helpers...
452
453   void initRegPressure();
454
455   void updatePressureDiffs(ArrayRef<unsigned> LiveUses);
456
457   void updateScheduledPressure(const SUnit *SU,
458                                const std::vector<unsigned> &NewMaxPressure);
459 };
460
461 //===----------------------------------------------------------------------===//
462 ///
463 /// Helpers for implementing custom MachineSchedStrategy classes. These take
464 /// care of the book-keeping associated with list scheduling heuristics.
465 ///
466 //===----------------------------------------------------------------------===//
467
468 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
469 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
470 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
471 ///
472 /// This is a convenience class that may be used by implementations of
473 /// MachineSchedStrategy.
474 class ReadyQueue {
475   unsigned ID;
476   std::string Name;
477   std::vector<SUnit*> Queue;
478
479 public:
480   ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
481
482   unsigned getID() const { return ID; }
483
484   StringRef getName() const { return Name; }
485
486   // SU is in this queue if it's NodeQueueID is a superset of this ID.
487   bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
488
489   bool empty() const { return Queue.empty(); }
490
491   void clear() { Queue.clear(); }
492
493   unsigned size() const { return Queue.size(); }
494
495   typedef std::vector<SUnit*>::iterator iterator;
496
497   iterator begin() { return Queue.begin(); }
498
499   iterator end() { return Queue.end(); }
500
501   ArrayRef<SUnit*> elements() { return Queue; }
502
503   iterator find(SUnit *SU) {
504     return std::find(Queue.begin(), Queue.end(), SU);
505   }
506
507   void push(SUnit *SU) {
508     Queue.push_back(SU);
509     SU->NodeQueueId |= ID;
510   }
511
512   iterator remove(iterator I) {
513     (*I)->NodeQueueId &= ~ID;
514     *I = Queue.back();
515     unsigned idx = I - Queue.begin();
516     Queue.pop_back();
517     return Queue.begin() + idx;
518   }
519
520   void dump();
521 };
522
523 /// Summarize the unscheduled region.
524 struct SchedRemainder {
525   // Critical path through the DAG in expected latency.
526   unsigned CriticalPath;
527   unsigned CyclicCritPath;
528
529   // Scaled count of micro-ops left to schedule.
530   unsigned RemIssueCount;
531
532   bool IsAcyclicLatencyLimited;
533
534   // Unscheduled resources
535   SmallVector<unsigned, 16> RemainingCounts;
536
537   void reset() {
538     CriticalPath = 0;
539     CyclicCritPath = 0;
540     RemIssueCount = 0;
541     IsAcyclicLatencyLimited = false;
542     RemainingCounts.clear();
543   }
544
545   SchedRemainder() { reset(); }
546
547   void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
548 };
549
550 /// Each Scheduling boundary is associated with ready queues. It tracks the
551 /// current cycle in the direction of movement, and maintains the state
552 /// of "hazards" and other interlocks at the current cycle.
553 class SchedBoundary {
554 public:
555   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
556   enum {
557     TopQID = 1,
558     BotQID = 2,
559     LogMaxQID = 2
560   };
561
562   ScheduleDAGMI *DAG;
563   const TargetSchedModel *SchedModel;
564   SchedRemainder *Rem;
565
566   ReadyQueue Available;
567   ReadyQueue Pending;
568
569   ScheduleHazardRecognizer *HazardRec;
570
571 private:
572   /// True if the pending Q should be checked/updated before scheduling another
573   /// instruction.
574   bool CheckPending;
575
576   // For heuristics, keep a list of the nodes that immediately depend on the
577   // most recently scheduled node.
578   SmallPtrSet<const SUnit*, 8> NextSUs;
579
580   /// Number of cycles it takes to issue the instructions scheduled in this
581   /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
582   /// See getStalls().
583   unsigned CurrCycle;
584
585   /// Micro-ops issued in the current cycle
586   unsigned CurrMOps;
587
588   /// MinReadyCycle - Cycle of the soonest available instruction.
589   unsigned MinReadyCycle;
590
591   // The expected latency of the critical path in this scheduled zone.
592   unsigned ExpectedLatency;
593
594   // The latency of dependence chains leading into this zone.
595   // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
596   // For each cycle scheduled: DLat -= 1.
597   unsigned DependentLatency;
598
599   /// Count the scheduled (issued) micro-ops that can be retired by
600   /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
601   unsigned RetiredMOps;
602
603   // Count scheduled resources that have been executed. Resources are
604   // considered executed if they become ready in the time that it takes to
605   // saturate any resource including the one in question. Counts are scaled
606   // for direct comparison with other resources. Counts can be compared with
607   // MOps * getMicroOpFactor and Latency * getLatencyFactor.
608   SmallVector<unsigned, 16> ExecutedResCounts;
609
610   /// Cache the max count for a single resource.
611   unsigned MaxExecutedResCount;
612
613   // Cache the critical resources ID in this scheduled zone.
614   unsigned ZoneCritResIdx;
615
616   // Is the scheduled region resource limited vs. latency limited.
617   bool IsResourceLimited;
618
619   // Record the highest cycle at which each resource has been reserved by a
620   // scheduled instruction.
621   SmallVector<unsigned, 16> ReservedCycles;
622
623 #ifndef NDEBUG
624   // Remember the greatest possible stall as an upper bound on the number of
625   // times we should retry the pending queue because of a hazard.
626   unsigned MaxObservedStall;
627 #endif
628
629 public:
630   /// Pending queues extend the ready queues with the same ID and the
631   /// PendingFlag set.
632   SchedBoundary(unsigned ID, const Twine &Name):
633     DAG(nullptr), SchedModel(nullptr), Rem(nullptr), Available(ID, Name+".A"),
634     Pending(ID << LogMaxQID, Name+".P"),
635     HazardRec(nullptr) {
636     reset();
637   }
638
639   ~SchedBoundary();
640
641   void reset();
642
643   void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
644             SchedRemainder *rem);
645
646   bool isTop() const {
647     return Available.getID() == TopQID;
648   }
649
650   /// Number of cycles to issue the instructions scheduled in this zone.
651   unsigned getCurrCycle() const { return CurrCycle; }
652
653   /// Micro-ops issued in the current cycle
654   unsigned getCurrMOps() const { return CurrMOps; }
655
656   /// Return true if the given SU is used by the most recently scheduled
657   /// instruction.
658   bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }
659
660   // The latency of dependence chains leading into this zone.
661   unsigned getDependentLatency() const { return DependentLatency; }
662
663   /// Get the number of latency cycles "covered" by the scheduled
664   /// instructions. This is the larger of the critical path within the zone
665   /// and the number of cycles required to issue the instructions.
666   unsigned getScheduledLatency() const {
667     return std::max(ExpectedLatency, CurrCycle);
668   }
669
670   unsigned getUnscheduledLatency(SUnit *SU) const {
671     return isTop() ? SU->getHeight() : SU->getDepth();
672   }
673
674   unsigned getResourceCount(unsigned ResIdx) const {
675     return ExecutedResCounts[ResIdx];
676   }
677
678   /// Get the scaled count of scheduled micro-ops and resources, including
679   /// executed resources.
680   unsigned getCriticalCount() const {
681     if (!ZoneCritResIdx)
682       return RetiredMOps * SchedModel->getMicroOpFactor();
683     return getResourceCount(ZoneCritResIdx);
684   }
685
686   /// Get a scaled count for the minimum execution time of the scheduled
687   /// micro-ops that are ready to execute by getExecutedCount. Notice the
688   /// feedback loop.
689   unsigned getExecutedCount() const {
690     return std::max(CurrCycle * SchedModel->getLatencyFactor(),
691                     MaxExecutedResCount);
692   }
693
694   unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
695
696   // Is the scheduled region resource limited vs. latency limited.
697   bool isResourceLimited() const { return IsResourceLimited; }
698
699   /// Get the difference between the given SUnit's ready time and the current
700   /// cycle.
701   unsigned getLatencyStallCycles(SUnit *SU);
702
703   unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
704
705   bool checkHazard(SUnit *SU);
706
707   unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
708
709   unsigned getOtherResourceCount(unsigned &OtherCritIdx);
710
711   void releaseNode(SUnit *SU, unsigned ReadyCycle);
712
713   void releaseTopNode(SUnit *SU);
714
715   void releaseBottomNode(SUnit *SU);
716
717   void bumpCycle(unsigned NextCycle);
718
719   void incExecutedResources(unsigned PIdx, unsigned Count);
720
721   unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
722
723   void bumpNode(SUnit *SU);
724
725   void releasePending();
726
727   void removeReady(SUnit *SU);
728
729   /// Call this before applying any other heuristics to the Available queue.
730   /// Updates the Available/Pending Q's if necessary and returns the single
731   /// available instruction, or NULL if there are multiple candidates.
732   SUnit *pickOnlyChoice();
733
734 #ifndef NDEBUG
735   void dumpScheduledState();
736 #endif
737 };
738
739 /// Base class for GenericScheduler. This class maintains information about
740 /// scheduling candidates based on TargetSchedModel making it easy to implement
741 /// heuristics for either preRA or postRA scheduling.
742 class GenericSchedulerBase : public MachineSchedStrategy {
743 public:
744   /// Represent the type of SchedCandidate found within a single queue.
745   /// pickNodeBidirectional depends on these listed by decreasing priority.
746   enum CandReason {
747     NoCand, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax,
748     ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
749     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
750
751 #ifndef NDEBUG
752   static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
753 #endif
754
755   /// Policy for scheduling the next instruction in the candidate's zone.
756   struct CandPolicy {
757     bool ReduceLatency;
758     unsigned ReduceResIdx;
759     unsigned DemandResIdx;
760
761     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
762   };
763
764   /// Status of an instruction's critical resource consumption.
765   struct SchedResourceDelta {
766     // Count critical resources in the scheduled region required by SU.
767     unsigned CritResources;
768
769     // Count critical resources from another region consumed by SU.
770     unsigned DemandedResources;
771
772     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
773
774     bool operator==(const SchedResourceDelta &RHS) const {
775       return CritResources == RHS.CritResources
776         && DemandedResources == RHS.DemandedResources;
777     }
778     bool operator!=(const SchedResourceDelta &RHS) const {
779       return !operator==(RHS);
780     }
781   };
782
783   /// Store the state used by GenericScheduler heuristics, required for the
784   /// lifetime of one invocation of pickNode().
785   struct SchedCandidate {
786     CandPolicy Policy;
787
788     // The best SUnit candidate.
789     SUnit *SU;
790
791     // The reason for this candidate.
792     CandReason Reason;
793
794     // Set of reasons that apply to multiple candidates.
795     uint32_t RepeatReasonSet;
796
797     // Register pressure values for the best candidate.
798     RegPressureDelta RPDelta;
799
800     // Critical resource consumption of the best candidate.
801     SchedResourceDelta ResDelta;
802
803     SchedCandidate(const CandPolicy &policy)
804       : Policy(policy), SU(nullptr), Reason(NoCand), RepeatReasonSet(0) {}
805
806     bool isValid() const { return SU; }
807
808     // Copy the status of another candidate without changing policy.
809     void setBest(SchedCandidate &Best) {
810       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
811       SU = Best.SU;
812       Reason = Best.Reason;
813       RPDelta = Best.RPDelta;
814       ResDelta = Best.ResDelta;
815     }
816
817     bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
818     void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
819
820     void initResourceDelta(const ScheduleDAGMI *DAG,
821                            const TargetSchedModel *SchedModel);
822   };
823
824 protected:
825   const MachineSchedContext *Context;
826   const TargetSchedModel *SchedModel;
827   const TargetRegisterInfo *TRI;
828
829   SchedRemainder Rem;
830 protected:
831   GenericSchedulerBase(const MachineSchedContext *C):
832     Context(C), SchedModel(nullptr), TRI(nullptr) {}
833
834   void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
835                  SchedBoundary *OtherZone);
836
837 #ifndef NDEBUG
838   void traceCandidate(const SchedCandidate &Cand);
839 #endif
840 };
841
842 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
843 /// the schedule.
844 class GenericScheduler : public GenericSchedulerBase {
845   ScheduleDAGMILive *DAG;
846
847   // State of the top and bottom scheduled instruction boundaries.
848   SchedBoundary Top;
849   SchedBoundary Bot;
850
851   MachineSchedPolicy RegionPolicy;
852 public:
853   GenericScheduler(const MachineSchedContext *C):
854     GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"),
855     Bot(SchedBoundary::BotQID, "BotQ") {}
856
857   void initPolicy(MachineBasicBlock::iterator Begin,
858                   MachineBasicBlock::iterator End,
859                   unsigned NumRegionInstrs) override;
860
861   bool shouldTrackPressure() const override {
862     return RegionPolicy.ShouldTrackPressure;
863   }
864
865   void initialize(ScheduleDAGMI *dag) override;
866
867   SUnit *pickNode(bool &IsTopNode) override;
868
869   void schedNode(SUnit *SU, bool IsTopNode) override;
870
871   void releaseTopNode(SUnit *SU) override {
872     Top.releaseTopNode(SU);
873   }
874
875   void releaseBottomNode(SUnit *SU) override {
876     Bot.releaseBottomNode(SU);
877   }
878
879   void registerRoots() override;
880
881 protected:
882   void checkAcyclicLatency();
883
884   void tryCandidate(SchedCandidate &Cand,
885                     SchedCandidate &TryCand,
886                     SchedBoundary &Zone,
887                     const RegPressureTracker &RPTracker,
888                     RegPressureTracker &TempTracker);
889
890   SUnit *pickNodeBidirectional(bool &IsTopNode);
891
892   void pickNodeFromQueue(SchedBoundary &Zone,
893                          const RegPressureTracker &RPTracker,
894                          SchedCandidate &Candidate);
895
896   void reschedulePhysRegCopies(SUnit *SU, bool isTop);
897 };
898
899 /// PostGenericScheduler - Interface to the scheduling algorithm used by
900 /// ScheduleDAGMI.
901 ///
902 /// Callbacks from ScheduleDAGMI:
903 ///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
904 class PostGenericScheduler : public GenericSchedulerBase {
905   ScheduleDAGMI *DAG;
906   SchedBoundary Top;
907   SmallVector<SUnit*, 8> BotRoots;
908 public:
909   PostGenericScheduler(const MachineSchedContext *C):
910     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
911
912   ~PostGenericScheduler() override {}
913
914   void initPolicy(MachineBasicBlock::iterator Begin,
915                   MachineBasicBlock::iterator End,
916                   unsigned NumRegionInstrs) override {
917     /* no configurable policy */
918   };
919
920   /// PostRA scheduling does not track pressure.
921   bool shouldTrackPressure() const override { return false; }
922
923   void initialize(ScheduleDAGMI *Dag) override;
924
925   void registerRoots() override;
926
927   SUnit *pickNode(bool &IsTopNode) override;
928
929   void scheduleTree(unsigned SubtreeID) override {
930     llvm_unreachable("PostRA scheduler does not support subtree analysis.");
931   }
932
933   void schedNode(SUnit *SU, bool IsTopNode) override;
934
935   void releaseTopNode(SUnit *SU) override {
936     Top.releaseTopNode(SU);
937   }
938
939   // Only called for roots.
940   void releaseBottomNode(SUnit *SU) override {
941     BotRoots.push_back(SU);
942   }
943
944 protected:
945   void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
946
947   void pickNodeFromQueue(SchedCandidate &Cand);
948 };
949
950 } // namespace llvm
951
952 #endif