Use bidirectional bundle flags to simplify important functions.
[oota-llvm.git] / include / llvm / CodeGen / MachineBasicBlock.h
1 //===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17 #include "llvm/ADT/GraphTraits.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/Support/DataTypes.h"
20 #include <functional>
21
22 namespace llvm {
23
24 class Pass;
25 class BasicBlock;
26 class MachineFunction;
27 class MCSymbol;
28 class SlotIndexes;
29 class StringRef;
30 class raw_ostream;
31 class MachineBranchProbabilityInfo;
32
33 template <>
34 struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
35 private:
36   mutable ilist_half_node<MachineInstr> Sentinel;
37
38   // this is only set by the MachineBasicBlock owning the LiveList
39   friend class MachineBasicBlock;
40   MachineBasicBlock* Parent;
41
42 public:
43   MachineInstr *createSentinel() const {
44     return static_cast<MachineInstr*>(&Sentinel);
45   }
46   void destroySentinel(MachineInstr *) const {}
47
48   MachineInstr *provideInitialHead() const { return createSentinel(); }
49   MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
50   static void noteHead(MachineInstr*, MachineInstr*) {}
51
52   void addNodeToList(MachineInstr* N);
53   void removeNodeFromList(MachineInstr* N);
54   void transferNodesFromList(ilist_traits &SrcTraits,
55                              ilist_iterator<MachineInstr> first,
56                              ilist_iterator<MachineInstr> last);
57   void deleteNode(MachineInstr *N);
58 private:
59   void createNode(const MachineInstr &);
60 };
61
62 class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
63   typedef ilist<MachineInstr> Instructions;
64   Instructions Insts;
65   const BasicBlock *BB;
66   int Number;
67   MachineFunction *xParent;
68
69   /// Predecessors/Successors - Keep track of the predecessor / successor
70   /// basicblocks.
71   std::vector<MachineBasicBlock *> Predecessors;
72   std::vector<MachineBasicBlock *> Successors;
73
74
75   /// Weights - Keep track of the weights to the successors. This vector
76   /// has the same order as Successors, or it is empty if we don't use it
77   /// (disable optimization).
78   std::vector<uint32_t> Weights;
79   typedef std::vector<uint32_t>::iterator weight_iterator;
80   typedef std::vector<uint32_t>::const_iterator const_weight_iterator;
81
82   /// LiveIns - Keep track of the physical registers that are livein of
83   /// the basicblock.
84   std::vector<unsigned> LiveIns;
85
86   /// Alignment - Alignment of the basic block. Zero if the basic block does
87   /// not need to be aligned.
88   /// The alignment is specified as log2(bytes).
89   unsigned Alignment;
90
91   /// IsLandingPad - Indicate that this basic block is entered via an
92   /// exception handler.
93   bool IsLandingPad;
94
95   /// AddressTaken - Indicate that this basic block is potentially the
96   /// target of an indirect branch.
97   bool AddressTaken;
98
99   // Intrusive list support
100   MachineBasicBlock() {}
101
102   explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
103
104   ~MachineBasicBlock();
105
106   // MachineBasicBlocks are allocated and owned by MachineFunction.
107   friend class MachineFunction;
108
109 public:
110   /// getBasicBlock - Return the LLVM basic block that this instance
111   /// corresponded to originally. Note that this may be NULL if this instance
112   /// does not correspond directly to an LLVM basic block.
113   ///
114   const BasicBlock *getBasicBlock() const { return BB; }
115
116   /// getName - Return the name of the corresponding LLVM basic block, or
117   /// "(null)".
118   StringRef getName() const;
119
120   /// getFullName - Return a formatted string to identify this block and its
121   /// parent function.
122   std::string getFullName() const;
123
124   /// hasAddressTaken - Test whether this block is potentially the target
125   /// of an indirect branch.
126   bool hasAddressTaken() const { return AddressTaken; }
127
128   /// setHasAddressTaken - Set this block to reflect that it potentially
129   /// is the target of an indirect branch.
130   void setHasAddressTaken() { AddressTaken = true; }
131
132   /// getParent - Return the MachineFunction containing this basic block.
133   ///
134   const MachineFunction *getParent() const { return xParent; }
135   MachineFunction *getParent() { return xParent; }
136
137
138   /// bundle_iterator - MachineBasicBlock iterator that automatically skips over
139   /// MIs that are inside bundles (i.e. walk top level MIs only).
140   template<typename Ty, typename IterTy>
141   class bundle_iterator
142     : public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
143     IterTy MII;
144
145   public:
146     bundle_iterator(IterTy mii) : MII(mii) {}
147
148     bundle_iterator(Ty &mi) : MII(mi) {
149       assert(!mi.isBundledWithPred() &&
150              "It's not legal to initialize bundle_iterator with a bundled MI");
151     }
152     bundle_iterator(Ty *mi) : MII(mi) {
153       assert((!mi || !mi->isBundledWithPred()) &&
154              "It's not legal to initialize bundle_iterator with a bundled MI");
155     }
156     // Template allows conversion from const to nonconst.
157     template<class OtherTy, class OtherIterTy>
158     bundle_iterator(const bundle_iterator<OtherTy, OtherIterTy> &I)
159       : MII(I.getInstrIterator()) {}
160     bundle_iterator() : MII(0) {}
161
162     Ty &operator*() const { return *MII; }
163     Ty *operator->() const { return &operator*(); }
164
165     operator Ty*() const { return MII; }
166
167     bool operator==(const bundle_iterator &x) const {
168       return MII == x.MII;
169     }
170     bool operator!=(const bundle_iterator &x) const {
171       return !operator==(x);
172     }
173
174     // Increment and decrement operators...
175     bundle_iterator &operator--() {      // predecrement - Back up
176       do --MII;
177       while (MII->isBundledWithPred());
178       return *this;
179     }
180     bundle_iterator &operator++() {      // preincrement - Advance
181       while (MII->isBundledWithSucc())
182         ++MII;
183       ++MII;
184       return *this;
185     }
186     bundle_iterator operator--(int) {    // postdecrement operators...
187       bundle_iterator tmp = *this;
188       --*this;
189       return tmp;
190     }
191     bundle_iterator operator++(int) {    // postincrement operators...
192       bundle_iterator tmp = *this;
193       ++*this;
194       return tmp;
195     }
196
197     IterTy getInstrIterator() const {
198       return MII;
199     }
200   };
201
202   typedef Instructions::iterator                                 instr_iterator;
203   typedef Instructions::const_iterator                     const_instr_iterator;
204   typedef std::reverse_iterator<instr_iterator>          reverse_instr_iterator;
205   typedef
206   std::reverse_iterator<const_instr_iterator>      const_reverse_instr_iterator;
207
208   typedef
209   bundle_iterator<MachineInstr,instr_iterator>                         iterator;
210   typedef
211   bundle_iterator<const MachineInstr,const_instr_iterator>       const_iterator;
212   typedef std::reverse_iterator<const_iterator>          const_reverse_iterator;
213   typedef std::reverse_iterator<iterator>                      reverse_iterator;
214
215
216   unsigned size() const { return (unsigned)Insts.size(); }
217   bool empty() const { return Insts.empty(); }
218
219   MachineInstr& front() { return Insts.front(); }
220   MachineInstr& back()  { return Insts.back(); }
221   const MachineInstr& front() const { return Insts.front(); }
222   const MachineInstr& back()  const { return Insts.back(); }
223
224   instr_iterator                instr_begin()       { return Insts.begin();  }
225   const_instr_iterator          instr_begin() const { return Insts.begin();  }
226   instr_iterator                  instr_end()       { return Insts.end();    }
227   const_instr_iterator            instr_end() const { return Insts.end();    }
228   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
229   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
230   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
231   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
232
233   iterator                begin()       { return instr_begin();  }
234   const_iterator          begin() const { return instr_begin();  }
235   iterator                end  ()       { return instr_end();    }
236   const_iterator          end  () const { return instr_end();    }
237   reverse_iterator       rbegin()       { return instr_rbegin(); }
238   const_reverse_iterator rbegin() const { return instr_rbegin(); }
239   reverse_iterator       rend  ()       { return instr_rend();   }
240   const_reverse_iterator rend  () const { return instr_rend();   }
241
242
243   // Machine-CFG iterators
244   typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
245   typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
246   typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
247   typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
248   typedef std::vector<MachineBasicBlock *>::reverse_iterator
249                                                          pred_reverse_iterator;
250   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
251                                                    const_pred_reverse_iterator;
252   typedef std::vector<MachineBasicBlock *>::reverse_iterator
253                                                          succ_reverse_iterator;
254   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
255                                                    const_succ_reverse_iterator;
256
257   pred_iterator        pred_begin()       { return Predecessors.begin(); }
258   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
259   pred_iterator        pred_end()         { return Predecessors.end();   }
260   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
261   pred_reverse_iterator        pred_rbegin()
262                                           { return Predecessors.rbegin();}
263   const_pred_reverse_iterator  pred_rbegin() const
264                                           { return Predecessors.rbegin();}
265   pred_reverse_iterator        pred_rend()
266                                           { return Predecessors.rend();  }
267   const_pred_reverse_iterator  pred_rend()   const
268                                           { return Predecessors.rend();  }
269   unsigned             pred_size()  const {
270     return (unsigned)Predecessors.size();
271   }
272   bool                 pred_empty() const { return Predecessors.empty(); }
273   succ_iterator        succ_begin()       { return Successors.begin();   }
274   const_succ_iterator  succ_begin() const { return Successors.begin();   }
275   succ_iterator        succ_end()         { return Successors.end();     }
276   const_succ_iterator  succ_end()   const { return Successors.end();     }
277   succ_reverse_iterator        succ_rbegin()
278                                           { return Successors.rbegin();  }
279   const_succ_reverse_iterator  succ_rbegin() const
280                                           { return Successors.rbegin();  }
281   succ_reverse_iterator        succ_rend()
282                                           { return Successors.rend();    }
283   const_succ_reverse_iterator  succ_rend()   const
284                                           { return Successors.rend();    }
285   unsigned             succ_size()  const {
286     return (unsigned)Successors.size();
287   }
288   bool                 succ_empty() const { return Successors.empty();   }
289
290   // LiveIn management methods.
291
292   /// addLiveIn - Add the specified register as a live in.  Note that it
293   /// is an error to add the same register to the same set more than once.
294   void addLiveIn(unsigned Reg)  { LiveIns.push_back(Reg); }
295
296   /// removeLiveIn - Remove the specified register from the live in set.
297   ///
298   void removeLiveIn(unsigned Reg);
299
300   /// isLiveIn - Return true if the specified register is in the live in set.
301   ///
302   bool isLiveIn(unsigned Reg) const;
303
304   // Iteration support for live in sets.  These sets are kept in sorted
305   // order by their register number.
306   typedef std::vector<unsigned>::const_iterator livein_iterator;
307   livein_iterator livein_begin() const { return LiveIns.begin(); }
308   livein_iterator livein_end()   const { return LiveIns.end(); }
309   bool            livein_empty() const { return LiveIns.empty(); }
310
311   /// getAlignment - Return alignment of the basic block.
312   /// The alignment is specified as log2(bytes).
313   ///
314   unsigned getAlignment() const { return Alignment; }
315
316   /// setAlignment - Set alignment of the basic block.
317   /// The alignment is specified as log2(bytes).
318   ///
319   void setAlignment(unsigned Align) { Alignment = Align; }
320
321   /// isLandingPad - Returns true if the block is a landing pad. That is
322   /// this basic block is entered via an exception handler.
323   bool isLandingPad() const { return IsLandingPad; }
324
325   /// setIsLandingPad - Indicates the block is a landing pad.  That is
326   /// this basic block is entered via an exception handler.
327   void setIsLandingPad(bool V = true) { IsLandingPad = V; }
328
329   /// getLandingPadSuccessor - If this block has a successor that is a landing
330   /// pad, return it. Otherwise return NULL.
331   const MachineBasicBlock *getLandingPadSuccessor() const;
332
333   // Code Layout methods.
334
335   /// moveBefore/moveAfter - move 'this' block before or after the specified
336   /// block.  This only moves the block, it does not modify the CFG or adjust
337   /// potential fall-throughs at the end of the block.
338   void moveBefore(MachineBasicBlock *NewAfter);
339   void moveAfter(MachineBasicBlock *NewBefore);
340
341   /// updateTerminator - Update the terminator instructions in block to account
342   /// for changes to the layout. If the block previously used a fallthrough,
343   /// it may now need a branch, and if it previously used branching it may now
344   /// be able to use a fallthrough.
345   void updateTerminator();
346
347   // Machine-CFG mutators
348
349   /// addSuccessor - Add succ as a successor of this MachineBasicBlock.
350   /// The Predecessors list of succ is automatically updated. WEIGHT
351   /// parameter is stored in Weights list and it may be used by
352   /// MachineBranchProbabilityInfo analysis to calculate branch probability.
353   ///
354   /// Note that duplicate Machine CFG edges are not allowed.
355   ///
356   void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0);
357
358   /// removeSuccessor - Remove successor from the successors list of this
359   /// MachineBasicBlock. The Predecessors list of succ is automatically updated.
360   ///
361   void removeSuccessor(MachineBasicBlock *succ);
362
363   /// removeSuccessor - Remove specified successor from the successors list of
364   /// this MachineBasicBlock. The Predecessors list of succ is automatically
365   /// updated.  Return the iterator to the element after the one removed.
366   ///
367   succ_iterator removeSuccessor(succ_iterator I);
368
369   /// replaceSuccessor - Replace successor OLD with NEW and update weight info.
370   ///
371   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
372
373
374   /// transferSuccessors - Transfers all the successors from MBB to this
375   /// machine basic block (i.e., copies all the successors fromMBB and
376   /// remove all the successors from fromMBB).
377   void transferSuccessors(MachineBasicBlock *fromMBB);
378
379   /// transferSuccessorsAndUpdatePHIs - Transfers all the successors, as
380   /// in transferSuccessors, and update PHI operands in the successor blocks
381   /// which refer to fromMBB to refer to this.
382   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB);
383
384   /// isPredecessor - Return true if the specified MBB is a predecessor of this
385   /// block.
386   bool isPredecessor(const MachineBasicBlock *MBB) const;
387
388   /// isSuccessor - Return true if the specified MBB is a successor of this
389   /// block.
390   bool isSuccessor(const MachineBasicBlock *MBB) const;
391
392   /// isLayoutSuccessor - Return true if the specified MBB will be emitted
393   /// immediately after this block, such that if this block exits by
394   /// falling through, control will transfer to the specified MBB. Note
395   /// that MBB need not be a successor at all, for example if this block
396   /// ends with an unconditional branch to some other block.
397   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
398
399   /// canFallThrough - Return true if the block can implicitly transfer
400   /// control to the block after it by falling off the end of it.  This should
401   /// return false if it can reach the block after it, but it uses an explicit
402   /// branch to do so (e.g., a table jump).  True is a conservative answer.
403   bool canFallThrough();
404
405   /// Returns a pointer to the first instructon in this block that is not a
406   /// PHINode instruction. When adding instruction to the beginning of the
407   /// basic block, they should be added before the returned value, not before
408   /// the first instruction, which might be PHI.
409   /// Returns end() is there's no non-PHI instruction.
410   iterator getFirstNonPHI();
411
412   /// SkipPHIsAndLabels - Return the first instruction in MBB after I that is
413   /// not a PHI or a label. This is the correct point to insert copies at the
414   /// beginning of a basic block.
415   iterator SkipPHIsAndLabels(iterator I);
416
417   /// getFirstTerminator - returns an iterator to the first terminator
418   /// instruction of this basic block. If a terminator does not exist,
419   /// it returns end()
420   iterator getFirstTerminator();
421   const_iterator getFirstTerminator() const;
422
423   /// getFirstInstrTerminator - Same getFirstTerminator but it ignores bundles
424   /// and return an instr_iterator instead.
425   instr_iterator getFirstInstrTerminator();
426
427   /// getLastNonDebugInstr - returns an iterator to the last non-debug
428   /// instruction in the basic block, or end()
429   iterator getLastNonDebugInstr();
430   const_iterator getLastNonDebugInstr() const;
431
432   /// SplitCriticalEdge - Split the critical edge from this block to the
433   /// given successor block, and return the newly created block, or null
434   /// if splitting is not possible.
435   ///
436   /// This function updates LiveVariables, MachineDominatorTree, and
437   /// MachineLoopInfo, as applicable.
438   MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
439
440   void pop_front() { Insts.pop_front(); }
441   void pop_back() { Insts.pop_back(); }
442   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
443
444   /// Insert MI into the instruction list before I, possibly inside a bundle.
445   ///
446   /// If the insertion point is inside a bundle, MI will be added to the bundle,
447   /// otherwise MI will not be added to any bundle. That means this function
448   /// alone can't be used to prepend or append instructions to bundles. See
449   /// MIBundleBuilder::insert() for a more reliable way of doing that.
450   instr_iterator insert(instr_iterator I, MachineInstr *M);
451
452   /// Insert a range of instructions into the instruction list before I.
453   template<typename IT>
454   void insert(iterator I, IT S, IT E) {
455     Insts.insert(I.getInstrIterator(), S, E);
456   }
457
458   /// Insert MI into the instruction list before I.
459   iterator insert(iterator I, MachineInstr *MI) {
460     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
461            "Cannot insert instruction with bundle flags");
462     return Insts.insert(I.getInstrIterator(), MI);
463   }
464
465   /// Insert MI into the instruction list after I.
466   iterator insertAfter(iterator I, MachineInstr *MI) {
467     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
468            "Cannot insert instruction with bundle flags");
469     return Insts.insertAfter(I.getInstrIterator(), MI);
470   }
471
472   /// Remove an instruction from the instruction list and delete it.
473   ///
474   /// If the instruction is part of a bundle, the other instructions in the
475   /// bundle will still be bundled after removing the single instruction.
476   instr_iterator erase(instr_iterator I);
477
478   /// Remove an instruction from the instruction list and delete it.
479   ///
480   /// If the instruction is part of a bundle, the other instructions in the
481   /// bundle will still be bundled after removing the single instruction.
482   instr_iterator erase_instr(MachineInstr *I) {
483     return erase(instr_iterator(I));
484   }
485
486   /// Remove a range of instructions from the instruction list and delete them.
487   iterator erase(iterator I, iterator E) {
488     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
489   }
490
491   /// Remove an instruction or bundle from the instruction list and delete it.
492   ///
493   /// If I points to a bundle of instructions, they are all erased.
494   iterator erase(iterator I) {
495     return erase(I, llvm::next(I));
496   }
497
498   /// Remove an instruction from the instruction list and delete it.
499   ///
500   /// If I is the head of a bundle of instructions, the whole bundle will be
501   /// erased.
502   iterator erase(MachineInstr *I) {
503     return erase(iterator(I));
504   }
505
506   /// Remove the unbundled instruction from the instruction list without
507   /// deleting it.
508   ///
509   /// This function can not be used to remove bundled instructions, use
510   /// remove_instr to remove individual instructions from a bundle.
511   MachineInstr *remove(MachineInstr *I) {
512     assert(!I->isBundled() && "Cannot remove bundled instructions");
513     return Insts.remove(I);
514   }
515
516   /// Remove the possibly bundled instruction from the instruction list
517   /// without deleting it.
518   ///
519   /// If the instruction is part of a bundle, the other instructions in the
520   /// bundle will still be bundled after removing the single instruction.
521   MachineInstr *remove_instr(MachineInstr *I);
522
523   void clear() {
524     Insts.clear();
525   }
526
527   /// Take an instruction from MBB 'Other' at the position From, and insert it
528   /// into this MBB right before 'Where'.
529   ///
530   /// If From points to a bundle of instructions, the whole bundle is moved.
531   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
532     // The range splice() doesn't allow noop moves, but this one does.
533     if (Where != From)
534       splice(Where, Other, From, llvm::next(From));
535   }
536
537   /// Take a block of instructions from MBB 'Other' in the range [From, To),
538   /// and insert them into this MBB right before 'Where'.
539   ///
540   /// The instruction at 'Where' must not be included in the range of
541   /// instructions to move.
542   void splice(iterator Where, MachineBasicBlock *Other,
543               iterator From, iterator To) {
544     Insts.splice(Where.getInstrIterator(), Other->Insts,
545                  From.getInstrIterator(), To.getInstrIterator());
546   }
547
548   /// removeFromParent - This method unlinks 'this' from the containing
549   /// function, and returns it, but does not delete it.
550   MachineBasicBlock *removeFromParent();
551
552   /// eraseFromParent - This method unlinks 'this' from the containing
553   /// function and deletes it.
554   void eraseFromParent();
555
556   /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
557   /// 'Old', change the code and CFG so that it branches to 'New' instead.
558   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
559
560   /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in
561   /// the CFG to be inserted.  If we have proven that MBB can only branch to
562   /// DestA and DestB, remove any other MBB successors from the CFG. DestA and
563   /// DestB can be null. Besides DestA and DestB, retain other edges leading
564   /// to LandingPads (currently there can be only one; we don't check or require
565   /// that here). Note it is possible that DestA and/or DestB are LandingPads.
566   bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
567                             MachineBasicBlock *DestB,
568                             bool isCond);
569
570   /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
571   /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
572   DebugLoc findDebugLoc(instr_iterator MBBI);
573   DebugLoc findDebugLoc(iterator MBBI) {
574     return findDebugLoc(MBBI.getInstrIterator());
575   }
576
577   /// Possible outcome of a register liveness query to computeRegisterLiveness()
578   enum LivenessQueryResult {
579     LQR_Live,            ///< Register is known to be live.
580     LQR_OverlappingLive, ///< Register itself is not live, but some overlapping
581                          ///< register is.
582     LQR_Dead,            ///< Register is known to be dead.
583     LQR_Unknown          ///< Register liveness not decidable from local
584                          ///< neighborhood.
585   };
586
587   /// computeRegisterLiveness - Return whether (physical) register \c Reg
588   /// has been <def>ined and not <kill>ed as of just before \c MI.
589   /// 
590   /// Search is localised to a neighborhood of
591   /// \c Neighborhood instructions before (searching for defs or kills) and
592   /// Neighborhood instructions after (searching just for defs) MI.
593   ///
594   /// \c Reg must be a physical register.
595   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
596                                               unsigned Reg, MachineInstr *MI,
597                                               unsigned Neighborhood=10);
598
599   // Debugging methods.
600   void dump() const;
601   void print(raw_ostream &OS, SlotIndexes* = 0) const;
602
603   /// getNumber - MachineBasicBlocks are uniquely numbered at the function
604   /// level, unless they're not in a MachineFunction yet, in which case this
605   /// will return -1.
606   ///
607   int getNumber() const { return Number; }
608   void setNumber(int N) { Number = N; }
609
610   /// getSymbol - Return the MCSymbol for this basic block.
611   ///
612   MCSymbol *getSymbol() const;
613
614
615 private:
616   /// getWeightIterator - Return weight iterator corresponding to the I
617   /// successor iterator.
618   weight_iterator getWeightIterator(succ_iterator I);
619   const_weight_iterator getWeightIterator(const_succ_iterator I) const;
620
621   friend class MachineBranchProbabilityInfo;
622
623   /// getSuccWeight - Return weight of the edge from this block to MBB. This
624   /// method should NOT be called directly, but by using getEdgeWeight method
625   /// from MachineBranchProbabilityInfo class.
626   uint32_t getSuccWeight(const_succ_iterator Succ) const;
627
628
629   // Methods used to maintain doubly linked list of blocks...
630   friend struct ilist_traits<MachineBasicBlock>;
631
632   // Machine-CFG mutators
633
634   /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock.
635   /// Don't do this unless you know what you're doing, because it doesn't
636   /// update pred's successors list. Use pred->addSuccessor instead.
637   ///
638   void addPredecessor(MachineBasicBlock *pred);
639
640   /// removePredecessor - Remove pred as a predecessor of this
641   /// MachineBasicBlock. Don't do this unless you know what you're
642   /// doing, because it doesn't update pred's successors list. Use
643   /// pred->removeSuccessor instead.
644   ///
645   void removePredecessor(MachineBasicBlock *pred);
646 };
647
648 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
649
650 void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t);
651
652 // This is useful when building IndexedMaps keyed on basic block pointers.
653 struct MBB2NumberFunctor :
654   public std::unary_function<const MachineBasicBlock*, unsigned> {
655   unsigned operator()(const MachineBasicBlock *MBB) const {
656     return MBB->getNumber();
657   }
658 };
659
660 //===--------------------------------------------------------------------===//
661 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
662 //===--------------------------------------------------------------------===//
663
664 // Provide specializations of GraphTraits to be able to treat a
665 // MachineFunction as a graph of MachineBasicBlocks...
666 //
667
668 template <> struct GraphTraits<MachineBasicBlock *> {
669   typedef MachineBasicBlock NodeType;
670   typedef MachineBasicBlock::succ_iterator ChildIteratorType;
671
672   static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
673   static inline ChildIteratorType child_begin(NodeType *N) {
674     return N->succ_begin();
675   }
676   static inline ChildIteratorType child_end(NodeType *N) {
677     return N->succ_end();
678   }
679 };
680
681 template <> struct GraphTraits<const MachineBasicBlock *> {
682   typedef const MachineBasicBlock NodeType;
683   typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
684
685   static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
686   static inline ChildIteratorType child_begin(NodeType *N) {
687     return N->succ_begin();
688   }
689   static inline ChildIteratorType child_end(NodeType *N) {
690     return N->succ_end();
691   }
692 };
693
694 // Provide specializations of GraphTraits to be able to treat a
695 // MachineFunction as a graph of MachineBasicBlocks... and to walk it
696 // in inverse order.  Inverse order for a function is considered
697 // to be when traversing the predecessor edges of a MBB
698 // instead of the successor edges.
699 //
700 template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
701   typedef MachineBasicBlock NodeType;
702   typedef MachineBasicBlock::pred_iterator ChildIteratorType;
703   static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
704     return G.Graph;
705   }
706   static inline ChildIteratorType child_begin(NodeType *N) {
707     return N->pred_begin();
708   }
709   static inline ChildIteratorType child_end(NodeType *N) {
710     return N->pred_end();
711   }
712 };
713
714 template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
715   typedef const MachineBasicBlock NodeType;
716   typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
717   static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
718     return G.Graph;
719   }
720   static inline ChildIteratorType child_begin(NodeType *N) {
721     return N->pred_begin();
722   }
723   static inline ChildIteratorType child_end(NodeType *N) {
724     return N->pred_end();
725   }
726 };
727
728 } // End llvm namespace
729
730 #endif