Calculate dead instructions when a live interval is created.
[oota-llvm.git] / include / llvm / CodeGen / LiveIntervalAnalysis.h
1 //===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass.  Given some numbering of
11 // each the machine instructions (in this implemention depth-first order) an
12 // interval [i, j) is said to be a live interval for register v if there is no
13 // instruction with number j' > j such that v is live at j' and there is no
14 // instruction with number i' < i such that v is live at i'. In this
15 // implementation intervals can have holes, i.e. an interval might look like
16 // [1,20), [50,65), [1000,1001).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
21 #define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
22
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/SlotIndexes.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include <cmath>
32 #include <iterator>
33
34 namespace llvm {
35
36   class AliasAnalysis;
37   class BitVector;
38   class BlockFrequency;
39   class LiveRangeCalc;
40   class LiveVariables;
41   class MachineDominatorTree;
42   class MachineLoopInfo;
43   class TargetRegisterInfo;
44   class MachineRegisterInfo;
45   class TargetInstrInfo;
46   class TargetRegisterClass;
47   class VirtRegMap;
48   class MachineBlockFrequencyInfo;
49
50   class LiveIntervals : public MachineFunctionPass {
51     MachineFunction* MF;
52     MachineRegisterInfo* MRI;
53     const TargetMachine* TM;
54     const TargetRegisterInfo* TRI;
55     const TargetInstrInfo* TII;
56     AliasAnalysis *AA;
57     SlotIndexes* Indexes;
58     MachineDominatorTree *DomTree;
59     LiveRangeCalc *LRCalc;
60
61     /// Special pool allocator for VNInfo's (LiveInterval val#).
62     ///
63     VNInfo::Allocator VNInfoAllocator;
64
65     /// Live interval pointers for all the virtual registers.
66     IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
67
68     /// RegMaskSlots - Sorted list of instructions with register mask operands.
69     /// Always use the 'r' slot, RegMasks are normal clobbers, not early
70     /// clobbers.
71     SmallVector<SlotIndex, 8> RegMaskSlots;
72
73     /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
74     /// pointer to the corresponding register mask.  This pointer can be
75     /// recomputed as:
76     ///
77     ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
78     ///   unsigned OpNum = findRegMaskOperand(MI);
79     ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
80     ///
81     /// This is kept in a separate vector partly because some standard
82     /// libraries don't support lower_bound() with mixed objects, partly to
83     /// improve locality when searching in RegMaskSlots.
84     /// Also see the comment in LiveInterval::find().
85     SmallVector<const uint32_t*, 8> RegMaskBits;
86
87     /// For each basic block number, keep (begin, size) pairs indexing into the
88     /// RegMaskSlots and RegMaskBits arrays.
89     /// Note that basic block numbers may not be layout contiguous, that's why
90     /// we can't just keep track of the first register mask in each basic
91     /// block.
92     SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
93
94     /// Keeps a live range set for each register unit to track fixed physreg
95     /// interference.
96     SmallVector<LiveRange*, 0> RegUnitRanges;
97
98   public:
99     static char ID; // Pass identification, replacement for typeid
100     LiveIntervals();
101     virtual ~LiveIntervals();
102
103     // Calculate the spill weight to assign to a single instruction.
104     static float getSpillWeight(bool isDef, bool isUse,
105                                 const MachineBlockFrequencyInfo *MBFI,
106                                 const MachineInstr *Instr);
107
108     LiveInterval &getInterval(unsigned Reg) {
109       if (hasInterval(Reg))
110         return *VirtRegIntervals[Reg];
111       else
112         return createAndComputeVirtRegInterval(Reg);
113     }
114
115     const LiveInterval &getInterval(unsigned Reg) const {
116       return const_cast<LiveIntervals*>(this)->getInterval(Reg);
117     }
118
119     bool hasInterval(unsigned Reg) const {
120       return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
121     }
122
123     // Interval creation.
124     LiveInterval &createEmptyInterval(unsigned Reg) {
125       assert(!hasInterval(Reg) && "Interval already exists!");
126       VirtRegIntervals.grow(Reg);
127       VirtRegIntervals[Reg] = createInterval(Reg);
128       return *VirtRegIntervals[Reg];
129     }
130
131     LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
132       LiveInterval &LI = createEmptyInterval(Reg);
133       computeVirtRegInterval(LI);
134       return LI;
135     }
136
137     // Interval removal.
138     void removeInterval(unsigned Reg) {
139       delete VirtRegIntervals[Reg];
140       VirtRegIntervals[Reg] = nullptr;
141     }
142
143     /// Given a register and an instruction, adds a live segment from that
144     /// instruction to the end of its MBB.
145     LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
146                                                  MachineInstr* startInst);
147
148     /// shrinkToUses - After removing some uses of a register, shrink its live
149     /// range to just the remaining uses. This method does not compute reaching
150     /// defs for new uses, and it doesn't remove dead defs.
151     /// Dead PHIDef values are marked as unused.
152     /// New dead machine instructions are added to the dead vector.
153     /// Return true if the interval may have been separated into multiple
154     /// connected components.
155     bool shrinkToUses(LiveInterval *li,
156                       SmallVectorImpl<MachineInstr*> *dead = nullptr);
157
158     /// \brief Walk the values in the given interval and compute which ones
159     /// are dead.  Dead values are not deleted, however:
160     /// - Dead PHIDef values are marked as unused.
161     /// - New dead machine instructions are added to the dead vector.
162     /// - CanSeparate is set to true if the interval may have been separated
163     ///   into multiple connected components.
164     void computeDeadValues(LiveInterval *li,
165                            LiveRange &LR,
166                            bool *CanSeparate,
167                            SmallVectorImpl<MachineInstr*> *dead);
168
169     /// extendToIndices - Extend the live range of LI to reach all points in
170     /// Indices. The points in the Indices array must be jointly dominated by
171     /// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
172     ///
173     /// If a SlotIndex in Indices is the end index of a basic block, LI will be
174     /// extended to be live out of the basic block.
175     ///
176     /// See also LiveRangeCalc::extend().
177     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
178
179     /// pruneValue - If an LI value is live at Kill, prune its live range by
180     /// removing any liveness reachable from Kill. Add live range end points to
181     /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
182     /// value's live range.
183     ///
184     /// Calling pruneValue() and extendToIndices() can be used to reconstruct
185     /// SSA form after adding defs to a virtual register.
186     void pruneValue(LiveInterval *LI, SlotIndex Kill,
187                     SmallVectorImpl<SlotIndex> *EndPoints);
188
189     SlotIndexes *getSlotIndexes() const {
190       return Indexes;
191     }
192
193     AliasAnalysis *getAliasAnalysis() const {
194       return AA;
195     }
196
197     /// isNotInMIMap - returns true if the specified machine instr has been
198     /// removed or was never entered in the map.
199     bool isNotInMIMap(const MachineInstr* Instr) const {
200       return !Indexes->hasIndex(Instr);
201     }
202
203     /// Returns the base index of the given instruction.
204     SlotIndex getInstructionIndex(const MachineInstr *instr) const {
205       return Indexes->getInstructionIndex(instr);
206     }
207
208     /// Returns the instruction associated with the given index.
209     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
210       return Indexes->getInstructionFromIndex(index);
211     }
212
213     /// Return the first index in the given basic block.
214     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
215       return Indexes->getMBBStartIdx(mbb);
216     }
217
218     /// Return the last index in the given basic block.
219     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
220       return Indexes->getMBBEndIdx(mbb);
221     }
222
223     bool isLiveInToMBB(const LiveRange &LR,
224                        const MachineBasicBlock *mbb) const {
225       return LR.liveAt(getMBBStartIdx(mbb));
226     }
227
228     bool isLiveOutOfMBB(const LiveRange &LR,
229                         const MachineBasicBlock *mbb) const {
230       return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
231     }
232
233     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
234       return Indexes->getMBBFromIndex(index);
235     }
236
237     void insertMBBInMaps(MachineBasicBlock *MBB) {
238       Indexes->insertMBBInMaps(MBB);
239       assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
240              "Blocks must be added in order.");
241       RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
242     }
243
244     SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
245       return Indexes->insertMachineInstrInMaps(MI);
246     }
247
248     void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
249                                        MachineBasicBlock::iterator E) {
250       for (MachineBasicBlock::iterator I = B; I != E; ++I)
251         Indexes->insertMachineInstrInMaps(I);
252     }
253
254     void RemoveMachineInstrFromMaps(MachineInstr *MI) {
255       Indexes->removeMachineInstrFromMaps(MI);
256     }
257
258     void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
259       Indexes->replaceMachineInstrInMaps(MI, NewMI);
260     }
261
262     bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
263                         SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
264       return Indexes->findLiveInMBBs(Start, End, MBBs);
265     }
266
267     VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
268
269     void getAnalysisUsage(AnalysisUsage &AU) const override;
270     void releaseMemory() override;
271
272     /// runOnMachineFunction - pass entry point
273     bool runOnMachineFunction(MachineFunction&) override;
274
275     /// print - Implement the dump method.
276     void print(raw_ostream &O, const Module* = nullptr) const override;
277
278     /// intervalIsInOneMBB - If LI is confined to a single basic block, return
279     /// a pointer to that block.  If LI is live in to or out of any block,
280     /// return NULL.
281     MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
282
283     /// Returns true if VNI is killed by any PHI-def values in LI.
284     /// This may conservatively return true to avoid expensive computations.
285     bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
286
287     /// addKillFlags - Add kill flags to any instruction that kills a virtual
288     /// register.
289     void addKillFlags(const VirtRegMap*);
290
291     /// handleMove - call this method to notify LiveIntervals that
292     /// instruction 'mi' has been moved within a basic block. This will update
293     /// the live intervals for all operands of mi. Moves between basic blocks
294     /// are not supported.
295     ///
296     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
297     void handleMove(MachineInstr* MI, bool UpdateFlags = false);
298
299     /// moveIntoBundle - Update intervals for operands of MI so that they
300     /// begin/end on the SlotIndex for BundleStart.
301     ///
302     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
303     ///
304     /// Requires MI and BundleStart to have SlotIndexes, and assumes
305     /// existing liveness is accurate. BundleStart should be the first
306     /// instruction in the Bundle.
307     void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart,
308                               bool UpdateFlags = false);
309
310     /// repairIntervalsInRange - Update live intervals for instructions in a
311     /// range of iterators. It is intended for use after target hooks that may
312     /// insert or remove instructions, and is only efficient for a small number
313     /// of instructions.
314     ///
315     /// OrigRegs is a vector of registers that were originally used by the
316     /// instructions in the range between the two iterators.
317     ///
318     /// Currently, the only only changes that are supported are simple removal
319     /// and addition of uses.
320     void repairIntervalsInRange(MachineBasicBlock *MBB,
321                                 MachineBasicBlock::iterator Begin,
322                                 MachineBasicBlock::iterator End,
323                                 ArrayRef<unsigned> OrigRegs);
324
325     // Register mask functions.
326     //
327     // Machine instructions may use a register mask operand to indicate that a
328     // large number of registers are clobbered by the instruction.  This is
329     // typically used for calls.
330     //
331     // For compile time performance reasons, these clobbers are not recorded in
332     // the live intervals for individual physical registers.  Instead,
333     // LiveIntervalAnalysis maintains a sorted list of instructions with
334     // register mask operands.
335
336     /// getRegMaskSlots - Returns a sorted array of slot indices of all
337     /// instructions with register mask operands.
338     ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
339
340     /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
341     /// instructions with register mask operands in the basic block numbered
342     /// MBBNum.
343     ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
344       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
345       return getRegMaskSlots().slice(P.first, P.second);
346     }
347
348     /// getRegMaskBits() - Returns an array of register mask pointers
349     /// corresponding to getRegMaskSlots().
350     ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
351
352     /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
353     /// to getRegMaskSlotsInBlock(MBBNum).
354     ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
355       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
356       return getRegMaskBits().slice(P.first, P.second);
357     }
358
359     /// checkRegMaskInterference - Test if LI is live across any register mask
360     /// instructions, and compute a bit mask of physical registers that are not
361     /// clobbered by any of them.
362     ///
363     /// Returns false if LI doesn't cross any register mask instructions. In
364     /// that case, the bit vector is not filled in.
365     bool checkRegMaskInterference(LiveInterval &LI,
366                                   BitVector &UsableRegs);
367
368     // Register unit functions.
369     //
370     // Fixed interference occurs when MachineInstrs use physregs directly
371     // instead of virtual registers. This typically happens when passing
372     // arguments to a function call, or when instructions require operands in
373     // fixed registers.
374     //
375     // Each physreg has one or more register units, see MCRegisterInfo. We
376     // track liveness per register unit to handle aliasing registers more
377     // efficiently.
378
379     /// getRegUnit - Return the live range for Unit.
380     /// It will be computed if it doesn't exist.
381     LiveRange &getRegUnit(unsigned Unit) {
382       LiveRange *LR = RegUnitRanges[Unit];
383       if (!LR) {
384         // Compute missing ranges on demand.
385         RegUnitRanges[Unit] = LR = new LiveRange();
386         computeRegUnitRange(*LR, Unit);
387       }
388       return *LR;
389     }
390
391     /// getCachedRegUnit - Return the live range for Unit if it has already
392     /// been computed, or NULL if it hasn't been computed yet.
393     LiveRange *getCachedRegUnit(unsigned Unit) {
394       return RegUnitRanges[Unit];
395     }
396
397     const LiveRange *getCachedRegUnit(unsigned Unit) const {
398       return RegUnitRanges[Unit];
399     }
400
401   private:
402     /// Compute live intervals for all virtual registers.
403     void computeVirtRegs();
404
405     /// Compute RegMaskSlots and RegMaskBits.
406     void computeRegMasks();
407
408     static LiveInterval* createInterval(unsigned Reg);
409
410     void printInstrs(raw_ostream &O) const;
411     void dumpInstrs() const;
412
413     void computeLiveInRegUnits();
414     void computeRegUnitRange(LiveRange&, unsigned Unit);
415     void computeVirtRegInterval(LiveInterval&);
416
417     class HMEditor;
418   };
419 } // End llvm namespace
420
421 #endif