Add API "handleMoveIntoBundl" for updating liveness when moving instructions into
[oota-llvm.git] / include / llvm / CodeGen / LiveIntervalAnalysis.h
1 //===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass.  Given some numbering of
11 // each the machine instructions (in this implemention depth-first order) an
12 // interval [i, j) is said to be a live interval for register v if there is no
13 // instruction with number j' > j such that v is live at j' and there is no
14 // instruction with number i' < i such that v is live at i'. In this
15 // implementation intervals can have holes, i.e. an interval might look like
16 // [1,20), [50,65), [1000,1001).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
21 #define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
22
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/SlotIndexes.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Support/Allocator.h"
32 #include <cmath>
33 #include <iterator>
34
35 namespace llvm {
36
37   class AliasAnalysis;
38   class LiveVariables;
39   class MachineLoopInfo;
40   class TargetRegisterInfo;
41   class MachineRegisterInfo;
42   class TargetInstrInfo;
43   class TargetRegisterClass;
44   class VirtRegMap;
45
46   class LiveIntervals : public MachineFunctionPass {
47     MachineFunction* mf_;
48     MachineRegisterInfo* mri_;
49     const TargetMachine* tm_;
50     const TargetRegisterInfo* tri_;
51     const TargetInstrInfo* tii_;
52     AliasAnalysis *aa_;
53     LiveVariables* lv_;
54     SlotIndexes* indexes_;
55
56     /// Special pool allocator for VNInfo's (LiveInterval val#).
57     ///
58     VNInfo::Allocator VNInfoAllocator;
59
60     typedef DenseMap<unsigned, LiveInterval*> Reg2IntervalMap;
61     Reg2IntervalMap r2iMap_;
62
63     /// allocatableRegs_ - A bit vector of allocatable registers.
64     BitVector allocatableRegs_;
65
66     /// reservedRegs_ - A bit vector of reserved registers.
67     BitVector reservedRegs_;
68
69     /// RegMaskSlots - Sorted list of instructions with register mask operands.
70     /// Always use the 'r' slot, RegMasks are normal clobbers, not early
71     /// clobbers.
72     SmallVector<SlotIndex, 8> RegMaskSlots;
73
74     /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
75     /// pointer to the corresponding register mask.  This pointer can be
76     /// recomputed as:
77     ///
78     ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
79     ///   unsigned OpNum = findRegMaskOperand(MI);
80     ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
81     ///
82     /// This is kept in a separate vector partly because some standard
83     /// libraries don't support lower_bound() with mixed objects, partly to
84     /// improve locality when searching in RegMaskSlots.
85     /// Also see the comment in LiveInterval::find().
86     SmallVector<const uint32_t*, 8> RegMaskBits;
87
88     /// For each basic block number, keep (begin, size) pairs indexing into the
89     /// RegMaskSlots and RegMaskBits arrays.
90     /// Note that basic block numbers may not be layout contiguous, that's why
91     /// we can't just keep track of the first register mask in each basic
92     /// block.
93     SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
94
95   public:
96     static char ID; // Pass identification, replacement for typeid
97     LiveIntervals() : MachineFunctionPass(ID) {
98       initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
99     }
100
101     // Calculate the spill weight to assign to a single instruction.
102     static float getSpillWeight(bool isDef, bool isUse, unsigned loopDepth);
103
104     typedef Reg2IntervalMap::iterator iterator;
105     typedef Reg2IntervalMap::const_iterator const_iterator;
106     const_iterator begin() const { return r2iMap_.begin(); }
107     const_iterator end() const { return r2iMap_.end(); }
108     iterator begin() { return r2iMap_.begin(); }
109     iterator end() { return r2iMap_.end(); }
110     unsigned getNumIntervals() const { return (unsigned)r2iMap_.size(); }
111
112     LiveInterval &getInterval(unsigned reg) {
113       Reg2IntervalMap::iterator I = r2iMap_.find(reg);
114       assert(I != r2iMap_.end() && "Interval does not exist for register");
115       return *I->second;
116     }
117
118     const LiveInterval &getInterval(unsigned reg) const {
119       Reg2IntervalMap::const_iterator I = r2iMap_.find(reg);
120       assert(I != r2iMap_.end() && "Interval does not exist for register");
121       return *I->second;
122     }
123
124     bool hasInterval(unsigned reg) const {
125       return r2iMap_.count(reg);
126     }
127
128     /// isAllocatable - is the physical register reg allocatable in the current
129     /// function?
130     bool isAllocatable(unsigned reg) const {
131       return allocatableRegs_.test(reg);
132     }
133
134     /// isReserved - is the physical register reg reserved in the current
135     /// function
136     bool isReserved(unsigned reg) const {
137       return reservedRegs_.test(reg);
138     }
139
140     /// getScaledIntervalSize - get the size of an interval in "units,"
141     /// where every function is composed of one thousand units.  This
142     /// measure scales properly with empty index slots in the function.
143     double getScaledIntervalSize(LiveInterval& I) {
144       return (1000.0 * I.getSize()) / indexes_->getIndexesLength();
145     }
146
147     /// getFuncInstructionCount - Return the number of instructions in the
148     /// current function.
149     unsigned getFuncInstructionCount() {
150       return indexes_->getFunctionSize();
151     }
152
153     /// getApproximateInstructionCount - computes an estimate of the number
154     /// of instructions in a given LiveInterval.
155     unsigned getApproximateInstructionCount(LiveInterval& I) {
156       double IntervalPercentage = getScaledIntervalSize(I) / 1000.0;
157       return (unsigned)(IntervalPercentage * indexes_->getFunctionSize());
158     }
159
160     // Interval creation
161     LiveInterval &getOrCreateInterval(unsigned reg) {
162       Reg2IntervalMap::iterator I = r2iMap_.find(reg);
163       if (I == r2iMap_.end())
164         I = r2iMap_.insert(std::make_pair(reg, createInterval(reg))).first;
165       return *I->second;
166     }
167
168     /// dupInterval - Duplicate a live interval. The caller is responsible for
169     /// managing the allocated memory.
170     LiveInterval *dupInterval(LiveInterval *li);
171
172     /// addLiveRangeToEndOfBlock - Given a register and an instruction,
173     /// adds a live range from that instruction to the end of its MBB.
174     LiveRange addLiveRangeToEndOfBlock(unsigned reg,
175                                        MachineInstr* startInst);
176
177     /// shrinkToUses - After removing some uses of a register, shrink its live
178     /// range to just the remaining uses. This method does not compute reaching
179     /// defs for new uses, and it doesn't remove dead defs.
180     /// Dead PHIDef values are marked as unused.
181     /// New dead machine instructions are added to the dead vector.
182     /// Return true if the interval may have been separated into multiple
183     /// connected components.
184     bool shrinkToUses(LiveInterval *li,
185                       SmallVectorImpl<MachineInstr*> *dead = 0);
186
187     // Interval removal
188
189     void removeInterval(unsigned Reg) {
190       DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.find(Reg);
191       delete I->second;
192       r2iMap_.erase(I);
193     }
194
195     SlotIndexes *getSlotIndexes() const {
196       return indexes_;
197     }
198
199     /// isNotInMIMap - returns true if the specified machine instr has been
200     /// removed or was never entered in the map.
201     bool isNotInMIMap(const MachineInstr* Instr) const {
202       return !indexes_->hasIndex(Instr);
203     }
204
205     /// Returns the base index of the given instruction.
206     SlotIndex getInstructionIndex(const MachineInstr *instr) const {
207       return indexes_->getInstructionIndex(instr);
208     }
209
210     /// Returns the instruction associated with the given index.
211     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
212       return indexes_->getInstructionFromIndex(index);
213     }
214
215     /// Return the first index in the given basic block.
216     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
217       return indexes_->getMBBStartIdx(mbb);
218     }
219
220     /// Return the last index in the given basic block.
221     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
222       return indexes_->getMBBEndIdx(mbb);
223     }
224
225     bool isLiveInToMBB(const LiveInterval &li,
226                        const MachineBasicBlock *mbb) const {
227       return li.liveAt(getMBBStartIdx(mbb));
228     }
229
230     bool isLiveOutOfMBB(const LiveInterval &li,
231                         const MachineBasicBlock *mbb) const {
232       return li.liveAt(getMBBEndIdx(mbb).getPrevSlot());
233     }
234
235     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
236       return indexes_->getMBBFromIndex(index);
237     }
238
239     SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
240       return indexes_->insertMachineInstrInMaps(MI);
241     }
242
243     void RemoveMachineInstrFromMaps(MachineInstr *MI) {
244       indexes_->removeMachineInstrFromMaps(MI);
245     }
246
247     void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
248       indexes_->replaceMachineInstrInMaps(MI, NewMI);
249     }
250
251     bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
252                         SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
253       return indexes_->findLiveInMBBs(Start, End, MBBs);
254     }
255
256     VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
257
258     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
259     virtual void releaseMemory();
260
261     /// runOnMachineFunction - pass entry point
262     virtual bool runOnMachineFunction(MachineFunction&);
263
264     /// print - Implement the dump method.
265     virtual void print(raw_ostream &O, const Module* = 0) const;
266
267     /// isReMaterializable - Returns true if every definition of MI of every
268     /// val# of the specified interval is re-materializable. Also returns true
269     /// by reference if all of the defs are load instructions.
270     bool isReMaterializable(const LiveInterval &li,
271                             const SmallVectorImpl<LiveInterval*> *SpillIs,
272                             bool &isLoad);
273
274     /// intervalIsInOneMBB - If LI is confined to a single basic block, return
275     /// a pointer to that block.  If LI is live in to or out of any block,
276     /// return NULL.
277     MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
278
279     /// addKillFlags - Add kill flags to any instruction that kills a virtual
280     /// register.
281     void addKillFlags();
282
283     /// handleMove - call this method to notify LiveIntervals that
284     /// instruction 'mi' has been moved within a basic block. This will update
285     /// the live intervals for all operands of mi. Moves between basic blocks
286     /// are not supported.
287     void handleMove(MachineInstr* MI);
288
289     /// moveIntoBundle - Update intervals for operands of MI so that they
290     /// begin/end on the SlotIndex for BundleStart.
291     ///
292     /// Requires MI and BundleStart to have SlotIndexes, and assumes
293     /// existing liveness is accurate. BundleStart should be the first
294     /// instruction in the Bundle.
295     void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart);
296
297     // Register mask functions.
298     //
299     // Machine instructions may use a register mask operand to indicate that a
300     // large number of registers are clobbered by the instruction.  This is
301     // typically used for calls.
302     //
303     // For compile time performance reasons, these clobbers are not recorded in
304     // the live intervals for individual physical registers.  Instead,
305     // LiveIntervalAnalysis maintains a sorted list of instructions with
306     // register mask operands.
307
308     /// getRegMaskSlots - Returns a sorted array of slot indices of all
309     /// instructions with register mask operands.
310     ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
311
312     /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
313     /// instructions with register mask operands in the basic block numbered
314     /// MBBNum.
315     ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
316       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
317       return getRegMaskSlots().slice(P.first, P.second);
318     }
319
320     /// getRegMaskBits() - Returns an array of register mask pointers
321     /// corresponding to getRegMaskSlots().
322     ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
323
324     /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
325     /// to getRegMaskSlotsInBlock(MBBNum).
326     ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
327       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
328       return getRegMaskBits().slice(P.first, P.second);
329     }
330
331     /// checkRegMaskInterference - Test if LI is live across any register mask
332     /// instructions, and compute a bit mask of physical registers that are not
333     /// clobbered by any of them.
334     ///
335     /// Returns false if LI doesn't cross any register mask instructions. In
336     /// that case, the bit vector is not filled in.
337     bool checkRegMaskInterference(LiveInterval &LI,
338                                   BitVector &UsableRegs);
339
340   private:
341     /// computeIntervals - Compute live intervals.
342     void computeIntervals();
343
344     /// handleRegisterDef - update intervals for a register def
345     /// (calls handlePhysicalRegisterDef and
346     /// handleVirtualRegisterDef)
347     void handleRegisterDef(MachineBasicBlock *MBB,
348                            MachineBasicBlock::iterator MI,
349                            SlotIndex MIIdx,
350                            MachineOperand& MO, unsigned MOIdx);
351
352     /// isPartialRedef - Return true if the specified def at the specific index
353     /// is partially re-defining the specified live interval. A common case of
354     /// this is a definition of the sub-register.
355     bool isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
356                         LiveInterval &interval);
357
358     /// handleVirtualRegisterDef - update intervals for a virtual
359     /// register def
360     void handleVirtualRegisterDef(MachineBasicBlock *MBB,
361                                   MachineBasicBlock::iterator MI,
362                                   SlotIndex MIIdx, MachineOperand& MO,
363                                   unsigned MOIdx,
364                                   LiveInterval& interval);
365
366     /// handlePhysicalRegisterDef - update intervals for a physical register
367     /// def.
368     void handlePhysicalRegisterDef(MachineBasicBlock* mbb,
369                                    MachineBasicBlock::iterator mi,
370                                    SlotIndex MIIdx, MachineOperand& MO,
371                                    LiveInterval &interval);
372
373     /// handleLiveInRegister - Create interval for a livein register.
374     void handleLiveInRegister(MachineBasicBlock* mbb,
375                               SlotIndex MIIdx,
376                               LiveInterval &interval);
377
378     /// getReMatImplicitUse - If the remat definition MI has one (for now, we
379     /// only allow one) virtual register operand, then its uses are implicitly
380     /// using the register. Returns the virtual register.
381     unsigned getReMatImplicitUse(const LiveInterval &li,
382                                  MachineInstr *MI) const;
383
384     /// isValNoAvailableAt - Return true if the val# of the specified interval
385     /// which reaches the given instruction also reaches the specified use
386     /// index.
387     bool isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
388                             SlotIndex UseIdx) const;
389
390     /// isReMaterializable - Returns true if the definition MI of the specified
391     /// val# of the specified interval is re-materializable. Also returns true
392     /// by reference if the def is a load.
393     bool isReMaterializable(const LiveInterval &li, const VNInfo *ValNo,
394                             MachineInstr *MI,
395                             const SmallVectorImpl<LiveInterval*> *SpillIs,
396                             bool &isLoad);
397
398     static LiveInterval* createInterval(unsigned Reg);
399
400     void printInstrs(raw_ostream &O) const;
401     void dumpInstrs() const;
402
403     class HMEditor;
404   };
405 } // End llvm namespace
406
407 #endif