StringRef'ize EmitSourceFileHeader().
[oota-llvm.git] / include / llvm / BasicBlock.h
1 //===-- llvm/BasicBlock.h - Represent a basic block in the VM ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the BasicBlock class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_BASICBLOCK_H
15 #define LLVM_BASICBLOCK_H
16
17 #include "llvm/Instruction.h"
18 #include "llvm/SymbolTableListTraits.h"
19 #include "llvm/ADT/ilist.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Support/DataTypes.h"
22
23 namespace llvm {
24
25 class LandingPadInst;
26 class TerminatorInst;
27 class LLVMContext;
28 class BlockAddress;
29
30 template<> struct ilist_traits<Instruction>
31   : public SymbolTableListTraits<Instruction, BasicBlock> {
32   // createSentinel is used to get hold of a node that marks the end of
33   // the list...
34   // The sentinel is relative to this instance, so we use a non-static
35   // method.
36   Instruction *createSentinel() const {
37     // since i(p)lists always publicly derive from the corresponding
38     // traits, placing a data member in this class will augment i(p)list.
39     // But since the NodeTy is expected to publicly derive from
40     // ilist_node<NodeTy>, there is a legal viable downcast from it
41     // to NodeTy. We use this trick to superpose i(p)list with a "ghostly"
42     // NodeTy, which becomes the sentinel. Dereferencing the sentinel is
43     // forbidden (save the ilist_node<NodeTy>) so no one will ever notice
44     // the superposition.
45     return static_cast<Instruction*>(&Sentinel);
46   }
47   static void destroySentinel(Instruction*) {}
48
49   Instruction *provideInitialHead() const { return createSentinel(); }
50   Instruction *ensureHead(Instruction*) const { return createSentinel(); }
51   static void noteHead(Instruction*, Instruction*) {}
52 private:
53   mutable ilist_half_node<Instruction> Sentinel;
54 };
55
56 /// This represents a single basic block in LLVM. A basic block is simply a
57 /// container of instructions that execute sequentially. Basic blocks are Values
58 /// because they are referenced by instructions such as branches and switch
59 /// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block
60 /// represents a label to which a branch can jump.
61 ///
62 /// A well formed basic block is formed of a list of non-terminating
63 /// instructions followed by a single TerminatorInst instruction.
64 /// TerminatorInst's may not occur in the middle of basic blocks, and must
65 /// terminate the blocks. The BasicBlock class allows malformed basic blocks to
66 /// occur because it may be useful in the intermediate stage of constructing or
67 /// modifying a program. However, the verifier will ensure that basic blocks
68 /// are "well formed".
69 /// @brief LLVM Basic Block Representation
70 class BasicBlock : public Value, // Basic blocks are data objects also
71                    public ilist_node<BasicBlock> {
72   friend class BlockAddress;
73 public:
74   typedef iplist<Instruction> InstListType;
75 private:
76   InstListType InstList;
77   Function *Parent;
78
79   void setParent(Function *parent);
80   friend class SymbolTableListTraits<BasicBlock, Function>;
81
82   BasicBlock(const BasicBlock &);     // Do not implement
83   void operator=(const BasicBlock &); // Do not implement
84
85   /// BasicBlock ctor - If the function parameter is specified, the basic block
86   /// is automatically inserted at either the end of the function (if
87   /// InsertBefore is null), or before the specified basic block.
88   ///
89   explicit BasicBlock(LLVMContext &C, const Twine &Name = "",
90                       Function *Parent = 0, BasicBlock *InsertBefore = 0);
91 public:
92   /// getContext - Get the context in which this basic block lives.
93   LLVMContext &getContext() const;
94
95   /// Instruction iterators...
96   typedef InstListType::iterator                              iterator;
97   typedef InstListType::const_iterator                  const_iterator;
98
99   /// Create - Creates a new BasicBlock. If the Parent parameter is specified,
100   /// the basic block is automatically inserted at either the end of the
101   /// function (if InsertBefore is 0), or before the specified basic block.
102   static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "",
103                             Function *Parent = 0,BasicBlock *InsertBefore = 0) {
104     return new BasicBlock(Context, Name, Parent, InsertBefore);
105   }
106   ~BasicBlock();
107
108   /// getParent - Return the enclosing method, or null if none
109   ///
110   const Function *getParent() const { return Parent; }
111         Function *getParent()       { return Parent; }
112
113   /// getTerminator() - If this is a well formed basic block, then this returns
114   /// a pointer to the terminator instruction.  If it is not, then you get a
115   /// null pointer back.
116   ///
117   TerminatorInst *getTerminator();
118   const TerminatorInst *getTerminator() const;
119
120   /// Returns a pointer to the first instructon in this block that is not a
121   /// PHINode instruction. When adding instruction to the beginning of the
122   /// basic block, they should be added before the returned value, not before
123   /// the first instruction, which might be PHI.
124   /// Returns 0 is there's no non-PHI instruction.
125   Instruction* getFirstNonPHI();
126   const Instruction* getFirstNonPHI() const {
127     return const_cast<BasicBlock*>(this)->getFirstNonPHI();
128   }
129
130   // Same as above, but also skip debug intrinsics.
131   Instruction* getFirstNonPHIOrDbg();
132   const Instruction* getFirstNonPHIOrDbg() const {
133     return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbg();
134   }
135
136   // Same as above, but also skip lifetime intrinsics.
137   Instruction* getFirstNonPHIOrDbgOrLifetime();
138   const Instruction* getFirstNonPHIOrDbgOrLifetime() const {
139     return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbgOrLifetime();
140   }
141
142   /// getFirstInsertionPt - Returns an iterator to the first instruction in this
143   /// block that is suitable for inserting a non-PHI instruction. In particular,
144   /// it skips all PHIs and LandingPad instructions.
145   iterator getFirstInsertionPt();
146   const_iterator getFirstInsertionPt() const {
147     return const_cast<BasicBlock*>(this)->getFirstInsertionPt();
148   }
149
150   /// removeFromParent - This method unlinks 'this' from the containing
151   /// function, but does not delete it.
152   ///
153   void removeFromParent();
154
155   /// eraseFromParent - This method unlinks 'this' from the containing function
156   /// and deletes it.
157   ///
158   void eraseFromParent();
159
160   /// moveBefore - Unlink this basic block from its current function and
161   /// insert it into the function that MovePos lives in, right before MovePos.
162   void moveBefore(BasicBlock *MovePos);
163
164   /// moveAfter - Unlink this basic block from its current function and
165   /// insert it into the function that MovePos lives in, right after MovePos.
166   void moveAfter(BasicBlock *MovePos);
167
168
169   /// getSinglePredecessor - If this basic block has a single predecessor block,
170   /// return the block, otherwise return a null pointer.
171   BasicBlock *getSinglePredecessor();
172   const BasicBlock *getSinglePredecessor() const {
173     return const_cast<BasicBlock*>(this)->getSinglePredecessor();
174   }
175
176   /// getUniquePredecessor - If this basic block has a unique predecessor block,
177   /// return the block, otherwise return a null pointer.
178   /// Note that unique predecessor doesn't mean single edge, there can be
179   /// multiple edges from the unique predecessor to this block (for example
180   /// a switch statement with multiple cases having the same destination).
181   BasicBlock *getUniquePredecessor();
182   const BasicBlock *getUniquePredecessor() const {
183     return const_cast<BasicBlock*>(this)->getUniquePredecessor();
184   }
185
186   //===--------------------------------------------------------------------===//
187   /// Instruction iterator methods
188   ///
189   inline iterator                begin()       { return InstList.begin(); }
190   inline const_iterator          begin() const { return InstList.begin(); }
191   inline iterator                end  ()       { return InstList.end();   }
192   inline const_iterator          end  () const { return InstList.end();   }
193
194   inline size_t                   size() const { return InstList.size();  }
195   inline bool                    empty() const { return InstList.empty(); }
196   inline const Instruction      &front() const { return InstList.front(); }
197   inline       Instruction      &front()       { return InstList.front(); }
198   inline const Instruction       &back() const { return InstList.back();  }
199   inline       Instruction       &back()       { return InstList.back();  }
200
201   /// getInstList() - Return the underlying instruction list container.  You
202   /// need to access it directly if you want to modify it currently.
203   ///
204   const InstListType &getInstList() const { return InstList; }
205         InstListType &getInstList()       { return InstList; }
206
207   /// getSublistAccess() - returns pointer to member of instruction list
208   static iplist<Instruction> BasicBlock::*getSublistAccess(Instruction*) {
209     return &BasicBlock::InstList;
210   }
211
212   /// getValueSymbolTable() - returns pointer to symbol table (if any)
213   ValueSymbolTable *getValueSymbolTable();
214
215   /// Methods for support type inquiry through isa, cast, and dyn_cast:
216   static inline bool classof(const BasicBlock *) { return true; }
217   static inline bool classof(const Value *V) {
218     return V->getValueID() == Value::BasicBlockVal;
219   }
220
221   /// dropAllReferences() - This function causes all the subinstructions to "let
222   /// go" of all references that they are maintaining.  This allows one to
223   /// 'delete' a whole class at a time, even though there may be circular
224   /// references... first all references are dropped, and all use counts go to
225   /// zero.  Then everything is delete'd for real.  Note that no operations are
226   /// valid on an object that has "dropped all references", except operator
227   /// delete.
228   ///
229   void dropAllReferences();
230
231   /// removePredecessor - This method is used to notify a BasicBlock that the
232   /// specified Predecessor of the block is no longer able to reach it.  This is
233   /// actually not used to update the Predecessor list, but is actually used to
234   /// update the PHI nodes that reside in the block.  Note that this should be
235   /// called while the predecessor still refers to this block.
236   ///
237   void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false);
238
239   /// splitBasicBlock - This splits a basic block into two at the specified
240   /// instruction.  Note that all instructions BEFORE the specified iterator
241   /// stay as part of the original basic block, an unconditional branch is added
242   /// to the original BB, and the rest of the instructions in the BB are moved
243   /// to the new BB, including the old terminator.  The newly formed BasicBlock
244   /// is returned.  This function invalidates the specified iterator.
245   ///
246   /// Note that this only works on well formed basic blocks (must have a
247   /// terminator), and 'I' must not be the end of instruction list (which would
248   /// cause a degenerate basic block to be formed, having a terminator inside of
249   /// the basic block).
250   ///
251   /// Also note that this doesn't preserve any passes. To split blocks while
252   /// keeping loop information consistent, use the SplitBlock utility function.
253   ///
254   BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = "");
255
256   /// hasAddressTaken - returns true if there are any uses of this basic block
257   /// other than direct branches, switches, etc. to it.
258   bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; }
259
260   /// replaceSuccessorsPhiUsesWith - Update all phi nodes in all our successors
261   /// to refer to basic block New instead of to us.
262   void replaceSuccessorsPhiUsesWith(BasicBlock *New);
263
264   /// isLandingPad - Return true if this basic block is a landing pad. I.e.,
265   /// it's the destination of the 'unwind' edge of an invoke instruction.
266   bool isLandingPad() const;
267
268   /// getLandingPadInst() - Return the landingpad instruction associated with
269   /// the landing pad.
270   LandingPadInst *getLandingPadInst();
271   const LandingPadInst *getLandingPadInst() const;
272
273 private:
274   /// AdjustBlockAddressRefCount - BasicBlock stores the number of BlockAddress
275   /// objects using it.  This is almost always 0, sometimes one, possibly but
276   /// almost never 2, and inconceivably 3 or more.
277   void AdjustBlockAddressRefCount(int Amt) {
278     setValueSubclassData(getSubclassDataFromValue()+Amt);
279     assert((int)(signed char)getSubclassDataFromValue() >= 0 &&
280            "Refcount wrap-around");
281   }
282   // Shadow Value::setValueSubclassData with a private forwarding method so that
283   // any future subclasses cannot accidentally use it.
284   void setValueSubclassData(unsigned short D) {
285     Value::setValueSubclassData(D);
286   }
287 };
288
289 } // End llvm namespace
290
291 #endif