Teach CodeGen's version of computeMaskedBits to understand the range metadata.
[oota-llvm.git] / include / llvm / Analysis / ValueTracking.h
1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
16 #define LLVM_ANALYSIS_VALUETRACKING_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/DataTypes.h"
20
21 namespace llvm {
22   class Value;
23   class Instruction;
24   class APInt;
25   class TargetData;
26   class StringRef;
27   class MDNode;
28
29   /// ComputeMaskedBits - Determine which of the bits specified in Mask are
30   /// known to be either zero or one and return them in the KnownZero/KnownOne
31   /// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
32   /// processing.
33   ///
34   /// This function is defined on values with integer type, values with pointer
35   /// type (but only if TD is non-null), and vectors of integers.  In the case
36   /// where V is a vector, the mask, known zero, and known one values are the
37   /// same width as the vector element, and the bit is set only if it is true
38   /// for all of the elements in the vector.
39   void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
40                          APInt &KnownOne, const TargetData *TD = 0,
41                          unsigned Depth = 0);
42   void computeMaskedBitsLoad(const MDNode &Ranges, const APInt &Mask,
43                              APInt &KnownZero);
44
45   /// ComputeSignBit - Determine whether the sign bit is known to be zero or
46   /// one.  Convenience wrapper around ComputeMaskedBits.
47   void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
48                       const TargetData *TD = 0, unsigned Depth = 0);
49
50   /// isPowerOfTwo - Return true if the given value is known to have exactly one
51   /// bit set when defined. For vectors return true if every element is known to
52   /// be a power of two when defined.  Supports values with integer or pointer
53   /// type and vectors of integers.  If 'OrZero' is set then returns true if the
54   /// given value is either a power of two or zero.
55   bool isPowerOfTwo(Value *V, const TargetData *TD = 0, bool OrZero = false,
56                     unsigned Depth = 0);
57
58   /// isKnownNonZero - Return true if the given value is known to be non-zero
59   /// when defined.  For vectors return true if every element is known to be
60   /// non-zero when defined.  Supports values with integer or pointer type and
61   /// vectors of integers.
62   bool isKnownNonZero(Value *V, const TargetData *TD = 0, unsigned Depth = 0);
63
64   /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
65   /// this predicate to simplify operations downstream.  Mask is known to be
66   /// zero for bits that V cannot have.
67   ///
68   /// This function is defined on values with integer type, values with pointer
69   /// type (but only if TD is non-null), and vectors of integers.  In the case
70   /// where V is a vector, the mask, known zero, and known one values are the
71   /// same width as the vector element, and the bit is set only if it is true
72   /// for all of the elements in the vector.
73   bool MaskedValueIsZero(Value *V, const APInt &Mask, 
74                          const TargetData *TD = 0, unsigned Depth = 0);
75
76   
77   /// ComputeNumSignBits - Return the number of times the sign bit of the
78   /// register is replicated into the other bits.  We know that at least 1 bit
79   /// is always equal to the sign bit (itself), but other cases can give us
80   /// information.  For example, immediately after an "ashr X, 2", we know that
81   /// the top 3 bits are all equal to each other, so we return 3.
82   ///
83   /// 'Op' must have a scalar integer type.
84   ///
85   unsigned ComputeNumSignBits(Value *Op, const TargetData *TD = 0,
86                               unsigned Depth = 0);
87
88   /// ComputeMultiple - This function computes the integer multiple of Base that
89   /// equals V.  If successful, it returns true and returns the multiple in
90   /// Multiple.  If unsuccessful, it returns false.  Also, if V can be
91   /// simplified to an integer, then the simplified V is returned in Val.  Look
92   /// through sext only if LookThroughSExt=true.
93   bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
94                        bool LookThroughSExt = false,
95                        unsigned Depth = 0);
96
97   /// CannotBeNegativeZero - Return true if we can prove that the specified FP 
98   /// value is never equal to -0.0.
99   ///
100   bool CannotBeNegativeZero(const Value *V, unsigned Depth = 0);
101
102   /// isBytewiseValue - If the specified value can be set by repeating the same
103   /// byte in memory, return the i8 value that it is represented with.  This is
104   /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
105   /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
106   /// byte store (e.g. i16 0x1234), return null.
107   Value *isBytewiseValue(Value *V);
108     
109   /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
110   /// the scalar value indexed is already around as a register, for example if
111   /// it were inserted directly into the aggregrate.
112   ///
113   /// If InsertBefore is not null, this function will duplicate (modified)
114   /// insertvalues when a part of a nested struct is extracted.
115   Value *FindInsertedValue(Value *V,
116                            ArrayRef<unsigned> idx_range,
117                            Instruction *InsertBefore = 0);
118
119   /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
120   /// it can be expressed as a base pointer plus a constant offset.  Return the
121   /// base and offset to the caller.
122   Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
123                                           const TargetData &TD);
124   static inline const Value *
125   GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
126                                    const TargetData &TD) {
127     return GetPointerBaseWithConstantOffset(const_cast<Value*>(Ptr), Offset,TD);
128   }
129   
130   /// getConstantStringInfo - This function computes the length of a
131   /// null-terminated C string pointed to by V.  If successful, it returns true
132   /// and returns the string in Str.  If unsuccessful, it returns false.  This
133   /// does not include the trailing nul character by default.  If TrimAtNul is
134   /// set to false, then this returns any trailing nul characters as well as any
135   /// other characters that come after it.
136   bool getConstantStringInfo(const Value *V, StringRef &Str,
137                              uint64_t Offset = 0, bool TrimAtNul = true);
138
139   /// GetStringLength - If we can compute the length of the string pointed to by
140   /// the specified pointer, return 'len+1'.  If we can't, return 0.
141   uint64_t GetStringLength(Value *V);
142
143   /// GetUnderlyingObject - This method strips off any GEP address adjustments
144   /// and pointer casts from the specified value, returning the original object
145   /// being addressed.  Note that the returned value has pointer type if the
146   /// specified value does.  If the MaxLookup value is non-zero, it limits the
147   /// number of instructions to be stripped off.
148   Value *GetUnderlyingObject(Value *V, const TargetData *TD = 0,
149                              unsigned MaxLookup = 6);
150   static inline const Value *
151   GetUnderlyingObject(const Value *V, const TargetData *TD = 0,
152                       unsigned MaxLookup = 6) {
153     return GetUnderlyingObject(const_cast<Value *>(V), TD, MaxLookup);
154   }
155
156   /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
157   /// are lifetime markers.
158   bool onlyUsedByLifetimeMarkers(const Value *V);
159
160   /// isSafeToSpeculativelyExecute - Return true if the instruction does not
161   /// have any effects besides calculating the result and does not have
162   /// undefined behavior.
163   ///
164   /// This method never returns true for an instruction that returns true for
165   /// mayHaveSideEffects; however, this method also does some other checks in
166   /// addition. It checks for undefined behavior, like dividing by zero or
167   /// loading from an invalid pointer (but not for undefined results, like a
168   /// shift with a shift amount larger than the width of the result). It checks
169   /// for malloc and alloca because speculatively executing them might cause a
170   /// memory leak. It also returns false for instructions related to control
171   /// flow, specifically terminators and PHI nodes.
172   ///
173   /// This method only looks at the instruction itself and its operands, so if
174   /// this method returns true, it is safe to move the instruction as long as
175   /// the correct dominance relationships for the operands and users hold.
176   /// However, this method can return true for instructions that read memory;
177   /// for such instructions, moving them may change the resulting value.
178   bool isSafeToSpeculativelyExecute(const Value *V,
179                                     const TargetData *TD = 0);
180
181 } // end namespace llvm
182
183 #endif