[SCEV] Add and use SCEVConstant::getAPInt; NFCI
[oota-llvm.git] / include / llvm / Analysis / ScalarEvolutionExpressions.h
1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to represent and build scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Support/ErrorHandling.h"
21
22 namespace llvm {
23   class ConstantInt;
24   class ConstantRange;
25   class DominatorTree;
26
27   enum SCEVTypes {
28     // These should be ordered in terms of increasing complexity to make the
29     // folders simpler.
30     scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
31     scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
32     scUnknown, scCouldNotCompute
33   };
34
35   //===--------------------------------------------------------------------===//
36   /// SCEVConstant - This class represents a constant integer value.
37   ///
38   class SCEVConstant : public SCEV {
39     friend class ScalarEvolution;
40
41     ConstantInt *V;
42     SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
43       SCEV(ID, scConstant), V(v) {}
44   public:
45     ConstantInt *getValue() const { return V; }
46     const APInt &getAPInt() const { return getValue()->getValue(); }
47
48     Type *getType() const { return V->getType(); }
49
50     /// Methods for support type inquiry through isa, cast, and dyn_cast:
51     static inline bool classof(const SCEV *S) {
52       return S->getSCEVType() == scConstant;
53     }
54   };
55
56   //===--------------------------------------------------------------------===//
57   /// SCEVCastExpr - This is the base class for unary cast operator classes.
58   ///
59   class SCEVCastExpr : public SCEV {
60   protected:
61     const SCEV *Op;
62     Type *Ty;
63
64     SCEVCastExpr(const FoldingSetNodeIDRef ID,
65                  unsigned SCEVTy, const SCEV *op, Type *ty);
66
67   public:
68     const SCEV *getOperand() const { return Op; }
69     Type *getType() const { return Ty; }
70
71     /// Methods for support type inquiry through isa, cast, and dyn_cast:
72     static inline bool classof(const SCEV *S) {
73       return S->getSCEVType() == scTruncate ||
74              S->getSCEVType() == scZeroExtend ||
75              S->getSCEVType() == scSignExtend;
76     }
77   };
78
79   //===--------------------------------------------------------------------===//
80   /// SCEVTruncateExpr - This class represents a truncation of an integer value
81   /// to a smaller integer value.
82   ///
83   class SCEVTruncateExpr : public SCEVCastExpr {
84     friend class ScalarEvolution;
85
86     SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
87                      const SCEV *op, Type *ty);
88
89   public:
90     /// Methods for support type inquiry through isa, cast, and dyn_cast:
91     static inline bool classof(const SCEV *S) {
92       return S->getSCEVType() == scTruncate;
93     }
94   };
95
96   //===--------------------------------------------------------------------===//
97   /// SCEVZeroExtendExpr - This class represents a zero extension of a small
98   /// integer value to a larger integer value.
99   ///
100   class SCEVZeroExtendExpr : public SCEVCastExpr {
101     friend class ScalarEvolution;
102
103     SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
104                        const SCEV *op, Type *ty);
105
106   public:
107     /// Methods for support type inquiry through isa, cast, and dyn_cast:
108     static inline bool classof(const SCEV *S) {
109       return S->getSCEVType() == scZeroExtend;
110     }
111   };
112
113   //===--------------------------------------------------------------------===//
114   /// SCEVSignExtendExpr - This class represents a sign extension of a small
115   /// integer value to a larger integer value.
116   ///
117   class SCEVSignExtendExpr : public SCEVCastExpr {
118     friend class ScalarEvolution;
119
120     SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
121                        const SCEV *op, Type *ty);
122
123   public:
124     /// Methods for support type inquiry through isa, cast, and dyn_cast:
125     static inline bool classof(const SCEV *S) {
126       return S->getSCEVType() == scSignExtend;
127     }
128   };
129
130
131   //===--------------------------------------------------------------------===//
132   /// SCEVNAryExpr - This node is a base class providing common
133   /// functionality for n'ary operators.
134   ///
135   class SCEVNAryExpr : public SCEV {
136   protected:
137     // Since SCEVs are immutable, ScalarEvolution allocates operand
138     // arrays with its SCEVAllocator, so this class just needs a simple
139     // pointer rather than a more elaborate vector-like data structure.
140     // This also avoids the need for a non-trivial destructor.
141     const SCEV *const *Operands;
142     size_t NumOperands;
143
144     SCEVNAryExpr(const FoldingSetNodeIDRef ID,
145                  enum SCEVTypes T, const SCEV *const *O, size_t N)
146       : SCEV(ID, T), Operands(O), NumOperands(N) {}
147
148   public:
149     size_t getNumOperands() const { return NumOperands; }
150     const SCEV *getOperand(unsigned i) const {
151       assert(i < NumOperands && "Operand index out of range!");
152       return Operands[i];
153     }
154
155     typedef const SCEV *const *op_iterator;
156     typedef iterator_range<op_iterator> op_range;
157     op_iterator op_begin() const { return Operands; }
158     op_iterator op_end() const { return Operands + NumOperands; }
159     op_range operands() const {
160       return make_range(op_begin(), op_end());
161     }
162
163     Type *getType() const { return getOperand(0)->getType(); }
164
165     NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
166       return (NoWrapFlags)(SubclassData & Mask);
167     }
168
169     /// Methods for support type inquiry through isa, cast, and dyn_cast:
170     static inline bool classof(const SCEV *S) {
171       return S->getSCEVType() == scAddExpr ||
172              S->getSCEVType() == scMulExpr ||
173              S->getSCEVType() == scSMaxExpr ||
174              S->getSCEVType() == scUMaxExpr ||
175              S->getSCEVType() == scAddRecExpr;
176     }
177   };
178
179   //===--------------------------------------------------------------------===//
180   /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
181   /// operators.
182   ///
183   class SCEVCommutativeExpr : public SCEVNAryExpr {
184   protected:
185     SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
186                         enum SCEVTypes T, const SCEV *const *O, size_t N)
187       : SCEVNAryExpr(ID, T, O, N) {}
188
189   public:
190     /// Methods for support type inquiry through isa, cast, and dyn_cast:
191     static inline bool classof(const SCEV *S) {
192       return S->getSCEVType() == scAddExpr ||
193              S->getSCEVType() == scMulExpr ||
194              S->getSCEVType() == scSMaxExpr ||
195              S->getSCEVType() == scUMaxExpr;
196     }
197
198     /// Set flags for a non-recurrence without clearing previously set flags.
199     void setNoWrapFlags(NoWrapFlags Flags) {
200       SubclassData |= Flags;
201     }
202   };
203
204
205   //===--------------------------------------------------------------------===//
206   /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
207   ///
208   class SCEVAddExpr : public SCEVCommutativeExpr {
209     friend class ScalarEvolution;
210
211     SCEVAddExpr(const FoldingSetNodeIDRef ID,
212                 const SCEV *const *O, size_t N)
213       : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
214     }
215
216   public:
217     Type *getType() const {
218       // Use the type of the last operand, which is likely to be a pointer
219       // type, if there is one. This doesn't usually matter, but it can help
220       // reduce casts when the expressions are expanded.
221       return getOperand(getNumOperands() - 1)->getType();
222     }
223
224     /// Methods for support type inquiry through isa, cast, and dyn_cast:
225     static inline bool classof(const SCEV *S) {
226       return S->getSCEVType() == scAddExpr;
227     }
228   };
229
230   //===--------------------------------------------------------------------===//
231   /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
232   ///
233   class SCEVMulExpr : public SCEVCommutativeExpr {
234     friend class ScalarEvolution;
235
236     SCEVMulExpr(const FoldingSetNodeIDRef ID,
237                 const SCEV *const *O, size_t N)
238       : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
239     }
240
241   public:
242     /// Methods for support type inquiry through isa, cast, and dyn_cast:
243     static inline bool classof(const SCEV *S) {
244       return S->getSCEVType() == scMulExpr;
245     }
246   };
247
248
249   //===--------------------------------------------------------------------===//
250   /// SCEVUDivExpr - This class represents a binary unsigned division operation.
251   ///
252   class SCEVUDivExpr : public SCEV {
253     friend class ScalarEvolution;
254
255     const SCEV *LHS;
256     const SCEV *RHS;
257     SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
258       : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
259
260   public:
261     const SCEV *getLHS() const { return LHS; }
262     const SCEV *getRHS() const { return RHS; }
263
264     Type *getType() const {
265       // In most cases the types of LHS and RHS will be the same, but in some
266       // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
267       // depend on the type for correctness, but handling types carefully can
268       // avoid extra casts in the SCEVExpander. The LHS is more likely to be
269       // a pointer type than the RHS, so use the RHS' type here.
270       return getRHS()->getType();
271     }
272
273     /// Methods for support type inquiry through isa, cast, and dyn_cast:
274     static inline bool classof(const SCEV *S) {
275       return S->getSCEVType() == scUDivExpr;
276     }
277   };
278
279
280   //===--------------------------------------------------------------------===//
281   /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
282   /// count of the specified loop.  This is the primary focus of the
283   /// ScalarEvolution framework; all the other SCEV subclasses are mostly just
284   /// supporting infrastructure to allow SCEVAddRecExpr expressions to be
285   /// created and analyzed.
286   ///
287   /// All operands of an AddRec are required to be loop invariant.
288   ///
289   class SCEVAddRecExpr : public SCEVNAryExpr {
290     friend class ScalarEvolution;
291
292     const Loop *L;
293
294     SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
295                    const SCEV *const *O, size_t N, const Loop *l)
296       : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
297
298   public:
299     const SCEV *getStart() const { return Operands[0]; }
300     const Loop *getLoop() const { return L; }
301
302     /// getStepRecurrence - This method constructs and returns the recurrence
303     /// indicating how much this expression steps by.  If this is a polynomial
304     /// of degree N, it returns a chrec of degree N-1.
305     /// We cannot determine whether the step recurrence has self-wraparound.
306     const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
307       if (isAffine()) return getOperand(1);
308       return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
309                                                            op_end()),
310                               getLoop(), FlagAnyWrap);
311     }
312
313     /// isAffine - Return true if this represents an expression
314     /// A + B*x where A and B are loop invariant values.
315     bool isAffine() const {
316       // We know that the start value is invariant.  This expression is thus
317       // affine iff the step is also invariant.
318       return getNumOperands() == 2;
319     }
320
321     /// isQuadratic - Return true if this represents an expression
322     /// A + B*x + C*x^2 where A, B and C are loop invariant values.
323     /// This corresponds to an addrec of the form {L,+,M,+,N}
324     bool isQuadratic() const {
325       return getNumOperands() == 3;
326     }
327
328     /// Set flags for a recurrence without clearing any previously set flags.
329     /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
330     /// to make it easier to propagate flags.
331     void setNoWrapFlags(NoWrapFlags Flags) {
332       if (Flags & (FlagNUW | FlagNSW))
333         Flags = ScalarEvolution::setFlags(Flags, FlagNW);
334       SubclassData |= Flags;
335     }
336
337     /// evaluateAtIteration - Return the value of this chain of recurrences at
338     /// the specified iteration number.
339     const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
340
341     /// getNumIterationsInRange - Return the number of iterations of this loop
342     /// that produce values in the specified constant range.  Another way of
343     /// looking at this is that it returns the first iteration number where the
344     /// value is not in the condition, thus computing the exit count.  If the
345     /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
346     /// returned.
347     const SCEV *getNumIterationsInRange(ConstantRange Range,
348                                        ScalarEvolution &SE) const;
349
350     /// getPostIncExpr - Return an expression representing the value of
351     /// this expression one iteration of the loop ahead.
352     const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
353       return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
354     }
355
356     /// Methods for support type inquiry through isa, cast, and dyn_cast:
357     static inline bool classof(const SCEV *S) {
358       return S->getSCEVType() == scAddRecExpr;
359     }
360   };
361
362   //===--------------------------------------------------------------------===//
363   /// SCEVSMaxExpr - This class represents a signed maximum selection.
364   ///
365   class SCEVSMaxExpr : public SCEVCommutativeExpr {
366     friend class ScalarEvolution;
367
368     SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
369                  const SCEV *const *O, size_t N)
370       : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
371       // Max never overflows.
372       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
373     }
374
375   public:
376     /// Methods for support type inquiry through isa, cast, and dyn_cast:
377     static inline bool classof(const SCEV *S) {
378       return S->getSCEVType() == scSMaxExpr;
379     }
380   };
381
382
383   //===--------------------------------------------------------------------===//
384   /// SCEVUMaxExpr - This class represents an unsigned maximum selection.
385   ///
386   class SCEVUMaxExpr : public SCEVCommutativeExpr {
387     friend class ScalarEvolution;
388
389     SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
390                  const SCEV *const *O, size_t N)
391       : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
392       // Max never overflows.
393       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
394     }
395
396   public:
397     /// Methods for support type inquiry through isa, cast, and dyn_cast:
398     static inline bool classof(const SCEV *S) {
399       return S->getSCEVType() == scUMaxExpr;
400     }
401   };
402
403   //===--------------------------------------------------------------------===//
404   /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
405   /// value, and only represent it as its LLVM Value.  This is the "bottom"
406   /// value for the analysis.
407   ///
408   class SCEVUnknown final : public SCEV, private CallbackVH {
409     friend class ScalarEvolution;
410
411     // Implement CallbackVH.
412     void deleted() override;
413     void allUsesReplacedWith(Value *New) override;
414
415     /// SE - The parent ScalarEvolution value. This is used to update
416     /// the parent's maps when the value associated with a SCEVUnknown
417     /// is deleted or RAUW'd.
418     ScalarEvolution *SE;
419
420     /// Next - The next pointer in the linked list of all
421     /// SCEVUnknown instances owned by a ScalarEvolution.
422     SCEVUnknown *Next;
423
424     SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
425                 ScalarEvolution *se, SCEVUnknown *next) :
426       SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
427
428   public:
429     Value *getValue() const { return getValPtr(); }
430
431     /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
432     /// constant representing a type size, alignment, or field offset in
433     /// a target-independent manner, and hasn't happened to have been
434     /// folded with other operations into something unrecognizable. This
435     /// is mainly only useful for pretty-printing and other situations
436     /// where it isn't absolutely required for these to succeed.
437     bool isSizeOf(Type *&AllocTy) const;
438     bool isAlignOf(Type *&AllocTy) const;
439     bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
440
441     Type *getType() const { return getValPtr()->getType(); }
442
443     /// Methods for support type inquiry through isa, cast, and dyn_cast:
444     static inline bool classof(const SCEV *S) {
445       return S->getSCEVType() == scUnknown;
446     }
447   };
448
449   /// SCEVVisitor - This class defines a simple visitor class that may be used
450   /// for various SCEV analysis purposes.
451   template<typename SC, typename RetVal=void>
452   struct SCEVVisitor {
453     RetVal visit(const SCEV *S) {
454       switch (S->getSCEVType()) {
455       case scConstant:
456         return ((SC*)this)->visitConstant((const SCEVConstant*)S);
457       case scTruncate:
458         return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
459       case scZeroExtend:
460         return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
461       case scSignExtend:
462         return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
463       case scAddExpr:
464         return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
465       case scMulExpr:
466         return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
467       case scUDivExpr:
468         return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
469       case scAddRecExpr:
470         return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
471       case scSMaxExpr:
472         return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
473       case scUMaxExpr:
474         return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
475       case scUnknown:
476         return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
477       case scCouldNotCompute:
478         return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
479       default:
480         llvm_unreachable("Unknown SCEV type!");
481       }
482     }
483
484     RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
485       llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
486     }
487   };
488
489   /// Visit all nodes in the expression tree using worklist traversal.
490   ///
491   /// Visitor implements:
492   ///   // return true to follow this node.
493   ///   bool follow(const SCEV *S);
494   ///   // return true to terminate the search.
495   ///   bool isDone();
496   template<typename SV>
497   class SCEVTraversal {
498     SV &Visitor;
499     SmallVector<const SCEV *, 8> Worklist;
500     SmallPtrSet<const SCEV *, 8> Visited;
501
502     void push(const SCEV *S) {
503       if (Visited.insert(S).second && Visitor.follow(S))
504         Worklist.push_back(S);
505     }
506   public:
507     SCEVTraversal(SV& V): Visitor(V) {}
508
509     void visitAll(const SCEV *Root) {
510       push(Root);
511       while (!Worklist.empty() && !Visitor.isDone()) {
512         const SCEV *S = Worklist.pop_back_val();
513
514         switch (S->getSCEVType()) {
515         case scConstant:
516         case scUnknown:
517           break;
518         case scTruncate:
519         case scZeroExtend:
520         case scSignExtend:
521           push(cast<SCEVCastExpr>(S)->getOperand());
522           break;
523         case scAddExpr:
524         case scMulExpr:
525         case scSMaxExpr:
526         case scUMaxExpr:
527         case scAddRecExpr: {
528           const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
529           for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
530                  E = NAry->op_end(); I != E; ++I) {
531             push(*I);
532           }
533           break;
534         }
535         case scUDivExpr: {
536           const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
537           push(UDiv->getLHS());
538           push(UDiv->getRHS());
539           break;
540         }
541         case scCouldNotCompute:
542           llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
543         default:
544           llvm_unreachable("Unknown SCEV kind!");
545         }
546       }
547     }
548   };
549
550   /// Use SCEVTraversal to visit all nodes in the given expression tree.
551   template<typename SV>
552   void visitAll(const SCEV *Root, SV& Visitor) {
553     SCEVTraversal<SV> T(Visitor);
554     T.visitAll(Root);
555   }
556
557   /// Recursively visits a SCEV expression and re-writes it.
558   template<typename SC>
559   class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
560   protected:
561     ScalarEvolution &SE;
562   public:
563     SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}
564
565     const SCEV *visitConstant(const SCEVConstant *Constant) {
566       return Constant;
567     }
568
569     const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
570       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
571       return SE.getTruncateExpr(Operand, Expr->getType());
572     }
573
574     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
575       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
576       return SE.getZeroExtendExpr(Operand, Expr->getType());
577     }
578
579     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
580       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
581       return SE.getSignExtendExpr(Operand, Expr->getType());
582     }
583
584     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
585       SmallVector<const SCEV *, 2> Operands;
586       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
587         Operands.push_back(((SC*)this)->visit(Expr->getOperand(i)));
588       return SE.getAddExpr(Operands);
589     }
590
591     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
592       SmallVector<const SCEV *, 2> Operands;
593       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
594         Operands.push_back(((SC*)this)->visit(Expr->getOperand(i)));
595       return SE.getMulExpr(Operands);
596     }
597
598     const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
599       return SE.getUDivExpr(((SC*)this)->visit(Expr->getLHS()),
600                             ((SC*)this)->visit(Expr->getRHS()));
601     }
602
603     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
604       SmallVector<const SCEV *, 2> Operands;
605       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
606         Operands.push_back(((SC*)this)->visit(Expr->getOperand(i)));
607       return SE.getAddRecExpr(Operands, Expr->getLoop(),
608                               Expr->getNoWrapFlags());
609     }
610
611     const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
612       SmallVector<const SCEV *, 2> Operands;
613       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
614         Operands.push_back(((SC*)this)->visit(Expr->getOperand(i)));
615       return SE.getSMaxExpr(Operands);
616     }
617
618     const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
619       SmallVector<const SCEV *, 2> Operands;
620       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
621         Operands.push_back(((SC*)this)->visit(Expr->getOperand(i)));
622       return SE.getUMaxExpr(Operands);
623     }
624
625     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
626       return Expr;
627     }
628
629     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
630       return Expr;
631     }
632   };
633
634   typedef DenseMap<const Value*, Value*> ValueToValueMap;
635
636   /// The SCEVParameterRewriter takes a scalar evolution expression and updates
637   /// the SCEVUnknown components following the Map (Value -> Value).
638   class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
639   public:
640     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
641                                ValueToValueMap &Map,
642                                bool InterpretConsts = false) {
643       SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
644       return Rewriter.visit(Scev);
645     }
646
647     SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C)
648       : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {}
649
650     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
651       Value *V = Expr->getValue();
652       if (Map.count(V)) {
653         Value *NV = Map[V];
654         if (InterpretConsts && isa<ConstantInt>(NV))
655           return SE.getConstant(cast<ConstantInt>(NV));
656         return SE.getUnknown(NV);
657       }
658       return Expr;
659     }
660
661   private:
662     ValueToValueMap &Map;
663     bool InterpretConsts;
664   };
665
666   typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
667
668   /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
669   /// the Map (Loop -> SCEV) to all AddRecExprs.
670   class SCEVLoopAddRecRewriter
671       : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
672   public:
673     static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
674                                ScalarEvolution &SE) {
675       SCEVLoopAddRecRewriter Rewriter(SE, Map);
676       return Rewriter.visit(Scev);
677     }
678
679     SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
680         : SCEVRewriteVisitor(SE), Map(M) {}
681
682     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
683       SmallVector<const SCEV *, 2> Operands;
684       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
685         Operands.push_back(visit(Expr->getOperand(i)));
686
687       const Loop *L = Expr->getLoop();
688       const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
689
690       if (0 == Map.count(L))
691         return Res;
692
693       const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res);
694       return Rec->evaluateAtIteration(Map[L], SE);
695     }
696
697   private:
698     LoopToScevMapT &Map;
699   };
700
701 /// Applies the Map (Loop -> SCEV) to the given Scev.
702 static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
703                                 ScalarEvolution &SE) {
704   return SCEVLoopAddRecRewriter::rewrite(Scev, Map, SE);
705 }
706
707 }
708
709 #endif