[PM/AA] Remove two no-op overridden functions that just delegated to the
[oota-llvm.git] / include / llvm / Analysis / IntervalIterator.h
1 //===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an iterator that enumerates the intervals in a control flow
11 // graph of some sort.  This iterator is parametric, allowing iterator over the
12 // following types of graphs:
13 //
14 //  1. A Function* object, composed of BasicBlock nodes.
15 //  2. An IntervalPartition& object, composed of Interval nodes.
16 //
17 // This iterator is defined to walk the control flow graph, returning intervals
18 // in depth first order.  These intervals are completely filled in except for
19 // the predecessor fields (the successor information is filled in however).
20 //
21 // By default, the intervals created by this iterator are deleted after they
22 // are no longer any use to the iterator.  This behavior can be changed by
23 // passing a false value into the intervals_begin() function. This causes the
24 // IOwnMem member to be set, and the intervals to not be deleted.
25 //
26 // It is only safe to use this if all of the intervals are deleted by the caller
27 // and all of the intervals are processed.  However, the user of the iterator is
28 // not allowed to modify or delete the intervals until after the iterator has
29 // been used completely.  The IntervalPartition class uses this functionality.
30 //
31 //===----------------------------------------------------------------------===//
32
33 #ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
34 #define LLVM_ANALYSIS_INTERVALITERATOR_H
35
36 #include "llvm/Analysis/IntervalPartition.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Function.h"
39 #include <algorithm>
40 #include <set>
41 #include <vector>
42
43 namespace llvm {
44
45 // getNodeHeader - Given a source graph node and the source graph, return the
46 // BasicBlock that is the header node.  This is the opposite of
47 // getSourceGraphNode.
48 //
49 inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
50 inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
51
52 // getSourceGraphNode - Given a BasicBlock and the source graph, return the
53 // source graph node that corresponds to the BasicBlock.  This is the opposite
54 // of getNodeHeader.
55 //
56 inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
57   return BB;
58 }
59 inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
60   return IP->getBlockInterval(BB);
61 }
62
63 // addNodeToInterval - This method exists to assist the generic ProcessNode
64 // with the task of adding a node to the new interval, depending on the
65 // type of the source node.  In the case of a CFG source graph (BasicBlock
66 // case), the BasicBlock itself is added to the interval.
67 //
68 inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
69   Int->Nodes.push_back(BB);
70 }
71
72 // addNodeToInterval - This method exists to assist the generic ProcessNode
73 // with the task of adding a node to the new interval, depending on the
74 // type of the source node.  In the case of a CFG source graph (BasicBlock
75 // case), the BasicBlock itself is added to the interval.  In the case of
76 // an IntervalPartition source graph (Interval case), all of the member
77 // BasicBlocks are added to the interval.
78 //
79 inline void addNodeToInterval(Interval *Int, Interval *I) {
80   // Add all of the nodes in I as new nodes in Int.
81   Int->Nodes.insert(Int->Nodes.end(), I->Nodes.begin(), I->Nodes.end());
82 }
83
84
85
86
87
88 template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy*>,
89          class IGT = GraphTraits<Inverse<NodeTy*> > >
90 class IntervalIterator {
91   std::vector<std::pair<Interval*, typename Interval::succ_iterator> > IntStack;
92   std::set<BasicBlock*> Visited;
93   OrigContainer_t *OrigContainer;
94   bool IOwnMem;     // If True, delete intervals when done with them
95                     // See file header for conditions of use
96 public:
97   typedef std::forward_iterator_tag iterator_category;
98
99   IntervalIterator() {} // End iterator, empty stack
100   IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
101     OrigContainer = M;
102     if (!ProcessInterval(&M->front())) {
103       llvm_unreachable("ProcessInterval should never fail for first interval!");
104     }
105   }
106
107   IntervalIterator(IntervalIterator &&x)
108       : IntStack(std::move(x.IntStack)), Visited(std::move(x.Visited)),
109         OrigContainer(x.OrigContainer), IOwnMem(x.IOwnMem) {
110     x.IOwnMem = false;
111   }
112
113   IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
114     OrigContainer = &IP;
115     if (!ProcessInterval(IP.getRootInterval())) {
116       llvm_unreachable("ProcessInterval should never fail for first interval!");
117     }
118   }
119
120   ~IntervalIterator() {
121     if (IOwnMem)
122       while (!IntStack.empty()) {
123         delete operator*();
124         IntStack.pop_back();
125       }
126   }
127
128   bool operator==(const IntervalIterator &x) const {
129     return IntStack == x.IntStack;
130   }
131   bool operator!=(const IntervalIterator &x) const { return !(*this == x); }
132
133   const Interval *operator*() const { return IntStack.back().first; }
134   Interval *operator*() { return IntStack.back().first; }
135   const Interval *operator->() const { return operator*(); }
136   Interval *operator->() { return operator*(); }
137
138   IntervalIterator &operator++() { // Preincrement
139     assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
140     do {
141       // All of the intervals on the stack have been visited.  Try visiting
142       // their successors now.
143       Interval::succ_iterator &SuccIt = IntStack.back().second,
144                                 EndIt = succ_end(IntStack.back().first);
145       while (SuccIt != EndIt) {                 // Loop over all interval succs
146         bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
147         ++SuccIt;                               // Increment iterator
148         if (Done) return *this;                 // Found a new interval! Use it!
149       }
150
151       // Free interval memory... if necessary
152       if (IOwnMem) delete IntStack.back().first;
153
154       // We ran out of successors for this interval... pop off the stack
155       IntStack.pop_back();
156     } while (!IntStack.empty());
157
158     return *this;
159   }
160   IntervalIterator operator++(int) { // Postincrement
161     IntervalIterator tmp = *this;
162     ++*this;
163     return tmp;
164   }
165
166 private:
167   // ProcessInterval - This method is used during the construction of the
168   // interval graph.  It walks through the source graph, recursively creating
169   // an interval per invocation until the entire graph is covered.  This uses
170   // the ProcessNode method to add all of the nodes to the interval.
171   //
172   // This method is templated because it may operate on two different source
173   // graphs: a basic block graph, or a preexisting interval graph.
174   //
175   bool ProcessInterval(NodeTy *Node) {
176     BasicBlock *Header = getNodeHeader(Node);
177     if (!Visited.insert(Header).second)
178       return false;
179
180     Interval *Int = new Interval(Header);
181
182     // Check all of our successors to see if they are in the interval...
183     for (typename GT::ChildIteratorType I = GT::child_begin(Node),
184            E = GT::child_end(Node); I != E; ++I)
185       ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
186
187     IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
188     return true;
189   }
190
191   // ProcessNode - This method is called by ProcessInterval to add nodes to the
192   // interval being constructed, and it is also called recursively as it walks
193   // the source graph.  A node is added to the current interval only if all of
194   // its predecessors are already in the graph.  This also takes care of keeping
195   // the successor set of an interval up to date.
196   //
197   // This method is templated because it may operate on two different source
198   // graphs: a basic block graph, or a preexisting interval graph.
199   //
200   void ProcessNode(Interval *Int, NodeTy *Node) {
201     assert(Int && "Null interval == bad!");
202     assert(Node && "Null Node == bad!");
203
204     BasicBlock *NodeHeader = getNodeHeader(Node);
205
206     if (Visited.count(NodeHeader)) {     // Node already been visited?
207       if (Int->contains(NodeHeader)) {   // Already in this interval...
208         return;
209       } else {                           // In other interval, add as successor
210         if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
211           Int->Successors.push_back(NodeHeader);
212       }
213     } else {                             // Otherwise, not in interval yet
214       for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
215              E = IGT::child_end(Node); I != E; ++I) {
216         if (!Int->contains(*I)) {        // If pred not in interval, we can't be
217           if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
218             Int->Successors.push_back(NodeHeader);
219           return;                        // See you later
220         }
221       }
222
223       // If we get here, then all of the predecessors of BB are in the interval
224       // already.  In this case, we must add BB to the interval!
225       addNodeToInterval(Int, Node);
226       Visited.insert(NodeHeader);     // The node has now been visited!
227
228       if (Int->isSuccessor(NodeHeader)) {
229         // If we were in the successor list from before... remove from succ list
230         Int->Successors.erase(std::remove(Int->Successors.begin(),
231                                           Int->Successors.end(), NodeHeader),
232                               Int->Successors.end());
233       }
234
235       // Now that we have discovered that Node is in the interval, perhaps some
236       // of its successors are as well?
237       for (typename GT::ChildIteratorType It = GT::child_begin(Node),
238              End = GT::child_end(Node); It != End; ++It)
239         ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
240     }
241   }
242 };
243
244 typedef IntervalIterator<BasicBlock, Function> function_interval_iterator;
245 typedef IntervalIterator<Interval, IntervalPartition>
246                                           interval_part_interval_iterator;
247
248
249 inline function_interval_iterator intervals_begin(Function *F,
250                                                   bool DeleteInts = true) {
251   return function_interval_iterator(F, DeleteInts);
252 }
253 inline function_interval_iterator intervals_end(Function *) {
254   return function_interval_iterator();
255 }
256
257 inline interval_part_interval_iterator
258    intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
259   return interval_part_interval_iterator(IP, DeleteIntervals);
260 }
261
262 inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
263   return interval_part_interval_iterator();
264 }
265
266 } // End llvm namespace
267
268 #endif