Move isKnownNonNull from private implementation detail of BasicAA to a public
[oota-llvm.git] / include / llvm / Analysis / AliasAnalysis.h
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the generic AliasAnalysis interface, which is used as the
11 // common interface used by all clients of alias analysis information, and
12 // implemented by all alias analysis implementations.  Mod/Ref information is
13 // also captured by this interface.
14 //
15 // Implementations of this interface must implement the various virtual methods,
16 // which automatically provides functionality for the entire suite of client
17 // APIs.
18 //
19 // This API identifies memory regions with the Location class. The pointer
20 // component specifies the base memory address of the region. The Size specifies
21 // the maximum size (in address units) of the memory region, or UnknownSize if
22 // the size is not known. The TBAA tag identifies the "type" of the memory
23 // reference; see the TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
38 #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
39
40 #include "llvm/Support/CallSite.h"
41 #include "llvm/ADT/DenseMap.h"
42
43 namespace llvm {
44
45 class LoadInst;
46 class StoreInst;
47 class VAArgInst;
48 class TargetData;
49 class Pass;
50 class AnalysisUsage;
51 class MemTransferInst;
52 class MemIntrinsic;
53
54 class AliasAnalysis {
55 protected:
56   const TargetData *TD;
57
58 private:
59   AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
60
61 protected:
62   /// InitializeAliasAnalysis - Subclasses must call this method to initialize
63   /// the AliasAnalysis interface before any other methods are called.  This is
64   /// typically called by the run* methods of these subclasses.  This may be
65   /// called multiple times.
66   ///
67   void InitializeAliasAnalysis(Pass *P);
68
69   /// getAnalysisUsage - All alias analysis implementations should invoke this
70   /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
71   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
72
73 public:
74   static char ID; // Class identification, replacement for typeinfo
75   AliasAnalysis() : TD(0), AA(0) {}
76   virtual ~AliasAnalysis();  // We want to be subclassed
77
78   /// UnknownSize - This is a special value which can be used with the
79   /// size arguments in alias queries to indicate that the caller does not
80   /// know the sizes of the potential memory references.
81   static uint64_t const UnknownSize = ~UINT64_C(0);
82
83   /// getTargetData - Return a pointer to the current TargetData object, or
84   /// null if no TargetData object is available.
85   ///
86   const TargetData *getTargetData() const { return TD; }
87
88   /// getTypeStoreSize - Return the TargetData store size for the given type,
89   /// if known, or a conservative value otherwise.
90   ///
91   uint64_t getTypeStoreSize(Type *Ty);
92
93   //===--------------------------------------------------------------------===//
94   /// Alias Queries...
95   ///
96
97   /// Location - A description of a memory location.
98   struct Location {
99     /// Ptr - The address of the start of the location.
100     const Value *Ptr;
101     /// Size - The maximum size of the location, in address-units, or
102     /// UnknownSize if the size is not known.  Note that an unknown size does
103     /// not mean the pointer aliases the entire virtual address space, because
104     /// there are restrictions on stepping out of one object and into another.
105     /// See http://llvm.org/docs/LangRef.html#pointeraliasing
106     uint64_t Size;
107     /// TBAATag - The metadata node which describes the TBAA type of
108     /// the location, or null if there is no known unique tag.
109     const MDNode *TBAATag;
110
111     explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
112                       const MDNode *N = 0)
113       : Ptr(P), Size(S), TBAATag(N) {}
114
115     Location getWithNewPtr(const Value *NewPtr) const {
116       Location Copy(*this);
117       Copy.Ptr = NewPtr;
118       return Copy;
119     }
120
121     Location getWithNewSize(uint64_t NewSize) const {
122       Location Copy(*this);
123       Copy.Size = NewSize;
124       return Copy;
125     }
126
127     Location getWithoutTBAATag() const {
128       Location Copy(*this);
129       Copy.TBAATag = 0;
130       return Copy;
131     }
132   };
133
134   /// getLocation - Fill in Loc with information about the memory reference by
135   /// the given instruction.
136   Location getLocation(const LoadInst *LI);
137   Location getLocation(const StoreInst *SI);
138   Location getLocation(const VAArgInst *VI);
139   Location getLocation(const AtomicCmpXchgInst *CXI);
140   Location getLocation(const AtomicRMWInst *RMWI);
141   static Location getLocationForSource(const MemTransferInst *MTI);
142   static Location getLocationForDest(const MemIntrinsic *MI);
143
144   /// Alias analysis result - Either we know for sure that it does not alias, we
145   /// know for sure it must alias, or we don't know anything: The two pointers
146   /// _might_ alias.  This enum is designed so you can do things like:
147   ///     if (AA.alias(P1, P2)) { ... }
148   /// to check to see if two pointers might alias.
149   ///
150   /// See docs/AliasAnalysis.html for more information on the specific meanings
151   /// of these values.
152   ///
153   enum AliasResult {
154     NoAlias = 0,        ///< No dependencies.
155     MayAlias,           ///< Anything goes.
156     PartialAlias,       ///< Pointers differ, but pointees overlap.
157     MustAlias           ///< Pointers are equal.
158   };
159
160   /// alias - The main low level interface to the alias analysis implementation.
161   /// Returns an AliasResult indicating whether the two pointers are aliased to
162   /// each other.  This is the interface that must be implemented by specific
163   /// alias analysis implementations.
164   virtual AliasResult alias(const Location &LocA, const Location &LocB);
165
166   /// alias - A convenience wrapper.
167   AliasResult alias(const Value *V1, uint64_t V1Size,
168                     const Value *V2, uint64_t V2Size) {
169     return alias(Location(V1, V1Size), Location(V2, V2Size));
170   }
171
172   /// alias - A convenience wrapper.
173   AliasResult alias(const Value *V1, const Value *V2) {
174     return alias(V1, UnknownSize, V2, UnknownSize);
175   }
176
177   /// isNoAlias - A trivial helper function to check to see if the specified
178   /// pointers are no-alias.
179   bool isNoAlias(const Location &LocA, const Location &LocB) {
180     return alias(LocA, LocB) == NoAlias;
181   }
182
183   /// isNoAlias - A convenience wrapper.
184   bool isNoAlias(const Value *V1, uint64_t V1Size,
185                  const Value *V2, uint64_t V2Size) {
186     return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
187   }
188   
189   /// isMustAlias - A convenience wrapper.
190   bool isMustAlias(const Location &LocA, const Location &LocB) {
191     return alias(LocA, LocB) == MustAlias;
192   }
193
194   /// isMustAlias - A convenience wrapper.
195   bool isMustAlias(const Value *V1, const Value *V2) {
196     return alias(V1, 1, V2, 1) == MustAlias;
197   }
198   
199   /// pointsToConstantMemory - If the specified memory location is
200   /// known to be constant, return true. If OrLocal is true and the
201   /// specified memory location is known to be "local" (derived from
202   /// an alloca), return true. Otherwise return false.
203   virtual bool pointsToConstantMemory(const Location &Loc,
204                                       bool OrLocal = false);
205
206   /// pointsToConstantMemory - A convenient wrapper.
207   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
208     return pointsToConstantMemory(Location(P), OrLocal);
209   }
210
211   //===--------------------------------------------------------------------===//
212   /// Simple mod/ref information...
213   ///
214
215   /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
216   /// bits which may be or'd together.
217   ///
218   enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
219
220   /// These values define additional bits used to define the
221   /// ModRefBehavior values.
222   enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
223
224   /// ModRefBehavior - Summary of how a function affects memory in the program.
225   /// Loads from constant globals are not considered memory accesses for this
226   /// interface.  Also, functions may freely modify stack space local to their
227   /// invocation without having to report it through these interfaces.
228   enum ModRefBehavior {
229     /// DoesNotAccessMemory - This function does not perform any non-local loads
230     /// or stores to memory.
231     ///
232     /// This property corresponds to the GCC 'const' attribute.
233     /// This property corresponds to the LLVM IR 'readnone' attribute.
234     /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
235     DoesNotAccessMemory = Nowhere | NoModRef,
236
237     /// OnlyReadsArgumentPointees - The only memory references in this function
238     /// (if it has any) are non-volatile loads from objects pointed to by its
239     /// pointer-typed arguments, with arbitrary offsets.
240     ///
241     /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
242     OnlyReadsArgumentPointees = ArgumentPointees | Ref,
243
244     /// OnlyAccessesArgumentPointees - The only memory references in this
245     /// function (if it has any) are non-volatile loads and stores from objects
246     /// pointed to by its pointer-typed arguments, with arbitrary offsets.
247     ///
248     /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
249     OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
250
251     /// OnlyReadsMemory - This function does not perform any non-local stores or
252     /// volatile loads, but may read from any memory location.
253     ///
254     /// This property corresponds to the GCC 'pure' attribute.
255     /// This property corresponds to the LLVM IR 'readonly' attribute.
256     /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
257     OnlyReadsMemory = Anywhere | Ref,
258
259     /// UnknownModRefBehavior - This indicates that the function could not be
260     /// classified into one of the behaviors above.
261     UnknownModRefBehavior = Anywhere | ModRef
262   };
263
264   /// getModRefBehavior - Return the behavior when calling the given call site.
265   virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
266
267   /// getModRefBehavior - Return the behavior when calling the given function.
268   /// For use when the call site is not known.
269   virtual ModRefBehavior getModRefBehavior(const Function *F);
270
271   /// doesNotAccessMemory - If the specified call is known to never read or
272   /// write memory, return true.  If the call only reads from known-constant
273   /// memory, it is also legal to return true.  Calls that unwind the stack
274   /// are legal for this predicate.
275   ///
276   /// Many optimizations (such as CSE and LICM) can be performed on such calls
277   /// without worrying about aliasing properties, and many calls have this
278   /// property (e.g. calls to 'sin' and 'cos').
279   ///
280   /// This property corresponds to the GCC 'const' attribute.
281   ///
282   bool doesNotAccessMemory(ImmutableCallSite CS) {
283     return getModRefBehavior(CS) == DoesNotAccessMemory;
284   }
285
286   /// doesNotAccessMemory - If the specified function is known to never read or
287   /// write memory, return true.  For use when the call site is not known.
288   ///
289   bool doesNotAccessMemory(const Function *F) {
290     return getModRefBehavior(F) == DoesNotAccessMemory;
291   }
292
293   /// onlyReadsMemory - If the specified call is known to only read from
294   /// non-volatile memory (or not access memory at all), return true.  Calls
295   /// that unwind the stack are legal for this predicate.
296   ///
297   /// This property allows many common optimizations to be performed in the
298   /// absence of interfering store instructions, such as CSE of strlen calls.
299   ///
300   /// This property corresponds to the GCC 'pure' attribute.
301   ///
302   bool onlyReadsMemory(ImmutableCallSite CS) {
303     return onlyReadsMemory(getModRefBehavior(CS));
304   }
305
306   /// onlyReadsMemory - If the specified function is known to only read from
307   /// non-volatile memory (or not access memory at all), return true.  For use
308   /// when the call site is not known.
309   ///
310   bool onlyReadsMemory(const Function *F) {
311     return onlyReadsMemory(getModRefBehavior(F));
312   }
313
314   /// onlyReadsMemory - Return true if functions with the specified behavior are
315   /// known to only read from non-volatile memory (or not access memory at all).
316   ///
317   static bool onlyReadsMemory(ModRefBehavior MRB) {
318     return !(MRB & Mod);
319   }
320
321   /// onlyAccessesArgPointees - Return true if functions with the specified
322   /// behavior are known to read and write at most from objects pointed to by
323   /// their pointer-typed arguments (with arbitrary offsets).
324   ///
325   static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
326     return !(MRB & Anywhere & ~ArgumentPointees);
327   }
328
329   /// doesAccessArgPointees - Return true if functions with the specified
330   /// behavior are known to potentially read or write from objects pointed
331   /// to be their pointer-typed arguments (with arbitrary offsets).
332   ///
333   static bool doesAccessArgPointees(ModRefBehavior MRB) {
334     return (MRB & ModRef) && (MRB & ArgumentPointees);
335   }
336
337   /// getModRefInfo - Return information about whether or not an instruction may
338   /// read or write the specified memory location.  An instruction
339   /// that doesn't read or write memory may be trivially LICM'd for example.
340   ModRefResult getModRefInfo(const Instruction *I,
341                              const Location &Loc) {
342     switch (I->getOpcode()) {
343     case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
344     case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
345     case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
346     case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
347     case Instruction::AtomicCmpXchg:
348       return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
349     case Instruction::AtomicRMW:
350       return getModRefInfo((const AtomicRMWInst*)I, Loc);
351     case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
352     case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
353     default:                  return NoModRef;
354     }
355   }
356
357   /// getModRefInfo - A convenience wrapper.
358   ModRefResult getModRefInfo(const Instruction *I,
359                              const Value *P, uint64_t Size) {
360     return getModRefInfo(I, Location(P, Size));
361   }
362
363   /// getModRefInfo (for call sites) - Return whether information about whether
364   /// a particular call site modifies or reads the specified memory location.
365   virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
366                                      const Location &Loc);
367
368   /// getModRefInfo (for call sites) - A convenience wrapper.
369   ModRefResult getModRefInfo(ImmutableCallSite CS,
370                              const Value *P, uint64_t Size) {
371     return getModRefInfo(CS, Location(P, Size));
372   }
373
374   /// getModRefInfo (for calls) - Return whether information about whether
375   /// a particular call modifies or reads the specified memory location.
376   ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
377     return getModRefInfo(ImmutableCallSite(C), Loc);
378   }
379
380   /// getModRefInfo (for calls) - A convenience wrapper.
381   ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
382     return getModRefInfo(C, Location(P, Size));
383   }
384
385   /// getModRefInfo (for invokes) - Return whether information about whether
386   /// a particular invoke modifies or reads the specified memory location.
387   ModRefResult getModRefInfo(const InvokeInst *I,
388                              const Location &Loc) {
389     return getModRefInfo(ImmutableCallSite(I), Loc);
390   }
391
392   /// getModRefInfo (for invokes) - A convenience wrapper.
393   ModRefResult getModRefInfo(const InvokeInst *I,
394                              const Value *P, uint64_t Size) {
395     return getModRefInfo(I, Location(P, Size));
396   }
397
398   /// getModRefInfo (for loads) - Return whether information about whether
399   /// a particular load modifies or reads the specified memory location.
400   ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
401
402   /// getModRefInfo (for loads) - A convenience wrapper.
403   ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
404     return getModRefInfo(L, Location(P, Size));
405   }
406
407   /// getModRefInfo (for stores) - Return whether information about whether
408   /// a particular store modifies or reads the specified memory location.
409   ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
410
411   /// getModRefInfo (for stores) - A convenience wrapper.
412   ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
413     return getModRefInfo(S, Location(P, Size));
414   }
415
416   /// getModRefInfo (for fences) - Return whether information about whether
417   /// a particular store modifies or reads the specified memory location.
418   ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
419     // Conservatively correct.  (We could possibly be a bit smarter if
420     // Loc is a alloca that doesn't escape.)
421     return ModRef;
422   }
423
424   /// getModRefInfo (for fences) - A convenience wrapper.
425   ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
426     return getModRefInfo(S, Location(P, Size));
427   }
428
429   /// getModRefInfo (for cmpxchges) - Return whether information about whether
430   /// a particular cmpxchg modifies or reads the specified memory location.
431   ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
432
433   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
434   ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
435                              const Value *P, unsigned Size) {
436     return getModRefInfo(CX, Location(P, Size));
437   }
438
439   /// getModRefInfo (for atomicrmws) - Return whether information about whether
440   /// a particular atomicrmw modifies or reads the specified memory location.
441   ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
442
443   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
444   ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
445                              const Value *P, unsigned Size) {
446     return getModRefInfo(RMW, Location(P, Size));
447   }
448
449   /// getModRefInfo (for va_args) - Return whether information about whether
450   /// a particular va_arg modifies or reads the specified memory location.
451   ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
452
453   /// getModRefInfo (for va_args) - A convenience wrapper.
454   ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
455     return getModRefInfo(I, Location(P, Size));
456   }
457
458   /// getModRefInfo - Return information about whether two call sites may refer
459   /// to the same set of memory locations.  See 
460   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
461   /// for details.
462   virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
463                                      ImmutableCallSite CS2);
464
465   //===--------------------------------------------------------------------===//
466   /// Higher level methods for querying mod/ref information.
467   ///
468
469   /// canBasicBlockModify - Return true if it is possible for execution of the
470   /// specified basic block to modify the value pointed to by Ptr.
471   bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
472
473   /// canBasicBlockModify - A convenience wrapper.
474   bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
475     return canBasicBlockModify(BB, Location(P, Size));
476   }
477
478   /// canInstructionRangeModify - Return true if it is possible for the
479   /// execution of the specified instructions to modify the value pointed to by
480   /// Ptr.  The instructions to consider are all of the instructions in the
481   /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
482   bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
483                                  const Location &Loc);
484
485   /// canInstructionRangeModify - A convenience wrapper.
486   bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
487                                  const Value *Ptr, uint64_t Size) {
488     return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
489   }
490
491   //===--------------------------------------------------------------------===//
492   /// Methods that clients should call when they transform the program to allow
493   /// alias analyses to update their internal data structures.  Note that these
494   /// methods may be called on any instruction, regardless of whether or not
495   /// they have pointer-analysis implications.
496   ///
497
498   /// deleteValue - This method should be called whenever an LLVM Value is
499   /// deleted from the program, for example when an instruction is found to be
500   /// redundant and is eliminated.
501   ///
502   virtual void deleteValue(Value *V);
503
504   /// copyValue - This method should be used whenever a preexisting value in the
505   /// program is copied or cloned, introducing a new value.  Note that analysis
506   /// implementations should tolerate clients that use this method to introduce
507   /// the same value multiple times: if the analysis already knows about a
508   /// value, it should ignore the request.
509   ///
510   virtual void copyValue(Value *From, Value *To);
511
512   /// addEscapingUse - This method should be used whenever an escaping use is
513   /// added to a pointer value.  Analysis implementations may either return
514   /// conservative responses for that value in the future, or may recompute
515   /// some or all internal state to continue providing precise responses.
516   ///
517   /// Escaping uses are considered by anything _except_ the following:
518   ///  - GEPs or bitcasts of the pointer
519   ///  - Loads through the pointer
520   ///  - Stores through (but not of) the pointer
521   virtual void addEscapingUse(Use &U);
522
523   /// replaceWithNewValue - This method is the obvious combination of the two
524   /// above, and it provided as a helper to simplify client code.
525   ///
526   void replaceWithNewValue(Value *Old, Value *New) {
527     copyValue(Old, New);
528     deleteValue(Old);
529   }
530 };
531
532 // Specialize DenseMapInfo for Location.
533 template<>
534 struct DenseMapInfo<AliasAnalysis::Location> {
535   static inline AliasAnalysis::Location getEmptyKey() {
536     return
537       AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
538                               0, 0);
539   }
540   static inline AliasAnalysis::Location getTombstoneKey() {
541     return
542       AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
543                               0, 0);
544   }
545   static unsigned getHashValue(const AliasAnalysis::Location &Val) {
546     return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
547            DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
548            DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
549   }
550   static bool isEqual(const AliasAnalysis::Location &LHS,
551                       const AliasAnalysis::Location &RHS) {
552     return LHS.Ptr == RHS.Ptr &&
553            LHS.Size == RHS.Size &&
554            LHS.TBAATag == RHS.TBAATag;
555   }
556 };
557
558 /// isNoAliasCall - Return true if this pointer is returned by a noalias
559 /// function.
560 bool isNoAliasCall(const Value *V);
561
562 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
563 /// identifiable object.  This returns true for:
564 ///    Global Variables and Functions (but not Global Aliases)
565 ///    Allocas and Mallocs
566 ///    ByVal and NoAlias Arguments
567 ///    NoAlias returns
568 ///
569 bool isIdentifiedObject(const Value *V);
570
571 /// isKnownNonNull - Return true if this pointer couldn't possibly be null by
572 /// its definition.  This returns true for allocas, non-extern-weak globals and
573 /// byval arguments.
574 bool isKnownNonNull(const Value *V);
575
576 } // End llvm namespace
577
578 #endif