AArch64: remove arm64 triple enumerator.
[oota-llvm.git] / include / llvm / ADT / DenseMap.h
1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DenseMap class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_DENSEMAP_H
15 #define LLVM_ADT_DENSEMAP_H
16
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/Support/AlignOf.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/PointerLikeTypeTraits.h"
22 #include "llvm/Support/type_traits.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <climits>
26 #include <cstddef>
27 #include <cstring>
28 #include <iterator>
29 #include <new>
30 #include <utility>
31
32 namespace llvm {
33
34 template<typename KeyT, typename ValueT,
35          typename KeyInfoT = DenseMapInfo<KeyT>,
36          bool IsConst = false>
37 class DenseMapIterator;
38
39 template<typename DerivedT,
40          typename KeyT, typename ValueT, typename KeyInfoT>
41 class DenseMapBase {
42 protected:
43   typedef std::pair<KeyT, ValueT> BucketT;
44
45 public:
46   typedef unsigned size_type;
47   typedef KeyT key_type;
48   typedef ValueT mapped_type;
49   typedef BucketT value_type;
50
51   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
52   typedef DenseMapIterator<KeyT, ValueT,
53                            KeyInfoT, true> const_iterator;
54   inline iterator begin() {
55     // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
56     return empty() ? end() : iterator(getBuckets(), getBucketsEnd());
57   }
58   inline iterator end() {
59     return iterator(getBucketsEnd(), getBucketsEnd(), true);
60   }
61   inline const_iterator begin() const {
62     return empty() ? end() : const_iterator(getBuckets(), getBucketsEnd());
63   }
64   inline const_iterator end() const {
65     return const_iterator(getBucketsEnd(), getBucketsEnd(), true);
66   }
67
68   bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
69     return getNumEntries() == 0;
70   }
71   unsigned size() const { return getNumEntries(); }
72
73   /// Grow the densemap so that it has at least Size buckets. Does not shrink
74   void resize(size_type Size) {
75     if (Size > getNumBuckets())
76       grow(Size);
77   }
78
79   void clear() {
80     if (getNumEntries() == 0 && getNumTombstones() == 0) return;
81
82     // If the capacity of the array is huge, and the # elements used is small,
83     // shrink the array.
84     if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
85       shrink_and_clear();
86       return;
87     }
88
89     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
90     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
91       if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
92         if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
93           P->second.~ValueT();
94           decrementNumEntries();
95         }
96         P->first = EmptyKey;
97       }
98     }
99     assert(getNumEntries() == 0 && "Node count imbalance!");
100     setNumTombstones(0);
101   }
102
103   /// Return 1 if the specified key is in the map, 0 otherwise.
104   size_type count(const KeyT &Val) const {
105     const BucketT *TheBucket;
106     return LookupBucketFor(Val, TheBucket) ? 1 : 0;
107   }
108
109   iterator find(const KeyT &Val) {
110     BucketT *TheBucket;
111     if (LookupBucketFor(Val, TheBucket))
112       return iterator(TheBucket, getBucketsEnd(), true);
113     return end();
114   }
115   const_iterator find(const KeyT &Val) const {
116     const BucketT *TheBucket;
117     if (LookupBucketFor(Val, TheBucket))
118       return const_iterator(TheBucket, getBucketsEnd(), true);
119     return end();
120   }
121
122   /// Alternate version of find() which allows a different, and possibly
123   /// less expensive, key type.
124   /// The DenseMapInfo is responsible for supplying methods
125   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
126   /// type used.
127   template<class LookupKeyT>
128   iterator find_as(const LookupKeyT &Val) {
129     BucketT *TheBucket;
130     if (LookupBucketFor(Val, TheBucket))
131       return iterator(TheBucket, getBucketsEnd(), true);
132     return end();
133   }
134   template<class LookupKeyT>
135   const_iterator find_as(const LookupKeyT &Val) const {
136     const BucketT *TheBucket;
137     if (LookupBucketFor(Val, TheBucket))
138       return const_iterator(TheBucket, getBucketsEnd(), true);
139     return end();
140   }
141
142   /// lookup - Return the entry for the specified key, or a default
143   /// constructed value if no such entry exists.
144   ValueT lookup(const KeyT &Val) const {
145     const BucketT *TheBucket;
146     if (LookupBucketFor(Val, TheBucket))
147       return TheBucket->second;
148     return ValueT();
149   }
150
151   // Inserts key,value pair into the map if the key isn't already in the map.
152   // If the key is already in the map, it returns false and doesn't update the
153   // value.
154   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
155     BucketT *TheBucket;
156     if (LookupBucketFor(KV.first, TheBucket))
157       return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
158                             false); // Already in map.
159
160     // Otherwise, insert the new element.
161     TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
162     return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
163   }
164
165   // Inserts key,value pair into the map if the key isn't already in the map.
166   // If the key is already in the map, it returns false and doesn't update the
167   // value.
168   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
169     BucketT *TheBucket;
170     if (LookupBucketFor(KV.first, TheBucket))
171       return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
172                             false); // Already in map.
173     
174     // Otherwise, insert the new element.
175     TheBucket = InsertIntoBucket(std::move(KV.first),
176                                  std::move(KV.second),
177                                  TheBucket);
178     return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
179   }
180
181   /// insert - Range insertion of pairs.
182   template<typename InputIt>
183   void insert(InputIt I, InputIt E) {
184     for (; I != E; ++I)
185       insert(*I);
186   }
187
188
189   bool erase(const KeyT &Val) {
190     BucketT *TheBucket;
191     if (!LookupBucketFor(Val, TheBucket))
192       return false; // not in map.
193
194     TheBucket->second.~ValueT();
195     TheBucket->first = getTombstoneKey();
196     decrementNumEntries();
197     incrementNumTombstones();
198     return true;
199   }
200   void erase(iterator I) {
201     BucketT *TheBucket = &*I;
202     TheBucket->second.~ValueT();
203     TheBucket->first = getTombstoneKey();
204     decrementNumEntries();
205     incrementNumTombstones();
206   }
207
208   value_type& FindAndConstruct(const KeyT &Key) {
209     BucketT *TheBucket;
210     if (LookupBucketFor(Key, TheBucket))
211       return *TheBucket;
212
213     return *InsertIntoBucket(Key, ValueT(), TheBucket);
214   }
215
216   ValueT &operator[](const KeyT &Key) {
217     return FindAndConstruct(Key).second;
218   }
219
220   value_type& FindAndConstruct(KeyT &&Key) {
221     BucketT *TheBucket;
222     if (LookupBucketFor(Key, TheBucket))
223       return *TheBucket;
224
225     return *InsertIntoBucket(std::move(Key), ValueT(), TheBucket);
226   }
227
228   ValueT &operator[](KeyT &&Key) {
229     return FindAndConstruct(std::move(Key)).second;
230   }
231
232   /// isPointerIntoBucketsArray - Return true if the specified pointer points
233   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
234   /// value in the DenseMap).
235   bool isPointerIntoBucketsArray(const void *Ptr) const {
236     return Ptr >= getBuckets() && Ptr < getBucketsEnd();
237   }
238
239   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
240   /// array.  In conjunction with the previous method, this can be used to
241   /// determine whether an insertion caused the DenseMap to reallocate.
242   const void *getPointerIntoBucketsArray() const { return getBuckets(); }
243
244 protected:
245   DenseMapBase() {}
246
247   void destroyAll() {
248     if (getNumBuckets() == 0) // Nothing to do.
249       return;
250
251     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
252     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
253       if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
254           !KeyInfoT::isEqual(P->first, TombstoneKey))
255         P->second.~ValueT();
256       P->first.~KeyT();
257     }
258
259 #ifndef NDEBUG
260     memset((void*)getBuckets(), 0x5a, sizeof(BucketT)*getNumBuckets());
261 #endif
262   }
263
264   void initEmpty() {
265     setNumEntries(0);
266     setNumTombstones(0);
267
268     assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
269            "# initial buckets must be a power of two!");
270     const KeyT EmptyKey = getEmptyKey();
271     for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
272       new (&B->first) KeyT(EmptyKey);
273   }
274
275   void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
276     initEmpty();
277
278     // Insert all the old elements.
279     const KeyT EmptyKey = getEmptyKey();
280     const KeyT TombstoneKey = getTombstoneKey();
281     for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
282       if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
283           !KeyInfoT::isEqual(B->first, TombstoneKey)) {
284         // Insert the key/value into the new table.
285         BucketT *DestBucket;
286         bool FoundVal = LookupBucketFor(B->first, DestBucket);
287         (void)FoundVal; // silence warning.
288         assert(!FoundVal && "Key already in new map?");
289         DestBucket->first = std::move(B->first);
290         new (&DestBucket->second) ValueT(std::move(B->second));
291         incrementNumEntries();
292
293         // Free the value.
294         B->second.~ValueT();
295       }
296       B->first.~KeyT();
297     }
298
299 #ifndef NDEBUG
300     if (OldBucketsBegin != OldBucketsEnd)
301       memset((void*)OldBucketsBegin, 0x5a,
302              sizeof(BucketT) * (OldBucketsEnd - OldBucketsBegin));
303 #endif
304   }
305
306   template <typename OtherBaseT>
307   void copyFrom(const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT>& other) {
308     assert(getNumBuckets() == other.getNumBuckets());
309
310     setNumEntries(other.getNumEntries());
311     setNumTombstones(other.getNumTombstones());
312
313     if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
314       memcpy(getBuckets(), other.getBuckets(),
315              getNumBuckets() * sizeof(BucketT));
316     else
317       for (size_t i = 0; i < getNumBuckets(); ++i) {
318         new (&getBuckets()[i].first) KeyT(other.getBuckets()[i].first);
319         if (!KeyInfoT::isEqual(getBuckets()[i].first, getEmptyKey()) &&
320             !KeyInfoT::isEqual(getBuckets()[i].first, getTombstoneKey()))
321           new (&getBuckets()[i].second) ValueT(other.getBuckets()[i].second);
322       }
323   }
324
325   void swap(DenseMapBase& RHS) {
326     std::swap(getNumEntries(), RHS.getNumEntries());
327     std::swap(getNumTombstones(), RHS.getNumTombstones());
328   }
329
330   static unsigned getHashValue(const KeyT &Val) {
331     return KeyInfoT::getHashValue(Val);
332   }
333   template<typename LookupKeyT>
334   static unsigned getHashValue(const LookupKeyT &Val) {
335     return KeyInfoT::getHashValue(Val);
336   }
337   static const KeyT getEmptyKey() {
338     return KeyInfoT::getEmptyKey();
339   }
340   static const KeyT getTombstoneKey() {
341     return KeyInfoT::getTombstoneKey();
342   }
343
344 private:
345   unsigned getNumEntries() const {
346     return static_cast<const DerivedT *>(this)->getNumEntries();
347   }
348   void setNumEntries(unsigned Num) {
349     static_cast<DerivedT *>(this)->setNumEntries(Num);
350   }
351   void incrementNumEntries() {
352     setNumEntries(getNumEntries() + 1);
353   }
354   void decrementNumEntries() {
355     setNumEntries(getNumEntries() - 1);
356   }
357   unsigned getNumTombstones() const {
358     return static_cast<const DerivedT *>(this)->getNumTombstones();
359   }
360   void setNumTombstones(unsigned Num) {
361     static_cast<DerivedT *>(this)->setNumTombstones(Num);
362   }
363   void incrementNumTombstones() {
364     setNumTombstones(getNumTombstones() + 1);
365   }
366   void decrementNumTombstones() {
367     setNumTombstones(getNumTombstones() - 1);
368   }
369   const BucketT *getBuckets() const {
370     return static_cast<const DerivedT *>(this)->getBuckets();
371   }
372   BucketT *getBuckets() {
373     return static_cast<DerivedT *>(this)->getBuckets();
374   }
375   unsigned getNumBuckets() const {
376     return static_cast<const DerivedT *>(this)->getNumBuckets();
377   }
378   BucketT *getBucketsEnd() {
379     return getBuckets() + getNumBuckets();
380   }
381   const BucketT *getBucketsEnd() const {
382     return getBuckets() + getNumBuckets();
383   }
384
385   void grow(unsigned AtLeast) {
386     static_cast<DerivedT *>(this)->grow(AtLeast);
387   }
388
389   void shrink_and_clear() {
390     static_cast<DerivedT *>(this)->shrink_and_clear();
391   }
392
393
394   BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
395                             BucketT *TheBucket) {
396     TheBucket = InsertIntoBucketImpl(Key, TheBucket);
397
398     TheBucket->first = Key;
399     new (&TheBucket->second) ValueT(Value);
400     return TheBucket;
401   }
402
403   BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value,
404                             BucketT *TheBucket) {
405     TheBucket = InsertIntoBucketImpl(Key, TheBucket);
406
407     TheBucket->first = Key;
408     new (&TheBucket->second) ValueT(std::move(Value));
409     return TheBucket;
410   }
411
412   BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) {
413     TheBucket = InsertIntoBucketImpl(Key, TheBucket);
414
415     TheBucket->first = std::move(Key);
416     new (&TheBucket->second) ValueT(std::move(Value));
417     return TheBucket;
418   }
419
420   BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) {
421     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
422     // the buckets are empty (meaning that many are filled with tombstones),
423     // grow the table.
424     //
425     // The later case is tricky.  For example, if we had one empty bucket with
426     // tons of tombstones, failing lookups (e.g. for insertion) would have to
427     // probe almost the entire table until it found the empty bucket.  If the
428     // table completely filled with tombstones, no lookup would ever succeed,
429     // causing infinite loops in lookup.
430     unsigned NewNumEntries = getNumEntries() + 1;
431     unsigned NumBuckets = getNumBuckets();
432     if (NewNumEntries*4 >= NumBuckets*3) {
433       this->grow(NumBuckets * 2);
434       LookupBucketFor(Key, TheBucket);
435       NumBuckets = getNumBuckets();
436     } else if (NumBuckets-(NewNumEntries+getNumTombstones()) <= NumBuckets/8) {
437       this->grow(NumBuckets);
438       LookupBucketFor(Key, TheBucket);
439     }
440     assert(TheBucket);
441
442     // Only update the state after we've grown our bucket space appropriately
443     // so that when growing buckets we have self-consistent entry count.
444     incrementNumEntries();
445
446     // If we are writing over a tombstone, remember this.
447     const KeyT EmptyKey = getEmptyKey();
448     if (!KeyInfoT::isEqual(TheBucket->first, EmptyKey))
449       decrementNumTombstones();
450
451     return TheBucket;
452   }
453
454   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
455   /// FoundBucket.  If the bucket contains the key and a value, this returns
456   /// true, otherwise it returns a bucket with an empty marker or tombstone and
457   /// returns false.
458   template<typename LookupKeyT>
459   bool LookupBucketFor(const LookupKeyT &Val,
460                        const BucketT *&FoundBucket) const {
461     const BucketT *BucketsPtr = getBuckets();
462     const unsigned NumBuckets = getNumBuckets();
463
464     if (NumBuckets == 0) {
465       FoundBucket = nullptr;
466       return false;
467     }
468
469     // FoundTombstone - Keep track of whether we find a tombstone while probing.
470     const BucketT *FoundTombstone = nullptr;
471     const KeyT EmptyKey = getEmptyKey();
472     const KeyT TombstoneKey = getTombstoneKey();
473     assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
474            !KeyInfoT::isEqual(Val, TombstoneKey) &&
475            "Empty/Tombstone value shouldn't be inserted into map!");
476
477     unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
478     unsigned ProbeAmt = 1;
479     while (1) {
480       const BucketT *ThisBucket = BucketsPtr + BucketNo;
481       // Found Val's bucket?  If so, return it.
482       if (KeyInfoT::isEqual(Val, ThisBucket->first)) {
483         FoundBucket = ThisBucket;
484         return true;
485       }
486
487       // If we found an empty bucket, the key doesn't exist in the set.
488       // Insert it and return the default value.
489       if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
490         // If we've already seen a tombstone while probing, fill it in instead
491         // of the empty bucket we eventually probed to.
492         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
493         return false;
494       }
495
496       // If this is a tombstone, remember it.  If Val ends up not in the map, we
497       // prefer to return it than something that would require more probing.
498       if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
499         FoundTombstone = ThisBucket;  // Remember the first tombstone found.
500
501       // Otherwise, it's a hash collision or a tombstone, continue quadratic
502       // probing.
503       BucketNo += ProbeAmt++;
504       BucketNo &= (NumBuckets-1);
505     }
506   }
507
508   template <typename LookupKeyT>
509   bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
510     const BucketT *ConstFoundBucket;
511     bool Result = const_cast<const DenseMapBase *>(this)
512       ->LookupBucketFor(Val, ConstFoundBucket);
513     FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
514     return Result;
515   }
516
517 public:
518   /// Return the approximate size (in bytes) of the actual map.
519   /// This is just the raw memory used by DenseMap.
520   /// If entries are pointers to objects, the size of the referenced objects
521   /// are not included.
522   size_t getMemorySize() const {
523     return getNumBuckets() * sizeof(BucketT);
524   }
525 };
526
527 template<typename KeyT, typename ValueT,
528          typename KeyInfoT = DenseMapInfo<KeyT> >
529 class DenseMap
530     : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT>,
531                           KeyT, ValueT, KeyInfoT> {
532   // Lift some types from the dependent base class into this class for
533   // simplicity of referring to them.
534   typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT> BaseT;
535   typedef typename BaseT::BucketT BucketT;
536   friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT>;
537
538   BucketT *Buckets;
539   unsigned NumEntries;
540   unsigned NumTombstones;
541   unsigned NumBuckets;
542
543 public:
544   explicit DenseMap(unsigned NumInitBuckets = 0) {
545     init(NumInitBuckets);
546   }
547
548   DenseMap(const DenseMap &other) : BaseT() {
549     init(0);
550     copyFrom(other);
551   }
552
553   DenseMap(DenseMap &&other) : BaseT() {
554     init(0);
555     swap(other);
556   }
557
558   template<typename InputIt>
559   DenseMap(const InputIt &I, const InputIt &E) {
560     init(NextPowerOf2(std::distance(I, E)));
561     this->insert(I, E);
562   }
563
564   ~DenseMap() {
565     this->destroyAll();
566     operator delete(Buckets);
567   }
568
569   void swap(DenseMap& RHS) {
570     std::swap(Buckets, RHS.Buckets);
571     std::swap(NumEntries, RHS.NumEntries);
572     std::swap(NumTombstones, RHS.NumTombstones);
573     std::swap(NumBuckets, RHS.NumBuckets);
574   }
575
576   DenseMap& operator=(const DenseMap& other) {
577     copyFrom(other);
578     return *this;
579   }
580
581   DenseMap& operator=(DenseMap &&other) {
582     this->destroyAll();
583     operator delete(Buckets);
584     init(0);
585     swap(other);
586     return *this;
587   }
588
589   void copyFrom(const DenseMap& other) {
590     this->destroyAll();
591     operator delete(Buckets);
592     if (allocateBuckets(other.NumBuckets)) {
593       this->BaseT::copyFrom(other);
594     } else {
595       NumEntries = 0;
596       NumTombstones = 0;
597     }
598   }
599
600   void init(unsigned InitBuckets) {
601     if (allocateBuckets(InitBuckets)) {
602       this->BaseT::initEmpty();
603     } else {
604       NumEntries = 0;
605       NumTombstones = 0;
606     }
607   }
608
609   void grow(unsigned AtLeast) {
610     unsigned OldNumBuckets = NumBuckets;
611     BucketT *OldBuckets = Buckets;
612
613     allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
614     assert(Buckets);
615     if (!OldBuckets) {
616       this->BaseT::initEmpty();
617       return;
618     }
619
620     this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
621
622     // Free the old table.
623     operator delete(OldBuckets);
624   }
625
626   void shrink_and_clear() {
627     unsigned OldNumEntries = NumEntries;
628     this->destroyAll();
629
630     // Reduce the number of buckets.
631     unsigned NewNumBuckets = 0;
632     if (OldNumEntries)
633       NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
634     if (NewNumBuckets == NumBuckets) {
635       this->BaseT::initEmpty();
636       return;
637     }
638
639     operator delete(Buckets);
640     init(NewNumBuckets);
641   }
642
643 private:
644   unsigned getNumEntries() const {
645     return NumEntries;
646   }
647   void setNumEntries(unsigned Num) {
648     NumEntries = Num;
649   }
650
651   unsigned getNumTombstones() const {
652     return NumTombstones;
653   }
654   void setNumTombstones(unsigned Num) {
655     NumTombstones = Num;
656   }
657
658   BucketT *getBuckets() const {
659     return Buckets;
660   }
661
662   unsigned getNumBuckets() const {
663     return NumBuckets;
664   }
665
666   bool allocateBuckets(unsigned Num) {
667     NumBuckets = Num;
668     if (NumBuckets == 0) {
669       Buckets = nullptr;
670       return false;
671     }
672
673     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
674     return true;
675   }
676 };
677
678 template<typename KeyT, typename ValueT,
679          unsigned InlineBuckets = 4,
680          typename KeyInfoT = DenseMapInfo<KeyT> >
681 class SmallDenseMap
682     : public DenseMapBase<SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT>,
683                           KeyT, ValueT, KeyInfoT> {
684   // Lift some types from the dependent base class into this class for
685   // simplicity of referring to them.
686   typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT> BaseT;
687   typedef typename BaseT::BucketT BucketT;
688   friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT>;
689
690   unsigned Small : 1;
691   unsigned NumEntries : 31;
692   unsigned NumTombstones;
693
694   struct LargeRep {
695     BucketT *Buckets;
696     unsigned NumBuckets;
697   };
698
699   /// A "union" of an inline bucket array and the struct representing
700   /// a large bucket. This union will be discriminated by the 'Small' bit.
701   AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
702
703 public:
704   explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
705     init(NumInitBuckets);
706   }
707
708   SmallDenseMap(const SmallDenseMap &other) : BaseT() {
709     init(0);
710     copyFrom(other);
711   }
712
713   SmallDenseMap(SmallDenseMap &&other) : BaseT() {
714     init(0);
715     swap(other);
716   }
717
718   template<typename InputIt>
719   SmallDenseMap(const InputIt &I, const InputIt &E) {
720     init(NextPowerOf2(std::distance(I, E)));
721     this->insert(I, E);
722   }
723
724   ~SmallDenseMap() {
725     this->destroyAll();
726     deallocateBuckets();
727   }
728
729   void swap(SmallDenseMap& RHS) {
730     unsigned TmpNumEntries = RHS.NumEntries;
731     RHS.NumEntries = NumEntries;
732     NumEntries = TmpNumEntries;
733     std::swap(NumTombstones, RHS.NumTombstones);
734
735     const KeyT EmptyKey = this->getEmptyKey();
736     const KeyT TombstoneKey = this->getTombstoneKey();
737     if (Small && RHS.Small) {
738       // If we're swapping inline bucket arrays, we have to cope with some of
739       // the tricky bits of DenseMap's storage system: the buckets are not
740       // fully initialized. Thus we swap every key, but we may have
741       // a one-directional move of the value.
742       for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
743         BucketT *LHSB = &getInlineBuckets()[i],
744                 *RHSB = &RHS.getInlineBuckets()[i];
745         bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->first, EmptyKey) &&
746                             !KeyInfoT::isEqual(LHSB->first, TombstoneKey));
747         bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->first, EmptyKey) &&
748                             !KeyInfoT::isEqual(RHSB->first, TombstoneKey));
749         if (hasLHSValue && hasRHSValue) {
750           // Swap together if we can...
751           std::swap(*LHSB, *RHSB);
752           continue;
753         }
754         // Swap separately and handle any assymetry.
755         std::swap(LHSB->first, RHSB->first);
756         if (hasLHSValue) {
757           new (&RHSB->second) ValueT(std::move(LHSB->second));
758           LHSB->second.~ValueT();
759         } else if (hasRHSValue) {
760           new (&LHSB->second) ValueT(std::move(RHSB->second));
761           RHSB->second.~ValueT();
762         }
763       }
764       return;
765     }
766     if (!Small && !RHS.Small) {
767       std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
768       std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
769       return;
770     }
771
772     SmallDenseMap &SmallSide = Small ? *this : RHS;
773     SmallDenseMap &LargeSide = Small ? RHS : *this;
774
775     // First stash the large side's rep and move the small side across.
776     LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
777     LargeSide.getLargeRep()->~LargeRep();
778     LargeSide.Small = true;
779     // This is similar to the standard move-from-old-buckets, but the bucket
780     // count hasn't actually rotated in this case. So we have to carefully
781     // move construct the keys and values into their new locations, but there
782     // is no need to re-hash things.
783     for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
784       BucketT *NewB = &LargeSide.getInlineBuckets()[i],
785               *OldB = &SmallSide.getInlineBuckets()[i];
786       new (&NewB->first) KeyT(std::move(OldB->first));
787       OldB->first.~KeyT();
788       if (!KeyInfoT::isEqual(NewB->first, EmptyKey) &&
789           !KeyInfoT::isEqual(NewB->first, TombstoneKey)) {
790         new (&NewB->second) ValueT(std::move(OldB->second));
791         OldB->second.~ValueT();
792       }
793     }
794
795     // The hard part of moving the small buckets across is done, just move
796     // the TmpRep into its new home.
797     SmallSide.Small = false;
798     new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
799   }
800
801   SmallDenseMap& operator=(const SmallDenseMap& other) {
802     copyFrom(other);
803     return *this;
804   }
805
806   SmallDenseMap& operator=(SmallDenseMap &&other) {
807     this->destroyAll();
808     deallocateBuckets();
809     init(0);
810     swap(other);
811     return *this;
812   }
813
814   void copyFrom(const SmallDenseMap& other) {
815     this->destroyAll();
816     deallocateBuckets();
817     Small = true;
818     if (other.getNumBuckets() > InlineBuckets) {
819       Small = false;
820       new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
821     }
822     this->BaseT::copyFrom(other);
823   }
824
825   void init(unsigned InitBuckets) {
826     Small = true;
827     if (InitBuckets > InlineBuckets) {
828       Small = false;
829       new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
830     }
831     this->BaseT::initEmpty();
832   }
833
834   void grow(unsigned AtLeast) {
835     if (AtLeast >= InlineBuckets)
836       AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
837
838     if (Small) {
839       if (AtLeast < InlineBuckets)
840         return; // Nothing to do.
841
842       // First move the inline buckets into a temporary storage.
843       AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
844       BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
845       BucketT *TmpEnd = TmpBegin;
846
847       // Loop over the buckets, moving non-empty, non-tombstones into the
848       // temporary storage. Have the loop move the TmpEnd forward as it goes.
849       const KeyT EmptyKey = this->getEmptyKey();
850       const KeyT TombstoneKey = this->getTombstoneKey();
851       for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
852         if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
853             !KeyInfoT::isEqual(P->first, TombstoneKey)) {
854           assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
855                  "Too many inline buckets!");
856           new (&TmpEnd->first) KeyT(std::move(P->first));
857           new (&TmpEnd->second) ValueT(std::move(P->second));
858           ++TmpEnd;
859           P->second.~ValueT();
860         }
861         P->first.~KeyT();
862       }
863
864       // Now make this map use the large rep, and move all the entries back
865       // into it.
866       Small = false;
867       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
868       this->moveFromOldBuckets(TmpBegin, TmpEnd);
869       return;
870     }
871
872     LargeRep OldRep = std::move(*getLargeRep());
873     getLargeRep()->~LargeRep();
874     if (AtLeast <= InlineBuckets) {
875       Small = true;
876     } else {
877       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
878     }
879
880     this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
881
882     // Free the old table.
883     operator delete(OldRep.Buckets);
884   }
885
886   void shrink_and_clear() {
887     unsigned OldSize = this->size();
888     this->destroyAll();
889
890     // Reduce the number of buckets.
891     unsigned NewNumBuckets = 0;
892     if (OldSize) {
893       NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
894       if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
895         NewNumBuckets = 64;
896     }
897     if ((Small && NewNumBuckets <= InlineBuckets) ||
898         (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
899       this->BaseT::initEmpty();
900       return;
901     }
902
903     deallocateBuckets();
904     init(NewNumBuckets);
905   }
906
907 private:
908   unsigned getNumEntries() const {
909     return NumEntries;
910   }
911   void setNumEntries(unsigned Num) {
912     assert(Num < INT_MAX && "Cannot support more than INT_MAX entries");
913     NumEntries = Num;
914   }
915
916   unsigned getNumTombstones() const {
917     return NumTombstones;
918   }
919   void setNumTombstones(unsigned Num) {
920     NumTombstones = Num;
921   }
922
923   const BucketT *getInlineBuckets() const {
924     assert(Small);
925     // Note that this cast does not violate aliasing rules as we assert that
926     // the memory's dynamic type is the small, inline bucket buffer, and the
927     // 'storage.buffer' static type is 'char *'.
928     return reinterpret_cast<const BucketT *>(storage.buffer);
929   }
930   BucketT *getInlineBuckets() {
931     return const_cast<BucketT *>(
932       const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
933   }
934   const LargeRep *getLargeRep() const {
935     assert(!Small);
936     // Note, same rule about aliasing as with getInlineBuckets.
937     return reinterpret_cast<const LargeRep *>(storage.buffer);
938   }
939   LargeRep *getLargeRep() {
940     return const_cast<LargeRep *>(
941       const_cast<const SmallDenseMap *>(this)->getLargeRep());
942   }
943
944   const BucketT *getBuckets() const {
945     return Small ? getInlineBuckets() : getLargeRep()->Buckets;
946   }
947   BucketT *getBuckets() {
948     return const_cast<BucketT *>(
949       const_cast<const SmallDenseMap *>(this)->getBuckets());
950   }
951   unsigned getNumBuckets() const {
952     return Small ? InlineBuckets : getLargeRep()->NumBuckets;
953   }
954
955   void deallocateBuckets() {
956     if (Small)
957       return;
958
959     operator delete(getLargeRep()->Buckets);
960     getLargeRep()->~LargeRep();
961   }
962
963   LargeRep allocateBuckets(unsigned Num) {
964     assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
965     LargeRep Rep = {
966       static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
967     };
968     return Rep;
969   }
970 };
971
972 template<typename KeyT, typename ValueT,
973          typename KeyInfoT, bool IsConst>
974 class DenseMapIterator {
975   typedef std::pair<KeyT, ValueT> Bucket;
976   typedef DenseMapIterator<KeyT, ValueT,
977                            KeyInfoT, true> ConstIterator;
978   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, true>;
979 public:
980   typedef ptrdiff_t difference_type;
981   typedef typename std::conditional<IsConst, const Bucket, Bucket>::type
982   value_type;
983   typedef value_type *pointer;
984   typedef value_type &reference;
985   typedef std::forward_iterator_tag iterator_category;
986 private:
987   pointer Ptr, End;
988 public:
989   DenseMapIterator() : Ptr(nullptr), End(nullptr) {}
990
991   DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
992     : Ptr(Pos), End(E) {
993     if (!NoAdvance) AdvancePastEmptyBuckets();
994   }
995
996   // If IsConst is true this is a converting constructor from iterator to
997   // const_iterator and the default copy constructor is used.
998   // Otherwise this is a copy constructor for iterator.
999   DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
1000                                           KeyInfoT, false>& I)
1001     : Ptr(I.Ptr), End(I.End) {}
1002
1003   reference operator*() const {
1004     return *Ptr;
1005   }
1006   pointer operator->() const {
1007     return Ptr;
1008   }
1009
1010   bool operator==(const ConstIterator &RHS) const {
1011     return Ptr == RHS.operator->();
1012   }
1013   bool operator!=(const ConstIterator &RHS) const {
1014     return Ptr != RHS.operator->();
1015   }
1016
1017   inline DenseMapIterator& operator++() {  // Preincrement
1018     ++Ptr;
1019     AdvancePastEmptyBuckets();
1020     return *this;
1021   }
1022   DenseMapIterator operator++(int) {  // Postincrement
1023     DenseMapIterator tmp = *this; ++*this; return tmp;
1024   }
1025
1026 private:
1027   void AdvancePastEmptyBuckets() {
1028     const KeyT Empty = KeyInfoT::getEmptyKey();
1029     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1030
1031     while (Ptr != End &&
1032            (KeyInfoT::isEqual(Ptr->first, Empty) ||
1033             KeyInfoT::isEqual(Ptr->first, Tombstone)))
1034       ++Ptr;
1035   }
1036 };
1037
1038 template<typename KeyT, typename ValueT, typename KeyInfoT>
1039 static inline size_t
1040 capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1041   return X.getMemorySize();
1042 }
1043
1044 } // end namespace llvm
1045
1046 #endif