Merging r258184:
[oota-llvm.git] / include / llvm / ADT / ArrayRef.h
1 //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef LLVM_ADT_ARRAYREF_H
11 #define LLVM_ADT_ARRAYREF_H
12
13 #include "llvm/ADT/Hashing.h"
14 #include "llvm/ADT/None.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include <vector>
17
18 namespace llvm {
19
20   /// ArrayRef - Represent a constant reference to an array (0 or more elements
21   /// consecutively in memory), i.e. a start pointer and a length.  It allows
22   /// various APIs to take consecutive elements easily and conveniently.
23   ///
24   /// This class does not own the underlying data, it is expected to be used in
25   /// situations where the data resides in some other buffer, whose lifetime
26   /// extends past that of the ArrayRef. For this reason, it is not in general
27   /// safe to store an ArrayRef.
28   ///
29   /// This is intended to be trivially copyable, so it should be passed by
30   /// value.
31   template<typename T>
32   class ArrayRef {
33   public:
34     typedef const T *iterator;
35     typedef const T *const_iterator;
36     typedef size_t size_type;
37
38     typedef std::reverse_iterator<iterator> reverse_iterator;
39
40   private:
41     /// The start of the array, in an external buffer.
42     const T *Data;
43
44     /// The number of elements.
45     size_type Length;
46
47   public:
48     /// @name Constructors
49     /// @{
50
51     /// Construct an empty ArrayRef.
52     /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {}
53
54     /// Construct an empty ArrayRef from None.
55     /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {}
56
57     /// Construct an ArrayRef from a single element.
58     /*implicit*/ ArrayRef(const T &OneElt)
59       : Data(&OneElt), Length(1) {}
60
61     /// Construct an ArrayRef from a pointer and length.
62     /*implicit*/ ArrayRef(const T *data, size_t length)
63       : Data(data), Length(length) {}
64
65     /// Construct an ArrayRef from a range.
66     ArrayRef(const T *begin, const T *end)
67       : Data(begin), Length(end - begin) {}
68
69     /// Construct an ArrayRef from a SmallVector. This is templated in order to
70     /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
71     /// copy-construct an ArrayRef.
72     template<typename U>
73     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
74       : Data(Vec.data()), Length(Vec.size()) {
75     }
76
77     /// Construct an ArrayRef from a std::vector.
78     template<typename A>
79     /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
80       : Data(Vec.data()), Length(Vec.size()) {}
81
82     /// Construct an ArrayRef from a C array.
83     template <size_t N>
84     /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N])
85       : Data(Arr), Length(N) {}
86
87     /// Construct an ArrayRef from a std::initializer_list.
88     /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
89     : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()),
90       Length(Vec.size()) {}
91
92     /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
93     /// ensure that only ArrayRefs of pointers can be converted.
94     template <typename U>
95     ArrayRef(const ArrayRef<U *> &A,
96              typename std::enable_if<
97                  std::is_convertible<U *const *, T const *>::value>::type* = 0)
98       : Data(A.data()), Length(A.size()) {}
99
100     /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
101     /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
102     /// whenever we copy-construct an ArrayRef.
103     template<typename U, typename DummyT>
104     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<U*, DummyT> &Vec,
105                           typename std::enable_if<
106                               std::is_convertible<U *const *,
107                                                   T const *>::value>::type* = 0)
108       : Data(Vec.data()), Length(Vec.size()) {
109     }
110
111     /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
112     /// to ensure that only vectors of pointers can be converted.
113     template<typename U, typename A>
114     ArrayRef(const std::vector<U *, A> &Vec,
115              typename std::enable_if<
116                  std::is_convertible<U *const *, T const *>::value>::type* = 0)
117       : Data(Vec.data()), Length(Vec.size()) {}
118
119     /// @}
120     /// @name Simple Operations
121     /// @{
122
123     iterator begin() const { return Data; }
124     iterator end() const { return Data + Length; }
125
126     reverse_iterator rbegin() const { return reverse_iterator(end()); }
127     reverse_iterator rend() const { return reverse_iterator(begin()); }
128
129     /// empty - Check if the array is empty.
130     bool empty() const { return Length == 0; }
131
132     const T *data() const { return Data; }
133
134     /// size - Get the array size.
135     size_t size() const { return Length; }
136
137     /// front - Get the first element.
138     const T &front() const {
139       assert(!empty());
140       return Data[0];
141     }
142
143     /// back - Get the last element.
144     const T &back() const {
145       assert(!empty());
146       return Data[Length-1];
147     }
148
149     // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
150     template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
151       T *Buff = A.template Allocate<T>(Length);
152       std::uninitialized_copy(begin(), end(), Buff);
153       return ArrayRef<T>(Buff, Length);
154     }
155
156     /// equals - Check for element-wise equality.
157     bool equals(ArrayRef RHS) const {
158       if (Length != RHS.Length)
159         return false;
160       return std::equal(begin(), end(), RHS.begin());
161     }
162
163     /// slice(n) - Chop off the first N elements of the array.
164     ArrayRef<T> slice(unsigned N) const {
165       assert(N <= size() && "Invalid specifier");
166       return ArrayRef<T>(data()+N, size()-N);
167     }
168
169     /// slice(n, m) - Chop off the first N elements of the array, and keep M
170     /// elements in the array.
171     ArrayRef<T> slice(unsigned N, unsigned M) const {
172       assert(N+M <= size() && "Invalid specifier");
173       return ArrayRef<T>(data()+N, M);
174     }
175
176     // \brief Drop the last \p N elements of the array.
177     ArrayRef<T> drop_back(unsigned N = 1) const {
178       assert(size() >= N && "Dropping more elements than exist");
179       return slice(0, size() - N);
180     }
181
182     /// @}
183     /// @name Operator Overloads
184     /// @{
185     const T &operator[](size_t Index) const {
186       assert(Index < Length && "Invalid index!");
187       return Data[Index];
188     }
189
190     /// @}
191     /// @name Expensive Operations
192     /// @{
193     std::vector<T> vec() const {
194       return std::vector<T>(Data, Data+Length);
195     }
196
197     /// @}
198     /// @name Conversion operators
199     /// @{
200     operator std::vector<T>() const {
201       return std::vector<T>(Data, Data+Length);
202     }
203
204     /// @}
205   };
206
207   /// MutableArrayRef - Represent a mutable reference to an array (0 or more
208   /// elements consecutively in memory), i.e. a start pointer and a length.  It
209   /// allows various APIs to take and modify consecutive elements easily and
210   /// conveniently.
211   ///
212   /// This class does not own the underlying data, it is expected to be used in
213   /// situations where the data resides in some other buffer, whose lifetime
214   /// extends past that of the MutableArrayRef. For this reason, it is not in
215   /// general safe to store a MutableArrayRef.
216   ///
217   /// This is intended to be trivially copyable, so it should be passed by
218   /// value.
219   template<typename T>
220   class MutableArrayRef : public ArrayRef<T> {
221   public:
222     typedef T *iterator;
223
224     typedef std::reverse_iterator<iterator> reverse_iterator;
225
226     /// Construct an empty MutableArrayRef.
227     /*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
228
229     /// Construct an empty MutableArrayRef from None.
230     /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
231
232     /// Construct an MutableArrayRef from a single element.
233     /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
234
235     /// Construct an MutableArrayRef from a pointer and length.
236     /*implicit*/ MutableArrayRef(T *data, size_t length)
237       : ArrayRef<T>(data, length) {}
238
239     /// Construct an MutableArrayRef from a range.
240     MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
241
242     /// Construct an MutableArrayRef from a SmallVector.
243     /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
244     : ArrayRef<T>(Vec) {}
245
246     /// Construct a MutableArrayRef from a std::vector.
247     /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
248     : ArrayRef<T>(Vec) {}
249
250     /// Construct an MutableArrayRef from a C array.
251     template <size_t N>
252     /*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N])
253       : ArrayRef<T>(Arr) {}
254
255     T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
256
257     iterator begin() const { return data(); }
258     iterator end() const { return data() + this->size(); }
259
260     reverse_iterator rbegin() const { return reverse_iterator(end()); }
261     reverse_iterator rend() const { return reverse_iterator(begin()); }
262
263     /// front - Get the first element.
264     T &front() const {
265       assert(!this->empty());
266       return data()[0];
267     }
268
269     /// back - Get the last element.
270     T &back() const {
271       assert(!this->empty());
272       return data()[this->size()-1];
273     }
274
275     /// slice(n) - Chop off the first N elements of the array.
276     MutableArrayRef<T> slice(unsigned N) const {
277       assert(N <= this->size() && "Invalid specifier");
278       return MutableArrayRef<T>(data()+N, this->size()-N);
279     }
280
281     /// slice(n, m) - Chop off the first N elements of the array, and keep M
282     /// elements in the array.
283     MutableArrayRef<T> slice(unsigned N, unsigned M) const {
284       assert(N+M <= this->size() && "Invalid specifier");
285       return MutableArrayRef<T>(data()+N, M);
286     }
287
288     MutableArrayRef<T> drop_back(unsigned N) const {
289       assert(this->size() >= N && "Dropping more elements than exist");
290       return slice(0, this->size() - N);
291     }
292
293     /// @}
294     /// @name Operator Overloads
295     /// @{
296     T &operator[](size_t Index) const {
297       assert(Index < this->size() && "Invalid index!");
298       return data()[Index];
299     }
300   };
301
302   /// @name ArrayRef Convenience constructors
303   /// @{
304
305   /// Construct an ArrayRef from a single element.
306   template<typename T>
307   ArrayRef<T> makeArrayRef(const T &OneElt) {
308     return OneElt;
309   }
310
311   /// Construct an ArrayRef from a pointer and length.
312   template<typename T>
313   ArrayRef<T> makeArrayRef(const T *data, size_t length) {
314     return ArrayRef<T>(data, length);
315   }
316
317   /// Construct an ArrayRef from a range.
318   template<typename T>
319   ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
320     return ArrayRef<T>(begin, end);
321   }
322
323   /// Construct an ArrayRef from a SmallVector.
324   template <typename T>
325   ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
326     return Vec;
327   }
328
329   /// Construct an ArrayRef from a SmallVector.
330   template <typename T, unsigned N>
331   ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
332     return Vec;
333   }
334
335   /// Construct an ArrayRef from a std::vector.
336   template<typename T>
337   ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
338     return Vec;
339   }
340
341   /// Construct an ArrayRef from an ArrayRef (no-op) (const)
342   template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
343     return Vec;
344   }
345
346   /// Construct an ArrayRef from an ArrayRef (no-op)
347   template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
348     return Vec;
349   }
350
351   /// Construct an ArrayRef from a C array.
352   template<typename T, size_t N>
353   ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
354     return ArrayRef<T>(Arr);
355   }
356
357   /// @}
358   /// @name ArrayRef Comparison Operators
359   /// @{
360
361   template<typename T>
362   inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
363     return LHS.equals(RHS);
364   }
365
366   template<typename T>
367   inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
368     return !(LHS == RHS);
369   }
370
371   /// @}
372
373   // ArrayRefs can be treated like a POD type.
374   template <typename T> struct isPodLike;
375   template <typename T> struct isPodLike<ArrayRef<T> > {
376     static const bool value = true;
377   };
378
379   template <typename T> hash_code hash_value(ArrayRef<T> S) {
380     return hash_combine_range(S.begin(), S.end());
381   }
382 }
383
384 #endif