Move the SplatByte helper to APInt and generalize it a bit.
[oota-llvm.git] / include / llvm / ADT / APInt.h
1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integral
11 // constant values and operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <climits>
23 #include <cstring>
24 #include <string>
25
26 namespace llvm {
27   class Deserializer;
28   class FoldingSetNodeID;
29   class Serializer;
30   class StringRef;
31   class hash_code;
32   class raw_ostream;
33
34   template<typename T>
35   class SmallVectorImpl;
36
37   // An unsigned host type used as a single part of a multi-part
38   // bignum.
39   typedef uint64_t integerPart;
40
41   const unsigned int host_char_bit = 8;
42   const unsigned int integerPartWidth = host_char_bit *
43     static_cast<unsigned int>(sizeof(integerPart));
44
45 //===----------------------------------------------------------------------===//
46 //                              APInt Class
47 //===----------------------------------------------------------------------===//
48
49 /// APInt - This class represents arbitrary precision constant integral values.
50 /// It is a functional replacement for common case unsigned integer type like
51 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
52 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
53 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
54 /// and methods to manipulate integer values of any bit-width. It supports both
55 /// the typical integer arithmetic and comparison operations as well as bitwise
56 /// manipulation.
57 ///
58 /// The class has several invariants worth noting:
59 ///   * All bit, byte, and word positions are zero-based.
60 ///   * Once the bit width is set, it doesn't change except by the Truncate,
61 ///     SignExtend, or ZeroExtend operations.
62 ///   * All binary operators must be on APInt instances of the same bit width.
63 ///     Attempting to use these operators on instances with different bit
64 ///     widths will yield an assertion.
65 ///   * The value is stored canonically as an unsigned value. For operations
66 ///     where it makes a difference, there are both signed and unsigned variants
67 ///     of the operation. For example, sdiv and udiv. However, because the bit
68 ///     widths must be the same, operations such as Mul and Add produce the same
69 ///     results regardless of whether the values are interpreted as signed or
70 ///     not.
71 ///   * In general, the class tries to follow the style of computation that LLVM
72 ///     uses in its IR. This simplifies its use for LLVM.
73 ///
74 /// @brief Class for arbitrary precision integers.
75 class APInt {
76   unsigned BitWidth;      ///< The number of bits in this APInt.
77
78   /// This union is used to store the integer value. When the
79   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80   union {
81     uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
82     uint64_t *pVal;  ///< Used to store the >64 bits integer value.
83   };
84
85   /// This enum is used to hold the constants we needed for APInt.
86   enum {
87     /// Bits in a word
88     APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
89                           CHAR_BIT,
90     /// Byte size of a word
91     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92   };
93
94   /// This constructor is used only internally for speed of construction of
95   /// temporaries. It is unsafe for general use so it is not public.
96   /// @brief Fast internal constructor
97   APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
98
99   /// @returns true if the number of bits <= 64, false otherwise.
100   /// @brief Determine if this APInt just has one word to store value.
101   bool isSingleWord() const {
102     return BitWidth <= APINT_BITS_PER_WORD;
103   }
104
105   /// @returns the word position for the specified bit position.
106   /// @brief Determine which word a bit is in.
107   static unsigned whichWord(unsigned bitPosition) {
108     return bitPosition / APINT_BITS_PER_WORD;
109   }
110
111   /// @returns the bit position in a word for the specified bit position
112   /// in the APInt.
113   /// @brief Determine which bit in a word a bit is in.
114   static unsigned whichBit(unsigned bitPosition) {
115     return bitPosition % APINT_BITS_PER_WORD;
116   }
117
118   /// This method generates and returns a uint64_t (word) mask for a single
119   /// bit at a specific bit position. This is used to mask the bit in the
120   /// corresponding word.
121   /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
122   /// @brief Get a single bit mask.
123   static uint64_t maskBit(unsigned bitPosition) {
124     return 1ULL << whichBit(bitPosition);
125   }
126
127   /// This method is used internally to clear the to "N" bits in the high order
128   /// word that are not used by the APInt. This is needed after the most
129   /// significant word is assigned a value to ensure that those bits are
130   /// zero'd out.
131   /// @brief Clear unused high order bits
132   APInt& clearUnusedBits() {
133     // Compute how many bits are used in the final word
134     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
135     if (wordBits == 0)
136       // If all bits are used, we want to leave the value alone. This also
137       // avoids the undefined behavior of >> when the shift is the same size as
138       // the word size (64).
139       return *this;
140
141     // Mask out the high bits.
142     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
143     if (isSingleWord())
144       VAL &= mask;
145     else
146       pVal[getNumWords() - 1] &= mask;
147     return *this;
148   }
149
150   /// @returns the corresponding word for the specified bit position.
151   /// @brief Get the word corresponding to a bit position
152   uint64_t getWord(unsigned bitPosition) const {
153     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
154   }
155
156   /// Converts a string into a number.  The string must be non-empty
157   /// and well-formed as a number of the given base. The bit-width
158   /// must be sufficient to hold the result.
159   ///
160   /// This is used by the constructors that take string arguments.
161   ///
162   /// StringRef::getAsInteger is superficially similar but (1) does
163   /// not assume that the string is well-formed and (2) grows the
164   /// result to hold the input.
165   ///
166   /// @param radix 2, 8, 10, 16, or 36
167   /// @brief Convert a char array into an APInt
168   void fromString(unsigned numBits, StringRef str, uint8_t radix);
169
170   /// This is used by the toString method to divide by the radix. It simply
171   /// provides a more convenient form of divide for internal use since KnuthDiv
172   /// has specific constraints on its inputs. If those constraints are not met
173   /// then it provides a simpler form of divide.
174   /// @brief An internal division function for dividing APInts.
175   static void divide(const APInt LHS, unsigned lhsWords,
176                      const APInt &RHS, unsigned rhsWords,
177                      APInt *Quotient, APInt *Remainder);
178
179   /// out-of-line slow case for inline constructor
180   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
181
182   /// shared code between two array constructors
183   void initFromArray(ArrayRef<uint64_t> array);
184
185   /// out-of-line slow case for inline copy constructor
186   void initSlowCase(const APInt& that);
187
188   /// out-of-line slow case for shl
189   APInt shlSlowCase(unsigned shiftAmt) const;
190
191   /// out-of-line slow case for operator&
192   APInt AndSlowCase(const APInt& RHS) const;
193
194   /// out-of-line slow case for operator|
195   APInt OrSlowCase(const APInt& RHS) const;
196
197   /// out-of-line slow case for operator^
198   APInt XorSlowCase(const APInt& RHS) const;
199
200   /// out-of-line slow case for operator=
201   APInt& AssignSlowCase(const APInt& RHS);
202
203   /// out-of-line slow case for operator==
204   bool EqualSlowCase(const APInt& RHS) const;
205
206   /// out-of-line slow case for operator==
207   bool EqualSlowCase(uint64_t Val) const;
208
209   /// out-of-line slow case for countLeadingZeros
210   unsigned countLeadingZerosSlowCase() const;
211
212   /// out-of-line slow case for countTrailingOnes
213   unsigned countTrailingOnesSlowCase() const;
214
215   /// out-of-line slow case for countPopulation
216   unsigned countPopulationSlowCase() const;
217
218 public:
219   /// @name Constructors
220   /// @{
221   /// If isSigned is true then val is treated as if it were a signed value
222   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
223   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
224   /// the range of val are zero filled).
225   /// @param numBits the bit width of the constructed APInt
226   /// @param val the initial value of the APInt
227   /// @param isSigned how to treat signedness of val
228   /// @brief Create a new APInt of numBits width, initialized as val.
229   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
230     : BitWidth(numBits), VAL(0) {
231     assert(BitWidth && "bitwidth too small");
232     if (isSingleWord())
233       VAL = val;
234     else
235       initSlowCase(numBits, val, isSigned);
236     clearUnusedBits();
237   }
238
239   /// Note that bigVal.size() can be smaller or larger than the corresponding
240   /// bit width but any extraneous bits will be dropped.
241   /// @param numBits the bit width of the constructed APInt
242   /// @param bigVal a sequence of words to form the initial value of the APInt
243   /// @brief Construct an APInt of numBits width, initialized as bigVal[].
244   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
245   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
246   /// deprecated because this constructor is prone to ambiguity with the
247   /// APInt(unsigned, uint64_t, bool) constructor.
248   ///
249   /// If this overload is ever deleted, care should be taken to prevent calls
250   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
251   /// constructor.
252   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
253
254   /// This constructor interprets the string \p str in the given radix. The
255   /// interpretation stops when the first character that is not suitable for the
256   /// radix is encountered, or the end of the string. Acceptable radix values
257   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the 
258   /// string to require more bits than numBits.
259   ///
260   /// @param numBits the bit width of the constructed APInt
261   /// @param str the string to be interpreted
262   /// @param radix the radix to use for the conversion 
263   /// @brief Construct an APInt from a string representation.
264   APInt(unsigned numBits, StringRef str, uint8_t radix);
265
266   /// Simply makes *this a copy of that.
267   /// @brief Copy Constructor.
268   APInt(const APInt& that)
269     : BitWidth(that.BitWidth), VAL(0) {
270     assert(BitWidth && "bitwidth too small");
271     if (isSingleWord())
272       VAL = that.VAL;
273     else
274       initSlowCase(that);
275   }
276
277 #if LLVM_HAS_RVALUE_REFERENCES
278   /// @brief Move Constructor.
279   APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
280     that.BitWidth = 0;
281   }
282 #endif
283
284   /// @brief Destructor.
285   ~APInt() {
286     if (!isSingleWord())
287       delete [] pVal;
288   }
289
290   /// Default constructor that creates an uninitialized APInt.  This is useful
291   ///  for object deserialization (pair this with the static method Read).
292   explicit APInt() : BitWidth(1) {}
293
294   /// Profile - Used to insert APInt objects, or objects that contain APInt
295   ///  objects, into FoldingSets.
296   void Profile(FoldingSetNodeID& id) const;
297
298   /// @}
299   /// @name Value Tests
300   /// @{
301   /// This tests the high bit of this APInt to determine if it is set.
302   /// @returns true if this APInt is negative, false otherwise
303   /// @brief Determine sign of this APInt.
304   bool isNegative() const {
305     return (*this)[BitWidth - 1];
306   }
307
308   /// This tests the high bit of the APInt to determine if it is unset.
309   /// @brief Determine if this APInt Value is non-negative (>= 0)
310   bool isNonNegative() const {
311     return !isNegative();
312   }
313
314   /// This tests if the value of this APInt is positive (> 0). Note
315   /// that 0 is not a positive value.
316   /// @returns true if this APInt is positive.
317   /// @brief Determine if this APInt Value is positive.
318   bool isStrictlyPositive() const {
319     return isNonNegative() && !!*this;
320   }
321
322   /// This checks to see if the value has all bits of the APInt are set or not.
323   /// @brief Determine if all bits are set
324   bool isAllOnesValue() const {
325     return countPopulation() == BitWidth;
326   }
327
328   /// This checks to see if the value of this APInt is the maximum unsigned
329   /// value for the APInt's bit width.
330   /// @brief Determine if this is the largest unsigned value.
331   bool isMaxValue() const {
332     return countPopulation() == BitWidth;
333   }
334
335   /// This checks to see if the value of this APInt is the maximum signed
336   /// value for the APInt's bit width.
337   /// @brief Determine if this is the largest signed value.
338   bool isMaxSignedValue() const {
339     return BitWidth == 1 ? VAL == 0 :
340                           !isNegative() && countPopulation() == BitWidth - 1;
341   }
342
343   /// This checks to see if the value of this APInt is the minimum unsigned
344   /// value for the APInt's bit width.
345   /// @brief Determine if this is the smallest unsigned value.
346   bool isMinValue() const {
347     return !*this;
348   }
349
350   /// This checks to see if the value of this APInt is the minimum signed
351   /// value for the APInt's bit width.
352   /// @brief Determine if this is the smallest signed value.
353   bool isMinSignedValue() const {
354     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
355   }
356
357   /// @brief Check if this APInt has an N-bits unsigned integer value.
358   bool isIntN(unsigned N) const {
359     assert(N && "N == 0 ???");
360     return getActiveBits() <= N;
361   }
362
363   /// @brief Check if this APInt has an N-bits signed integer value.
364   bool isSignedIntN(unsigned N) const {
365     assert(N && "N == 0 ???");
366     return getMinSignedBits() <= N;
367   }
368
369   /// @returns true if the argument APInt value is a power of two > 0.
370   bool isPowerOf2() const {
371     if (isSingleWord())
372       return isPowerOf2_64(VAL);
373     return countPopulationSlowCase() == 1;
374   }
375
376   /// isSignBit - Return true if this is the value returned by getSignBit.
377   bool isSignBit() const { return isMinSignedValue(); }
378
379   /// This converts the APInt to a boolean value as a test against zero.
380   /// @brief Boolean conversion function.
381   bool getBoolValue() const {
382     return !!*this;
383   }
384
385   /// getLimitedValue - If this value is smaller than the specified limit,
386   /// return it, otherwise return the limit value.  This causes the value
387   /// to saturate to the limit.
388   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
389     return (getActiveBits() > 64 || getZExtValue() > Limit) ?
390       Limit :  getZExtValue();
391   }
392
393   /// @}
394   /// @name Value Generators
395   /// @{
396   /// @brief Gets maximum unsigned value of APInt for specific bit width.
397   static APInt getMaxValue(unsigned numBits) {
398     return getAllOnesValue(numBits);
399   }
400
401   /// @brief Gets maximum signed value of APInt for a specific bit width.
402   static APInt getSignedMaxValue(unsigned numBits) {
403     APInt API = getAllOnesValue(numBits);
404     API.clearBit(numBits - 1);
405     return API;
406   }
407
408   /// @brief Gets minimum unsigned value of APInt for a specific bit width.
409   static APInt getMinValue(unsigned numBits) {
410     return APInt(numBits, 0);
411   }
412
413   /// @brief Gets minimum signed value of APInt for a specific bit width.
414   static APInt getSignedMinValue(unsigned numBits) {
415     APInt API(numBits, 0);
416     API.setBit(numBits - 1);
417     return API;
418   }
419
420   /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
421   /// it helps code readability when we want to get a SignBit.
422   /// @brief Get the SignBit for a specific bit width.
423   static APInt getSignBit(unsigned BitWidth) {
424     return getSignedMinValue(BitWidth);
425   }
426
427   /// @returns the all-ones value for an APInt of the specified bit-width.
428   /// @brief Get the all-ones value.
429   static APInt getAllOnesValue(unsigned numBits) {
430     return APInt(numBits, -1ULL, true);
431   }
432
433   /// @returns the '0' value for an APInt of the specified bit-width.
434   /// @brief Get the '0' value.
435   static APInt getNullValue(unsigned numBits) {
436     return APInt(numBits, 0);
437   }
438
439   /// Get an APInt with the same BitWidth as this APInt, just zero mask
440   /// the low bits and right shift to the least significant bit.
441   /// @returns the high "numBits" bits of this APInt.
442   APInt getHiBits(unsigned numBits) const;
443
444   /// Get an APInt with the same BitWidth as this APInt, just zero mask
445   /// the high bits.
446   /// @returns the low "numBits" bits of this APInt.
447   APInt getLoBits(unsigned numBits) const;
448
449   /// getOneBitSet - Return an APInt with exactly one bit set in the result.
450   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
451     APInt Res(numBits, 0);
452     Res.setBit(BitNo);
453     return Res;
454   }
455   
456   /// Constructs an APInt value that has a contiguous range of bits set. The
457   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
458   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
459   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
460   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
461   /// @param numBits the intended bit width of the result
462   /// @param loBit the index of the lowest bit set.
463   /// @param hiBit the index of the highest bit set.
464   /// @returns An APInt value with the requested bits set.
465   /// @brief Get a value with a block of bits set.
466   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
467     assert(hiBit <= numBits && "hiBit out of range");
468     assert(loBit < numBits && "loBit out of range");
469     if (hiBit < loBit)
470       return getLowBitsSet(numBits, hiBit) |
471              getHighBitsSet(numBits, numBits-loBit);
472     return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
473   }
474
475   /// Constructs an APInt value that has the top hiBitsSet bits set.
476   /// @param numBits the bitwidth of the result
477   /// @param hiBitsSet the number of high-order bits set in the result.
478   /// @brief Get a value with high bits set
479   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
480     assert(hiBitsSet <= numBits && "Too many bits to set!");
481     // Handle a degenerate case, to avoid shifting by word size
482     if (hiBitsSet == 0)
483       return APInt(numBits, 0);
484     unsigned shiftAmt = numBits - hiBitsSet;
485     // For small values, return quickly
486     if (numBits <= APINT_BITS_PER_WORD)
487       return APInt(numBits, ~0ULL << shiftAmt);
488     return getAllOnesValue(numBits).shl(shiftAmt);
489   }
490
491   /// Constructs an APInt value that has the bottom loBitsSet bits set.
492   /// @param numBits the bitwidth of the result
493   /// @param loBitsSet the number of low-order bits set in the result.
494   /// @brief Get a value with low bits set
495   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
496     assert(loBitsSet <= numBits && "Too many bits to set!");
497     // Handle a degenerate case, to avoid shifting by word size
498     if (loBitsSet == 0)
499       return APInt(numBits, 0);
500     if (loBitsSet == APINT_BITS_PER_WORD)
501       return APInt(numBits, -1ULL);
502     // For small values, return quickly.
503     if (loBitsSet <= APINT_BITS_PER_WORD)
504       return APInt(numBits, -1ULL >> (APINT_BITS_PER_WORD - loBitsSet));
505     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
506   }
507
508   /// \brief Return a value containing V broadcasted over NewLen bits.
509   static APInt getSplat(unsigned NewLen, const APInt &V) {
510     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
511
512     APInt Val = V.zextOrSelf(NewLen);
513     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
514       Val |= Val << I;
515
516     return Val;
517   }
518
519   /// \brief Determine if two APInts have the same value, after zero-extending
520   /// one of them (if needed!) to ensure that the bit-widths match.
521   static bool isSameValue(const APInt &I1, const APInt &I2) {
522     if (I1.getBitWidth() == I2.getBitWidth())
523       return I1 == I2;
524
525     if (I1.getBitWidth() > I2.getBitWidth())
526       return I1 == I2.zext(I1.getBitWidth());
527
528     return I1.zext(I2.getBitWidth()) == I2;
529   }
530   
531   /// \brief Overload to compute a hash_code for an APInt value.
532   friend hash_code hash_value(const APInt &Arg);
533
534   /// This function returns a pointer to the internal storage of the APInt.
535   /// This is useful for writing out the APInt in binary form without any
536   /// conversions.
537   const uint64_t* getRawData() const {
538     if (isSingleWord())
539       return &VAL;
540     return &pVal[0];
541   }
542
543   /// @}
544   /// @name Unary Operators
545   /// @{
546   /// @returns a new APInt value representing *this incremented by one
547   /// @brief Postfix increment operator.
548   const APInt operator++(int) {
549     APInt API(*this);
550     ++(*this);
551     return API;
552   }
553
554   /// @returns *this incremented by one
555   /// @brief Prefix increment operator.
556   APInt& operator++();
557
558   /// @returns a new APInt representing *this decremented by one.
559   /// @brief Postfix decrement operator.
560   const APInt operator--(int) {
561     APInt API(*this);
562     --(*this);
563     return API;
564   }
565
566   /// @returns *this decremented by one.
567   /// @brief Prefix decrement operator.
568   APInt& operator--();
569
570   /// Performs a bitwise complement operation on this APInt.
571   /// @returns an APInt that is the bitwise complement of *this
572   /// @brief Unary bitwise complement operator.
573   APInt operator~() const {
574     APInt Result(*this);
575     Result.flipAllBits();
576     return Result;
577   }
578
579   /// Negates *this using two's complement logic.
580   /// @returns An APInt value representing the negation of *this.
581   /// @brief Unary negation operator
582   APInt operator-() const {
583     return APInt(BitWidth, 0) - (*this);
584   }
585
586   /// Performs logical negation operation on this APInt.
587   /// @returns true if *this is zero, false otherwise.
588   /// @brief Logical negation operator.
589   bool operator!() const {
590     if (isSingleWord())
591       return !VAL;
592
593     for (unsigned i = 0; i != getNumWords(); ++i)
594       if (pVal[i])
595         return false;
596     return true;
597   }
598
599   /// @}
600   /// @name Assignment Operators
601   /// @{
602   /// @returns *this after assignment of RHS.
603   /// @brief Copy assignment operator.
604   APInt& operator=(const APInt& RHS) {
605     // If the bitwidths are the same, we can avoid mucking with memory
606     if (isSingleWord() && RHS.isSingleWord()) {
607       VAL = RHS.VAL;
608       BitWidth = RHS.BitWidth;
609       return clearUnusedBits();
610     }
611
612     return AssignSlowCase(RHS);
613   }
614
615 #if LLVM_HAS_RVALUE_REFERENCES
616   /// @brief Move assignment operator.
617   APInt& operator=(APInt&& that) {
618     if (!isSingleWord())
619       delete [] pVal;
620
621     BitWidth = that.BitWidth;
622     VAL = that.VAL;
623
624     that.BitWidth = 0;
625
626     return *this;
627   }
628 #endif
629
630   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
631   /// the bit width, the excess bits are truncated. If the bit width is larger
632   /// than 64, the value is zero filled in the unspecified high order bits.
633   /// @returns *this after assignment of RHS value.
634   /// @brief Assignment operator.
635   APInt& operator=(uint64_t RHS);
636
637   /// Performs a bitwise AND operation on this APInt and RHS. The result is
638   /// assigned to *this.
639   /// @returns *this after ANDing with RHS.
640   /// @brief Bitwise AND assignment operator.
641   APInt& operator&=(const APInt& RHS);
642
643   /// Performs a bitwise OR operation on this APInt and RHS. The result is
644   /// assigned *this;
645   /// @returns *this after ORing with RHS.
646   /// @brief Bitwise OR assignment operator.
647   APInt& operator|=(const APInt& RHS);
648
649   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
650   /// logically zero-extended or truncated to match the bit-width of
651   /// the LHS.
652   /// 
653   /// @brief Bitwise OR assignment operator.
654   APInt& operator|=(uint64_t RHS) {
655     if (isSingleWord()) {
656       VAL |= RHS;
657       clearUnusedBits();
658     } else {
659       pVal[0] |= RHS;
660     }
661     return *this;
662   }
663
664   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
665   /// assigned to *this.
666   /// @returns *this after XORing with RHS.
667   /// @brief Bitwise XOR assignment operator.
668   APInt& operator^=(const APInt& RHS);
669
670   /// Multiplies this APInt by RHS and assigns the result to *this.
671   /// @returns *this
672   /// @brief Multiplication assignment operator.
673   APInt& operator*=(const APInt& RHS);
674
675   /// Adds RHS to *this and assigns the result to *this.
676   /// @returns *this
677   /// @brief Addition assignment operator.
678   APInt& operator+=(const APInt& RHS);
679
680   /// Subtracts RHS from *this and assigns the result to *this.
681   /// @returns *this
682   /// @brief Subtraction assignment operator.
683   APInt& operator-=(const APInt& RHS);
684
685   /// Shifts *this left by shiftAmt and assigns the result to *this.
686   /// @returns *this after shifting left by shiftAmt
687   /// @brief Left-shift assignment function.
688   APInt& operator<<=(unsigned shiftAmt) {
689     *this = shl(shiftAmt);
690     return *this;
691   }
692
693   /// @}
694   /// @name Binary Operators
695   /// @{
696   /// Performs a bitwise AND operation on *this and RHS.
697   /// @returns An APInt value representing the bitwise AND of *this and RHS.
698   /// @brief Bitwise AND operator.
699   APInt operator&(const APInt& RHS) const {
700     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
701     if (isSingleWord())
702       return APInt(getBitWidth(), VAL & RHS.VAL);
703     return AndSlowCase(RHS);
704   }
705   APInt And(const APInt& RHS) const {
706     return this->operator&(RHS);
707   }
708
709   /// Performs a bitwise OR operation on *this and RHS.
710   /// @returns An APInt value representing the bitwise OR of *this and RHS.
711   /// @brief Bitwise OR operator.
712   APInt operator|(const APInt& RHS) const {
713     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
714     if (isSingleWord())
715       return APInt(getBitWidth(), VAL | RHS.VAL);
716     return OrSlowCase(RHS);
717   }
718   APInt Or(const APInt& RHS) const {
719     return this->operator|(RHS);
720   }
721
722   /// Performs a bitwise XOR operation on *this and RHS.
723   /// @returns An APInt value representing the bitwise XOR of *this and RHS.
724   /// @brief Bitwise XOR operator.
725   APInt operator^(const APInt& RHS) const {
726     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
727     if (isSingleWord())
728       return APInt(BitWidth, VAL ^ RHS.VAL);
729     return XorSlowCase(RHS);
730   }
731   APInt Xor(const APInt& RHS) const {
732     return this->operator^(RHS);
733   }
734
735   /// Multiplies this APInt by RHS and returns the result.
736   /// @brief Multiplication operator.
737   APInt operator*(const APInt& RHS) const;
738
739   /// Adds RHS to this APInt and returns the result.
740   /// @brief Addition operator.
741   APInt operator+(const APInt& RHS) const;
742   APInt operator+(uint64_t RHS) const {
743     return (*this) + APInt(BitWidth, RHS);
744   }
745
746   /// Subtracts RHS from this APInt and returns the result.
747   /// @brief Subtraction operator.
748   APInt operator-(const APInt& RHS) const;
749   APInt operator-(uint64_t RHS) const {
750     return (*this) - APInt(BitWidth, RHS);
751   }
752
753   APInt operator<<(unsigned Bits) const {
754     return shl(Bits);
755   }
756
757   APInt operator<<(const APInt &Bits) const {
758     return shl(Bits);
759   }
760
761   /// Arithmetic right-shift this APInt by shiftAmt.
762   /// @brief Arithmetic right-shift function.
763   APInt ashr(unsigned shiftAmt) const;
764
765   /// Logical right-shift this APInt by shiftAmt.
766   /// @brief Logical right-shift function.
767   APInt lshr(unsigned shiftAmt) const;
768
769   /// Left-shift this APInt by shiftAmt.
770   /// @brief Left-shift function.
771   APInt shl(unsigned shiftAmt) const {
772     assert(shiftAmt <= BitWidth && "Invalid shift amount");
773     if (isSingleWord()) {
774       if (shiftAmt >= BitWidth)
775         return APInt(BitWidth, 0); // avoid undefined shift results
776       return APInt(BitWidth, VAL << shiftAmt);
777     }
778     return shlSlowCase(shiftAmt);
779   }
780
781   /// @brief Rotate left by rotateAmt.
782   APInt rotl(unsigned rotateAmt) const;
783
784   /// @brief Rotate right by rotateAmt.
785   APInt rotr(unsigned rotateAmt) const;
786
787   /// Arithmetic right-shift this APInt by shiftAmt.
788   /// @brief Arithmetic right-shift function.
789   APInt ashr(const APInt &shiftAmt) const;
790
791   /// Logical right-shift this APInt by shiftAmt.
792   /// @brief Logical right-shift function.
793   APInt lshr(const APInt &shiftAmt) const;
794
795   /// Left-shift this APInt by shiftAmt.
796   /// @brief Left-shift function.
797   APInt shl(const APInt &shiftAmt) const;
798
799   /// @brief Rotate left by rotateAmt.
800   APInt rotl(const APInt &rotateAmt) const;
801
802   /// @brief Rotate right by rotateAmt.
803   APInt rotr(const APInt &rotateAmt) const;
804
805   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
806   /// RHS are treated as unsigned quantities for purposes of this division.
807   /// @returns a new APInt value containing the division result
808   /// @brief Unsigned division operation.
809   APInt udiv(const APInt &RHS) const;
810
811   /// Signed divide this APInt by APInt RHS.
812   /// @brief Signed division function for APInt.
813   APInt sdiv(const APInt &RHS) const;
814
815   /// Perform an unsigned remainder operation on this APInt with RHS being the
816   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
817   /// of this operation. Note that this is a true remainder operation and not
818   /// a modulo operation because the sign follows the sign of the dividend
819   /// which is *this.
820   /// @returns a new APInt value containing the remainder result
821   /// @brief Unsigned remainder operation.
822   APInt urem(const APInt &RHS) const;
823
824   /// Signed remainder operation on APInt.
825   /// @brief Function for signed remainder operation.
826   APInt srem(const APInt &RHS) const;
827
828   /// Sometimes it is convenient to divide two APInt values and obtain both the
829   /// quotient and remainder. This function does both operations in the same
830   /// computation making it a little more efficient. The pair of input arguments
831   /// may overlap with the pair of output arguments. It is safe to call
832   /// udivrem(X, Y, X, Y), for example.
833   /// @brief Dual division/remainder interface.
834   static void udivrem(const APInt &LHS, const APInt &RHS,
835                       APInt &Quotient, APInt &Remainder);
836
837   static void sdivrem(const APInt &LHS, const APInt &RHS,
838                       APInt &Quotient, APInt &Remainder);
839
840
841   // Operations that return overflow indicators.
842   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
843   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
844   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
845   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
846   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
847   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
848   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
849   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
850
851   /// @returns the bit value at bitPosition
852   /// @brief Array-indexing support.
853   bool operator[](unsigned bitPosition) const {
854     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
855     return (maskBit(bitPosition) &
856             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
857   }
858
859   /// @}
860   /// @name Comparison Operators
861   /// @{
862   /// Compares this APInt with RHS for the validity of the equality
863   /// relationship.
864   /// @brief Equality operator.
865   bool operator==(const APInt& RHS) const {
866     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
867     if (isSingleWord())
868       return VAL == RHS.VAL;
869     return EqualSlowCase(RHS);
870   }
871
872   /// Compares this APInt with a uint64_t for the validity of the equality
873   /// relationship.
874   /// @returns true if *this == Val
875   /// @brief Equality operator.
876   bool operator==(uint64_t Val) const {
877     if (isSingleWord())
878       return VAL == Val;
879     return EqualSlowCase(Val);
880   }
881
882   /// Compares this APInt with RHS for the validity of the equality
883   /// relationship.
884   /// @returns true if *this == Val
885   /// @brief Equality comparison.
886   bool eq(const APInt &RHS) const {
887     return (*this) == RHS;
888   }
889
890   /// Compares this APInt with RHS for the validity of the inequality
891   /// relationship.
892   /// @returns true if *this != Val
893   /// @brief Inequality operator.
894   bool operator!=(const APInt& RHS) const {
895     return !((*this) == RHS);
896   }
897
898   /// Compares this APInt with a uint64_t for the validity of the inequality
899   /// relationship.
900   /// @returns true if *this != Val
901   /// @brief Inequality operator.
902   bool operator!=(uint64_t Val) const {
903     return !((*this) == Val);
904   }
905
906   /// Compares this APInt with RHS for the validity of the inequality
907   /// relationship.
908   /// @returns true if *this != Val
909   /// @brief Inequality comparison
910   bool ne(const APInt &RHS) const {
911     return !((*this) == RHS);
912   }
913
914   /// Regards both *this and RHS as unsigned quantities and compares them for
915   /// the validity of the less-than relationship.
916   /// @returns true if *this < RHS when both are considered unsigned.
917   /// @brief Unsigned less than comparison
918   bool ult(const APInt &RHS) const;
919
920   /// Regards both *this as an unsigned quantity and compares it with RHS for
921   /// the validity of the less-than relationship.
922   /// @returns true if *this < RHS when considered unsigned.
923   /// @brief Unsigned less than comparison
924   bool ult(uint64_t RHS) const {
925     return ult(APInt(getBitWidth(), RHS));
926   }
927
928   /// Regards both *this and RHS as signed quantities and compares them for
929   /// validity of the less-than relationship.
930   /// @returns true if *this < RHS when both are considered signed.
931   /// @brief Signed less than comparison
932   bool slt(const APInt& RHS) const;
933
934   /// Regards both *this as a signed quantity and compares it with RHS for
935   /// the validity of the less-than relationship.
936   /// @returns true if *this < RHS when considered signed.
937   /// @brief Signed less than comparison
938   bool slt(uint64_t RHS) const {
939     return slt(APInt(getBitWidth(), RHS));
940   }
941
942   /// Regards both *this and RHS as unsigned quantities and compares them for
943   /// validity of the less-or-equal relationship.
944   /// @returns true if *this <= RHS when both are considered unsigned.
945   /// @brief Unsigned less or equal comparison
946   bool ule(const APInt& RHS) const {
947     return ult(RHS) || eq(RHS);
948   }
949
950   /// Regards both *this as an unsigned quantity and compares it with RHS for
951   /// the validity of the less-or-equal relationship.
952   /// @returns true if *this <= RHS when considered unsigned.
953   /// @brief Unsigned less or equal comparison
954   bool ule(uint64_t RHS) const {
955     return ule(APInt(getBitWidth(), RHS));
956   }
957
958   /// Regards both *this and RHS as signed quantities and compares them for
959   /// validity of the less-or-equal relationship.
960   /// @returns true if *this <= RHS when both are considered signed.
961   /// @brief Signed less or equal comparison
962   bool sle(const APInt& RHS) const {
963     return slt(RHS) || eq(RHS);
964   }
965
966   /// Regards both *this as a signed quantity and compares it with RHS for
967   /// the validity of the less-or-equal relationship.
968   /// @returns true if *this <= RHS when considered signed.
969   /// @brief Signed less or equal comparison
970   bool sle(uint64_t RHS) const {
971     return sle(APInt(getBitWidth(), RHS));
972   }
973
974   /// Regards both *this and RHS as unsigned quantities and compares them for
975   /// the validity of the greater-than relationship.
976   /// @returns true if *this > RHS when both are considered unsigned.
977   /// @brief Unsigned greather than comparison
978   bool ugt(const APInt& RHS) const {
979     return !ult(RHS) && !eq(RHS);
980   }
981
982   /// Regards both *this as an unsigned quantity and compares it with RHS for
983   /// the validity of the greater-than relationship.
984   /// @returns true if *this > RHS when considered unsigned.
985   /// @brief Unsigned greater than comparison
986   bool ugt(uint64_t RHS) const {
987     return ugt(APInt(getBitWidth(), RHS));
988   }
989
990   /// Regards both *this and RHS as signed quantities and compares them for
991   /// the validity of the greater-than relationship.
992   /// @returns true if *this > RHS when both are considered signed.
993   /// @brief Signed greather than comparison
994   bool sgt(const APInt& RHS) const {
995     return !slt(RHS) && !eq(RHS);
996   }
997
998   /// Regards both *this as a signed quantity and compares it with RHS for
999   /// the validity of the greater-than relationship.
1000   /// @returns true if *this > RHS when considered signed.
1001   /// @brief Signed greater than comparison
1002   bool sgt(uint64_t RHS) const {
1003     return sgt(APInt(getBitWidth(), RHS));
1004   }
1005
1006   /// Regards both *this and RHS as unsigned quantities and compares them for
1007   /// validity of the greater-or-equal relationship.
1008   /// @returns true if *this >= RHS when both are considered unsigned.
1009   /// @brief Unsigned greater or equal comparison
1010   bool uge(const APInt& RHS) const {
1011     return !ult(RHS);
1012   }
1013
1014   /// Regards both *this as an unsigned quantity and compares it with RHS for
1015   /// the validity of the greater-or-equal relationship.
1016   /// @returns true if *this >= RHS when considered unsigned.
1017   /// @brief Unsigned greater or equal comparison
1018   bool uge(uint64_t RHS) const {
1019     return uge(APInt(getBitWidth(), RHS));
1020   }
1021
1022   /// Regards both *this and RHS as signed quantities and compares them for
1023   /// validity of the greater-or-equal relationship.
1024   /// @returns true if *this >= RHS when both are considered signed.
1025   /// @brief Signed greather or equal comparison
1026   bool sge(const APInt& RHS) const {
1027     return !slt(RHS);
1028   }
1029
1030   /// Regards both *this as a signed quantity and compares it with RHS for
1031   /// the validity of the greater-or-equal relationship.
1032   /// @returns true if *this >= RHS when considered signed.
1033   /// @brief Signed greater or equal comparison
1034   bool sge(uint64_t RHS) const {
1035     return sge(APInt(getBitWidth(), RHS));
1036   }
1037
1038   
1039   
1040   
1041   /// This operation tests if there are any pairs of corresponding bits
1042   /// between this APInt and RHS that are both set.
1043   bool intersects(const APInt &RHS) const {
1044     return (*this & RHS) != 0;
1045   }
1046
1047   /// @}
1048   /// @name Resizing Operators
1049   /// @{
1050   /// Truncate the APInt to a specified width. It is an error to specify a width
1051   /// that is greater than or equal to the current width.
1052   /// @brief Truncate to new width.
1053   APInt trunc(unsigned width) const;
1054
1055   /// This operation sign extends the APInt to a new width. If the high order
1056   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1057   /// It is an error to specify a width that is less than or equal to the
1058   /// current width.
1059   /// @brief Sign extend to a new width.
1060   APInt sext(unsigned width) const;
1061
1062   /// This operation zero extends the APInt to a new width. The high order bits
1063   /// are filled with 0 bits.  It is an error to specify a width that is less
1064   /// than or equal to the current width.
1065   /// @brief Zero extend to a new width.
1066   APInt zext(unsigned width) const;
1067
1068   /// Make this APInt have the bit width given by \p width. The value is sign
1069   /// extended, truncated, or left alone to make it that width.
1070   /// @brief Sign extend or truncate to width
1071   APInt sextOrTrunc(unsigned width) const;
1072
1073   /// Make this APInt have the bit width given by \p width. The value is zero
1074   /// extended, truncated, or left alone to make it that width.
1075   /// @brief Zero extend or truncate to width
1076   APInt zextOrTrunc(unsigned width) const;
1077
1078   /// Make this APInt have the bit width given by \p width. The value is sign
1079   /// extended, or left alone to make it that width.
1080   /// @brief Sign extend or truncate to width
1081   APInt sextOrSelf(unsigned width) const;
1082
1083   /// Make this APInt have the bit width given by \p width. The value is zero
1084   /// extended, or left alone to make it that width.
1085   /// @brief Zero extend or truncate to width
1086   APInt zextOrSelf(unsigned width) const;
1087
1088   /// @}
1089   /// @name Bit Manipulation Operators
1090   /// @{
1091   /// @brief Set every bit to 1.
1092   void setAllBits() {
1093     if (isSingleWord())
1094       VAL = -1ULL;
1095     else {
1096       // Set all the bits in all the words.
1097       for (unsigned i = 0; i < getNumWords(); ++i)
1098         pVal[i] = -1ULL;
1099     }
1100     // Clear the unused ones
1101     clearUnusedBits();
1102   }
1103
1104   /// Set the given bit to 1 whose position is given as "bitPosition".
1105   /// @brief Set a given bit to 1.
1106   void setBit(unsigned bitPosition);
1107
1108   /// @brief Set every bit to 0.
1109   void clearAllBits() {
1110     if (isSingleWord())
1111       VAL = 0;
1112     else
1113       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1114   }
1115
1116   /// Set the given bit to 0 whose position is given as "bitPosition".
1117   /// @brief Set a given bit to 0.
1118   void clearBit(unsigned bitPosition);
1119
1120   /// @brief Toggle every bit to its opposite value.
1121   void flipAllBits() {
1122     if (isSingleWord())
1123       VAL ^= -1ULL;
1124     else {
1125       for (unsigned i = 0; i < getNumWords(); ++i)
1126         pVal[i] ^= -1ULL;
1127     }
1128     clearUnusedBits();
1129   }
1130
1131   /// Toggle a given bit to its opposite value whose position is given
1132   /// as "bitPosition".
1133   /// @brief Toggles a given bit to its opposite value.
1134   void flipBit(unsigned bitPosition);
1135
1136   /// @}
1137   /// @name Value Characterization Functions
1138   /// @{
1139
1140   /// @returns the total number of bits.
1141   unsigned getBitWidth() const {
1142     return BitWidth;
1143   }
1144
1145   /// Here one word's bitwidth equals to that of uint64_t.
1146   /// @returns the number of words to hold the integer value of this APInt.
1147   /// @brief Get the number of words.
1148   unsigned getNumWords() const {
1149     return getNumWords(BitWidth);
1150   }
1151
1152   /// Here one word's bitwidth equals to that of uint64_t.
1153   /// @returns the number of words to hold the integer value with a
1154   /// given bit width.
1155   /// @brief Get the number of words.
1156   static unsigned getNumWords(unsigned BitWidth) {
1157     return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1158   }
1159
1160   /// This function returns the number of active bits which is defined as the
1161   /// bit width minus the number of leading zeros. This is used in several
1162   /// computations to see how "wide" the value is.
1163   /// @brief Compute the number of active bits in the value
1164   unsigned getActiveBits() const {
1165     return BitWidth - countLeadingZeros();
1166   }
1167
1168   /// This function returns the number of active words in the value of this
1169   /// APInt. This is used in conjunction with getActiveData to extract the raw
1170   /// value of the APInt.
1171   unsigned getActiveWords() const {
1172     unsigned numActiveBits = getActiveBits();
1173     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1174   }
1175
1176   /// Computes the minimum bit width for this APInt while considering it to be
1177   /// a signed (and probably negative) value. If the value is not negative,
1178   /// this function returns the same value as getActiveBits()+1. Otherwise, it
1179   /// returns the smallest bit width that will retain the negative value. For
1180   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1181   /// for -1, this function will always return 1.
1182   /// @brief Get the minimum bit size for this signed APInt
1183   unsigned getMinSignedBits() const {
1184     if (isNegative())
1185       return BitWidth - countLeadingOnes() + 1;
1186     return getActiveBits()+1;
1187   }
1188
1189   /// This method attempts to return the value of this APInt as a zero extended
1190   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1191   /// uint64_t. Otherwise an assertion will result.
1192   /// @brief Get zero extended value
1193   uint64_t getZExtValue() const {
1194     if (isSingleWord())
1195       return VAL;
1196     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1197     return pVal[0];
1198   }
1199
1200   /// This method attempts to return the value of this APInt as a sign extended
1201   /// int64_t. The bit width must be <= 64 or the value must fit within an
1202   /// int64_t. Otherwise an assertion will result.
1203   /// @brief Get sign extended value
1204   int64_t getSExtValue() const {
1205     if (isSingleWord())
1206       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1207                      (APINT_BITS_PER_WORD - BitWidth);
1208     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1209     return int64_t(pVal[0]);
1210   }
1211
1212   /// This method determines how many bits are required to hold the APInt
1213   /// equivalent of the string given by \p str.
1214   /// @brief Get bits required for string value.
1215   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1216
1217   /// countLeadingZeros - This function is an APInt version of the
1218   /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1219   /// of zeros from the most significant bit to the first one bit.
1220   /// @returns BitWidth if the value is zero, otherwise
1221   /// returns the number of zeros from the most significant bit to the first
1222   /// one bits.
1223   unsigned countLeadingZeros() const {
1224     if (isSingleWord()) {
1225       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1226       return CountLeadingZeros_64(VAL) - unusedBits;
1227     }
1228     return countLeadingZerosSlowCase();
1229   }
1230
1231   /// countLeadingOnes - This function is an APInt version of the
1232   /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1233   /// of ones from the most significant bit to the first zero bit.
1234   /// @returns 0 if the high order bit is not set, otherwise
1235   /// returns the number of 1 bits from the most significant to the least
1236   /// @brief Count the number of leading one bits.
1237   unsigned countLeadingOnes() const;
1238
1239   /// Computes the number of leading bits of this APInt that are equal to its
1240   /// sign bit.
1241   unsigned getNumSignBits() const {
1242     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1243   }
1244
1245   /// countTrailingZeros - This function is an APInt version of the
1246   /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1247   /// the number of zeros from the least significant bit to the first set bit.
1248   /// @returns BitWidth if the value is zero, otherwise
1249   /// returns the number of zeros from the least significant bit to the first
1250   /// one bit.
1251   /// @brief Count the number of trailing zero bits.
1252   unsigned countTrailingZeros() const;
1253
1254   /// countTrailingOnes - This function is an APInt version of the
1255   /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1256   /// the number of ones from the least significant bit to the first zero bit.
1257   /// @returns BitWidth if the value is all ones, otherwise
1258   /// returns the number of ones from the least significant bit to the first
1259   /// zero bit.
1260   /// @brief Count the number of trailing one bits.
1261   unsigned countTrailingOnes() const {
1262     if (isSingleWord())
1263       return CountTrailingOnes_64(VAL);
1264     return countTrailingOnesSlowCase();
1265   }
1266
1267   /// countPopulation - This function is an APInt version of the
1268   /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1269   /// of 1 bits in the APInt value.
1270   /// @returns 0 if the value is zero, otherwise returns the number of set
1271   /// bits.
1272   /// @brief Count the number of bits set.
1273   unsigned countPopulation() const {
1274     if (isSingleWord())
1275       return CountPopulation_64(VAL);
1276     return countPopulationSlowCase();
1277   }
1278
1279   /// @}
1280   /// @name Conversion Functions
1281   /// @{
1282   void print(raw_ostream &OS, bool isSigned) const;
1283
1284   /// toString - Converts an APInt to a string and append it to Str.  Str is
1285   /// commonly a SmallString.
1286   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1287                 bool formatAsCLiteral = false) const;
1288
1289   /// Considers the APInt to be unsigned and converts it into a string in the
1290   /// radix given. The radix can be 2, 8, 10 16, or 36.
1291   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1292     toString(Str, Radix, false, false);
1293   }
1294
1295   /// Considers the APInt to be signed and converts it into a string in the
1296   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1297   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1298     toString(Str, Radix, true, false);
1299   }
1300
1301   /// toString - This returns the APInt as a std::string.  Note that this is an
1302   /// inefficient method.  It is better to pass in a SmallVector/SmallString
1303   /// to the methods above to avoid thrashing the heap for the string.
1304   std::string toString(unsigned Radix, bool Signed) const;
1305
1306
1307   /// @returns a byte-swapped representation of this APInt Value.
1308   APInt byteSwap() const;
1309
1310   /// @brief Converts this APInt to a double value.
1311   double roundToDouble(bool isSigned) const;
1312
1313   /// @brief Converts this unsigned APInt to a double value.
1314   double roundToDouble() const {
1315     return roundToDouble(false);
1316   }
1317
1318   /// @brief Converts this signed APInt to a double value.
1319   double signedRoundToDouble() const {
1320     return roundToDouble(true);
1321   }
1322
1323   /// The conversion does not do a translation from integer to double, it just
1324   /// re-interprets the bits as a double. Note that it is valid to do this on
1325   /// any bit width. Exactly 64 bits will be translated.
1326   /// @brief Converts APInt bits to a double
1327   double bitsToDouble() const {
1328     union {
1329       uint64_t I;
1330       double D;
1331     } T;
1332     T.I = (isSingleWord() ? VAL : pVal[0]);
1333     return T.D;
1334   }
1335
1336   /// The conversion does not do a translation from integer to float, it just
1337   /// re-interprets the bits as a float. Note that it is valid to do this on
1338   /// any bit width. Exactly 32 bits will be translated.
1339   /// @brief Converts APInt bits to a double
1340   float bitsToFloat() const {
1341     union {
1342       unsigned I;
1343       float F;
1344     } T;
1345     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1346     return T.F;
1347   }
1348
1349   /// The conversion does not do a translation from double to integer, it just
1350   /// re-interprets the bits of the double.
1351   /// @brief Converts a double to APInt bits.
1352   static APInt doubleToBits(double V) {
1353     union {
1354       uint64_t I;
1355       double D;
1356     } T;
1357     T.D = V;
1358     return APInt(sizeof T * CHAR_BIT, T.I);
1359   }
1360
1361   /// The conversion does not do a translation from float to integer, it just
1362   /// re-interprets the bits of the float.
1363   /// @brief Converts a float to APInt bits.
1364   static APInt floatToBits(float V) {
1365     union {
1366       unsigned I;
1367       float F;
1368     } T;
1369     T.F = V;
1370     return APInt(sizeof T * CHAR_BIT, T.I);
1371   }
1372
1373   /// @}
1374   /// @name Mathematics Operations
1375   /// @{
1376
1377   /// @returns the floor log base 2 of this APInt.
1378   unsigned logBase2() const {
1379     return BitWidth - 1 - countLeadingZeros();
1380   }
1381
1382   /// @returns the ceil log base 2 of this APInt.
1383   unsigned ceilLogBase2() const {
1384     return BitWidth - (*this - 1).countLeadingZeros();
1385   }
1386
1387   /// @returns the log base 2 of this APInt if its an exact power of two, -1
1388   /// otherwise
1389   int32_t exactLogBase2() const {
1390     if (!isPowerOf2())
1391       return -1;
1392     return logBase2();
1393   }
1394
1395   /// @brief Compute the square root
1396   APInt sqrt() const;
1397
1398   /// If *this is < 0 then return -(*this), otherwise *this;
1399   /// @brief Get the absolute value;
1400   APInt abs() const {
1401     if (isNegative())
1402       return -(*this);
1403     return *this;
1404   }
1405
1406   /// @returns the multiplicative inverse for a given modulo.
1407   APInt multiplicativeInverse(const APInt& modulo) const;
1408
1409   /// @}
1410   /// @name Support for division by constant
1411   /// @{
1412
1413   /// Calculate the magic number for signed division by a constant.
1414   struct ms;
1415   ms magic() const;
1416
1417   /// Calculate the magic number for unsigned division by a constant.
1418   struct mu;
1419   mu magicu(unsigned LeadingZeros = 0) const;
1420
1421   /// @}
1422   /// @name Building-block Operations for APInt and APFloat
1423   /// @{
1424
1425   // These building block operations operate on a representation of
1426   // arbitrary precision, two's-complement, bignum integer values.
1427   // They should be sufficient to implement APInt and APFloat bignum
1428   // requirements.  Inputs are generally a pointer to the base of an
1429   // array of integer parts, representing an unsigned bignum, and a
1430   // count of how many parts there are.
1431
1432   /// Sets the least significant part of a bignum to the input value,
1433   /// and zeroes out higher parts.  */
1434   static void tcSet(integerPart *, integerPart, unsigned int);
1435
1436   /// Assign one bignum to another.
1437   static void tcAssign(integerPart *, const integerPart *, unsigned int);
1438
1439   /// Returns true if a bignum is zero, false otherwise.
1440   static bool tcIsZero(const integerPart *, unsigned int);
1441
1442   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1443   static int tcExtractBit(const integerPart *, unsigned int bit);
1444
1445   /// Copy the bit vector of width srcBITS from SRC, starting at bit
1446   /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1447   /// becomes the least significant bit of DST.  All high bits above
1448   /// srcBITS in DST are zero-filled.
1449   static void tcExtract(integerPart *, unsigned int dstCount,
1450                         const integerPart *,
1451                         unsigned int srcBits, unsigned int srcLSB);
1452
1453   /// Set the given bit of a bignum.  Zero-based.
1454   static void tcSetBit(integerPart *, unsigned int bit);
1455
1456   /// Clear the given bit of a bignum.  Zero-based.
1457   static void tcClearBit(integerPart *, unsigned int bit);
1458
1459   /// Returns the bit number of the least or most significant set bit
1460   /// of a number.  If the input number has no bits set -1U is
1461   /// returned.
1462   static unsigned int tcLSB(const integerPart *, unsigned int);
1463   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1464
1465   /// Negate a bignum in-place.
1466   static void tcNegate(integerPart *, unsigned int);
1467
1468   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1469   /// carry flag.
1470   static integerPart tcAdd(integerPart *, const integerPart *,
1471                            integerPart carry, unsigned);
1472
1473   /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1474   /// carry flag.
1475   static integerPart tcSubtract(integerPart *, const integerPart *,
1476                                 integerPart carry, unsigned);
1477
1478   ///  DST += SRC * MULTIPLIER + PART   if add is true
1479   ///  DST  = SRC * MULTIPLIER + PART   if add is false
1480   ///
1481   ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1482   ///  they must start at the same point, i.e. DST == SRC.
1483   ///
1484   ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1485   ///  returned.  Otherwise DST is filled with the least significant
1486   ///  DSTPARTS parts of the result, and if all of the omitted higher
1487   ///  parts were zero return zero, otherwise overflow occurred and
1488   ///  return one.
1489   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1490                             integerPart multiplier, integerPart carry,
1491                             unsigned int srcParts, unsigned int dstParts,
1492                             bool add);
1493
1494   /// DST = LHS * RHS, where DST has the same width as the operands
1495   /// and is filled with the least significant parts of the result.
1496   /// Returns one if overflow occurred, otherwise zero.  DST must be
1497   /// disjoint from both operands.
1498   static int tcMultiply(integerPart *, const integerPart *,
1499                         const integerPart *, unsigned);
1500
1501   /// DST = LHS * RHS, where DST has width the sum of the widths of
1502   /// the operands.  No overflow occurs.  DST must be disjoint from
1503   /// both operands. Returns the number of parts required to hold the
1504   /// result.
1505   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1506                                      const integerPart *, unsigned, unsigned);
1507
1508   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1509   /// Otherwise set LHS to LHS / RHS with the fractional part
1510   /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1511   ///
1512   ///  OLD_LHS = RHS * LHS + REMAINDER
1513   ///
1514   ///  SCRATCH is a bignum of the same size as the operands and result
1515   ///  for use by the routine; its contents need not be initialized
1516   ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1517   ///  distinct.
1518   static int tcDivide(integerPart *lhs, const integerPart *rhs,
1519                       integerPart *remainder, integerPart *scratch,
1520                       unsigned int parts);
1521
1522   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1523   /// There are no restrictions on COUNT.
1524   static void tcShiftLeft(integerPart *, unsigned int parts,
1525                           unsigned int count);
1526
1527   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1528   /// There are no restrictions on COUNT.
1529   static void tcShiftRight(integerPart *, unsigned int parts,
1530                            unsigned int count);
1531
1532   /// The obvious AND, OR and XOR and complement operations.
1533   static void tcAnd(integerPart *, const integerPart *, unsigned int);
1534   static void tcOr(integerPart *, const integerPart *, unsigned int);
1535   static void tcXor(integerPart *, const integerPart *, unsigned int);
1536   static void tcComplement(integerPart *, unsigned int);
1537
1538   /// Comparison (unsigned) of two bignums.
1539   static int tcCompare(const integerPart *, const integerPart *,
1540                        unsigned int);
1541
1542   /// Increment a bignum in-place.  Return the carry flag.
1543   static integerPart tcIncrement(integerPart *, unsigned int);
1544
1545   /// Set the least significant BITS and clear the rest.
1546   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1547                                         unsigned int bits);
1548
1549   /// @brief debug method
1550   void dump() const;
1551
1552   /// @}
1553 };
1554
1555 /// Magic data for optimising signed division by a constant.
1556 struct APInt::ms {
1557   APInt m;  ///< magic number
1558   unsigned s;  ///< shift amount
1559 };
1560
1561 /// Magic data for optimising unsigned division by a constant.
1562 struct APInt::mu {
1563   APInt m;     ///< magic number
1564   bool a;      ///< add indicator
1565   unsigned s;  ///< shift amount
1566 };
1567
1568 inline bool operator==(uint64_t V1, const APInt& V2) {
1569   return V2 == V1;
1570 }
1571
1572 inline bool operator!=(uint64_t V1, const APInt& V2) {
1573   return V2 != V1;
1574 }
1575
1576 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1577   I.print(OS, true);
1578   return OS;
1579 }
1580
1581 namespace APIntOps {
1582
1583 /// @brief Determine the smaller of two APInts considered to be signed.
1584 inline APInt smin(const APInt &A, const APInt &B) {
1585   return A.slt(B) ? A : B;
1586 }
1587
1588 /// @brief Determine the larger of two APInts considered to be signed.
1589 inline APInt smax(const APInt &A, const APInt &B) {
1590   return A.sgt(B) ? A : B;
1591 }
1592
1593 /// @brief Determine the smaller of two APInts considered to be signed.
1594 inline APInt umin(const APInt &A, const APInt &B) {
1595   return A.ult(B) ? A : B;
1596 }
1597
1598 /// @brief Determine the larger of two APInts considered to be unsigned.
1599 inline APInt umax(const APInt &A, const APInt &B) {
1600   return A.ugt(B) ? A : B;
1601 }
1602
1603 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
1604 inline bool isIntN(unsigned N, const APInt& APIVal) {
1605   return APIVal.isIntN(N);
1606 }
1607
1608 /// @brief Check if the specified APInt has a N-bits signed integer value.
1609 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1610   return APIVal.isSignedIntN(N);
1611 }
1612
1613 /// @returns true if the argument APInt value is a sequence of ones
1614 /// starting at the least significant bit with the remainder zero.
1615 inline bool isMask(unsigned numBits, const APInt& APIVal) {
1616   return numBits <= APIVal.getBitWidth() &&
1617     APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1618 }
1619
1620 /// @returns true if the argument APInt value contains a sequence of ones
1621 /// with the remainder zero.
1622 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1623   return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1624 }
1625
1626 /// @returns a byte-swapped representation of the specified APInt Value.
1627 inline APInt byteSwap(const APInt& APIVal) {
1628   return APIVal.byteSwap();
1629 }
1630
1631 /// @returns the floor log base 2 of the specified APInt value.
1632 inline unsigned logBase2(const APInt& APIVal) {
1633   return APIVal.logBase2();
1634 }
1635
1636 /// GreatestCommonDivisor - This function returns the greatest common
1637 /// divisor of the two APInt values using Euclid's algorithm.
1638 /// @returns the greatest common divisor of Val1 and Val2
1639 /// @brief Compute GCD of two APInt values.
1640 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1641
1642 /// Treats the APInt as an unsigned value for conversion purposes.
1643 /// @brief Converts the given APInt to a double value.
1644 inline double RoundAPIntToDouble(const APInt& APIVal) {
1645   return APIVal.roundToDouble();
1646 }
1647
1648 /// Treats the APInt as a signed value for conversion purposes.
1649 /// @brief Converts the given APInt to a double value.
1650 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1651   return APIVal.signedRoundToDouble();
1652 }
1653
1654 /// @brief Converts the given APInt to a float vlalue.
1655 inline float RoundAPIntToFloat(const APInt& APIVal) {
1656   return float(RoundAPIntToDouble(APIVal));
1657 }
1658
1659 /// Treast the APInt as a signed value for conversion purposes.
1660 /// @brief Converts the given APInt to a float value.
1661 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1662   return float(APIVal.signedRoundToDouble());
1663 }
1664
1665 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1666 /// @brief Converts the given double value into a APInt.
1667 APInt RoundDoubleToAPInt(double Double, unsigned width);
1668
1669 /// RoundFloatToAPInt - Converts a float value into an APInt value.
1670 /// @brief Converts a float value into a APInt.
1671 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1672   return RoundDoubleToAPInt(double(Float), width);
1673 }
1674
1675 /// Arithmetic right-shift the APInt by shiftAmt.
1676 /// @brief Arithmetic right-shift function.
1677 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1678   return LHS.ashr(shiftAmt);
1679 }
1680
1681 /// Logical right-shift the APInt by shiftAmt.
1682 /// @brief Logical right-shift function.
1683 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1684   return LHS.lshr(shiftAmt);
1685 }
1686
1687 /// Left-shift the APInt by shiftAmt.
1688 /// @brief Left-shift function.
1689 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1690   return LHS.shl(shiftAmt);
1691 }
1692
1693 /// Signed divide APInt LHS by APInt RHS.
1694 /// @brief Signed division function for APInt.
1695 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1696   return LHS.sdiv(RHS);
1697 }
1698
1699 /// Unsigned divide APInt LHS by APInt RHS.
1700 /// @brief Unsigned division function for APInt.
1701 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1702   return LHS.udiv(RHS);
1703 }
1704
1705 /// Signed remainder operation on APInt.
1706 /// @brief Function for signed remainder operation.
1707 inline APInt srem(const APInt& LHS, const APInt& RHS) {
1708   return LHS.srem(RHS);
1709 }
1710
1711 /// Unsigned remainder operation on APInt.
1712 /// @brief Function for unsigned remainder operation.
1713 inline APInt urem(const APInt& LHS, const APInt& RHS) {
1714   return LHS.urem(RHS);
1715 }
1716
1717 /// Performs multiplication on APInt values.
1718 /// @brief Function for multiplication operation.
1719 inline APInt mul(const APInt& LHS, const APInt& RHS) {
1720   return LHS * RHS;
1721 }
1722
1723 /// Performs addition on APInt values.
1724 /// @brief Function for addition operation.
1725 inline APInt add(const APInt& LHS, const APInt& RHS) {
1726   return LHS + RHS;
1727 }
1728
1729 /// Performs subtraction on APInt values.
1730 /// @brief Function for subtraction operation.
1731 inline APInt sub(const APInt& LHS, const APInt& RHS) {
1732   return LHS - RHS;
1733 }
1734
1735 /// Performs bitwise AND operation on APInt LHS and
1736 /// APInt RHS.
1737 /// @brief Bitwise AND function for APInt.
1738 inline APInt And(const APInt& LHS, const APInt& RHS) {
1739   return LHS & RHS;
1740 }
1741
1742 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
1743 /// @brief Bitwise OR function for APInt.
1744 inline APInt Or(const APInt& LHS, const APInt& RHS) {
1745   return LHS | RHS;
1746 }
1747
1748 /// Performs bitwise XOR operation on APInt.
1749 /// @brief Bitwise XOR function for APInt.
1750 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1751   return LHS ^ RHS;
1752 }
1753
1754 /// Performs a bitwise complement operation on APInt.
1755 /// @brief Bitwise complement function.
1756 inline APInt Not(const APInt& APIVal) {
1757   return ~APIVal;
1758 }
1759
1760 } // End of APIntOps namespace
1761
1762   // See friend declaration above. This additional declaration is required in
1763   // order to compile LLVM with IBM xlC compiler.
1764   hash_code hash_value(const APInt &Arg);
1765 } // End of llvm namespace
1766
1767 #endif