Add extra declarations of hash_value needed to build llvm with xlc 12.1.
[oota-llvm.git] / include / llvm / ADT / APFloat.h
1 //== llvm/Support/APFloat.h - Arbitrary Precision Floating Point -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares a class to represent arbitrary precision floating
11 // point values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 /*  A self-contained host- and target-independent arbitrary-precision
16     floating-point software implementation.  It uses bignum integer
17     arithmetic as provided by static functions in the APInt class.
18     The library will work with bignum integers whose parts are any
19     unsigned type at least 16 bits wide, but 64 bits is recommended.
20
21     Written for clarity rather than speed, in particular with a view
22     to use in the front-end of a cross compiler so that target
23     arithmetic can be correctly performed on the host.  Performance
24     should nonetheless be reasonable, particularly for its intended
25     use.  It may be useful as a base implementation for a run-time
26     library during development of a faster target-specific one.
27
28     All 5 rounding modes in the IEEE-754R draft are handled correctly
29     for all implemented operations.  Currently implemented operations
30     are add, subtract, multiply, divide, fused-multiply-add,
31     conversion-to-float, conversion-to-integer and
32     conversion-from-integer.  New rounding modes (e.g. away from zero)
33     can be added with three or four lines of code.
34
35     Four formats are built-in: IEEE single precision, double
36     precision, quadruple precision, and x87 80-bit extended double
37     (when operating with full extended precision).  Adding a new
38     format that obeys IEEE semantics only requires adding two lines of
39     code: a declaration and definition of the format.
40
41     All operations return the status of that operation as an exception
42     bit-mask, so multiple operations can be done consecutively with
43     their results or-ed together.  The returned status can be useful
44     for compiler diagnostics; e.g., inexact, underflow and overflow
45     can be easily diagnosed on constant folding, and compiler
46     optimizers can determine what exceptions would be raised by
47     folding operations and optimize, or perhaps not optimize,
48     accordingly.
49
50     At present, underflow tininess is detected after rounding; it
51     should be straight forward to add support for the before-rounding
52     case too.
53
54     The library reads hexadecimal floating point numbers as per C99,
55     and correctly rounds if necessary according to the specified
56     rounding mode.  Syntax is required to have been validated by the
57     caller.  It also converts floating point numbers to hexadecimal
58     text as per the C99 %a and %A conversions.  The output precision
59     (or alternatively the natural minimal precision) can be specified;
60     if the requested precision is less than the natural precision the
61     output is correctly rounded for the specified rounding mode.
62
63     It also reads decimal floating point numbers and correctly rounds
64     according to the specified rounding mode.
65
66     Conversion to decimal text is not currently implemented.
67
68     Non-zero finite numbers are represented internally as a sign bit,
69     a 16-bit signed exponent, and the significand as an array of
70     integer parts.  After normalization of a number of precision P the
71     exponent is within the range of the format, and if the number is
72     not denormal the P-th bit of the significand is set as an explicit
73     integer bit.  For denormals the most significant bit is shifted
74     right so that the exponent is maintained at the format's minimum,
75     so that the smallest denormal has just the least significant bit
76     of the significand set.  The sign of zeroes and infinities is
77     significant; the exponent and significand of such numbers is not
78     stored, but has a known implicit (deterministic) value: 0 for the
79     significands, 0 for zero exponent, all 1 bits for infinity
80     exponent.  For NaNs the sign and significand are deterministic,
81     although not really meaningful, and preserved in non-conversion
82     operations.  The exponent is implicitly all 1 bits.
83
84     TODO
85     ====
86
87     Some features that may or may not be worth adding:
88
89     Binary to decimal conversion (hard).
90
91     Optional ability to detect underflow tininess before rounding.
92
93     New formats: x87 in single and double precision mode (IEEE apart
94     from extended exponent range) (hard).
95
96     New operations: sqrt, IEEE remainder, C90 fmod, nextafter,
97     nexttoward.
98 */
99
100 #ifndef LLVM_FLOAT_H
101 #define LLVM_FLOAT_H
102
103 // APInt contains static functions implementing bignum arithmetic.
104 #include "llvm/ADT/APInt.h"
105
106 namespace llvm {
107
108   /* Exponents are stored as signed numbers.  */
109   typedef signed short exponent_t;
110
111   struct fltSemantics;
112   class APSInt;
113   class StringRef;
114
115   /* When bits of a floating point number are truncated, this enum is
116      used to indicate what fraction of the LSB those bits represented.
117      It essentially combines the roles of guard and sticky bits.  */
118   enum lostFraction {           // Example of truncated bits:
119     lfExactlyZero,              // 000000
120     lfLessThanHalf,             // 0xxxxx  x's not all zero
121     lfExactlyHalf,              // 100000
122     lfMoreThanHalf              // 1xxxxx  x's not all zero
123   };
124
125   class APFloat {
126   public:
127
128     /* We support the following floating point semantics.  */
129     static const fltSemantics IEEEhalf;
130     static const fltSemantics IEEEsingle;
131     static const fltSemantics IEEEdouble;
132     static const fltSemantics IEEEquad;
133     static const fltSemantics PPCDoubleDouble;
134     static const fltSemantics x87DoubleExtended;
135     /* And this pseudo, used to construct APFloats that cannot
136        conflict with anything real. */
137     static const fltSemantics Bogus;
138
139     static unsigned int semanticsPrecision(const fltSemantics &);
140
141     /* Floating point numbers have a four-state comparison relation.  */
142     enum cmpResult {
143       cmpLessThan,
144       cmpEqual,
145       cmpGreaterThan,
146       cmpUnordered
147     };
148
149     /* IEEE-754R gives five rounding modes.  */
150     enum roundingMode {
151       rmNearestTiesToEven,
152       rmTowardPositive,
153       rmTowardNegative,
154       rmTowardZero,
155       rmNearestTiesToAway
156     };
157
158     // Operation status.  opUnderflow or opOverflow are always returned
159     // or-ed with opInexact.
160     enum opStatus {
161       opOK          = 0x00,
162       opInvalidOp   = 0x01,
163       opDivByZero   = 0x02,
164       opOverflow    = 0x04,
165       opUnderflow   = 0x08,
166       opInexact     = 0x10
167     };
168
169     // Category of internally-represented number.
170     enum fltCategory {
171       fcInfinity,
172       fcNaN,
173       fcNormal,
174       fcZero
175     };
176
177     enum uninitializedTag {
178       uninitialized
179     };
180
181     // Constructors.
182     APFloat(const fltSemantics &); // Default construct to 0.0
183     APFloat(const fltSemantics &, StringRef);
184     APFloat(const fltSemantics &, integerPart);
185     APFloat(const fltSemantics &, fltCategory, bool negative);
186     APFloat(const fltSemantics &, uninitializedTag);
187     explicit APFloat(double d);
188     explicit APFloat(float f);
189     explicit APFloat(const APInt &, bool isIEEE = false);
190     APFloat(const APFloat &);
191     ~APFloat();
192
193     // Convenience "constructors"
194     static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
195       return APFloat(Sem, fcZero, Negative);
196     }
197     static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
198       return APFloat(Sem, fcInfinity, Negative);
199     }
200
201     /// getNaN - Factory for QNaN values.
202     ///
203     /// \param Negative - True iff the NaN generated should be negative.
204     /// \param type - The unspecified fill bits for creating the NaN, 0 by
205     /// default.  The value is truncated as necessary.
206     static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
207                           unsigned type = 0) {
208       if (type) {
209         APInt fill(64, type);
210         return getQNaN(Sem, Negative, &fill);
211       } else {
212         return getQNaN(Sem, Negative, 0);
213       }
214     }
215
216     /// getQNan - Factory for QNaN values.
217     static APFloat getQNaN(const fltSemantics &Sem,
218                            bool Negative = false,
219                            const APInt *payload = 0) {
220       return makeNaN(Sem, false, Negative, payload);
221     }
222
223     /// getSNan - Factory for SNaN values.
224     static APFloat getSNaN(const fltSemantics &Sem,
225                            bool Negative = false,
226                            const APInt *payload = 0) {
227       return makeNaN(Sem, true, Negative, payload);
228     }
229
230     /// getLargest - Returns the largest finite number in the given
231     /// semantics.
232     ///
233     /// \param Negative - True iff the number should be negative
234     static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
235
236     /// getSmallest - Returns the smallest (by magnitude) finite number
237     /// in the given semantics.  Might be denormalized, which implies a
238     /// relative loss of precision.
239     ///
240     /// \param Negative - True iff the number should be negative
241     static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
242
243     /// getSmallestNormalized - Returns the smallest (by magnitude)
244     /// normalized finite number in the given semantics.
245     ///
246     /// \param Negative - True iff the number should be negative
247     static APFloat getSmallestNormalized(const fltSemantics &Sem,
248                                          bool Negative = false);
249
250     /// getAllOnesValue - Returns a float which is bitcasted from
251     /// an all one value int.
252     ///
253     /// \param BitWidth - Select float type
254     /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
255     static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
256
257     /// Profile - Used to insert APFloat objects, or objects that contain
258     ///  APFloat objects, into FoldingSets.
259     void Profile(FoldingSetNodeID& NID) const;
260
261     /// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
262     void Emit(Serializer& S) const;
263
264     /// @brief Used by the Bitcode deserializer to deserialize APInts.
265     static APFloat ReadVal(Deserializer& D);
266
267     /* Arithmetic.  */
268     opStatus add(const APFloat &, roundingMode);
269     opStatus subtract(const APFloat &, roundingMode);
270     opStatus multiply(const APFloat &, roundingMode);
271     opStatus divide(const APFloat &, roundingMode);
272     /* IEEE remainder. */
273     opStatus remainder(const APFloat &);
274     /* C fmod, or llvm frem. */
275     opStatus mod(const APFloat &, roundingMode);
276     opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
277     opStatus roundToIntegral(roundingMode);
278
279     /* Sign operations.  */
280     void changeSign();
281     void clearSign();
282     void copySign(const APFloat &);
283
284     /* Conversions.  */
285     opStatus convert(const fltSemantics &, roundingMode, bool *);
286     opStatus convertToInteger(integerPart *, unsigned int, bool,
287                               roundingMode, bool *) const;
288     opStatus convertToInteger(APSInt&, roundingMode, bool *) const;
289     opStatus convertFromAPInt(const APInt &,
290                               bool, roundingMode);
291     opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
292                                             bool, roundingMode);
293     opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
294                                             bool, roundingMode);
295     opStatus convertFromString(StringRef, roundingMode);
296     APInt bitcastToAPInt() const;
297     double convertToDouble() const;
298     float convertToFloat() const;
299
300     /* The definition of equality is not straightforward for floating point,
301        so we won't use operator==.  Use one of the following, or write
302        whatever it is you really mean. */
303     // bool operator==(const APFloat &) const;     // DO NOT IMPLEMENT
304
305     /* IEEE comparison with another floating point number (NaNs
306        compare unordered, 0==-0). */
307     cmpResult compare(const APFloat &) const;
308
309     /* Bitwise comparison for equality (QNaNs compare equal, 0!=-0). */
310     bool bitwiseIsEqual(const APFloat &) const;
311
312     /* Write out a hexadecimal representation of the floating point
313        value to DST, which must be of sufficient size, in the C99 form
314        [-]0xh.hhhhp[+-]d.  Return the number of characters written,
315        excluding the terminating NUL.  */
316     unsigned int convertToHexString(char *dst, unsigned int hexDigits,
317                                     bool upperCase, roundingMode) const;
318
319     /* Simple queries.  */
320     fltCategory getCategory() const { return category; }
321     const fltSemantics &getSemantics() const { return *semantics; }
322     bool isZero() const { return category == fcZero; }
323     bool isNonZero() const { return category != fcZero; }
324     bool isNormal() const { return category == fcNormal; }
325     bool isNaN() const { return category == fcNaN; }
326     bool isInfinity() const { return category == fcInfinity; }
327     bool isNegative() const { return sign; }
328     bool isPosZero() const { return isZero() && !isNegative(); }
329     bool isNegZero() const { return isZero() && isNegative(); }
330
331     APFloat& operator=(const APFloat &);
332
333     /// \brief Overload to compute a hash code for an APFloat value.
334     ///
335     /// Note that the use of hash codes for floating point values is in general
336     /// frought with peril. Equality is hard to define for these values. For
337     /// example, should negative and positive zero hash to different codes? Are
338     /// they equal or not? This hash value implementation specifically
339     /// emphasizes producing different codes for different inputs in order to
340     /// be used in canonicalization and memoization. As such, equality is
341     /// bitwiseIsEqual, and 0 != -0.
342     friend hash_code hash_value(const APFloat &Arg);
343
344     /// Converts this value into a decimal string.
345     ///
346     /// \param FormatPrecision The maximum number of digits of
347     ///   precision to output.  If there are fewer digits available,
348     ///   zero padding will not be used unless the value is
349     ///   integral and small enough to be expressed in
350     ///   FormatPrecision digits.  0 means to use the natural
351     ///   precision of the number.
352     /// \param FormatMaxPadding The maximum number of zeros to
353     ///   consider inserting before falling back to scientific
354     ///   notation.  0 means to always use scientific notation.
355     ///
356     /// Number       Precision    MaxPadding      Result
357     /// ------       ---------    ----------      ------
358     /// 1.01E+4              5             2       10100
359     /// 1.01E+4              4             2       1.01E+4
360     /// 1.01E+4              5             1       1.01E+4
361     /// 1.01E-2              5             2       0.0101
362     /// 1.01E-2              4             2       0.0101
363     /// 1.01E-2              4             1       1.01E-2
364     void toString(SmallVectorImpl<char> &Str,
365                   unsigned FormatPrecision = 0,
366                   unsigned FormatMaxPadding = 3) const;
367
368     /// getExactInverse - If this value has an exact multiplicative inverse,
369     /// store it in inv and return true.
370     bool getExactInverse(APFloat *inv) const;
371
372   private:
373
374     /* Trivial queries.  */
375     integerPart *significandParts();
376     const integerPart *significandParts() const;
377     unsigned int partCount() const;
378
379     /* Significand operations.  */
380     integerPart addSignificand(const APFloat &);
381     integerPart subtractSignificand(const APFloat &, integerPart);
382     lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
383     lostFraction multiplySignificand(const APFloat &, const APFloat *);
384     lostFraction divideSignificand(const APFloat &);
385     void incrementSignificand();
386     void initialize(const fltSemantics *);
387     void shiftSignificandLeft(unsigned int);
388     lostFraction shiftSignificandRight(unsigned int);
389     unsigned int significandLSB() const;
390     unsigned int significandMSB() const;
391     void zeroSignificand();
392
393     /* Arithmetic on special values.  */
394     opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
395     opStatus divideSpecials(const APFloat &);
396     opStatus multiplySpecials(const APFloat &);
397     opStatus modSpecials(const APFloat &);
398
399     /* Miscellany.  */
400     static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
401                            const APInt *fill);
402     void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = 0);
403     opStatus normalize(roundingMode, lostFraction);
404     opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
405     cmpResult compareAbsoluteValue(const APFloat &) const;
406     opStatus handleOverflow(roundingMode);
407     bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
408     opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
409                                           roundingMode, bool *) const;
410     opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
411                                       roundingMode);
412     opStatus convertFromHexadecimalString(StringRef, roundingMode);
413     opStatus convertFromDecimalString(StringRef, roundingMode);
414     char *convertNormalToHexString(char *, unsigned int, bool,
415                                    roundingMode) const;
416     opStatus roundSignificandWithExponent(const integerPart *, unsigned int,
417                                           int, roundingMode);
418
419     APInt convertHalfAPFloatToAPInt() const;
420     APInt convertFloatAPFloatToAPInt() const;
421     APInt convertDoubleAPFloatToAPInt() const;
422     APInt convertQuadrupleAPFloatToAPInt() const;
423     APInt convertF80LongDoubleAPFloatToAPInt() const;
424     APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
425     void initFromAPInt(const APInt& api, bool isIEEE = false);
426     void initFromHalfAPInt(const APInt& api);
427     void initFromFloatAPInt(const APInt& api);
428     void initFromDoubleAPInt(const APInt& api);
429     void initFromQuadrupleAPInt(const APInt &api);
430     void initFromF80LongDoubleAPInt(const APInt& api);
431     void initFromPPCDoubleDoubleAPInt(const APInt& api);
432
433     void assign(const APFloat &);
434     void copySignificand(const APFloat &);
435     void freeSignificand();
436
437     /* What kind of semantics does this value obey?  */
438     const fltSemantics *semantics;
439
440     /* Significand - the fraction with an explicit integer bit.  Must be
441        at least one bit wider than the target precision.  */
442     union Significand
443     {
444       integerPart part;
445       integerPart *parts;
446     } significand;
447
448     /* The exponent - a signed number.  */
449     exponent_t exponent;
450
451     /* What kind of floating point number this is.  */
452     /* Only 2 bits are required, but VisualStudio incorrectly sign extends
453        it.  Using the extra bit keeps it from failing under VisualStudio */
454     fltCategory category: 3;
455
456     /* The sign bit of this number.  */
457     unsigned int sign: 1;
458   };
459
460   // See friend declaration above. This additional declaration is required in
461   // order to compile LLVM with IBM xlC compiler.
462   hash_code hash_value(const APFloat &Arg);
463 } /* namespace llvm */
464
465 #endif /* LLVM_FLOAT_H */