[Kaleidoscope] Fix incorrect use of reinterpret_cast.
[oota-llvm.git] / examples / Kaleidoscope / MCJIT / cached / toy.cpp
1 #define MINIMAL_STDERR_OUTPUT
2
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/ExecutionEngine/MCJIT.h"
6 #include "llvm/ExecutionEngine/ObjectCache.h"
7 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
8 #include "llvm/IR/DataLayout.h"
9 #include "llvm/IR/DerivedTypes.h"
10 #include "llvm/IR/IRBuilder.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/IR/LegacyPassManager.h"
13 #include "llvm/IR/Module.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/IRReader/IRReader.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/FileSystem.h"
18 #include "llvm/Support/Path.h"
19 #include "llvm/Support/SourceMgr.h"
20 #include "llvm/Support/TargetSelect.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Transforms/Scalar.h"
23 #include <cctype>
24 #include <cstdio>
25 #include <map>
26 #include <string>
27 #include <vector>
28 using namespace llvm;
29
30 //===----------------------------------------------------------------------===//
31 // Command-line options
32 //===----------------------------------------------------------------------===//
33
34 cl::opt<std::string>
35 InputIR("input-IR",
36         cl::desc("Specify the name of an IR file to load for function definitions"),
37         cl::value_desc("input IR file name"));
38
39 cl::opt<bool>
40 UseObjectCache("use-object-cache",
41                cl::desc("Enable use of the MCJIT object caching"),
42                cl::init(false));
43
44 //===----------------------------------------------------------------------===//
45 // Lexer
46 //===----------------------------------------------------------------------===//
47
48 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
49 // of these for known things.
50 enum Token {
51   tok_eof = -1,
52
53   // commands
54   tok_def = -2, tok_extern = -3,
55
56   // primary
57   tok_identifier = -4, tok_number = -5,
58
59   // control
60   tok_if = -6, tok_then = -7, tok_else = -8,
61   tok_for = -9, tok_in = -10,
62
63   // operators
64   tok_binary = -11, tok_unary = -12,
65
66   // var definition
67   tok_var = -13
68 };
69
70 static std::string IdentifierStr;  // Filled in if tok_identifier
71 static double NumVal;              // Filled in if tok_number
72
73 /// gettok - Return the next token from standard input.
74 static int gettok() {
75   static int LastChar = ' ';
76
77   // Skip any whitespace.
78   while (isspace(LastChar))
79     LastChar = getchar();
80
81   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
82     IdentifierStr = LastChar;
83     while (isalnum((LastChar = getchar())))
84       IdentifierStr += LastChar;
85
86     if (IdentifierStr == "def") return tok_def;
87     if (IdentifierStr == "extern") return tok_extern;
88     if (IdentifierStr == "if") return tok_if;
89     if (IdentifierStr == "then") return tok_then;
90     if (IdentifierStr == "else") return tok_else;
91     if (IdentifierStr == "for") return tok_for;
92     if (IdentifierStr == "in") return tok_in;
93     if (IdentifierStr == "binary") return tok_binary;
94     if (IdentifierStr == "unary") return tok_unary;
95     if (IdentifierStr == "var") return tok_var;
96     return tok_identifier;
97   }
98
99   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
100     std::string NumStr;
101     do {
102       NumStr += LastChar;
103       LastChar = getchar();
104     } while (isdigit(LastChar) || LastChar == '.');
105
106     NumVal = strtod(NumStr.c_str(), 0);
107     return tok_number;
108   }
109
110   if (LastChar == '#') {
111     // Comment until end of line.
112     do LastChar = getchar();
113     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
114
115     if (LastChar != EOF)
116       return gettok();
117   }
118
119   // Check for end of file.  Don't eat the EOF.
120   if (LastChar == EOF)
121     return tok_eof;
122
123   // Otherwise, just return the character as its ascii value.
124   int ThisChar = LastChar;
125   LastChar = getchar();
126   return ThisChar;
127 }
128
129 //===----------------------------------------------------------------------===//
130 // Abstract Syntax Tree (aka Parse Tree)
131 //===----------------------------------------------------------------------===//
132
133 /// ExprAST - Base class for all expression nodes.
134 class ExprAST {
135 public:
136   virtual ~ExprAST() {}
137   virtual Value *Codegen() = 0;
138 };
139
140 /// NumberExprAST - Expression class for numeric literals like "1.0".
141 class NumberExprAST : public ExprAST {
142   double Val;
143 public:
144   NumberExprAST(double val) : Val(val) {}
145   virtual Value *Codegen();
146 };
147
148 /// VariableExprAST - Expression class for referencing a variable, like "a".
149 class VariableExprAST : public ExprAST {
150   std::string Name;
151 public:
152   VariableExprAST(const std::string &name) : Name(name) {}
153   const std::string &getName() const { return Name; }
154   virtual Value *Codegen();
155 };
156
157 /// UnaryExprAST - Expression class for a unary operator.
158 class UnaryExprAST : public ExprAST {
159   char Opcode;
160   ExprAST *Operand;
161 public:
162   UnaryExprAST(char opcode, ExprAST *operand)
163     : Opcode(opcode), Operand(operand) {}
164   virtual Value *Codegen();
165 };
166
167 /// BinaryExprAST - Expression class for a binary operator.
168 class BinaryExprAST : public ExprAST {
169   char Op;
170   ExprAST *LHS, *RHS;
171 public:
172   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
173     : Op(op), LHS(lhs), RHS(rhs) {}
174   virtual Value *Codegen();
175 };
176
177 /// CallExprAST - Expression class for function calls.
178 class CallExprAST : public ExprAST {
179   std::string Callee;
180   std::vector<ExprAST*> Args;
181 public:
182   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
183     : Callee(callee), Args(args) {}
184   virtual Value *Codegen();
185 };
186
187 /// IfExprAST - Expression class for if/then/else.
188 class IfExprAST : public ExprAST {
189   ExprAST *Cond, *Then, *Else;
190 public:
191   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
192   : Cond(cond), Then(then), Else(_else) {}
193   virtual Value *Codegen();
194 };
195
196 /// ForExprAST - Expression class for for/in.
197 class ForExprAST : public ExprAST {
198   std::string VarName;
199   ExprAST *Start, *End, *Step, *Body;
200 public:
201   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
202              ExprAST *step, ExprAST *body)
203     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
204   virtual Value *Codegen();
205 };
206
207 /// VarExprAST - Expression class for var/in
208 class VarExprAST : public ExprAST {
209   std::vector<std::pair<std::string, ExprAST*> > VarNames;
210   ExprAST *Body;
211 public:
212   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
213              ExprAST *body)
214   : VarNames(varnames), Body(body) {}
215
216   virtual Value *Codegen();
217 };
218
219 /// PrototypeAST - This class represents the "prototype" for a function,
220 /// which captures its argument names as well as if it is an operator.
221 class PrototypeAST {
222   std::string Name;
223   std::vector<std::string> Args;
224   bool isOperator;
225   unsigned Precedence;  // Precedence if a binary op.
226 public:
227   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
228                bool isoperator = false, unsigned prec = 0)
229   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
230
231   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
232   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
233
234   char getOperatorName() const {
235     assert(isUnaryOp() || isBinaryOp());
236     return Name[Name.size()-1];
237   }
238
239   unsigned getBinaryPrecedence() const { return Precedence; }
240
241   Function *Codegen();
242
243   void CreateArgumentAllocas(Function *F);
244 };
245
246 /// FunctionAST - This class represents a function definition itself.
247 class FunctionAST {
248   PrototypeAST *Proto;
249   ExprAST *Body;
250 public:
251   FunctionAST(PrototypeAST *proto, ExprAST *body)
252     : Proto(proto), Body(body) {}
253
254   Function *Codegen();
255 };
256
257 //===----------------------------------------------------------------------===//
258 // Parser
259 //===----------------------------------------------------------------------===//
260
261 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
262 /// token the parser is looking at.  getNextToken reads another token from the
263 /// lexer and updates CurTok with its results.
264 static int CurTok;
265 static int getNextToken() {
266   return CurTok = gettok();
267 }
268
269 /// BinopPrecedence - This holds the precedence for each binary operator that is
270 /// defined.
271 static std::map<char, int> BinopPrecedence;
272
273 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
274 static int GetTokPrecedence() {
275   if (!isascii(CurTok))
276     return -1;
277
278   // Make sure it's a declared binop.
279   int TokPrec = BinopPrecedence[CurTok];
280   if (TokPrec <= 0) return -1;
281   return TokPrec;
282 }
283
284 /// Error* - These are little helper functions for error handling.
285 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
286 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
287 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
288
289 static ExprAST *ParseExpression();
290
291 /// identifierexpr
292 ///   ::= identifier
293 ///   ::= identifier '(' expression* ')'
294 static ExprAST *ParseIdentifierExpr() {
295   std::string IdName = IdentifierStr;
296
297   getNextToken();  // eat identifier.
298
299   if (CurTok != '(') // Simple variable ref.
300     return new VariableExprAST(IdName);
301
302   // Call.
303   getNextToken();  // eat (
304   std::vector<ExprAST*> Args;
305   if (CurTok != ')') {
306     while (1) {
307       ExprAST *Arg = ParseExpression();
308       if (!Arg) return 0;
309       Args.push_back(Arg);
310
311       if (CurTok == ')') break;
312
313       if (CurTok != ',')
314         return Error("Expected ')' or ',' in argument list");
315       getNextToken();
316     }
317   }
318
319   // Eat the ')'.
320   getNextToken();
321
322   return new CallExprAST(IdName, Args);
323 }
324
325 /// numberexpr ::= number
326 static ExprAST *ParseNumberExpr() {
327   ExprAST *Result = new NumberExprAST(NumVal);
328   getNextToken(); // consume the number
329   return Result;
330 }
331
332 /// parenexpr ::= '(' expression ')'
333 static ExprAST *ParseParenExpr() {
334   getNextToken();  // eat (.
335   ExprAST *V = ParseExpression();
336   if (!V) return 0;
337
338   if (CurTok != ')')
339     return Error("expected ')'");
340   getNextToken();  // eat ).
341   return V;
342 }
343
344 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
345 static ExprAST *ParseIfExpr() {
346   getNextToken();  // eat the if.
347
348   // condition.
349   ExprAST *Cond = ParseExpression();
350   if (!Cond) return 0;
351
352   if (CurTok != tok_then)
353     return Error("expected then");
354   getNextToken();  // eat the then
355
356   ExprAST *Then = ParseExpression();
357   if (Then == 0) return 0;
358
359   if (CurTok != tok_else)
360     return Error("expected else");
361
362   getNextToken();
363
364   ExprAST *Else = ParseExpression();
365   if (!Else) return 0;
366
367   return new IfExprAST(Cond, Then, Else);
368 }
369
370 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
371 static ExprAST *ParseForExpr() {
372   getNextToken();  // eat the for.
373
374   if (CurTok != tok_identifier)
375     return Error("expected identifier after for");
376
377   std::string IdName = IdentifierStr;
378   getNextToken();  // eat identifier.
379
380   if (CurTok != '=')
381     return Error("expected '=' after for");
382   getNextToken();  // eat '='.
383
384
385   ExprAST *Start = ParseExpression();
386   if (Start == 0) return 0;
387   if (CurTok != ',')
388     return Error("expected ',' after for start value");
389   getNextToken();
390
391   ExprAST *End = ParseExpression();
392   if (End == 0) return 0;
393
394   // The step value is optional.
395   ExprAST *Step = 0;
396   if (CurTok == ',') {
397     getNextToken();
398     Step = ParseExpression();
399     if (Step == 0) return 0;
400   }
401
402   if (CurTok != tok_in)
403     return Error("expected 'in' after for");
404   getNextToken();  // eat 'in'.
405
406   ExprAST *Body = ParseExpression();
407   if (Body == 0) return 0;
408
409   return new ForExprAST(IdName, Start, End, Step, Body);
410 }
411
412 /// varexpr ::= 'var' identifier ('=' expression)?
413 //                    (',' identifier ('=' expression)?)* 'in' expression
414 static ExprAST *ParseVarExpr() {
415   getNextToken();  // eat the var.
416
417   std::vector<std::pair<std::string, ExprAST*> > VarNames;
418
419   // At least one variable name is required.
420   if (CurTok != tok_identifier)
421     return Error("expected identifier after var");
422
423   while (1) {
424     std::string Name = IdentifierStr;
425     getNextToken();  // eat identifier.
426
427     // Read the optional initializer.
428     ExprAST *Init = 0;
429     if (CurTok == '=') {
430       getNextToken(); // eat the '='.
431
432       Init = ParseExpression();
433       if (Init == 0) return 0;
434     }
435
436     VarNames.push_back(std::make_pair(Name, Init));
437
438     // End of var list, exit loop.
439     if (CurTok != ',') break;
440     getNextToken(); // eat the ','.
441
442     if (CurTok != tok_identifier)
443       return Error("expected identifier list after var");
444   }
445
446   // At this point, we have to have 'in'.
447   if (CurTok != tok_in)
448     return Error("expected 'in' keyword after 'var'");
449   getNextToken();  // eat 'in'.
450
451   ExprAST *Body = ParseExpression();
452   if (Body == 0) return 0;
453
454   return new VarExprAST(VarNames, Body);
455 }
456
457 /// primary
458 ///   ::= identifierexpr
459 ///   ::= numberexpr
460 ///   ::= parenexpr
461 ///   ::= ifexpr
462 ///   ::= forexpr
463 ///   ::= varexpr
464 static ExprAST *ParsePrimary() {
465   switch (CurTok) {
466   default: return Error("unknown token when expecting an expression");
467   case tok_identifier: return ParseIdentifierExpr();
468   case tok_number:     return ParseNumberExpr();
469   case '(':            return ParseParenExpr();
470   case tok_if:         return ParseIfExpr();
471   case tok_for:        return ParseForExpr();
472   case tok_var:        return ParseVarExpr();
473   }
474 }
475
476 /// unary
477 ///   ::= primary
478 ///   ::= '!' unary
479 static ExprAST *ParseUnary() {
480   // If the current token is not an operator, it must be a primary expr.
481   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
482     return ParsePrimary();
483
484   // If this is a unary operator, read it.
485   int Opc = CurTok;
486   getNextToken();
487   if (ExprAST *Operand = ParseUnary())
488     return new UnaryExprAST(Opc, Operand);
489   return 0;
490 }
491
492 /// binoprhs
493 ///   ::= ('+' unary)*
494 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
495   // If this is a binop, find its precedence.
496   while (1) {
497     int TokPrec = GetTokPrecedence();
498
499     // If this is a binop that binds at least as tightly as the current binop,
500     // consume it, otherwise we are done.
501     if (TokPrec < ExprPrec)
502       return LHS;
503
504     // Okay, we know this is a binop.
505     int BinOp = CurTok;
506     getNextToken();  // eat binop
507
508     // Parse the unary expression after the binary operator.
509     ExprAST *RHS = ParseUnary();
510     if (!RHS) return 0;
511
512     // If BinOp binds less tightly with RHS than the operator after RHS, let
513     // the pending operator take RHS as its LHS.
514     int NextPrec = GetTokPrecedence();
515     if (TokPrec < NextPrec) {
516       RHS = ParseBinOpRHS(TokPrec+1, RHS);
517       if (RHS == 0) return 0;
518     }
519
520     // Merge LHS/RHS.
521     LHS = new BinaryExprAST(BinOp, LHS, RHS);
522   }
523 }
524
525 /// expression
526 ///   ::= unary binoprhs
527 ///
528 static ExprAST *ParseExpression() {
529   ExprAST *LHS = ParseUnary();
530   if (!LHS) return 0;
531
532   return ParseBinOpRHS(0, LHS);
533 }
534
535 /// prototype
536 ///   ::= id '(' id* ')'
537 ///   ::= binary LETTER number? (id, id)
538 ///   ::= unary LETTER (id)
539 static PrototypeAST *ParsePrototype() {
540   std::string FnName;
541
542   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
543   unsigned BinaryPrecedence = 30;
544
545   switch (CurTok) {
546   default:
547     return ErrorP("Expected function name in prototype");
548   case tok_identifier:
549     FnName = IdentifierStr;
550     Kind = 0;
551     getNextToken();
552     break;
553   case tok_unary:
554     getNextToken();
555     if (!isascii(CurTok))
556       return ErrorP("Expected unary operator");
557     FnName = "unary";
558     FnName += (char)CurTok;
559     Kind = 1;
560     getNextToken();
561     break;
562   case tok_binary:
563     getNextToken();
564     if (!isascii(CurTok))
565       return ErrorP("Expected binary operator");
566     FnName = "binary";
567     FnName += (char)CurTok;
568     Kind = 2;
569     getNextToken();
570
571     // Read the precedence if present.
572     if (CurTok == tok_number) {
573       if (NumVal < 1 || NumVal > 100)
574         return ErrorP("Invalid precedecnce: must be 1..100");
575       BinaryPrecedence = (unsigned)NumVal;
576       getNextToken();
577     }
578     break;
579   }
580
581   if (CurTok != '(')
582     return ErrorP("Expected '(' in prototype");
583
584   std::vector<std::string> ArgNames;
585   while (getNextToken() == tok_identifier)
586     ArgNames.push_back(IdentifierStr);
587   if (CurTok != ')')
588     return ErrorP("Expected ')' in prototype");
589
590   // success.
591   getNextToken();  // eat ')'.
592
593   // Verify right number of names for operator.
594   if (Kind && ArgNames.size() != Kind)
595     return ErrorP("Invalid number of operands for operator");
596
597   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
598 }
599
600 /// definition ::= 'def' prototype expression
601 static FunctionAST *ParseDefinition() {
602   getNextToken();  // eat def.
603   PrototypeAST *Proto = ParsePrototype();
604   if (Proto == 0) return 0;
605
606   if (ExprAST *E = ParseExpression())
607     return new FunctionAST(Proto, E);
608   return 0;
609 }
610
611 /// toplevelexpr ::= expression
612 static FunctionAST *ParseTopLevelExpr() {
613   if (ExprAST *E = ParseExpression()) {
614     // Make an anonymous proto.
615     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
616     return new FunctionAST(Proto, E);
617   }
618   return 0;
619 }
620
621 /// external ::= 'extern' prototype
622 static PrototypeAST *ParseExtern() {
623   getNextToken();  // eat extern.
624   return ParsePrototype();
625 }
626
627 //===----------------------------------------------------------------------===//
628 // Quick and dirty hack
629 //===----------------------------------------------------------------------===//
630
631 // FIXME: Obviously we can do better than this
632 std::string GenerateUniqueName(const char *root)
633 {
634   static int i = 0;
635   char s[16];
636   sprintf(s, "%s%d", root, i++);
637   std::string S = s;
638   return S;
639 }
640
641 std::string MakeLegalFunctionName(std::string Name)
642 {
643   std::string NewName;
644   if (!Name.length())
645       return GenerateUniqueName("anon_func_");
646
647   // Start with what we have
648   NewName = Name;
649
650   // Look for a numberic first character
651   if (NewName.find_first_of("0123456789") == 0) {
652     NewName.insert(0, 1, 'n');
653   }
654
655   // Replace illegal characters with their ASCII equivalent
656   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
657   size_t pos;
658   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
659     char old_c = NewName.at(pos);
660     char new_str[16];
661     sprintf(new_str, "%d", (int)old_c);
662     NewName = NewName.replace(pos, 1, new_str);
663   }
664
665   return NewName;
666 }
667
668 //===----------------------------------------------------------------------===//
669 // MCJIT object cache class
670 //===----------------------------------------------------------------------===//
671
672 class MCJITObjectCache : public ObjectCache {
673 public:
674   MCJITObjectCache() {
675     // Set IR cache directory
676     sys::fs::current_path(CacheDir);
677     sys::path::append(CacheDir, "toy_object_cache");
678   }
679
680   virtual ~MCJITObjectCache() {
681   }
682
683   virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
684     // Get the ModuleID
685     const std::string ModuleID = M->getModuleIdentifier();
686
687     // If we've flagged this as an IR file, cache it
688     if (0 == ModuleID.compare(0, 3, "IR:")) {
689       std::string IRFileName = ModuleID.substr(3);
690       SmallString<128>IRCacheFile = CacheDir;
691       sys::path::append(IRCacheFile, IRFileName);
692       if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
693         fprintf(stderr, "Unable to create cache directory\n");
694         return;
695       }
696       std::string ErrStr;
697       raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
698       IRObjectFile << Obj->getBuffer();
699     }
700   }
701
702   // MCJIT will call this function before compiling any module
703   // MCJIT takes ownership of both the MemoryBuffer object and the memory
704   // to which it refers.
705   virtual MemoryBuffer* getObject(const Module* M) {
706     // Get the ModuleID
707     const std::string ModuleID = M->getModuleIdentifier();
708
709     // If we've flagged this as an IR file, cache it
710     if (0 == ModuleID.compare(0, 3, "IR:")) {
711       std::string IRFileName = ModuleID.substr(3);
712       SmallString<128> IRCacheFile = CacheDir;
713       sys::path::append(IRCacheFile, IRFileName);
714       if (!sys::fs::exists(IRCacheFile.str())) {
715         // This file isn't in our cache
716         return NULL;
717       }
718       std::unique_ptr<MemoryBuffer> IRObjectBuffer;
719       MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
720       // MCJIT will want to write into this buffer, and we don't want that
721       // because the file has probably just been mmapped.  Instead we make
722       // a copy.  The filed-based buffer will be released when it goes
723       // out of scope.
724       return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
725     }
726
727     return NULL;
728   }
729
730 private:
731   SmallString<128> CacheDir;
732 };
733
734 //===----------------------------------------------------------------------===//
735 // MCJIT helper class
736 //===----------------------------------------------------------------------===//
737
738 class MCJITHelper
739 {
740 public:
741   MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
742   ~MCJITHelper();
743
744   Function *getFunction(const std::string FnName);
745   Module *getModuleForNewFunction();
746   void *getPointerToFunction(Function* F);
747   void *getPointerToNamedFunction(const std::string &Name);
748   ExecutionEngine *compileModule(Module *M);
749   void closeCurrentModule();
750   void addModule(Module *M);
751   void dump();
752
753 private:
754   typedef std::vector<Module*> ModuleVector;
755
756   LLVMContext  &Context;
757   Module       *OpenModule;
758   ModuleVector  Modules;
759   std::map<Module *, ExecutionEngine *> EngineMap;
760   MCJITObjectCache OurObjectCache;
761 };
762
763 class HelpingMemoryManager : public SectionMemoryManager
764 {
765   HelpingMemoryManager(const HelpingMemoryManager&) = delete;
766   void operator=(const HelpingMemoryManager&) = delete;
767
768 public:
769   HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
770   virtual ~HelpingMemoryManager() {}
771
772   /// This method returns the address of the specified function.
773   /// Our implementation will attempt to find functions in other
774   /// modules associated with the MCJITHelper to cross link functions
775   /// from one generated module to another.
776   ///
777   /// If \p AbortOnFailure is false and no function with the given name is
778   /// found, this function returns a null pointer. Otherwise, it prints a
779   /// message to stderr and aborts.
780   virtual void *getPointerToNamedFunction(const std::string &Name,
781                                           bool AbortOnFailure = true);
782 private:
783   MCJITHelper *MasterHelper;
784 };
785
786 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
787                                         bool AbortOnFailure)
788 {
789   // Try the standard symbol resolution first, but ask it not to abort.
790   void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
791   if (pfn)
792     return pfn;
793
794   pfn = MasterHelper->getPointerToNamedFunction(Name);
795   if (!pfn && AbortOnFailure)
796     report_fatal_error("Program used external function '" + Name +
797                         "' which could not be resolved!");
798   return pfn;
799 }
800
801 MCJITHelper::~MCJITHelper()
802 {
803   // Walk the vector of modules.
804   ModuleVector::iterator it, end;
805   for (it = Modules.begin(), end = Modules.end();
806        it != end; ++it) {
807     // See if we have an execution engine for this module.
808     std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
809     // If we have an EE, the EE owns the module so just delete the EE.
810     if (mapIt != EngineMap.end()) {
811       delete mapIt->second;
812     } else {
813       // Otherwise, we still own the module.  Delete it now.
814       delete *it;
815     }
816   }
817 }
818
819 Function *MCJITHelper::getFunction(const std::string FnName) {
820   ModuleVector::iterator begin = Modules.begin();
821   ModuleVector::iterator end = Modules.end();
822   ModuleVector::iterator it;
823   for (it = begin; it != end; ++it) {
824     Function *F = (*it)->getFunction(FnName);
825     if (F) {
826       if (*it == OpenModule)
827           return F;
828
829       assert(OpenModule != NULL);
830
831       // This function is in a module that has already been JITed.
832       // We need to generate a new prototype for external linkage.
833       Function *PF = OpenModule->getFunction(FnName);
834       if (PF && !PF->empty()) {
835         ErrorF("redefinition of function across modules");
836         return 0;
837       }
838
839       // If we don't have a prototype yet, create one.
840       if (!PF)
841         PF = Function::Create(F->getFunctionType(),
842                                       Function::ExternalLinkage,
843                                       FnName,
844                                       OpenModule);
845       return PF;
846     }
847   }
848   return NULL;
849 }
850
851 Module *MCJITHelper::getModuleForNewFunction() {
852   // If we have a Module that hasn't been JITed, use that.
853   if (OpenModule)
854     return OpenModule;
855
856   // Otherwise create a new Module.
857   std::string ModName = GenerateUniqueName("mcjit_module_");
858   Module *M = new Module(ModName, Context);
859   Modules.push_back(M);
860   OpenModule = M;
861   return M;
862 }
863
864 void *MCJITHelper::getPointerToFunction(Function* F) {
865   // Look for this function in an existing module
866   ModuleVector::iterator begin = Modules.begin();
867   ModuleVector::iterator end = Modules.end();
868   ModuleVector::iterator it;
869   std::string FnName = F->getName();
870   for (it = begin; it != end; ++it) {
871     Function *MF = (*it)->getFunction(FnName);
872     if (MF == F) {
873       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
874       if (eeIt != EngineMap.end()) {
875         void *P = eeIt->second->getPointerToFunction(F);
876         if (P)
877           return P;
878       } else {
879         ExecutionEngine *EE = compileModule(*it);
880         void *P = EE->getPointerToFunction(F);
881         if (P)
882           return P;
883       }
884     }
885   }
886   return NULL;
887 }
888
889 void MCJITHelper::closeCurrentModule() {
890   OpenModule = NULL;
891 }
892
893 ExecutionEngine *MCJITHelper::compileModule(Module *M) {
894   if (M == OpenModule)
895     closeCurrentModule();
896
897   std::string ErrStr;
898   ExecutionEngine *NewEngine = EngineBuilder(M)
899                                             .setErrorStr(&ErrStr)
900                                             .setMCJITMemoryManager(new HelpingMemoryManager(this))
901                                             .create();
902   if (!NewEngine) {
903     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
904     exit(1);
905   }
906
907   if (UseObjectCache)
908     NewEngine->setObjectCache(&OurObjectCache);
909
910   // Get the ModuleID so we can identify IR input files
911   const std::string ModuleID = M->getModuleIdentifier();
912
913   // If we've flagged this as an IR file, it doesn't need function passes run.
914   if (0 != ModuleID.compare(0, 3, "IR:")) {
915     // Create a function pass manager for this engine
916     FunctionPassManager *FPM = new FunctionPassManager(M);
917
918     // Set up the optimizer pipeline.  Start with registering info about how the
919     // target lays out data structures.
920     FPM->add(new DataLayout(*NewEngine->getDataLayout()));
921     // Provide basic AliasAnalysis support for GVN.
922     FPM->add(createBasicAliasAnalysisPass());
923     // Promote allocas to registers.
924     FPM->add(createPromoteMemoryToRegisterPass());
925     // Do simple "peephole" optimizations and bit-twiddling optzns.
926     FPM->add(createInstructionCombiningPass());
927     // Reassociate expressions.
928     FPM->add(createReassociatePass());
929     // Eliminate Common SubExpressions.
930     FPM->add(createGVNPass());
931     // Simplify the control flow graph (deleting unreachable blocks, etc).
932     FPM->add(createCFGSimplificationPass());
933     FPM->doInitialization();
934
935     // For each function in the module
936     Module::iterator it;
937     Module::iterator end = M->end();
938     for (it = M->begin(); it != end; ++it) {
939       // Run the FPM on this function
940       FPM->run(*it);
941     }
942
943     // We don't need this anymore
944     delete FPM;
945   }
946
947   // Store this engine
948   EngineMap[M] = NewEngine;
949   NewEngine->finalizeObject();
950
951   return NewEngine;
952 }
953
954 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
955 {
956   // Look for the functions in our modules, compiling only as necessary
957   ModuleVector::iterator begin = Modules.begin();
958   ModuleVector::iterator end = Modules.end();
959   ModuleVector::iterator it;
960   for (it = begin; it != end; ++it) {
961     Function *F = (*it)->getFunction(Name);
962     if (F && !F->empty()) {
963       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
964       if (eeIt != EngineMap.end()) {
965         void *P = eeIt->second->getPointerToFunction(F);
966         if (P)
967           return P;
968       } else {
969         ExecutionEngine *EE = compileModule(*it);
970         void *P = EE->getPointerToFunction(F);
971         if (P)
972           return P;
973       }
974     }
975   }
976   return NULL;
977 }
978
979 void MCJITHelper::addModule(Module* M) {
980   Modules.push_back(M);
981 }
982
983 void MCJITHelper::dump()
984 {
985   ModuleVector::iterator begin = Modules.begin();
986   ModuleVector::iterator end = Modules.end();
987   ModuleVector::iterator it;
988   for (it = begin; it != end; ++it)
989     (*it)->dump();
990 }
991
992 //===----------------------------------------------------------------------===//
993 // Code Generation
994 //===----------------------------------------------------------------------===//
995
996 static MCJITHelper *TheHelper;
997 static IRBuilder<> Builder(getGlobalContext());
998 static std::map<std::string, AllocaInst*> NamedValues;
999
1000 Value *ErrorV(const char *Str) { Error(Str); return 0; }
1001
1002 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
1003 /// the function.  This is used for mutable variables etc.
1004 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
1005                                           const std::string &VarName) {
1006   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
1007                  TheFunction->getEntryBlock().begin());
1008   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
1009                            VarName.c_str());
1010 }
1011
1012 Value *NumberExprAST::Codegen() {
1013   return ConstantFP::get(getGlobalContext(), APFloat(Val));
1014 }
1015
1016 Value *VariableExprAST::Codegen() {
1017   // Look this variable up in the function.
1018   Value *V = NamedValues[Name];
1019   char ErrStr[256];
1020   sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
1021   if (V == 0) return ErrorV(ErrStr);
1022
1023   // Load the value.
1024   return Builder.CreateLoad(V, Name.c_str());
1025 }
1026
1027 Value *UnaryExprAST::Codegen() {
1028   Value *OperandV = Operand->Codegen();
1029   if (OperandV == 0) return 0;
1030
1031   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
1032   if (F == 0)
1033     return ErrorV("Unknown unary operator");
1034
1035   return Builder.CreateCall(F, OperandV, "unop");
1036 }
1037
1038 Value *BinaryExprAST::Codegen() {
1039   // Special case '=' because we don't want to emit the LHS as an expression.
1040   if (Op == '=') {
1041     // Assignment requires the LHS to be an identifier.
1042     VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
1043     if (!LHSE)
1044       return ErrorV("destination of '=' must be a variable");
1045     // Codegen the RHS.
1046     Value *Val = RHS->Codegen();
1047     if (Val == 0) return 0;
1048
1049     // Look up the name.
1050     Value *Variable = NamedValues[LHSE->getName()];
1051     if (Variable == 0) return ErrorV("Unknown variable name");
1052
1053     Builder.CreateStore(Val, Variable);
1054     return Val;
1055   }
1056
1057   Value *L = LHS->Codegen();
1058   Value *R = RHS->Codegen();
1059   if (L == 0 || R == 0) return 0;
1060
1061   switch (Op) {
1062   case '+': return Builder.CreateFAdd(L, R, "addtmp");
1063   case '-': return Builder.CreateFSub(L, R, "subtmp");
1064   case '*': return Builder.CreateFMul(L, R, "multmp");
1065   case '/': return Builder.CreateFDiv(L, R, "divtmp");
1066   case '<':
1067     L = Builder.CreateFCmpULT(L, R, "cmptmp");
1068     // Convert bool 0/1 to double 0.0 or 1.0
1069     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
1070                                 "booltmp");
1071   default: break;
1072   }
1073
1074   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
1075   // a call to it.
1076   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
1077   assert(F && "binary operator not found!");
1078
1079   Value *Ops[] = { L, R };
1080   return Builder.CreateCall(F, Ops, "binop");
1081 }
1082
1083 Value *CallExprAST::Codegen() {
1084   // Look up the name in the global module table.
1085   Function *CalleeF = TheHelper->getFunction(Callee);
1086   if (CalleeF == 0)
1087     return ErrorV("Unknown function referenced");
1088
1089   // If argument mismatch error.
1090   if (CalleeF->arg_size() != Args.size())
1091     return ErrorV("Incorrect # arguments passed");
1092
1093   std::vector<Value*> ArgsV;
1094   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1095     ArgsV.push_back(Args[i]->Codegen());
1096     if (ArgsV.back() == 0) return 0;
1097   }
1098
1099   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
1100 }
1101
1102 Value *IfExprAST::Codegen() {
1103   Value *CondV = Cond->Codegen();
1104   if (CondV == 0) return 0;
1105
1106   // Convert condition to a bool by comparing equal to 0.0.
1107   CondV = Builder.CreateFCmpONE(CondV,
1108                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1109                                 "ifcond");
1110
1111   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1112
1113   // Create blocks for the then and else cases.  Insert the 'then' block at the
1114   // end of the function.
1115   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1116   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1117   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
1118
1119   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1120
1121   // Emit then value.
1122   Builder.SetInsertPoint(ThenBB);
1123
1124   Value *ThenV = Then->Codegen();
1125   if (ThenV == 0) return 0;
1126
1127   Builder.CreateBr(MergeBB);
1128   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1129   ThenBB = Builder.GetInsertBlock();
1130
1131   // Emit else block.
1132   TheFunction->getBasicBlockList().push_back(ElseBB);
1133   Builder.SetInsertPoint(ElseBB);
1134
1135   Value *ElseV = Else->Codegen();
1136   if (ElseV == 0) return 0;
1137
1138   Builder.CreateBr(MergeBB);
1139   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1140   ElseBB = Builder.GetInsertBlock();
1141
1142   // Emit merge block.
1143   TheFunction->getBasicBlockList().push_back(MergeBB);
1144   Builder.SetInsertPoint(MergeBB);
1145   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
1146                                   "iftmp");
1147
1148   PN->addIncoming(ThenV, ThenBB);
1149   PN->addIncoming(ElseV, ElseBB);
1150   return PN;
1151 }
1152
1153 Value *ForExprAST::Codegen() {
1154   // Output this as:
1155   //   var = alloca double
1156   //   ...
1157   //   start = startexpr
1158   //   store start -> var
1159   //   goto loop
1160   // loop:
1161   //   ...
1162   //   bodyexpr
1163   //   ...
1164   // loopend:
1165   //   step = stepexpr
1166   //   endcond = endexpr
1167   //
1168   //   curvar = load var
1169   //   nextvar = curvar + step
1170   //   store nextvar -> var
1171   //   br endcond, loop, endloop
1172   // outloop:
1173
1174   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1175
1176   // Create an alloca for the variable in the entry block.
1177   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1178
1179   // Emit the start code first, without 'variable' in scope.
1180   Value *StartVal = Start->Codegen();
1181   if (StartVal == 0) return 0;
1182
1183   // Store the value into the alloca.
1184   Builder.CreateStore(StartVal, Alloca);
1185
1186   // Make the new basic block for the loop header, inserting after current
1187   // block.
1188   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1189
1190   // Insert an explicit fall through from the current block to the LoopBB.
1191   Builder.CreateBr(LoopBB);
1192
1193   // Start insertion in LoopBB.
1194   Builder.SetInsertPoint(LoopBB);
1195
1196   // Within the loop, the variable is defined equal to the PHI node.  If it
1197   // shadows an existing variable, we have to restore it, so save it now.
1198   AllocaInst *OldVal = NamedValues[VarName];
1199   NamedValues[VarName] = Alloca;
1200
1201   // Emit the body of the loop.  This, like any other expr, can change the
1202   // current BB.  Note that we ignore the value computed by the body, but don't
1203   // allow an error.
1204   if (Body->Codegen() == 0)
1205     return 0;
1206
1207   // Emit the step value.
1208   Value *StepVal;
1209   if (Step) {
1210     StepVal = Step->Codegen();
1211     if (StepVal == 0) return 0;
1212   } else {
1213     // If not specified, use 1.0.
1214     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1215   }
1216
1217   // Compute the end condition.
1218   Value *EndCond = End->Codegen();
1219   if (EndCond == 0) return EndCond;
1220
1221   // Reload, increment, and restore the alloca.  This handles the case where
1222   // the body of the loop mutates the variable.
1223   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1224   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1225   Builder.CreateStore(NextVar, Alloca);
1226
1227   // Convert condition to a bool by comparing equal to 0.0.
1228   EndCond = Builder.CreateFCmpONE(EndCond,
1229                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1230                                   "loopcond");
1231
1232   // Create the "after loop" block and insert it.
1233   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1234
1235   // Insert the conditional branch into the end of LoopEndBB.
1236   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1237
1238   // Any new code will be inserted in AfterBB.
1239   Builder.SetInsertPoint(AfterBB);
1240
1241   // Restore the unshadowed variable.
1242   if (OldVal)
1243     NamedValues[VarName] = OldVal;
1244   else
1245     NamedValues.erase(VarName);
1246
1247
1248   // for expr always returns 0.0.
1249   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1250 }
1251
1252 Value *VarExprAST::Codegen() {
1253   std::vector<AllocaInst *> OldBindings;
1254
1255   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1256
1257   // Register all variables and emit their initializer.
1258   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1259     const std::string &VarName = VarNames[i].first;
1260     ExprAST *Init = VarNames[i].second;
1261
1262     // Emit the initializer before adding the variable to scope, this prevents
1263     // the initializer from referencing the variable itself, and permits stuff
1264     // like this:
1265     //  var a = 1 in
1266     //    var a = a in ...   # refers to outer 'a'.
1267     Value *InitVal;
1268     if (Init) {
1269       InitVal = Init->Codegen();
1270       if (InitVal == 0) return 0;
1271     } else { // If not specified, use 0.0.
1272       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1273     }
1274
1275     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1276     Builder.CreateStore(InitVal, Alloca);
1277
1278     // Remember the old variable binding so that we can restore the binding when
1279     // we unrecurse.
1280     OldBindings.push_back(NamedValues[VarName]);
1281
1282     // Remember this binding.
1283     NamedValues[VarName] = Alloca;
1284   }
1285
1286   // Codegen the body, now that all vars are in scope.
1287   Value *BodyVal = Body->Codegen();
1288   if (BodyVal == 0) return 0;
1289
1290   // Pop all our variables from scope.
1291   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1292     NamedValues[VarNames[i].first] = OldBindings[i];
1293
1294   // Return the body computation.
1295   return BodyVal;
1296 }
1297
1298 Function *PrototypeAST::Codegen() {
1299   // Make the function type:  double(double,double) etc.
1300   std::vector<Type*> Doubles(Args.size(),
1301                              Type::getDoubleTy(getGlobalContext()));
1302   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1303                                        Doubles, false);
1304
1305   std::string FnName = MakeLegalFunctionName(Name);
1306
1307   Module* M = TheHelper->getModuleForNewFunction();
1308
1309   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
1310
1311   // If F conflicted, there was already something named 'FnName'.  If it has a
1312   // body, don't allow redefinition or reextern.
1313   if (F->getName() != FnName) {
1314     // Delete the one we just made and get the existing one.
1315     F->eraseFromParent();
1316     F = M->getFunction(Name);
1317
1318     // If F already has a body, reject this.
1319     if (!F->empty()) {
1320       ErrorF("redefinition of function");
1321       return 0;
1322     }
1323
1324     // If F took a different number of args, reject.
1325     if (F->arg_size() != Args.size()) {
1326       ErrorF("redefinition of function with different # args");
1327       return 0;
1328     }
1329   }
1330
1331   // Set names for all arguments.
1332   unsigned Idx = 0;
1333   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1334        ++AI, ++Idx)
1335     AI->setName(Args[Idx]);
1336
1337   return F;
1338 }
1339
1340 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1341 /// argument in the symbol table so that references to it will succeed.
1342 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1343   Function::arg_iterator AI = F->arg_begin();
1344   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1345     // Create an alloca for this variable.
1346     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1347
1348     // Store the initial value into the alloca.
1349     Builder.CreateStore(AI, Alloca);
1350
1351     // Add arguments to variable symbol table.
1352     NamedValues[Args[Idx]] = Alloca;
1353   }
1354 }
1355
1356 Function *FunctionAST::Codegen() {
1357   NamedValues.clear();
1358
1359   Function *TheFunction = Proto->Codegen();
1360   if (TheFunction == 0)
1361     return 0;
1362
1363   // If this is an operator, install it.
1364   if (Proto->isBinaryOp())
1365     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1366
1367   // Create a new basic block to start insertion into.
1368   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1369   Builder.SetInsertPoint(BB);
1370
1371   // Add all arguments to the symbol table and create their allocas.
1372   Proto->CreateArgumentAllocas(TheFunction);
1373
1374   if (Value *RetVal = Body->Codegen()) {
1375     // Finish off the function.
1376     Builder.CreateRet(RetVal);
1377
1378     // Validate the generated code, checking for consistency.
1379     verifyFunction(*TheFunction);
1380
1381     return TheFunction;
1382   }
1383
1384   // Error reading body, remove function.
1385   TheFunction->eraseFromParent();
1386
1387   if (Proto->isBinaryOp())
1388     BinopPrecedence.erase(Proto->getOperatorName());
1389   return 0;
1390 }
1391
1392 //===----------------------------------------------------------------------===//
1393 // Top-Level parsing and JIT Driver
1394 //===----------------------------------------------------------------------===//
1395
1396 static void HandleDefinition() {
1397   if (FunctionAST *F = ParseDefinition()) {
1398     TheHelper->closeCurrentModule();
1399     if (Function *LF = F->Codegen()) {
1400 #ifndef MINIMAL_STDERR_OUTPUT
1401       fprintf(stderr, "Read function definition:");
1402       LF->dump();
1403 #endif
1404     }
1405   } else {
1406     // Skip token for error recovery.
1407     getNextToken();
1408   }
1409 }
1410
1411 static void HandleExtern() {
1412   if (PrototypeAST *P = ParseExtern()) {
1413     if (Function *F = P->Codegen()) {
1414 #ifndef MINIMAL_STDERR_OUTPUT
1415       fprintf(stderr, "Read extern: ");
1416       F->dump();
1417 #endif
1418     }
1419   } else {
1420     // Skip token for error recovery.
1421     getNextToken();
1422   }
1423 }
1424
1425 static void HandleTopLevelExpression() {
1426   // Evaluate a top-level expression into an anonymous function.
1427   if (FunctionAST *F = ParseTopLevelExpr()) {
1428     if (Function *LF = F->Codegen()) {
1429       // JIT the function, returning a function pointer.
1430       void *FPtr = TheHelper->getPointerToFunction(LF);
1431
1432       // Cast it to the right type (takes no arguments, returns a double) so we
1433       // can call it as a native function.
1434       double (*FP)() = (double (*)())(intptr_t)FPtr;
1435 #ifdef MINIMAL_STDERR_OUTPUT
1436       FP();
1437 #else
1438       fprintf(stderr, "Evaluated to %f\n", FP());
1439 #endif
1440     }
1441   } else {
1442     // Skip token for error recovery.
1443     getNextToken();
1444   }
1445 }
1446
1447 /// top ::= definition | external | expression | ';'
1448 static void MainLoop() {
1449   while (1) {
1450 #ifndef MINIMAL_STDERR_OUTPUT
1451     fprintf(stderr, "ready> ");
1452 #endif
1453     switch (CurTok) {
1454     case tok_eof:    return;
1455     case ';':        getNextToken(); break;  // ignore top-level semicolons.
1456     case tok_def:    HandleDefinition(); break;
1457     case tok_extern: HandleExtern(); break;
1458     default:         HandleTopLevelExpression(); break;
1459     }
1460   }
1461 }
1462
1463 //===----------------------------------------------------------------------===//
1464 // "Library" functions that can be "extern'd" from user code.
1465 //===----------------------------------------------------------------------===//
1466
1467 /// putchard - putchar that takes a double and returns 0.
1468 extern "C"
1469 double putchard(double X) {
1470   putchar((char)X);
1471   return 0;
1472 }
1473
1474 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1475 extern "C"
1476 double printd(double X) {
1477   printf("%f", X);
1478   return 0;
1479 }
1480
1481 extern "C"
1482 double printlf() {
1483   printf("\n");
1484   return 0;
1485 }
1486
1487 //===----------------------------------------------------------------------===//
1488 // Command line input file handler
1489 //===----------------------------------------------------------------------===//
1490
1491 Module* parseInputIR(std::string InputFile) {
1492   SMDiagnostic Err;
1493   Module *M = ParseIRFile(InputFile, Err, getGlobalContext());
1494   if (!M) {
1495     Err.print("IR parsing failed: ", errs());
1496     return NULL;
1497   }
1498
1499   char ModID[256];
1500   sprintf(ModID, "IR:%s", InputFile.c_str());
1501   M->setModuleIdentifier(ModID);
1502
1503   TheHelper->addModule(M);
1504   return M;
1505 }
1506
1507 //===----------------------------------------------------------------------===//
1508 // Main driver code.
1509 //===----------------------------------------------------------------------===//
1510
1511 int main(int argc, char **argv) {
1512   InitializeNativeTarget();
1513   InitializeNativeTargetAsmPrinter();
1514   InitializeNativeTargetAsmParser();
1515   LLVMContext &Context = getGlobalContext();
1516
1517   cl::ParseCommandLineOptions(argc, argv,
1518                               "Kaleidoscope example program\n");
1519
1520   // Install standard binary operators.
1521   // 1 is lowest precedence.
1522   BinopPrecedence['='] = 2;
1523   BinopPrecedence['<'] = 10;
1524   BinopPrecedence['+'] = 20;
1525   BinopPrecedence['-'] = 20;
1526   BinopPrecedence['/'] = 40;
1527   BinopPrecedence['*'] = 40;  // highest.
1528
1529   // Prime the first token.
1530 #ifndef MINIMAL_STDERR_OUTPUT
1531   fprintf(stderr, "ready> ");
1532 #endif
1533   getNextToken();
1534
1535   // Make the helper, which holds all the code.
1536   TheHelper = new MCJITHelper(Context);
1537
1538   if (!InputIR.empty()) {
1539     parseInputIR(InputIR);
1540   }
1541
1542   // Run the main "interpreter loop" now.
1543   MainLoop();
1544
1545 #ifndef MINIMAL_STDERR_OUTPUT
1546   // Print out all of the generated code.
1547   TheHelper->dump();
1548 #endif
1549
1550   return 0;
1551 }