Taints relaxed loads to enforce load/store ordering
[oota-llvm.git] / docs / tutorial / OCamlLangImpl4.rst
1 ==============================================
2 Kaleidoscope: Adding JIT and Optimizer Support
3 ==============================================
4
5 .. contents::
6    :local:
7
8 Chapter 4 Introduction
9 ======================
10
11 Welcome to Chapter 4 of the "`Implementing a language with
12 LLVM <index.html>`_" tutorial. Chapters 1-3 described the implementation
13 of a simple language and added support for generating LLVM IR. This
14 chapter describes two new techniques: adding optimizer support to your
15 language, and adding JIT compiler support. These additions will
16 demonstrate how to get nice, efficient code for the Kaleidoscope
17 language.
18
19 Trivial Constant Folding
20 ========================
21
22 **Note:** the default ``IRBuilder`` now always includes the constant
23 folding optimisations below.
24
25 Our demonstration for Chapter 3 is elegant and easy to extend.
26 Unfortunately, it does not produce wonderful code. For example, when
27 compiling simple code, we don't get obvious optimizations:
28
29 ::
30
31     ready> def test(x) 1+2+x;
32     Read function definition:
33     define double @test(double %x) {
34     entry:
35             %addtmp = fadd double 1.000000e+00, 2.000000e+00
36             %addtmp1 = fadd double %addtmp, %x
37             ret double %addtmp1
38     }
39
40 This code is a very, very literal transcription of the AST built by
41 parsing the input. As such, this transcription lacks optimizations like
42 constant folding (we'd like to get "``add x, 3.0``" in the example
43 above) as well as other more important optimizations. Constant folding,
44 in particular, is a very common and very important optimization: so much
45 so that many language implementors implement constant folding support in
46 their AST representation.
47
48 With LLVM, you don't need this support in the AST. Since all calls to
49 build LLVM IR go through the LLVM builder, it would be nice if the
50 builder itself checked to see if there was a constant folding
51 opportunity when you call it. If so, it could just do the constant fold
52 and return the constant instead of creating an instruction. This is
53 exactly what the ``LLVMFoldingBuilder`` class does.
54
55 All we did was switch from ``LLVMBuilder`` to ``LLVMFoldingBuilder``.
56 Though we change no other code, we now have all of our instructions
57 implicitly constant folded without us having to do anything about it.
58 For example, the input above now compiles to:
59
60 ::
61
62     ready> def test(x) 1+2+x;
63     Read function definition:
64     define double @test(double %x) {
65     entry:
66             %addtmp = fadd double 3.000000e+00, %x
67             ret double %addtmp
68     }
69
70 Well, that was easy :). In practice, we recommend always using
71 ``LLVMFoldingBuilder`` when generating code like this. It has no
72 "syntactic overhead" for its use (you don't have to uglify your compiler
73 with constant checks everywhere) and it can dramatically reduce the
74 amount of LLVM IR that is generated in some cases (particular for
75 languages with a macro preprocessor or that use a lot of constants).
76
77 On the other hand, the ``LLVMFoldingBuilder`` is limited by the fact
78 that it does all of its analysis inline with the code as it is built. If
79 you take a slightly more complex example:
80
81 ::
82
83     ready> def test(x) (1+2+x)*(x+(1+2));
84     ready> Read function definition:
85     define double @test(double %x) {
86     entry:
87             %addtmp = fadd double 3.000000e+00, %x
88             %addtmp1 = fadd double %x, 3.000000e+00
89             %multmp = fmul double %addtmp, %addtmp1
90             ret double %multmp
91     }
92
93 In this case, the LHS and RHS of the multiplication are the same value.
94 We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``"
95 instead of computing "``x*3``" twice.
96
97 Unfortunately, no amount of local analysis will be able to detect and
98 correct this. This requires two transformations: reassociation of
99 expressions (to make the add's lexically identical) and Common
100 Subexpression Elimination (CSE) to delete the redundant add instruction.
101 Fortunately, LLVM provides a broad range of optimizations that you can
102 use, in the form of "passes".
103
104 LLVM Optimization Passes
105 ========================
106
107 LLVM provides many optimization passes, which do many different sorts of
108 things and have different tradeoffs. Unlike other systems, LLVM doesn't
109 hold to the mistaken notion that one set of optimizations is right for
110 all languages and for all situations. LLVM allows a compiler implementor
111 to make complete decisions about what optimizations to use, in which
112 order, and in what situation.
113
114 As a concrete example, LLVM supports both "whole module" passes, which
115 look across as large of body of code as they can (often a whole file,
116 but if run at link time, this can be a substantial portion of the whole
117 program). It also supports and includes "per-function" passes which just
118 operate on a single function at a time, without looking at other
119 functions. For more information on passes and how they are run, see the
120 `How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the
121 `List of LLVM Passes <../Passes.html>`_.
122
123 For Kaleidoscope, we are currently generating functions on the fly, one
124 at a time, as the user types them in. We aren't shooting for the
125 ultimate optimization experience in this setting, but we also want to
126 catch the easy and quick stuff where possible. As such, we will choose
127 to run a few per-function optimizations as the user types the function
128 in. If we wanted to make a "static Kaleidoscope compiler", we would use
129 exactly the code we have now, except that we would defer running the
130 optimizer until the entire file has been parsed.
131
132 In order to get per-function optimizations going, we need to set up a
133 `Llvm.PassManager <../WritingAnLLVMPass.html#what-passmanager-does>`_ to hold and
134 organize the LLVM optimizations that we want to run. Once we have that,
135 we can add a set of optimizations to run. The code looks like this:
136
137 .. code-block:: ocaml
138
139       (* Create the JIT. *)
140       let the_execution_engine = ExecutionEngine.create Codegen.the_module in
141       let the_fpm = PassManager.create_function Codegen.the_module in
142
143       (* Set up the optimizer pipeline.  Start with registering info about how the
144        * target lays out data structures. *)
145       DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
146
147       (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
148       add_instruction_combining the_fpm;
149
150       (* reassociate expressions. *)
151       add_reassociation the_fpm;
152
153       (* Eliminate Common SubExpressions. *)
154       add_gvn the_fpm;
155
156       (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
157       add_cfg_simplification the_fpm;
158
159       ignore (PassManager.initialize the_fpm);
160
161       (* Run the main "interpreter loop" now. *)
162       Toplevel.main_loop the_fpm the_execution_engine stream;
163
164 The meat of the matter here, is the definition of "``the_fpm``". It
165 requires a pointer to the ``the_module`` to construct itself. Once it is
166 set up, we use a series of "add" calls to add a bunch of LLVM passes.
167 The first pass is basically boilerplate, it adds a pass so that later
168 optimizations know how the data structures in the program are laid out.
169 The "``the_execution_engine``" variable is related to the JIT, which we
170 will get to in the next section.
171
172 In this case, we choose to add 4 optimization passes. The passes we
173 chose here are a pretty standard set of "cleanup" optimizations that are
174 useful for a wide variety of code. I won't delve into what they do but,
175 believe me, they are a good starting place :).
176
177 Once the ``Llvm.PassManager.`` is set up, we need to make use of it. We
178 do this by running it after our newly created function is constructed
179 (in ``Codegen.codegen_func``), but before it is returned to the client:
180
181 .. code-block:: ocaml
182
183     let codegen_func the_fpm = function
184           ...
185           try
186             let ret_val = codegen_expr body in
187
188             (* Finish off the function. *)
189             let _ = build_ret ret_val builder in
190
191             (* Validate the generated code, checking for consistency. *)
192             Llvm_analysis.assert_valid_function the_function;
193
194             (* Optimize the function. *)
195             let _ = PassManager.run_function the_function the_fpm in
196
197             the_function
198
199 As you can see, this is pretty straightforward. The ``the_fpm``
200 optimizes and updates the LLVM Function\* in place, improving
201 (hopefully) its body. With this in place, we can try our test above
202 again:
203
204 ::
205
206     ready> def test(x) (1+2+x)*(x+(1+2));
207     ready> Read function definition:
208     define double @test(double %x) {
209     entry:
210             %addtmp = fadd double %x, 3.000000e+00
211             %multmp = fmul double %addtmp, %addtmp
212             ret double %multmp
213     }
214
215 As expected, we now get our nicely optimized code, saving a floating
216 point add instruction from every execution of this function.
217
218 LLVM provides a wide variety of optimizations that can be used in
219 certain circumstances. Some `documentation about the various
220 passes <../Passes.html>`_ is available, but it isn't very complete.
221 Another good source of ideas can come from looking at the passes that
222 ``Clang`` runs to get started. The "``opt``" tool allows you to
223 experiment with passes from the command line, so you can see if they do
224 anything.
225
226 Now that we have reasonable code coming out of our front-end, lets talk
227 about executing it!
228
229 Adding a JIT Compiler
230 =====================
231
232 Code that is available in LLVM IR can have a wide variety of tools
233 applied to it. For example, you can run optimizations on it (as we did
234 above), you can dump it out in textual or binary forms, you can compile
235 the code to an assembly file (.s) for some target, or you can JIT
236 compile it. The nice thing about the LLVM IR representation is that it
237 is the "common currency" between many different parts of the compiler.
238
239 In this section, we'll add JIT compiler support to our interpreter. The
240 basic idea that we want for Kaleidoscope is to have the user enter
241 function bodies as they do now, but immediately evaluate the top-level
242 expressions they type in. For example, if they type in "1 + 2;", we
243 should evaluate and print out 3. If they define a function, they should
244 be able to call it from the command line.
245
246 In order to do this, we first declare and initialize the JIT. This is
247 done by adding a global variable and a call in ``main``:
248
249 .. code-block:: ocaml
250
251     ...
252     let main () =
253       ...
254       (* Create the JIT. *)
255       let the_execution_engine = ExecutionEngine.create Codegen.the_module in
256       ...
257
258 This creates an abstract "Execution Engine" which can be either a JIT
259 compiler or the LLVM interpreter. LLVM will automatically pick a JIT
260 compiler for you if one is available for your platform, otherwise it
261 will fall back to the interpreter.
262
263 Once the ``Llvm_executionengine.ExecutionEngine.t`` is created, the JIT
264 is ready to be used. There are a variety of APIs that are useful, but
265 the simplest one is the
266 "``Llvm_executionengine.ExecutionEngine.run_function``" function. This
267 method JIT compiles the specified LLVM Function and returns a function
268 pointer to the generated machine code. In our case, this means that we
269 can change the code that parses a top-level expression to look like
270 this:
271
272 .. code-block:: ocaml
273
274                 (* Evaluate a top-level expression into an anonymous function. *)
275                 let e = Parser.parse_toplevel stream in
276                 print_endline "parsed a top-level expr";
277                 let the_function = Codegen.codegen_func the_fpm e in
278                 dump_value the_function;
279
280                 (* JIT the function, returning a function pointer. *)
281                 let result = ExecutionEngine.run_function the_function [||]
282                   the_execution_engine in
283
284                 print_string "Evaluated to ";
285                 print_float (GenericValue.as_float Codegen.double_type result);
286                 print_newline ();
287
288 Recall that we compile top-level expressions into a self-contained LLVM
289 function that takes no arguments and returns the computed double.
290 Because the LLVM JIT compiler matches the native platform ABI, this
291 means that you can just cast the result pointer to a function pointer of
292 that type and call it directly. This means, there is no difference
293 between JIT compiled code and native machine code that is statically
294 linked into your application.
295
296 With just these two changes, lets see how Kaleidoscope works now!
297
298 ::
299
300     ready> 4+5;
301     define double @""() {
302     entry:
303             ret double 9.000000e+00
304     }
305
306     Evaluated to 9.000000
307
308 Well this looks like it is basically working. The dump of the function
309 shows the "no argument function that always returns double" that we
310 synthesize for each top level expression that is typed in. This
311 demonstrates very basic functionality, but can we do more?
312
313 ::
314
315     ready> def testfunc(x y) x + y*2;
316     Read function definition:
317     define double @testfunc(double %x, double %y) {
318     entry:
319             %multmp = fmul double %y, 2.000000e+00
320             %addtmp = fadd double %multmp, %x
321             ret double %addtmp
322     }
323
324     ready> testfunc(4, 10);
325     define double @""() {
326     entry:
327             %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
328             ret double %calltmp
329     }
330
331     Evaluated to 24.000000
332
333 This illustrates that we can now call user code, but there is something
334 a bit subtle going on here. Note that we only invoke the JIT on the
335 anonymous functions that *call testfunc*, but we never invoked it on
336 *testfunc* itself. What actually happened here is that the JIT scanned
337 for all non-JIT'd functions transitively called from the anonymous
338 function and compiled all of them before returning from
339 ``run_function``.
340
341 The JIT provides a number of other more advanced interfaces for things
342 like freeing allocated machine code, rejit'ing functions to update them,
343 etc. However, even with this simple code, we get some surprisingly
344 powerful capabilities - check this out (I removed the dump of the
345 anonymous functions, you should get the idea by now :) :
346
347 ::
348
349     ready> extern sin(x);
350     Read extern:
351     declare double @sin(double)
352
353     ready> extern cos(x);
354     Read extern:
355     declare double @cos(double)
356
357     ready> sin(1.0);
358     Evaluated to 0.841471
359
360     ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
361     Read function definition:
362     define double @foo(double %x) {
363     entry:
364             %calltmp = call double @sin(double %x)
365             %multmp = fmul double %calltmp, %calltmp
366             %calltmp2 = call double @cos(double %x)
367             %multmp4 = fmul double %calltmp2, %calltmp2
368             %addtmp = fadd double %multmp, %multmp4
369             ret double %addtmp
370     }
371
372     ready> foo(4.0);
373     Evaluated to 1.000000
374
375 Whoa, how does the JIT know about sin and cos? The answer is
376 surprisingly simple: in this example, the JIT started execution of a
377 function and got to a function call. It realized that the function was
378 not yet JIT compiled and invoked the standard set of routines to resolve
379 the function. In this case, there is no body defined for the function,
380 so the JIT ended up calling "``dlsym("sin")``" on the Kaleidoscope
381 process itself. Since "``sin``" is defined within the JIT's address
382 space, it simply patches up calls in the module to call the libm version
383 of ``sin`` directly.
384
385 The LLVM JIT provides a number of interfaces (look in the
386 ``llvm_executionengine.mli`` file) for controlling how unknown functions
387 get resolved. It allows you to establish explicit mappings between IR
388 objects and addresses (useful for LLVM global variables that you want to
389 map to static tables, for example), allows you to dynamically decide on
390 the fly based on the function name, and even allows you to have the JIT
391 compile functions lazily the first time they're called.
392
393 One interesting application of this is that we can now extend the
394 language by writing arbitrary C code to implement operations. For
395 example, if we add:
396
397 .. code-block:: c++
398
399     /* putchard - putchar that takes a double and returns 0. */
400     extern "C"
401     double putchard(double X) {
402       putchar((char)X);
403       return 0;
404     }
405
406 Now we can produce simple output to the console by using things like:
407 "``extern putchard(x); putchard(120);``", which prints a lowercase 'x'
408 on the console (120 is the ASCII code for 'x'). Similar code could be
409 used to implement file I/O, console input, and many other capabilities
410 in Kaleidoscope.
411
412 This completes the JIT and optimizer chapter of the Kaleidoscope
413 tutorial. At this point, we can compile a non-Turing-complete
414 programming language, optimize and JIT compile it in a user-driven way.
415 Next up we'll look into `extending the language with control flow
416 constructs <OCamlLangImpl5.html>`_, tackling some interesting LLVM IR
417 issues along the way.
418
419 Full Code Listing
420 =================
421
422 Here is the complete code listing for our running example, enhanced with
423 the LLVM JIT and optimizer. To build this example, use:
424
425 .. code-block:: bash
426
427     # Compile
428     ocamlbuild toy.byte
429     # Run
430     ./toy.byte
431
432 Here is the code:
433
434 \_tags:
435     ::
436
437         <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
438         <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
439         <*.{byte,native}>: use_llvm_executionengine, use_llvm_target
440         <*.{byte,native}>: use_llvm_scalar_opts, use_bindings
441
442 myocamlbuild.ml:
443     .. code-block:: ocaml
444
445         open Ocamlbuild_plugin;;
446
447         ocaml_lib ~extern:true "llvm";;
448         ocaml_lib ~extern:true "llvm_analysis";;
449         ocaml_lib ~extern:true "llvm_executionengine";;
450         ocaml_lib ~extern:true "llvm_target";;
451         ocaml_lib ~extern:true "llvm_scalar_opts";;
452
453         flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
454         dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
455
456 token.ml:
457     .. code-block:: ocaml
458
459         (*===----------------------------------------------------------------------===
460          * Lexer Tokens
461          *===----------------------------------------------------------------------===*)
462
463         (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
464          * these others for known things. *)
465         type token =
466           (* commands *)
467           | Def | Extern
468
469           (* primary *)
470           | Ident of string | Number of float
471
472           (* unknown *)
473           | Kwd of char
474
475 lexer.ml:
476     .. code-block:: ocaml
477
478         (*===----------------------------------------------------------------------===
479          * Lexer
480          *===----------------------------------------------------------------------===*)
481
482         let rec lex = parser
483           (* Skip any whitespace. *)
484           | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
485
486           (* identifier: [a-zA-Z][a-zA-Z0-9] *)
487           | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
488               let buffer = Buffer.create 1 in
489               Buffer.add_char buffer c;
490               lex_ident buffer stream
491
492           (* number: [0-9.]+ *)
493           | [< ' ('0' .. '9' as c); stream >] ->
494               let buffer = Buffer.create 1 in
495               Buffer.add_char buffer c;
496               lex_number buffer stream
497
498           (* Comment until end of line. *)
499           | [< ' ('#'); stream >] ->
500               lex_comment stream
501
502           (* Otherwise, just return the character as its ascii value. *)
503           | [< 'c; stream >] ->
504               [< 'Token.Kwd c; lex stream >]
505
506           (* end of stream. *)
507           | [< >] -> [< >]
508
509         and lex_number buffer = parser
510           | [< ' ('0' .. '9' | '.' as c); stream >] ->
511               Buffer.add_char buffer c;
512               lex_number buffer stream
513           | [< stream=lex >] ->
514               [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
515
516         and lex_ident buffer = parser
517           | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
518               Buffer.add_char buffer c;
519               lex_ident buffer stream
520           | [< stream=lex >] ->
521               match Buffer.contents buffer with
522               | "def" -> [< 'Token.Def; stream >]
523               | "extern" -> [< 'Token.Extern; stream >]
524               | id -> [< 'Token.Ident id; stream >]
525
526         and lex_comment = parser
527           | [< ' ('\n'); stream=lex >] -> stream
528           | [< 'c; e=lex_comment >] -> e
529           | [< >] -> [< >]
530
531 ast.ml:
532     .. code-block:: ocaml
533
534         (*===----------------------------------------------------------------------===
535          * Abstract Syntax Tree (aka Parse Tree)
536          *===----------------------------------------------------------------------===*)
537
538         (* expr - Base type for all expression nodes. *)
539         type expr =
540           (* variant for numeric literals like "1.0". *)
541           | Number of float
542
543           (* variant for referencing a variable, like "a". *)
544           | Variable of string
545
546           (* variant for a binary operator. *)
547           | Binary of char * expr * expr
548
549           (* variant for function calls. *)
550           | Call of string * expr array
551
552         (* proto - This type represents the "prototype" for a function, which captures
553          * its name, and its argument names (thus implicitly the number of arguments the
554          * function takes). *)
555         type proto = Prototype of string * string array
556
557         (* func - This type represents a function definition itself. *)
558         type func = Function of proto * expr
559
560 parser.ml:
561     .. code-block:: ocaml
562
563         (*===---------------------------------------------------------------------===
564          * Parser
565          *===---------------------------------------------------------------------===*)
566
567         (* binop_precedence - This holds the precedence for each binary operator that is
568          * defined *)
569         let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
570
571         (* precedence - Get the precedence of the pending binary operator token. *)
572         let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
573
574         (* primary
575          *   ::= identifier
576          *   ::= numberexpr
577          *   ::= parenexpr *)
578         let rec parse_primary = parser
579           (* numberexpr ::= number *)
580           | [< 'Token.Number n >] -> Ast.Number n
581
582           (* parenexpr ::= '(' expression ')' *)
583           | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
584
585           (* identifierexpr
586            *   ::= identifier
587            *   ::= identifier '(' argumentexpr ')' *)
588           | [< 'Token.Ident id; stream >] ->
589               let rec parse_args accumulator = parser
590                 | [< e=parse_expr; stream >] ->
591                     begin parser
592                       | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
593                       | [< >] -> e :: accumulator
594                     end stream
595                 | [< >] -> accumulator
596               in
597               let rec parse_ident id = parser
598                 (* Call. *)
599                 | [< 'Token.Kwd '(';
600                      args=parse_args [];
601                      'Token.Kwd ')' ?? "expected ')'">] ->
602                     Ast.Call (id, Array.of_list (List.rev args))
603
604                 (* Simple variable ref. *)
605                 | [< >] -> Ast.Variable id
606               in
607               parse_ident id stream
608
609           | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
610
611         (* binoprhs
612          *   ::= ('+' primary)* *)
613         and parse_bin_rhs expr_prec lhs stream =
614           match Stream.peek stream with
615           (* If this is a binop, find its precedence. *)
616           | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
617               let token_prec = precedence c in
618
619               (* If this is a binop that binds at least as tightly as the current binop,
620                * consume it, otherwise we are done. *)
621               if token_prec < expr_prec then lhs else begin
622                 (* Eat the binop. *)
623                 Stream.junk stream;
624
625                 (* Parse the primary expression after the binary operator. *)
626                 let rhs = parse_primary stream in
627
628                 (* Okay, we know this is a binop. *)
629                 let rhs =
630                   match Stream.peek stream with
631                   | Some (Token.Kwd c2) ->
632                       (* If BinOp binds less tightly with rhs than the operator after
633                        * rhs, let the pending operator take rhs as its lhs. *)
634                       let next_prec = precedence c2 in
635                       if token_prec < next_prec
636                       then parse_bin_rhs (token_prec + 1) rhs stream
637                       else rhs
638                   | _ -> rhs
639                 in
640
641                 (* Merge lhs/rhs. *)
642                 let lhs = Ast.Binary (c, lhs, rhs) in
643                 parse_bin_rhs expr_prec lhs stream
644               end
645           | _ -> lhs
646
647         (* expression
648          *   ::= primary binoprhs *)
649         and parse_expr = parser
650           | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
651
652         (* prototype
653          *   ::= id '(' id* ')' *)
654         let parse_prototype =
655           let rec parse_args accumulator = parser
656             | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
657             | [< >] -> accumulator
658           in
659
660           parser
661           | [< 'Token.Ident id;
662                'Token.Kwd '(' ?? "expected '(' in prototype";
663                args=parse_args [];
664                'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
665               (* success. *)
666               Ast.Prototype (id, Array.of_list (List.rev args))
667
668           | [< >] ->
669               raise (Stream.Error "expected function name in prototype")
670
671         (* definition ::= 'def' prototype expression *)
672         let parse_definition = parser
673           | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
674               Ast.Function (p, e)
675
676         (* toplevelexpr ::= expression *)
677         let parse_toplevel = parser
678           | [< e=parse_expr >] ->
679               (* Make an anonymous proto. *)
680               Ast.Function (Ast.Prototype ("", [||]), e)
681
682         (*  external ::= 'extern' prototype *)
683         let parse_extern = parser
684           | [< 'Token.Extern; e=parse_prototype >] -> e
685
686 codegen.ml:
687     .. code-block:: ocaml
688
689         (*===----------------------------------------------------------------------===
690          * Code Generation
691          *===----------------------------------------------------------------------===*)
692
693         open Llvm
694
695         exception Error of string
696
697         let context = global_context ()
698         let the_module = create_module context "my cool jit"
699         let builder = builder context
700         let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
701         let double_type = double_type context
702
703         let rec codegen_expr = function
704           | Ast.Number n -> const_float double_type n
705           | Ast.Variable name ->
706               (try Hashtbl.find named_values name with
707                 | Not_found -> raise (Error "unknown variable name"))
708           | Ast.Binary (op, lhs, rhs) ->
709               let lhs_val = codegen_expr lhs in
710               let rhs_val = codegen_expr rhs in
711               begin
712                 match op with
713                 | '+' -> build_add lhs_val rhs_val "addtmp" builder
714                 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
715                 | '*' -> build_mul lhs_val rhs_val "multmp" builder
716                 | '<' ->
717                     (* Convert bool 0/1 to double 0.0 or 1.0 *)
718                     let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
719                     build_uitofp i double_type "booltmp" builder
720                 | _ -> raise (Error "invalid binary operator")
721               end
722           | Ast.Call (callee, args) ->
723               (* Look up the name in the module table. *)
724               let callee =
725                 match lookup_function callee the_module with
726                 | Some callee -> callee
727                 | None -> raise (Error "unknown function referenced")
728               in
729               let params = params callee in
730
731               (* If argument mismatch error. *)
732               if Array.length params == Array.length args then () else
733                 raise (Error "incorrect # arguments passed");
734               let args = Array.map codegen_expr args in
735               build_call callee args "calltmp" builder
736
737         let codegen_proto = function
738           | Ast.Prototype (name, args) ->
739               (* Make the function type: double(double,double) etc. *)
740               let doubles = Array.make (Array.length args) double_type in
741               let ft = function_type double_type doubles in
742               let f =
743                 match lookup_function name the_module with
744                 | None -> declare_function name ft the_module
745
746                 (* If 'f' conflicted, there was already something named 'name'. If it
747                  * has a body, don't allow redefinition or reextern. *)
748                 | Some f ->
749                     (* If 'f' already has a body, reject this. *)
750                     if block_begin f <> At_end f then
751                       raise (Error "redefinition of function");
752
753                     (* If 'f' took a different number of arguments, reject. *)
754                     if element_type (type_of f) <> ft then
755                       raise (Error "redefinition of function with different # args");
756                     f
757               in
758
759               (* Set names for all arguments. *)
760               Array.iteri (fun i a ->
761                 let n = args.(i) in
762                 set_value_name n a;
763                 Hashtbl.add named_values n a;
764               ) (params f);
765               f
766
767         let codegen_func the_fpm = function
768           | Ast.Function (proto, body) ->
769               Hashtbl.clear named_values;
770               let the_function = codegen_proto proto in
771
772               (* Create a new basic block to start insertion into. *)
773               let bb = append_block context "entry" the_function in
774               position_at_end bb builder;
775
776               try
777                 let ret_val = codegen_expr body in
778
779                 (* Finish off the function. *)
780                 let _ = build_ret ret_val builder in
781
782                 (* Validate the generated code, checking for consistency. *)
783                 Llvm_analysis.assert_valid_function the_function;
784
785                 (* Optimize the function. *)
786                 let _ = PassManager.run_function the_function the_fpm in
787
788                 the_function
789               with e ->
790                 delete_function the_function;
791                 raise e
792
793 toplevel.ml:
794     .. code-block:: ocaml
795
796         (*===----------------------------------------------------------------------===
797          * Top-Level parsing and JIT Driver
798          *===----------------------------------------------------------------------===*)
799
800         open Llvm
801         open Llvm_executionengine
802
803         (* top ::= definition | external | expression | ';' *)
804         let rec main_loop the_fpm the_execution_engine stream =
805           match Stream.peek stream with
806           | None -> ()
807
808           (* ignore top-level semicolons. *)
809           | Some (Token.Kwd ';') ->
810               Stream.junk stream;
811               main_loop the_fpm the_execution_engine stream
812
813           | Some token ->
814               begin
815                 try match token with
816                 | Token.Def ->
817                     let e = Parser.parse_definition stream in
818                     print_endline "parsed a function definition.";
819                     dump_value (Codegen.codegen_func the_fpm e);
820                 | Token.Extern ->
821                     let e = Parser.parse_extern stream in
822                     print_endline "parsed an extern.";
823                     dump_value (Codegen.codegen_proto e);
824                 | _ ->
825                     (* Evaluate a top-level expression into an anonymous function. *)
826                     let e = Parser.parse_toplevel stream in
827                     print_endline "parsed a top-level expr";
828                     let the_function = Codegen.codegen_func the_fpm e in
829                     dump_value the_function;
830
831                     (* JIT the function, returning a function pointer. *)
832                     let result = ExecutionEngine.run_function the_function [||]
833                       the_execution_engine in
834
835                     print_string "Evaluated to ";
836                     print_float (GenericValue.as_float Codegen.double_type result);
837                     print_newline ();
838                 with Stream.Error s | Codegen.Error s ->
839                   (* Skip token for error recovery. *)
840                   Stream.junk stream;
841                   print_endline s;
842               end;
843               print_string "ready> "; flush stdout;
844               main_loop the_fpm the_execution_engine stream
845
846 toy.ml:
847     .. code-block:: ocaml
848
849         (*===----------------------------------------------------------------------===
850          * Main driver code.
851          *===----------------------------------------------------------------------===*)
852
853         open Llvm
854         open Llvm_executionengine
855         open Llvm_target
856         open Llvm_scalar_opts
857
858         let main () =
859           ignore (initialize_native_target ());
860
861           (* Install standard binary operators.
862            * 1 is the lowest precedence. *)
863           Hashtbl.add Parser.binop_precedence '<' 10;
864           Hashtbl.add Parser.binop_precedence '+' 20;
865           Hashtbl.add Parser.binop_precedence '-' 20;
866           Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
867
868           (* Prime the first token. *)
869           print_string "ready> "; flush stdout;
870           let stream = Lexer.lex (Stream.of_channel stdin) in
871
872           (* Create the JIT. *)
873           let the_execution_engine = ExecutionEngine.create Codegen.the_module in
874           let the_fpm = PassManager.create_function Codegen.the_module in
875
876           (* Set up the optimizer pipeline.  Start with registering info about how the
877            * target lays out data structures. *)
878           DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
879
880           (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
881           add_instruction_combination the_fpm;
882
883           (* reassociate expressions. *)
884           add_reassociation the_fpm;
885
886           (* Eliminate Common SubExpressions. *)
887           add_gvn the_fpm;
888
889           (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
890           add_cfg_simplification the_fpm;
891
892           ignore (PassManager.initialize the_fpm);
893
894           (* Run the main "interpreter loop" now. *)
895           Toplevel.main_loop the_fpm the_execution_engine stream;
896
897           (* Print out all the generated code. *)
898           dump_module Codegen.the_module
899         ;;
900
901         main ()
902
903 bindings.c
904     .. code-block:: c
905
906         #include <stdio.h>
907
908         /* putchard - putchar that takes a double and returns 0. */
909         extern double putchard(double X) {
910           putchar((char)X);
911           return 0;
912         }
913
914 `Next: Extending the language: control flow <OCamlLangImpl5.html>`_
915