Add a natural stack alignment field to TargetData, and prevent InstCombine from
[oota-llvm.git] / docs / WritingAnLLVMPass.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6   <title>Writing an LLVM Pass</title>
7   <link rel="stylesheet" href="llvm.css" type="text/css">
8 </head>
9 <body>
10
11 <h1>
12   Writing an LLVM Pass
13 </h1>
14
15 <ol>
16   <li><a href="#introduction">Introduction - What is a pass?</a></li>
17   <li><a href="#quickstart">Quick Start - Writing hello world</a>
18     <ul>
19     <li><a href="#makefile">Setting up the build environment</a></li>
20     <li><a href="#basiccode">Basic code required</a></li>
21     <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
22     </ul></li>
23   <li><a href="#passtype">Pass classes and requirements</a>
24      <ul>
25      <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
26      <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
27         <ul>
28         <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
29         </ul></li>
30      <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
31         <ul>
32         <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
33                                            &amp;)</tt> method</a></li>
34         <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
35         <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
36                                            &amp;)</tt> method</a></li>
37         </ul></li>
38      <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
39         <ul>
40         <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
41                                             &amp;)</tt> method</a></li>
42         <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
43         <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
44                                             &amp;)</tt> method</a></li>
45         </ul></li>
46      <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
47         <ul>
48         <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
49                                             LPPassManager &amp;)</tt> method</a></li>
50         <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
51         <li><a href="#doFinalization_loop">The <tt>doFinalization()
52                                             </tt> method</a></li>
53         </ul></li>
54      <li><a href="#RegionPass">The <tt>RegionPass</tt> class</a>
55         <ul>
56         <li><a href="#doInitialization_region">The <tt>doInitialization(Region *,
57                                             RGPassManager &amp;)</tt> method</a></li>
58         <li><a href="#runOnRegion">The <tt>runOnRegion</tt> method</a></li>
59         <li><a href="#doFinalization_region">The <tt>doFinalization()
60                                             </tt> method</a></li>
61         </ul></li>
62      <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
63         <ul>
64         <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
65                                              &amp;)</tt> method</a></li>
66         <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
67                                        method</a></li>
68         <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
69                                          &amp;)</tt> method</a></li>
70         </ul></li>
71      <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
72                                         class</a>
73         <ul>
74         <li><a href="#runOnMachineFunction">The
75             <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
76         </ul></li>
77      </ul>
78   <li><a href="#registration">Pass Registration</a>
79      <ul>
80      <li><a href="#print">The <tt>print</tt> method</a></li>
81      </ul></li>
82   <li><a href="#interaction">Specifying interactions between passes</a>
83      <ul>
84      <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt> 
85                                      method</a></li>
86      <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
87      <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
88      <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
89      <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
90 <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a></li>
91      </ul></li>
92   <li><a href="#analysisgroup">Implementing Analysis Groups</a>
93      <ul>
94      <li><a href="#agconcepts">Analysis Group Concepts</a></li>
95      <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
96      </ul></li>
97   <li><a href="#passStatistics">Pass Statistics</a>
98   <li><a href="#passmanager">What PassManager does</a>
99     <ul>
100     <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
101     </ul></li>
102   <li><a href="#registering">Registering dynamically loaded passes</a>
103     <ul>
104       <li><a href="#registering_existing">Using existing registries</a></li>
105       <li><a href="#registering_new">Creating new registries</a></li>
106     </ul></li>
107   <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
108     <ul>
109     <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
110     <li><a href="#debugmisc">Miscellaneous Problems</a></li>
111     </ul></li>
112   <li><a href="#future">Future extensions planned</a>
113     <ul>
114     <li><a href="#SMP">Multithreaded LLVM</a></li>
115     </ul></li>
116 </ol>
117
118 <div class="doc_author">
119   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
120   <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
121 </div>
122
123 <!-- *********************************************************************** -->
124 <h2>
125   <a name="introduction">Introduction - What is a pass?</a>
126 </h2>
127 <!-- *********************************************************************** -->
128
129 <div>
130
131 <p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
132 passes are where most of the interesting parts of the compiler exist.  Passes
133 perform the transformations and optimizations that make up the compiler, they
134 build the analysis results that are used by these transformations, and they are,
135 above all, a structuring technique for compiler code.</p>
136
137 <p>All LLVM passes are subclasses of the <tt><a
138 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
139 class, which implement functionality by overriding virtual methods inherited
140 from <tt>Pass</tt>.  Depending on how your pass works, you should inherit from
141 the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
142 href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
143 href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
144 href="#LoopPass">LoopPass</a></tt>, or <tt><a
145 href="#RegionPass">RegionPass</a></tt>, or <tt><a
146 href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
147 more information about what your pass does, and how it can be combined with
148 other passes.  One of the main features of the LLVM Pass Framework is that it
149 schedules passes to run in an efficient way based on the constraints that your
150 pass meets (which are indicated by which class they derive from).</p>
151
152 <p>We start by showing you how to construct a pass, everything from setting up
153 the code, to compiling, loading, and executing it.  After the basics are down,
154 more advanced features are discussed.</p>
155
156 </div>
157
158 <!-- *********************************************************************** -->
159 <h2>
160   <a name="quickstart">Quick Start - Writing hello world</a>
161 </h2>
162 <!-- *********************************************************************** -->
163
164 <div>
165
166 <p>Here we describe how to write the "hello world" of passes.  The "Hello" pass
167 is designed to simply print out the name of non-external functions that exist in
168 the program being compiled.  It does not modify the program at all, it just
169 inspects it.  The source code and files for this pass are available in the LLVM
170 source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
171
172 <!-- ======================================================================= -->
173 <h3>
174   <a name="makefile">Setting up the build environment</a>
175 </h3>
176
177 <div>
178
179   <p>First, configure and build LLVM.  This needs to be done directly inside the
180   LLVM source tree rather than in a separate objects directory.
181   Next, you need to create a new directory somewhere in the LLVM source 
182   base.  For this example, we'll assume that you made 
183   <tt>lib/Transforms/Hello</tt>.  Finally, you must set up a build script 
184   (Makefile) that will compile the source code for the new pass.  To do this, 
185   copy the following into <tt>Makefile</tt>:</p>
186   <hr>
187
188 <div class="doc_code"><pre>
189 # Makefile for hello pass
190
191 # Path to top level of LLVM hierarchy
192 LEVEL = ../../..
193
194 # Name of the library to build
195 LIBRARYNAME = Hello
196
197 # Make the shared library become a loadable module so the tools can 
198 # dlopen/dlsym on the resulting library.
199 LOADABLE_MODULE = 1
200
201 # Include the makefile implementation stuff
202 include $(LEVEL)/Makefile.common
203 </pre></div>
204
205 <p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
206 directory are to be compiled and linked together into a shared object
207 <tt>$(LEVEL)/Debug+Asserts/lib/Hello.so</tt> that can be dynamically loaded by
208 the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.  
209 If your operating system uses a suffix other than .so (such as windows or 
210 Mac OS/X), the appropriate extension will be used.</p>
211
212 <p>If you are used CMake to build LLVM, see
213 <a href="CMake.html#passdev">Developing an LLVM pass with CMake</a>.</p>
214
215 <p>Now that we have the build scripts set up, we just need to write the code for
216 the pass itself.</p>
217
218 </div>
219
220 <!-- ======================================================================= -->
221 <h3>
222   <a name="basiccode">Basic code required</a>
223 </h3>
224
225 <div>
226
227 <p>Now that we have a way to compile our new pass, we just have to write it.
228 Start out with:</p>
229
230 <div class="doc_code"><pre>
231 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
232 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
233 <b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
234 </pre></div>
235
236 <p>Which are needed because we are writing a <tt><a
237 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>,
238 we are operating on <tt><a
239 href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s,
240 and we will be doing some printing.</p>
241
242 <p>Next we have:</p>
243 <div class="doc_code"><pre>
244 <b>using namespace llvm;</b>
245 </pre></div>
246 <p>... which is required because the functions from the include files 
247 live in the llvm namespace.
248 </p>
249
250 <p>Next we have:</p>
251
252 <div class="doc_code"><pre>
253 <b>namespace</b> {
254 </pre></div>
255
256 <p>... which starts out an anonymous namespace.  Anonymous namespaces are to C++
257 what the "<tt>static</tt>" keyword is to C (at global scope).  It makes the
258 things declared inside of the anonymous namespace only visible to the current
259 file.  If you're not familiar with them, consult a decent C++ book for more
260 information.</p>
261
262 <p>Next, we declare our pass itself:</p>
263
264 <div class="doc_code"><pre>
265   <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
266 </pre></div><p>
267
268 <p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
269 href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
270 The different builtin pass subclasses are described in detail <a
271 href="#passtype">later</a>, but for now, know that <a
272 href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate a function at a
273 time.</p>
274
275 <div class="doc_code"><pre>
276      static char ID;
277      Hello() : FunctionPass(ID) {}
278 </pre></div><p>
279
280 <p> This declares pass identifier used by LLVM to identify pass. This allows LLVM to
281 avoid using expensive C++ runtime information.</p>
282
283 <div class="doc_code"><pre>
284     <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
285       errs() &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
286       <b>return false</b>;
287     }
288   };  <i>// end of struct Hello</i>
289 </pre></div>
290
291 <p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
292 which overloads an abstract virtual method inherited from <a
293 href="#FunctionPass"><tt>FunctionPass</tt></a>.  This is where we are supposed
294 to do our thing, so we just print out our message with the name of each
295 function.</p>
296
297 <div class="doc_code"><pre>
298   char Hello::ID = 0;
299 </pre></div>
300
301 <p> We initialize pass ID here. LLVM uses ID's address to identify pass so 
302 initialization value is not important.</p>
303
304 <div class="doc_code"><pre>
305   static RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
306                         false /* Only looks at CFG */,
307                         false /* Analysis Pass */);
308 }  <i>// end of anonymous namespace</i>
309 </pre></div>
310
311 <p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>, 
312 giving it a command line
313 argument "<tt>hello</tt>", and a name "<tt>Hello World Pass</tt>".
314 Last two arguments describe its behavior.
315 If a pass walks CFG without modifying it then third argument is set to true. 
316 If  a pass is an analysis pass, for example dominator tree pass, then true 
317 is supplied as fourth argument. </p>
318
319 <p>As a whole, the <tt>.cpp</tt> file looks like:</p>
320
321 <div class="doc_code"><pre>
322 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
323 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
324 <b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
325
326 <b>using namespace llvm;</b>
327
328 <b>namespace</b> {
329   <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
330     
331     static char ID;
332     Hello() : FunctionPass(ID) {}
333
334     <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
335       errs() &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
336       <b>return false</b>;
337     }
338   };
339   
340   char Hello::ID = 0;
341   static RegisterPass&lt;Hello&gt; X("hello", "Hello World Pass", false, false);
342 }
343
344 </pre></div>
345
346 <p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
347 command in the local directory and you should get a new file
348 "<tt>Debug+Asserts/lib/Hello.so</tt>" under the top level directory of the LLVM
349 source tree (not in the local directory).  Note that everything in this file is
350 contained in an anonymous namespace: this reflects the fact that passes are self
351 contained units that do not need external interfaces (although they can have
352 them) to be useful.</p>
353
354 </div>
355
356 <!-- ======================================================================= -->
357 <h3>
358   <a name="running">Running a pass with <tt>opt</tt></a>
359 </h3>
360
361 <div>
362
363 <p>Now that you have a brand new shiny shared object file, we can use the
364 <tt>opt</tt> command to run an LLVM program through your pass.  Because you
365 registered your pass with <tt>RegisterPass</tt>, you will be able to
366 use the <tt>opt</tt> tool to access it, once loaded.</p>
367
368 <p>To test it, follow the example at the end of the <a
369 href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
370 LLVM.  We can now run the bitcode file (<tt>hello.bc</tt>) for the program
371 through our transformation like this (or course, any bitcode file will
372 work):</p>
373
374 <div class="doc_code"><pre>
375 $ opt -load ../../../Debug+Asserts/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
376 Hello: __main
377 Hello: puts
378 Hello: main
379 </pre></div>
380
381 <p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
382 pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
383 argument (which is one reason you need to <a href="#registration">register your
384 pass</a>).  Because the hello pass does not modify the program in any
385 interesting way, we just throw away the result of <tt>opt</tt> (sending it to
386 <tt>/dev/null</tt>).</p>
387
388 <p>To see what happened to the other string you registered, try running
389 <tt>opt</tt> with the <tt>-help</tt> option:</p>
390
391 <div class="doc_code"><pre>
392 $ opt -load ../../../Debug+Asserts/lib/Hello.so -help
393 OVERVIEW: llvm .bc -&gt; .bc modular optimizer
394
395 USAGE: opt [options] &lt;input bitcode&gt;
396
397 OPTIONS:
398   Optimizations available:
399 ...
400     -funcresolve    - Resolve Functions
401     -gcse           - Global Common Subexpression Elimination
402     -globaldce      - Dead Global Elimination
403     <b>-hello          - Hello World Pass</b>
404     -indvars        - Canonicalize Induction Variables
405     -inline         - Function Integration/Inlining
406     -instcombine    - Combine redundant instructions
407 ...
408 </pre></div>
409
410 <p>The pass name get added as the information string for your pass, giving some
411 documentation to users of <tt>opt</tt>.  Now that you have a working pass, you
412 would go ahead and make it do the cool transformations you want.  Once you get
413 it all working and tested, it may become useful to find out how fast your pass
414 is.  The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
415 line option (<tt>--time-passes</tt>) that allows you to get information about
416 the execution time of your pass along with the other passes you queue up.  For
417 example:</p>
418
419 <div class="doc_code"><pre>
420 $ opt -load ../../../Debug+Asserts/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
421 Hello: __main
422 Hello: puts
423 Hello: main
424 ===============================================================================
425                       ... Pass execution timing report ...
426 ===============================================================================
427   Total Execution Time: 0.02 seconds (0.0479059 wall clock)
428
429    ---User Time---   --System Time--   --User+System--   ---Wall Time---  --- Pass Name ---
430    0.0100 (100.0%)   0.0000 (  0.0%)   0.0100 ( 50.0%)   0.0402 ( 84.0%)  Bitcode Writer
431    0.0000 (  0.0%)   0.0100 (100.0%)   0.0100 ( 50.0%)   0.0031 (  6.4%)  Dominator Set Construction
432    0.0000 (  0.0%)   0.0000 (  0.0%)   0.0000 (  0.0%)   0.0013 (  2.7%)  Module Verifier
433  <b>  0.0000 (  0.0%)   0.0000 (  0.0%)   0.0000 (  0.0%)   0.0033 (  6.9%)  Hello World Pass</b>
434    0.0100 (100.0%)   0.0100 (100.0%)   0.0200 (100.0%)   0.0479 (100.0%)  TOTAL
435 </pre></div>
436
437 <p>As you can see, our implementation above is pretty fast :).  The additional
438 passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
439 that the LLVM emitted by your pass is still valid and well formed LLVM, which
440 hasn't been broken somehow.</p>
441
442 <p>Now that you have seen the basics of the mechanics behind passes, we can talk
443 about some more details of how they work and how to use them.</p>
444
445 </div>
446
447 </div>
448
449 <!-- *********************************************************************** -->
450 <h2>
451   <a name="passtype">Pass classes and requirements</a>
452 </h2>
453 <!-- *********************************************************************** -->
454
455 <div>
456
457 <p>One of the first things that you should do when designing a new pass is to
458 decide what class you should subclass for your pass.  The <a
459 href="#basiccode">Hello World</a> example uses the <tt><a
460 href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
461 did not discuss why or when this should occur.  Here we talk about the classes
462 available, from the most general to the most specific.</p>
463
464 <p>When choosing a superclass for your Pass, you should choose the <b>most
465 specific</b> class possible, while still being able to meet the requirements
466 listed.  This gives the LLVM Pass Infrastructure information necessary to
467 optimize how passes are run, so that the resultant compiler isn't unnecessarily
468 slow.</p>
469
470 <!-- ======================================================================= -->
471 <h3>
472   <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
473 </h3>
474
475 <div>
476
477 <p>The most plain and boring type of pass is the "<tt><a
478 href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
479 class.  This pass type is used for passes that do not have to be run, do not
480 change state, and never need to be updated.  This is not a normal type of
481 transformation or analysis, but can provide information about the current
482 compiler configuration.</p>
483
484 <p>Although this pass class is very infrequently used, it is important for
485 providing information about the current target machine being compiled for, and
486 other static information that can affect the various transformations.</p>
487
488 <p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
489 invalidated, and are never "run".</p>
490
491 </div>
492
493 <!-- ======================================================================= -->
494 <h3>
495   <a name="ModulePass">The <tt>ModulePass</tt> class</a>
496 </h3>
497
498 <div>
499
500 <p>The "<tt><a
501 href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
502 class is the most general of all superclasses that you can use.  Deriving from
503 <tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
504 referring to function bodies in no predictable order, or adding and removing
505 functions.  Because nothing is known about the behavior of <tt>ModulePass</tt>
506 subclasses, no optimization can be done for their execution.</p>
507
508 <p>A module pass can use function level passes (e.g. dominators) using
509 the getAnalysis interface
510 <tt>getAnalysis&lt;DominatorTree&gt;(llvm::Function *)</tt> to provide the
511 function to retrieve analysis result for, if the function pass does not require
512 any module or immutable passes. Note that this can only be done for functions for which the
513 analysis ran, e.g. in the case of dominators you should only ask for the
514 DominatorTree for function definitions, not declarations.</p>
515
516 <p>To write a correct <tt>ModulePass</tt> subclass, derive from
517 <tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
518 following signature:</p>
519
520 <!-- _______________________________________________________________________ -->
521 <h4>
522   <a name="runOnModule">The <tt>runOnModule</tt> method</a>
523 </h4>
524
525 <div>
526
527 <div class="doc_code"><pre>
528   <b>virtual bool</b> runOnModule(Module &amp;M) = 0;
529 </pre></div>
530
531 <p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
532 It should return true if the module was modified by the transformation and
533 false otherwise.</p>
534
535 </div>
536
537 </div>
538
539 <!-- ======================================================================= -->
540 <h3>
541   <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
542 </h3>
543
544 <div>
545
546 <p>The "<tt><a
547 href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
548 is used by passes that need to traverse the program bottom-up on the call graph
549 (callees before callers).  Deriving from CallGraphSCCPass provides some
550 mechanics for building and traversing the CallGraph, but also allows the system
551 to optimize execution of CallGraphSCCPass's.  If your pass meets the
552 requirements outlined below, and doesn't meet the requirements of a <tt><a
553 href="#FunctionPass">FunctionPass</a></tt> or <tt><a
554 href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
555 <tt>CallGraphSCCPass</tt>.</p>
556
557 <p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
558
559 <p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
560
561 <ol>
562
563 <li>... <em>not allowed</em> to inspect or modify any <tt>Function</tt>s other
564 than those in the current SCC and the direct callers and direct callees of the
565 SCC.</li>
566
567 <li>... <em>required</em> to preserve the current CallGraph object, updating it
568 to reflect any changes made to the program.</li>
569
570 <li>... <em>not allowed</em> to add or remove SCC's from the current Module,
571 though they may change the contents of an SCC.</li>
572
573 <li>... <em>allowed</em> to add or remove global variables from the current
574 Module.</li>
575
576 <li>... <em>allowed</em> to maintain state across invocations of
577     <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
578 </ol>
579
580 <p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
581 because it has to handle SCCs with more than one node in it.  All of the virtual
582 methods described below should return true if they modified the program, or
583 false if they didn't.</p>
584
585 <!-- _______________________________________________________________________ -->
586 <h4>
587   <a name="doInitialization_scc">
588     The <tt>doInitialization(CallGraph &amp;)</tt> method
589   </a>
590 </h4>
591
592 <div>
593
594 <div class="doc_code"><pre>
595   <b>virtual bool</b> doInitialization(CallGraph &amp;CG);
596 </pre></div>
597
598 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
599 <tt>CallGraphSCCPass</tt>'s are not allowed to do.  They can add and remove
600 functions, get pointers to functions, etc.  The <tt>doInitialization</tt> method
601 is designed to do simple initialization type of stuff that does not depend on
602 the SCCs being processed.  The <tt>doInitialization</tt> method call is not
603 scheduled to overlap with any other pass executions (thus it should be very
604 fast).</p>
605
606 </div>
607
608 <!-- _______________________________________________________________________ -->
609 <h4>
610   <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
611 </h4>
612
613 <div>
614
615 <div class="doc_code"><pre>
616   <b>virtual bool</b> runOnSCC(CallGraphSCC &amp;SCC) = 0;
617 </pre></div>
618
619 <p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
620 should return true if the module was modified by the transformation, false
621 otherwise.</p>
622
623 </div>
624
625 <!-- _______________________________________________________________________ -->
626 <h4>
627   <a name="doFinalization_scc">
628     The <tt>doFinalization(CallGraph &amp;)</tt> method
629   </a>
630 </h4>
631
632 <div>
633
634 <div class="doc_code"><pre>
635   <b>virtual bool</b> doFinalization(CallGraph &amp;CG);
636 </pre></div>
637
638 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
639 called when the pass framework has finished calling <a
640 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
641 program being compiled.</p>
642
643 </div>
644
645 </div>
646
647 <!-- ======================================================================= -->
648 <h3>
649   <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
650 </h3>
651
652 <div>
653
654 <p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
655 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
656 subclasses do have a predictable, local behavior that can be expected by the
657 system.  All <tt>FunctionPass</tt> execute on each function in the program
658 independent of all of the other functions in the program.
659 <tt>FunctionPass</tt>'s do not require that they are executed in a particular
660 order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
661
662 <p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
663
664 <ol>
665 <li>Modify a Function other than the one currently being processed.</li>
666 <li>Add or remove Function's from the current Module.</li>
667 <li>Add or remove global variables from the current Module.</li>
668 <li>Maintain state across invocations of
669     <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
670 </ol>
671
672 <p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
673 href="#basiccode">Hello World</a> pass for example).  <tt>FunctionPass</tt>'s
674 may overload three virtual methods to do their work.  All of these methods
675 should return true if they modified the program, or false if they didn't.</p>
676
677 <!-- _______________________________________________________________________ -->
678 <h4>
679   <a name="doInitialization_mod">
680     The <tt>doInitialization(Module &amp;)</tt> method
681   </a>
682 </h4>
683
684 <div>
685
686 <div class="doc_code"><pre>
687   <b>virtual bool</b> doInitialization(Module &amp;M);
688 </pre></div>
689
690 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
691 <tt>FunctionPass</tt>'s are not allowed to do.  They can add and remove
692 functions, get pointers to functions, etc.  The <tt>doInitialization</tt> method
693 is designed to do simple initialization type of stuff that does not depend on
694 the functions being processed.  The <tt>doInitialization</tt> method call is not
695 scheduled to overlap with any other pass executions (thus it should be very
696 fast).</p>
697
698 <p>A good example of how this method should be used is the <a
699 href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
700 pass.  This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
701 platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls.  It
702 uses the <tt>doInitialization</tt> method to get a reference to the malloc and
703 free functions that it needs, adding prototypes to the module if necessary.</p>
704
705 </div>
706
707 <!-- _______________________________________________________________________ -->
708 <h4>
709   <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
710 </h4>
711
712 <div>
713
714 <div class="doc_code"><pre>
715   <b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
716 </pre></div><p>
717
718 <p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
719 the transformation or analysis work of your pass.  As usual, a true value should
720 be returned if the function is modified.</p>
721
722 </div>
723
724 <!-- _______________________________________________________________________ -->
725 <h4>
726   <a name="doFinalization_mod">
727     The <tt>doFinalization(Module &amp;)</tt> method
728   </a>
729 </h4>
730
731 <div>
732
733 <div class="doc_code"><pre>
734   <b>virtual bool</b> doFinalization(Module &amp;M);
735 </pre></div>
736
737 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
738 called when the pass framework has finished calling <a
739 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
740 program being compiled.</p>
741
742 </div>
743
744 </div>
745
746 <!-- ======================================================================= -->
747 <h3>
748   <a name="LoopPass">The <tt>LoopPass</tt> class </a>
749 </h3>
750
751 <div>
752
753 <p> All <tt>LoopPass</tt> execute on each loop in the function independent of
754 all of the other loops in the function. <tt>LoopPass</tt> processes loops in
755 loop nest order such that outer most loop is processed last. </p>
756
757 <p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
758 <tt>LPPassManager</tt> interface. Implementing a loop pass is usually
759 straightforward. <tt>LoopPass</tt>'s may overload three virtual methods to
760 do their work. All these methods should return true if they modified the 
761 program, or false if they didn't. </p>
762
763 <!-- _______________________________________________________________________ -->
764 <h4>
765   <a name="doInitialization_loop">
766     The <tt>doInitialization(Loop *,LPPassManager &amp;)</tt> method
767   </a>
768 </h4>
769
770 <div>
771
772 <div class="doc_code"><pre>
773   <b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
774 </pre></div>
775
776 <p>The <tt>doInitialization</tt> method is designed to do simple initialization 
777 type of stuff that does not depend on the functions being processed.  The 
778 <tt>doInitialization</tt> method call is not scheduled to overlap with any 
779 other pass executions (thus it should be very fast). LPPassManager 
780 interface should be used to access Function or Module level analysis
781 information.</p>
782
783 </div>
784
785
786 <!-- _______________________________________________________________________ -->
787 <h4>
788   <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
789 </h4>
790
791 <div>
792
793 <div class="doc_code"><pre>
794   <b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
795 </pre></div><p>
796
797 <p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
798 the transformation or analysis work of your pass.  As usual, a true value should
799 be returned if the function is modified. <tt>LPPassManager</tt> interface
800 should be used to update loop nest.</p>
801
802 </div>
803
804 <!-- _______________________________________________________________________ -->
805 <h4>
806   <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
807 </h4>
808
809 <div>
810
811 <div class="doc_code"><pre>
812   <b>virtual bool</b> doFinalization();
813 </pre></div>
814
815 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
816 called when the pass framework has finished calling <a
817 href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
818 program being compiled. </p>
819
820 </div>
821
822 </div>
823
824 <!-- ======================================================================= -->
825 <h3>
826   <a name="RegionPass">The <tt>RegionPass</tt> class </a>
827 </h3>
828
829 <div>
830
831 <p> <tt>RegionPass</tt> is similar to <a href="#LoopPass"><tt>LoopPass</tt></a>,
832 but executes on each single entry single exit region in the function.
833 <tt>RegionPass</tt> processes regions in nested order such that the outer most
834 region is processed last.  </p>
835
836 <p> <tt>RegionPass</tt> subclasses are allowed to update the region tree by using
837 the <tt>RGPassManager</tt> interface. You may overload three virtual methods of
838 <tt>RegionPass</tt> to implement your own region pass. All these
839 methods should return true if they modified the program, or false if they didn not.
840 </p>
841
842 <!-- _______________________________________________________________________ -->
843 <h4>
844   <a name="doInitialization_region">
845     The <tt>doInitialization(Region *, RGPassManager &amp;)</tt> method
846   </a>
847 </h4>
848
849 <div>
850
851 <div class="doc_code"><pre>
852   <b>virtual bool</b> doInitialization(Region *, RGPassManager &amp;RGM);
853 </pre></div>
854
855 <p>The <tt>doInitialization</tt> method is designed to do simple initialization
856 type of stuff that does not depend on the functions being processed.  The
857 <tt>doInitialization</tt> method call is not scheduled to overlap with any
858 other pass executions (thus it should be very fast). RPPassManager
859 interface should be used to access Function or Module level analysis
860 information.</p>
861
862 </div>
863
864
865 <!-- _______________________________________________________________________ -->
866 <h4>
867   <a name="runOnRegion">The <tt>runOnRegion</tt> method</a>
868 </h4>
869
870 <div>
871
872 <div class="doc_code"><pre>
873   <b>virtual bool</b> runOnRegion(Region *, RGPassManager &amp;RGM) = 0;
874 </pre></div><p>
875
876 <p>The <tt>runOnRegion</tt> method must be implemented by your subclass to do
877 the transformation or analysis work of your pass.  As usual, a true value should
878 be returned if the region is modified. <tt>RGPassManager</tt> interface
879 should be used to update region tree.</p>
880
881 </div>
882
883 <!-- _______________________________________________________________________ -->
884 <h4>
885   <a name="doFinalization_region">The <tt>doFinalization()</tt> method</a>
886 </h4>
887
888 <div>
889
890 <div class="doc_code"><pre>
891   <b>virtual bool</b> doFinalization();
892 </pre></div>
893
894 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
895 called when the pass framework has finished calling <a
896 href="#runOnRegion"><tt>runOnRegion</tt></a> for every region in the
897 program being compiled. </p>
898
899 </div>
900
901 </div>
902
903 <!-- ======================================================================= -->
904 <h3>
905   <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
906 </h3>
907
908 <div>
909
910 <p><tt>BasicBlockPass</tt>'s are just like <a
911 href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
912 their scope of inspection and modification to a single basic block at a time.
913 As such, they are <b>not</b> allowed to do any of the following:</p>
914
915 <ol>
916 <li>Modify or inspect any basic blocks outside of the current one</li>
917 <li>Maintain state across invocations of
918     <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
919 <li>Modify the control flow graph (by altering terminator instructions)</li>
920 <li>Any of the things forbidden for
921     <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
922 </ol>
923
924 <p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
925 optimizations.  They may override the same <a
926 href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
927 href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
928 href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
929
930 <!-- _______________________________________________________________________ -->
931 <h4>
932   <a name="doInitialization_fn">
933     The <tt>doInitialization(Function &amp;)</tt> method
934   </a>
935 </h4>
936
937 <div>
938
939 <div class="doc_code"><pre>
940   <b>virtual bool</b> doInitialization(Function &amp;F);
941 </pre></div>
942
943 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
944 <tt>BasicBlockPass</tt>'s are not allowed to do, but that
945 <tt>FunctionPass</tt>'s can.  The <tt>doInitialization</tt> method is designed
946 to do simple initialization that does not depend on the
947 BasicBlocks being processed.  The <tt>doInitialization</tt> method call is not
948 scheduled to overlap with any other pass executions (thus it should be very
949 fast).</p>
950
951 </div>
952
953 <!-- _______________________________________________________________________ -->
954 <h4>
955   <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
956 </h4>
957
958 <div>
959
960 <div class="doc_code"><pre>
961   <b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
962 </pre></div>
963
964 <p>Override this function to do the work of the <tt>BasicBlockPass</tt>.  This
965 function is not allowed to inspect or modify basic blocks other than the
966 parameter, and are not allowed to modify the CFG.  A true value must be returned
967 if the basic block is modified.</p>
968
969 </div>
970
971 <!-- _______________________________________________________________________ -->
972 <h4>
973   <a name="doFinalization_fn">
974     The <tt>doFinalization(Function &amp;)</tt> method
975   </a>
976 </h4>
977
978 <div>
979
980 <div class="doc_code"><pre>
981   <b>virtual bool</b> doFinalization(Function &amp;F);
982 </pre></div>
983
984 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
985 called when the pass framework has finished calling <a
986 href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
987 program being compiled.  This can be used to perform per-function
988 finalization.</p>
989
990 </div>
991
992 </div>
993
994 <!-- ======================================================================= -->
995 <h3>
996   <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
997 </h3>
998
999 <div>
1000
1001 <p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
1002 executes on the machine-dependent representation of each LLVM function in the
1003 program.</p>
1004
1005 <p>Code generator passes are registered and initialized specially by
1006 <tt>TargetMachine::addPassesToEmitFile</tt> and similar routines, so they
1007 cannot generally be run from the <tt>opt</tt> or <tt>bugpoint</tt>
1008 commands.</p>
1009
1010 <p>A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
1011 the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
1012 <tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
1013 <tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
1014
1015 <ol>
1016 <li>Modify or create any LLVM IR Instructions, BasicBlocks, Arguments,
1017     Functions, GlobalVariables, GlobalAliases, or Modules.</li>
1018 <li>Modify a MachineFunction other than the one currently being processed.</li>
1019 <li>Maintain state across invocations of <a
1020 href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
1021 data)</li>
1022 </ol>
1023
1024 <!-- _______________________________________________________________________ -->
1025 <h4>
1026   <a name="runOnMachineFunction">
1027     The <tt>runOnMachineFunction(MachineFunction &amp;MF)</tt> method
1028   </a>
1029 </h4>
1030
1031 <div>
1032
1033 <div class="doc_code"><pre>
1034   <b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
1035 </pre></div>
1036
1037 <p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
1038 <tt>MachineFunctionPass</tt>; that is, you should override this method to do the
1039 work of your <tt>MachineFunctionPass</tt>.</p>
1040
1041 <p>The <tt>runOnMachineFunction</tt> method is called on every
1042 <tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
1043 <tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
1044 representation of the function. If you want to get at the LLVM <tt>Function</tt>
1045 for the <tt>MachineFunction</tt> you're working on, use
1046 <tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
1047 remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
1048 <tt>MachineFunctionPass</tt>.</p>
1049
1050 </div>
1051
1052 </div>
1053
1054 </div>
1055
1056 <!-- *********************************************************************** -->
1057 <h2>
1058   <a name="registration">Pass registration</a>
1059 </h2>
1060 <!-- *********************************************************************** -->
1061
1062 <div>
1063
1064 <p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
1065 pass registration works, and discussed some of the reasons that it is used and
1066 what it does.  Here we discuss how and why passes are registered.</p>
1067
1068 <p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
1069 template.  The template parameter is the name of the pass that is to be used on
1070 the command line to specify that the pass should be added to a program (for
1071 example, with <tt>opt</tt> or <tt>bugpoint</tt>).  The first argument is the
1072 name of the pass, which is to be used for the <tt>-help</tt> output of
1073 programs, as
1074 well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
1075
1076 <p>If you want your pass to be easily dumpable, you should 
1077 implement the virtual <tt>print</tt> method:</p>
1078
1079 <!-- _______________________________________________________________________ -->
1080 <h4>
1081   <a name="print">The <tt>print</tt> method</a>
1082 </h4>
1083
1084 <div>
1085
1086 <div class="doc_code"><pre>
1087   <b>virtual void</b> print(std::ostream &amp;O, <b>const</b> Module *M) <b>const</b>;
1088 </pre></div>
1089
1090 <p>The <tt>print</tt> method must be implemented by "analyses" in order to print
1091 a human readable version of the analysis results.  This is useful for debugging
1092 an analysis itself, as well as for other people to figure out how an analysis
1093 works.  Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
1094
1095 <p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
1096 and the <tt>Module</tt> parameter gives a pointer to the top level module of the
1097 program that has been analyzed.  Note however that this pointer may be null in
1098 certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
1099 debugger), so it should only be used to enhance debug output, it should not be
1100 depended on.</p>
1101
1102 </div>
1103
1104 </div>
1105
1106 <!-- *********************************************************************** -->
1107 <h2>
1108   <a name="interaction">Specifying interactions between passes</a>
1109 </h2>
1110 <!-- *********************************************************************** -->
1111
1112 <div>
1113
1114 <p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
1115 that passes interact with each other correctly.  Because <tt>PassManager</tt>
1116 tries to <a href="#passmanager">optimize the execution of passes</a> it must
1117 know how the passes interact with each other and what dependencies exist between
1118 the various passes.  To track this, each pass can declare the set of passes that
1119 are required to be executed before the current pass, and the passes which are
1120 invalidated by the current pass.</p>
1121
1122 <p>Typically this functionality is used to require that analysis results are
1123 computed before your pass is run.  Running arbitrary transformation passes can
1124 invalidate the computed analysis results, which is what the invalidation set
1125 specifies.  If a pass does not implement the <tt><a
1126 href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
1127 having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
1128
1129 <!-- _______________________________________________________________________ -->
1130 <h4>
1131   <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
1132 </h4>
1133
1134 <div>
1135
1136 <div class="doc_code"><pre>
1137   <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
1138 </pre></div>
1139
1140 <p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
1141 invalidated sets may be specified for your transformation.  The implementation
1142 should fill in the <tt><a
1143 href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
1144 object with information about which passes are required and not invalidated.  To
1145 do this, a pass may call any of the following methods on the AnalysisUsage
1146 object:</p>
1147 </div>
1148
1149 <!-- _______________________________________________________________________ -->
1150 <h4>
1151   <a name="AU::addRequired">
1152     The <tt>AnalysisUsage::addRequired&lt;&gt;</tt>
1153     and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods
1154   </a>
1155 </h4>
1156
1157 <div>
1158 <p>
1159 If your pass requires a previous pass to be executed (an analysis for example),
1160 it can use one of these methods to arrange for it to be run before your pass.
1161 LLVM has many different types of analyses and passes that can be required,
1162 spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
1163 Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
1164 be no critical edges in the CFG when your pass has been run.
1165 </p>
1166
1167 <p>
1168 Some analyses chain to other analyses to do their job.  For example, an <a
1169 href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
1170 href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes.  In
1171 cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
1172 used instead of the <tt>addRequired</tt> method.  This informs the PassManager
1173 that the transitively required pass should be alive as long as the requiring
1174 pass is.
1175 </p>
1176 </div>
1177
1178 <!-- _______________________________________________________________________ -->
1179 <h4>
1180   <a name="AU::addPreserved">
1181     The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method
1182   </a>
1183 </h4>
1184
1185 <div>
1186 <p>
1187 One of the jobs of the PassManager is to optimize how and when analyses are run.
1188 In particular, it attempts to avoid recomputing data unless it needs to.  For
1189 this reason, passes are allowed to declare that they preserve (i.e., they don't
1190 invalidate) an existing analysis if it's available.  For example, a simple
1191 constant folding pass would not modify the CFG, so it can't possibly affect the
1192 results of dominator analysis.  By default, all passes are assumed to invalidate
1193 all others.
1194 </p>
1195
1196 <p>
1197 The <tt>AnalysisUsage</tt> class provides several methods which are useful in
1198 certain circumstances that are related to <tt>addPreserved</tt>.  In particular,
1199 the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
1200 not modify the LLVM program at all (which is true for analyses), and the
1201 <tt>setPreservesCFG</tt> method can be used by transformations that change
1202 instructions in the program but do not modify the CFG or terminator instructions
1203 (note that this property is implicitly set for <a
1204 href="#BasicBlockPass">BasicBlockPass</a>'s).
1205 </p>
1206
1207 <p>
1208 <tt>addPreserved</tt> is particularly useful for transformations like
1209 <tt>BreakCriticalEdges</tt>.  This pass knows how to update a small set of loop
1210 and dominator related analyses if they exist, so it can preserve them, despite
1211 the fact that it hacks on the CFG.
1212 </p>
1213 </div>
1214
1215 <!-- _______________________________________________________________________ -->
1216 <h4>
1217   <a name="AU::examples">
1218     Example implementations of <tt>getAnalysisUsage</tt>
1219   </a>
1220 </h4>
1221
1222 <div>
1223
1224 <div class="doc_code"><pre>
1225   <i>// This example modifies the program, but does not modify the CFG</i>
1226   <b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1227     AU.setPreservesCFG();
1228     AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
1229   }
1230 </pre></div>
1231
1232 </div>
1233
1234 <!-- _______________________________________________________________________ -->
1235 <h4>
1236   <a name="getAnalysis">
1237     The <tt>getAnalysis&lt;&gt;</tt> and
1238     <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods
1239   </a>
1240 </h4>
1241
1242 <div>
1243
1244 <p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
1245 your class, providing you with access to the passes that you declared that you
1246 required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
1247 method.  It takes a single template argument that specifies which pass class you
1248 want, and returns a reference to that pass.  For example:</p>
1249
1250 <div class="doc_code"><pre>
1251    bool LICM::runOnFunction(Function &amp;F) {
1252      LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
1253      ...
1254    }
1255 </pre></div>
1256
1257 <p>This method call returns a reference to the pass desired.  You may get a
1258 runtime assertion failure if you attempt to get an analysis that you did not
1259 declare as required in your <a
1260 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation.  This
1261 method can be called by your <tt>run*</tt> method implementation, or by any
1262 other local method invoked by your <tt>run*</tt> method.
1263
1264 A module level pass can use function level analysis info using this interface.
1265 For example:</p>
1266
1267 <div class="doc_code"><pre>
1268    bool ModuleLevelPass::runOnModule(Module &amp;M) {
1269      ...
1270      DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
1271      ...
1272    }
1273 </pre></div>
1274
1275 <p>In above example, runOnFunction for DominatorTree is called by pass manager
1276 before returning a reference to the desired pass.</p>
1277
1278 <p>
1279 If your pass is capable of updating analyses if they exist (e.g.,
1280 <tt>BreakCriticalEdges</tt>, as described above), you can use the
1281 <tt>getAnalysisIfAvailable</tt> method, which returns a pointer to the analysis
1282 if it is active.  For example:</p>
1283
1284 <div class="doc_code"><pre>
1285   ...
1286   if (DominatorSet *DS = getAnalysisIfAvailable&lt;DominatorSet&gt;()) {
1287     <i>// A DominatorSet is active.  This code will update it.</i>
1288   }
1289   ...
1290 </pre></div>
1291
1292 </div>
1293
1294 </div>
1295
1296 <!-- *********************************************************************** -->
1297 <h2>
1298   <a name="analysisgroup">Implementing Analysis Groups</a>
1299 </h2>
1300 <!-- *********************************************************************** -->
1301
1302 <div>
1303
1304 <p>Now that we understand the basics of how passes are defined, how they are
1305 used, and how they are required from other passes, it's time to get a little bit
1306 fancier.  All of the pass relationships that we have seen so far are very
1307 simple: one pass depends on one other specific pass to be run before it can run.
1308 For many applications, this is great, for others, more flexibility is
1309 required.</p>
1310
1311 <p>In particular, some analyses are defined such that there is a single simple
1312 interface to the analysis results, but multiple ways of calculating them.
1313 Consider alias analysis for example.  The most trivial alias analysis returns
1314 "may alias" for any alias query.  The most sophisticated analysis a
1315 flow-sensitive, context-sensitive interprocedural analysis that can take a
1316 significant amount of time to execute (and obviously, there is a lot of room
1317 between these two extremes for other implementations).  To cleanly support
1318 situations like this, the LLVM Pass Infrastructure supports the notion of
1319 Analysis Groups.</p>
1320
1321 <!-- _______________________________________________________________________ -->
1322 <h4>
1323   <a name="agconcepts">Analysis Group Concepts</a>
1324 </h4>
1325
1326 <div>
1327
1328 <p>An Analysis Group is a single simple interface that may be implemented by
1329 multiple different passes.  Analysis Groups can be given human readable names
1330 just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
1331 class.  An analysis group may have one or more implementations, one of which is
1332 the "default" implementation.</p>
1333
1334 <p>Analysis groups are used by client passes just like other passes are: the
1335 <tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
1336 In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
1337 scans the available passes to see if any implementations of the analysis group
1338 are available.  If none is available, the default implementation is created for
1339 the pass to use.  All standard rules for <A href="#interaction">interaction
1340 between passes</a> still apply.</p>
1341
1342 <p>Although <a href="#registration">Pass Registration</a> is optional for normal
1343 passes, all analysis group implementations must be registered, and must use the
1344 <A href="#registerag"><tt>INITIALIZE_AG_PASS</tt></a> template to join the
1345 implementation pool.  Also, a default implementation of the interface
1346 <b>must</b> be registered with <A
1347 href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
1348
1349 <p>As a concrete example of an Analysis Group in action, consider the <a
1350 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
1351 analysis group.  The default implementation of the alias analysis interface (the
1352 <tt><a
1353 href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
1354 pass) just does a few simple checks that don't require significant analysis to
1355 compute (such as: two different globals can never alias each other, etc).
1356 Passes that use the <tt><a
1357 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1358 interface (for example the <tt><a
1359 href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
1360 not care which implementation of alias analysis is actually provided, they just
1361 use the designated interface.</p>
1362
1363 <p>From the user's perspective, commands work just like normal.  Issuing the
1364 command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
1365 instantiated and added to the pass sequence.  Issuing the command '<tt>opt
1366 -somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
1367 <tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
1368 hypothetical example) instead.</p>
1369
1370 </div>
1371
1372 <!-- _______________________________________________________________________ -->
1373 <h4>
1374   <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
1375 </h4>
1376
1377 <div>
1378
1379 <p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
1380 group itself, while the <tt>INITIALIZE_AG_PASS</tt> is used to add pass
1381 implementations to the analysis group.  First,
1382 an analysis group should be registered, with a human readable name
1383 provided for it.
1384 Unlike registration of passes, there is no command line argument to be specified
1385 for the Analysis Group Interface itself, because it is "abstract":</p>
1386
1387 <div class="doc_code"><pre>
1388   <b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
1389 </pre></div>
1390
1391 <p>Once the analysis is registered, passes can declare that they are valid
1392 implementations of the interface by using the following code:</p>
1393
1394 <div class="doc_code"><pre>
1395 <b>namespace</b> {
1396   //<i> Declare that we implement the AliasAnalysis interface</i>
1397   INITIALIZE_AG_PASS(FancyAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>somefancyaa</i>",
1398                      "<i>A more complex alias analysis implementation</i>",
1399                      false, // <i>Is CFG Only?</i>
1400                      true,  // <i>Is Analysis?</i>
1401                      false, // <i>Is default Analysis Group implementation?</i>
1402                     );
1403 }
1404 </pre></div>
1405
1406 <p>This just shows a class <tt>FancyAA</tt> that 
1407 uses the <tt>INITIALIZE_AG_PASS</tt> macro both to register and
1408 to "join" the <tt><a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1409 analysis group.  Every implementation of an analysis group should join using
1410 this macro.</p>
1411
1412 <div class="doc_code"><pre>
1413 <b>namespace</b> {
1414   //<i> Declare that we implement the AliasAnalysis interface</i>
1415   INITIALIZE_AG_PASS(BasicAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>basicaa</i>",
1416                      "<i>Basic Alias Analysis (default AA impl)</i>",
1417                      false, // <i>Is CFG Only?</i>
1418                      true,  // <i>Is Analysis?</i>
1419                      true, // <i>Is default Analysis Group implementation?</i>
1420                     );
1421 }
1422 </pre></div>
1423
1424 <p>Here we show how the default implementation is specified (using the final
1425 argument to the <tt>INITIALIZE_AG_PASS</tt> template).  There must be exactly
1426 one default implementation available at all times for an Analysis Group to be
1427 used.  Only default implementation can derive from <tt>ImmutablePass</tt>. 
1428 Here we declare that the
1429  <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
1430 pass is the default implementation for the interface.</p>
1431
1432 </div>
1433
1434 </div>
1435
1436 <!-- *********************************************************************** -->
1437 <h2>
1438   <a name="passStatistics">Pass Statistics</a>
1439 </h2>
1440 <!-- *********************************************************************** -->
1441
1442 <div>
1443 <p>The <a
1444 href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
1445 class is designed to be an easy way to expose various success
1446 metrics from passes.  These statistics are printed at the end of a
1447 run, when the -stats command line option is enabled on the command
1448 line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details. 
1449
1450 </div>
1451
1452
1453 <!-- *********************************************************************** -->
1454 <h2>
1455   <a name="passmanager">What PassManager does</a>
1456 </h2>
1457 <!-- *********************************************************************** -->
1458
1459 <div>
1460
1461 <p>The <a
1462 href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
1463 <a
1464 href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
1465 takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
1466 are set up correctly, and then schedules passes to run efficiently.  All of the
1467 LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
1468 passes.</p>
1469
1470 <p>The <tt>PassManager</tt> does two main things to try to reduce the execution
1471 time of a series of passes:</p>
1472
1473 <ol>
1474 <li><b>Share analysis results</b> - The PassManager attempts to avoid
1475 recomputing analysis results as much as possible.  This means keeping track of
1476 which analyses are available already, which analyses get invalidated, and which
1477 analyses are needed to be run for a pass.  An important part of work is that the
1478 <tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
1479 it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
1480 results as soon as they are no longer needed.</li>
1481
1482 <li><b>Pipeline the execution of passes on the program</b> - The
1483 <tt>PassManager</tt> attempts to get better cache and memory usage behavior out
1484 of a series of passes by pipelining the passes together.  This means that, given
1485 a series of consecutive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
1486 will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
1487 the first function, then all of the <a
1488 href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
1489 etc... until the entire program has been run through the passes.
1490
1491 <p>This improves the cache behavior of the compiler, because it is only touching
1492 the LLVM program representation for a single function at a time, instead of
1493 traversing the entire program.  It reduces the memory consumption of compiler,
1494 because, for example, only one <a
1495 href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
1496 needs to be calculated at a time.  This also makes it possible to implement
1497 some <a
1498 href="#SMP">interesting enhancements</a> in the future.</p></li>
1499
1500 </ol>
1501
1502 <p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
1503 much information it has about the behaviors of the passes it is scheduling.  For
1504 example, the "preserved" set is intentionally conservative in the face of an
1505 unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
1506 Not implementing when it should be implemented will have the effect of not
1507 allowing any analysis results to live across the execution of your pass.</p>
1508
1509 <p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
1510 options that is useful for debugging pass execution, seeing how things work, and
1511 diagnosing when you should be preserving more analyses than you currently are
1512 (To get information about all of the variants of the <tt>--debug-pass</tt>
1513 option, just type '<tt>opt -help-hidden</tt>').</p>
1514
1515 <p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
1516 how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
1517 Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
1518
1519 <div class="doc_code"><pre>
1520 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1521 Module Pass Manager
1522   Function Pass Manager
1523     Dominator Set Construction
1524     Immediate Dominators Construction
1525     Global Common Subexpression Elimination
1526 --  Immediate Dominators Construction
1527 --  Global Common Subexpression Elimination
1528     Natural Loop Construction
1529     Loop Invariant Code Motion
1530 --  Natural Loop Construction
1531 --  Loop Invariant Code Motion
1532     Module Verifier
1533 --  Dominator Set Construction
1534 --  Module Verifier
1535   Bitcode Writer
1536 --Bitcode Writer
1537 </pre></div>
1538
1539 <p>This output shows us when passes are constructed and when the analysis
1540 results are known to be dead (prefixed with '<tt>--</tt>').  Here we see that
1541 GCSE uses dominator and immediate dominator information to do its job.  The LICM
1542 pass uses natural loop information, which uses dominator sets, but not immediate
1543 dominators.  Because immediate dominators are no longer useful after the GCSE
1544 pass, it is immediately destroyed.  The dominator sets are then reused to
1545 compute natural loop information, which is then used by the LICM pass.</p>
1546
1547 <p>After the LICM pass, the module verifier runs (which is automatically added
1548 by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
1549 resultant LLVM code is well formed.  After it finishes, the dominator set
1550 information is destroyed, after being computed once, and shared by three
1551 passes.</p>
1552
1553 <p>Lets see how this changes when we run the <a href="#basiccode">Hello
1554 World</a> pass in between the two passes:</p>
1555
1556 <div class="doc_code"><pre>
1557 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1558 Module Pass Manager
1559   Function Pass Manager
1560     Dominator Set Construction
1561     Immediate Dominators Construction
1562     Global Common Subexpression Elimination
1563 <b>--  Dominator Set Construction</b>
1564 --  Immediate Dominators Construction
1565 --  Global Common Subexpression Elimination
1566 <b>    Hello World Pass
1567 --  Hello World Pass
1568     Dominator Set Construction</b>
1569     Natural Loop Construction
1570     Loop Invariant Code Motion
1571 --  Natural Loop Construction
1572 --  Loop Invariant Code Motion
1573     Module Verifier
1574 --  Dominator Set Construction
1575 --  Module Verifier
1576   Bitcode Writer
1577 --Bitcode Writer
1578 Hello: __main
1579 Hello: puts
1580 Hello: main
1581 </pre></div>
1582
1583 <p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
1584 Dominator Set pass, even though it doesn't modify the code at all!  To fix this,
1585 we need to add the following <a
1586 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
1587
1588 <div class="doc_code"><pre>
1589     <i>// We don't modify the program, so we preserve all analyses</i>
1590     <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1591       AU.setPreservesAll();
1592     }
1593 </pre></div>
1594
1595 <p>Now when we run our pass, we get this output:</p>
1596
1597 <div class="doc_code"><pre>
1598 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1599 Pass Arguments:  -gcse -hello -licm
1600 Module Pass Manager
1601   Function Pass Manager
1602     Dominator Set Construction
1603     Immediate Dominators Construction
1604     Global Common Subexpression Elimination
1605 --  Immediate Dominators Construction
1606 --  Global Common Subexpression Elimination
1607     Hello World Pass
1608 --  Hello World Pass
1609     Natural Loop Construction
1610     Loop Invariant Code Motion
1611 --  Loop Invariant Code Motion
1612 --  Natural Loop Construction
1613     Module Verifier
1614 --  Dominator Set Construction
1615 --  Module Verifier
1616   Bitcode Writer
1617 --Bitcode Writer
1618 Hello: __main
1619 Hello: puts
1620 Hello: main
1621 </pre></div>
1622
1623 <p>Which shows that we don't accidentally invalidate dominator information
1624 anymore, and therefore do not have to compute it twice.</p>
1625
1626 <!-- _______________________________________________________________________ -->
1627 <h4>
1628   <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
1629 </h4>
1630
1631 <div>
1632
1633 <div class="doc_code"><pre>
1634   <b>virtual void</b> releaseMemory();
1635 </pre></div>
1636
1637 <p>The <tt>PassManager</tt> automatically determines when to compute analysis
1638 results, and how long to keep them around for.  Because the lifetime of the pass
1639 object itself is effectively the entire duration of the compilation process, we
1640 need some way to free analysis results when they are no longer useful.  The
1641 <tt>releaseMemory</tt> virtual method is the way to do this.</p>
1642
1643 <p>If you are writing an analysis or any other pass that retains a significant
1644 amount of state (for use by another pass which "requires" your pass and uses the
1645 <a href="#getAnalysis">getAnalysis</a> method) you should implement
1646 <tt>releaseMemory</tt> to, well, release the memory allocated to maintain this
1647 internal state.  This method is called after the <tt>run*</tt> method for the
1648 class, before the next call of <tt>run*</tt> in your pass.</p>
1649
1650 </div>
1651
1652 </div>
1653
1654 <!-- *********************************************************************** -->
1655 <h2>
1656   <a name="registering">Registering dynamically loaded passes</a>
1657 </h2>
1658 <!-- *********************************************************************** -->
1659
1660 <div>
1661
1662 <p><i>Size matters</i> when constructing production quality tools using llvm, 
1663 both for the purposes of distribution, and for regulating the resident code size
1664 when running on the target system. Therefore, it becomes desirable to
1665 selectively use some passes, while omitting others and maintain the flexibility
1666 to change configurations later on. You want to be able to do all this, and,
1667 provide feedback to the user. This is where pass registration comes into
1668 play.</p>
1669
1670 <p>The fundamental mechanisms for pass registration are the
1671 <tt>MachinePassRegistry</tt> class and subclasses of
1672 <tt>MachinePassRegistryNode</tt>.</p>
1673
1674 <p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
1675 <tt>MachinePassRegistryNode</tt> objects.  This instance maintains the list and
1676 communicates additions and deletions to the command line interface.</p>
1677
1678 <p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
1679 information provided about a particular pass.  This information includes the
1680 command line name, the command help string and the address of the function used
1681 to create an instance of the pass.  A global static constructor of one of these
1682 instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
1683 the static destructor <i>unregisters</i>. Thus a pass that is statically linked
1684 in the tool will be registered at start up. A dynamically loaded pass will
1685 register on load and unregister at unload.</p>
1686
1687 <!-- _______________________________________________________________________ -->
1688 <h3>
1689   <a name="registering_existing">Using existing registries</a>
1690 </h3>
1691
1692 <div>
1693
1694 <p>There are predefined registries to track instruction scheduling
1695 (<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
1696 machine passes.  Here we will describe how to <i>register</i> a register
1697 allocator machine pass.</p>
1698
1699 <p>Implement your register allocator machine pass.  In your register allocator
1700 .cpp file add the following include;</p>
1701
1702 <div class="doc_code"><pre>
1703   #include "llvm/CodeGen/RegAllocRegistry.h"
1704 </pre></div>
1705
1706 <p>Also in your register allocator .cpp file, define a creator function in the
1707 form; </p>
1708
1709 <div class="doc_code"><pre>
1710   FunctionPass *createMyRegisterAllocator() {
1711     return new MyRegisterAllocator();
1712   }
1713 </pre></div>
1714
1715 <p>Note that the signature of this function should match the type of
1716 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.  In the same file add the
1717 "installing" declaration, in the form;</p>
1718
1719 <div class="doc_code"><pre>
1720   static RegisterRegAlloc myRegAlloc("myregalloc",
1721     "  my register allocator help string",
1722     createMyRegisterAllocator);
1723 </pre></div>
1724
1725 <p>Note the two spaces prior to the help string produces a tidy result on the
1726 -help query.</p>
1727
1728 <div class="doc_code"><pre>
1729 $ llc -help
1730   ...
1731   -regalloc                    - Register allocator to use (default=linearscan)
1732     =linearscan                -   linear scan register allocator
1733     =local                     -   local register allocator
1734     =simple                    -   simple register allocator
1735     =myregalloc                -   my register allocator help string
1736   ...
1737 </pre></div>
1738
1739 <p>And that's it.  The user is now free to use <tt>-regalloc=myregalloc</tt> as
1740 an option.  Registering instruction schedulers is similar except use the
1741 <tt>RegisterScheduler</tt> class.  Note that the
1742 <tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
1743 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
1744
1745 <p>To force the load/linking of your register allocator into the llc/lli tools,
1746 add your creator function's global declaration to "Passes.h" and add a "pseudo"
1747 call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
1748
1749 </div>
1750
1751
1752 <!-- _______________________________________________________________________ -->
1753 <h3>
1754   <a name="registering_new">Creating new registries</a>
1755 </h3>
1756
1757 <div>
1758
1759 <p>The easiest way to get started is to clone one of the existing registries; we
1760 recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>.  The key things to modify
1761 are the class name and the <tt>FunctionPassCtor</tt> type.</p>
1762
1763 <p>Then you need to declare the registry.  Example: if your pass registry is
1764 <tt>RegisterMyPasses</tt> then define;</p>
1765
1766 <div class="doc_code"><pre>
1767 MachinePassRegistry RegisterMyPasses::Registry;
1768 </pre></div>
1769
1770 <p>And finally, declare the command line option for your passes.  Example:</p> 
1771
1772 <div class="doc_code"><pre>
1773   cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
1774           RegisterPassParser&lt;RegisterMyPasses&gt; &gt;
1775   MyPassOpt("mypass",
1776             cl::init(&amp;createDefaultMyPass),
1777             cl::desc("my pass option help")); 
1778 </pre></div>
1779
1780 <p>Here the command option is "mypass", with createDefaultMyPass as the default
1781 creator.</p>
1782
1783 </div>
1784
1785 </div>
1786
1787 <!-- *********************************************************************** -->
1788 <h2>
1789   <a name="debughints">Using GDB with dynamically loaded passes</a>
1790 </h2>
1791 <!-- *********************************************************************** -->
1792
1793 <div>
1794
1795 <p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
1796 should be.  First of all, you can't set a breakpoint in a shared object that has
1797 not been loaded yet, and second of all there are problems with inlined functions
1798 in shared objects.  Here are some suggestions to debugging your pass with
1799 GDB.</p>
1800
1801 <p>For sake of discussion, I'm going to assume that you are debugging a
1802 transformation invoked by <tt>opt</tt>, although nothing described here depends
1803 on that.</p>
1804
1805 <!-- _______________________________________________________________________ -->
1806 <h4>
1807   <a name="breakpoint">Setting a breakpoint in your pass</a>
1808 </h4>
1809
1810 <div>
1811
1812 <p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
1813
1814 <div class="doc_code"><pre>
1815 $ <b>gdb opt</b>
1816 GNU gdb 5.0
1817 Copyright 2000 Free Software Foundation, Inc.
1818 GDB is free software, covered by the GNU General Public License, and you are
1819 welcome to change it and/or distribute copies of it under certain conditions.
1820 Type "show copying" to see the conditions.
1821 There is absolutely no warranty for GDB.  Type "show warranty" for details.
1822 This GDB was configured as "sparc-sun-solaris2.6"...
1823 (gdb)
1824 </pre></div>
1825
1826 <p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
1827 time to load.  Be patient.  Since we cannot set a breakpoint in our pass yet
1828 (the shared object isn't loaded until runtime), we must execute the process, and
1829 have it stop before it invokes our pass, but after it has loaded the shared
1830 object.  The most foolproof way of doing this is to set a breakpoint in
1831 <tt>PassManager::run</tt> and then run the process with the arguments you
1832 want:</p>
1833
1834 <div class="doc_code"><pre>
1835 (gdb) <b>break llvm::PassManager::run</b>
1836 Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
1837 (gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]</b>
1838 Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
1839 Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
1840 70      bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
1841 (gdb)
1842 </pre></div>
1843
1844 <p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
1845 now free to set breakpoints in your pass so that you can trace through execution
1846 or do other standard debugging stuff.</p>
1847
1848 </div>
1849
1850 <!-- _______________________________________________________________________ -->
1851 <h4>
1852   <a name="debugmisc">Miscellaneous Problems</a>
1853 </h4>
1854
1855 <div>
1856
1857 <p>Once you have the basics down, there are a couple of problems that GDB has,
1858 some with solutions, some without.</p>
1859
1860 <ul>
1861 <li>Inline functions have bogus stack information.  In general, GDB does a
1862 pretty good job getting stack traces and stepping through inline functions.
1863 When a pass is dynamically loaded however, it somehow completely loses this
1864 capability.  The only solution I know of is to de-inline a function (move it
1865 from the body of a class to a .cpp file).</li>
1866
1867 <li>Restarting the program breaks breakpoints.  After following the information
1868 above, you have succeeded in getting some breakpoints planted in your pass.  Nex
1869 thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
1870 and you start getting errors about breakpoints being unsettable.  The only way I
1871 have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
1872 already set in your pass, run the program, and re-set the breakpoints once
1873 execution stops in <tt>PassManager::run</tt>.</li>
1874
1875 </ul>
1876
1877 <p>Hopefully these tips will help with common case debugging situations.  If
1878 you'd like to contribute some tips of your own, just contact <a
1879 href="mailto:sabre@nondot.org">Chris</a>.</p>
1880
1881 </div>
1882
1883 </div>
1884
1885 <!-- *********************************************************************** -->
1886 <h2>
1887   <a name="future">Future extensions planned</a>
1888 </h2>
1889 <!-- *********************************************************************** -->
1890
1891 <div>
1892
1893 <p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
1894 some nifty stuff, there are things we'd like to add in the future.  Here is
1895 where we are going:</p>
1896
1897 <!-- _______________________________________________________________________ -->
1898 <h4>
1899   <a name="SMP">Multithreaded LLVM</a>
1900 </h4>
1901
1902 <div>
1903
1904 <p>Multiple CPU machines are becoming more common and compilation can never be
1905 fast enough: obviously we should allow for a multithreaded compiler.  Because of
1906 the semantics defined for passes above (specifically they cannot maintain state
1907 across invocations of their <tt>run*</tt> methods), a nice clean way to
1908 implement a multithreaded compiler would be for the <tt>PassManager</tt> class
1909 to create multiple instances of each pass object, and allow the separate
1910 instances to be hacking on different parts of the program at the same time.</p>
1911
1912 <p>This implementation would prevent each of the passes from having to implement
1913 multithreaded constructs, requiring only the LLVM core to have locking in a few
1914 places (for global resources).  Although this is a simple extension, we simply
1915 haven't had time (or multiprocessor machines, thus a reason) to implement this.
1916 Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
1917
1918 </div>
1919
1920 </div>
1921
1922 <!-- *********************************************************************** -->
1923 <hr>
1924 <address>
1925   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1926   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1927   <a href="http://validator.w3.org/check/referer"><img
1928   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1929
1930   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1931   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1932   Last modified: $Date$
1933 </address>
1934
1935 </body>
1936 </html>