Fix some documentation for the tutorial.
[oota-llvm.git] / docs / WritingAnLLVMPass.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6   <title>Writing an LLVM Pass</title>
7   <link rel="stylesheet" href="llvm.css" type="text/css">
8 </head>
9 <body>
10
11 <div class="doc_title">
12   Writing an LLVM Pass
13 </div>
14
15 <ol>
16   <li><a href="#introduction">Introduction - What is a pass?</a></li>
17   <li><a href="#quickstart">Quick Start - Writing hello world</a>
18     <ul>
19     <li><a href="#makefile">Setting up the build environment</a></li>
20     <li><a href="#basiccode">Basic code required</a></li>
21     <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
22     </ul></li>
23   <li><a href="#passtype">Pass classes and requirements</a>
24      <ul>
25      <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
26      <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
27         <ul>
28         <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
29         </ul></li>
30      <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
31         <ul>
32         <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
33                                            &amp;)</tt> method</a></li>
34         <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
35         <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
36                                            &amp;)</tt> method</a></li>
37         </ul></li>
38      <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
39         <ul>
40         <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
41                                             &amp;)</tt> method</a></li>
42         <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
43         <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
44                                             &amp;)</tt> method</a></li>
45         </ul></li>
46      <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
47         <ul>
48         <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
49                                             LPPassManager &amp;)</tt> method</a></li>
50         <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
51         <li><a href="#doFinalization_loop">The <tt>doFinalization()
52                                             </tt> method</a></li>
53         </ul></li>
54      <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
55         <ul>
56         <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
57                                              &amp;)</tt> method</a></li>
58         <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
59                                        method</a></li>
60         <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
61                                          &amp;)</tt> method</a></li>
62         </ul></li>
63      <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
64                                         class</a>
65         <ul>
66         <li><a href="#runOnMachineFunction">The
67             <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
68         </ul></li>
69      </ul>
70   <li><a href="#registration">Pass Registration</a>
71      <ul>
72      <li><a href="#print">The <tt>print</tt> method</a></li>
73      </ul></li>
74   <li><a href="#interaction">Specifying interactions between passes</a>
75      <ul>
76      <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt> 
77                                      method</a></li>
78      <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
79      <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
80      <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
81      <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and <tt>getAnalysisToUpdate&lt;&gt;</tt> methods</a></li>
82      </ul></li>
83   <li><a href="#analysisgroup">Implementing Analysis Groups</a>
84      <ul>
85      <li><a href="#agconcepts">Analysis Group Concepts</a></li>
86      <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
87      </ul></li>
88   <li><a href="#passStatistics">Pass Statistics</a>
89   <li><a href="#passmanager">What PassManager does</a>
90     <ul>
91     <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
92     </ul></li>
93   <li><a href="#registering">Registering dynamically loaded passes</a>
94     <ul>
95       <li><a href="#registering_existing">Using existing registries</a></li>
96       <li><a href="#registering_new">Creating new registries</a></li>
97     </ul></li>
98   <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
99     <ul>
100     <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
101     <li><a href="#debugmisc">Miscellaneous Problems</a></li>
102     </ul></li>
103   <li><a href="#future">Future extensions planned</a>
104     <ul>
105     <li><a href="#SMP">Multithreaded LLVM</a></li>
106     </ul></li>
107 </ol>
108
109 <div class="doc_author">
110   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
111   <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
112 </div>
113
114 <!-- *********************************************************************** -->
115 <div class="doc_section">
116   <a name="introduction">Introduction - What is a pass?</a>
117 </div>
118 <!-- *********************************************************************** -->
119
120 <div class="doc_text">
121
122 <p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
123 passes are where most of the interesting parts of the compiler exist.  Passes
124 perform the transformations and optimizations that make up the compiler, they
125 build the analysis results that are used by these transformations, and they are,
126 above all, a structuring technique for compiler code.</p>
127
128 <p>All LLVM passes are subclasses of the <tt><a
129 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
130 class, which implement functionality by overriding virtual methods inherited
131 from <tt>Pass</tt>.  Depending on how your pass works, you should inherit from
132 the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
133 href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
134 href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
135 href="#LoopPass">LoopPass</a></tt>, or <tt><a
136 href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
137 more information about what your pass does, and how it can be combined with
138 other passes.  One of the main features of the LLVM Pass Framework is that it
139 schedules passes to run in an efficient way based on the constraints that your
140 pass meets (which are indicated by which class they derive from).</p>
141
142 <p>We start by showing you how to construct a pass, everything from setting up
143 the code, to compiling, loading, and executing it.  After the basics are down,
144 more advanced features are discussed.</p>
145
146 </div>
147
148 <!-- *********************************************************************** -->
149 <div class="doc_section">
150   <a name="quickstart">Quick Start - Writing hello world</a>
151 </div>
152 <!-- *********************************************************************** -->
153
154 <div class="doc_text">
155
156 <p>Here we describe how to write the "hello world" of passes.  The "Hello" pass
157 is designed to simply print out the name of non-external functions that exist in
158 the program being compiled.  It does not modify the program at all, it just
159 inspects it.  The source code and files for this pass are available in the LLVM
160 source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
161
162 </div>
163
164 <!-- ======================================================================= -->
165 <div class="doc_subsection">
166   <a name="makefile">Setting up the build environment</a>
167 </div>
168
169 <div class="doc_text">
170
171   <p>First, you need to create a new directory somewhere in the LLVM source 
172   base.  For this example, we'll assume that you made 
173   <tt>lib/Transforms/Hello</tt>.  Next, you must set up a build script 
174   (Makefile) that will compile the source code for the new pass.  To do this, 
175   copy the following into <tt>Makefile</tt>:</p>
176   <hr/>
177
178 <div class="doc_code"><pre>
179 # Makefile for hello pass
180
181 # Path to top level of LLVM heirarchy
182 LEVEL = ../../..
183
184 # Name of the library to build
185 LIBRARYNAME = Hello
186
187 # Make the shared library become a loadable module so the tools can 
188 # dlopen/dlsym on the resulting library.
189 LOADABLE_MODULE = 1
190
191 # Tell the build system which LLVM libraries your pass needs. You'll probably
192 # need at least LLVMSystem.a, LLVMSupport.a, LLVMCore.a but possibly several
193 # others too.
194 LLVMLIBS = LLVMCore.a LLVMSupport.a LLVMSystem.a
195
196 # Include the makefile implementation stuff
197 include $(LEVEL)/Makefile.common
198 </pre></div>
199
200 <p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
201 directory are to be compiled and linked together into a
202 <tt>Debug/lib/Hello.so</tt> shared object that can be dynamically loaded by
203 the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.  
204 If your operating system uses a suffix other than .so (such as windows or 
205 Mac OS/X), the appropriate extension will be used.</p>
206
207 <p>Now that we have the build scripts set up, we just need to write the code for
208 the pass itself.</p>
209
210 </div>
211
212 <!-- ======================================================================= -->
213 <div class="doc_subsection">
214   <a name="basiccode">Basic code required</a>
215 </div>
216
217 <div class="doc_text">
218
219 <p>Now that we have a way to compile our new pass, we just have to write it.
220 Start out with:</p>
221
222 <div class="doc_code"><pre>
223 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
224 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
225 </pre></div>
226
227 <p>Which are needed because we are writing a <tt><a
228 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>, and
229 we are operating on <tt><a
230 href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s.</p>
231
232 <p>Next we have:</p>
233 <div class="doc_code"><pre>
234 <b>using namespace llvm;</b>
235 </pre></div>
236 <p>... which is required because the functions from the include files 
237 live in the llvm namespace.
238 </p>
239
240 <p>Next we have:</p>
241
242 <div class="doc_code"><pre>
243 <b>namespace</b> {
244 </pre></div>
245
246 <p>... which starts out an anonymous namespace.  Anonymous namespaces are to C++
247 what the "<tt>static</tt>" keyword is to C (at global scope).  It makes the
248 things declared inside of the anonymous namespace only visible to the current
249 file.  If you're not familiar with them, consult a decent C++ book for more
250 information.</p>
251
252 <p>Next, we declare our pass itself:</p>
253
254 <div class="doc_code"><pre>
255   <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
256 </pre></div><p>
257
258 <p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
259 href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
260 The different builtin pass subclasses are described in detail <a
261 href="#passtype">later</a>, but for now, know that <a
262 href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate a function at a
263 time.</p>
264
265 <div class="doc_code"><pre>
266      static char ID;
267      Hello() : FunctionPass((intptr_t)&amp;ID) {}
268 </pre></div><p>
269
270 <p> This declares pass identifier used by LLVM to identify pass. This allows LLVM to
271 avoid using expensive C++ runtime information.</p>
272
273 <div class="doc_code"><pre>
274     <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
275       llvm::cerr &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
276       <b>return false</b>;
277     }
278   };  <i>// end of struct Hello</i>
279 </pre></div>
280
281 <p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
282 which overloads an abstract virtual method inherited from <a
283 href="#FunctionPass"><tt>FunctionPass</tt></a>.  This is where we are supposed
284 to do our thing, so we just print out our message with the name of each
285 function.</p>
286
287 <div class="doc_code"><pre>
288   char Hello::ID = 0;
289 </pre></div>
290
291 <p> We initialize pass ID here. LLVM uses ID's address to identify pass so 
292 initialization value is not important.</p>
293
294 <div class="doc_code"><pre>
295   RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
296                         false /* Only looks at CFG */,
297                         false /* Analysis Pass */);
298 }  <i>// end of anonymous namespace</i>
299 </pre></div>
300
301 <p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>, 
302 giving it a command line
303 argument "<tt>hello</tt>", and a name "<tt>Hello World Pass</tt>".
304 Last two RegisterPass arguments are optional. Their default value is false.
305 If a pass walks CFG without modifying it then third argument is set to true. 
306 If  a pass is an analysis pass, for example dominator tree pass, then true 
307 is supplied as fourth argument. </p>
308
309 <p>As a whole, the <tt>.cpp</tt> file looks like:</p>
310
311 <div class="doc_code"><pre>
312 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
313 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
314
315 <b>using namespace llvm;</b>
316
317 <b>namespace</b> {
318   <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
319     
320     static char ID;
321     Hello() : FunctionPass((intptr_t)&amp;ID) {}
322
323     <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
324       llvm::cerr &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
325       <b>return false</b>;
326     }
327   };
328   
329   char Hello::ID = 0;
330   RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>");
331 }
332 </pre></div>
333
334 <p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
335 command in the local directory and you should get a new
336 "<tt>Debug/lib/Hello.so</tt> file.  Note that everything in this file is
337 contained in an anonymous namespace: this reflects the fact that passes are self
338 contained units that do not need external interfaces (although they can have
339 them) to be useful.</p>
340
341 </div>
342
343 <!-- ======================================================================= -->
344 <div class="doc_subsection">
345   <a name="running">Running a pass with <tt>opt</tt></a>
346 </div>
347
348 <div class="doc_text">
349
350 <p>Now that you have a brand new shiny shared object file, we can use the
351 <tt>opt</tt> command to run an LLVM program through your pass.  Because you
352 registered your pass with the <tt>RegisterPass</tt> template, you will be able to
353 use the <tt>opt</tt> tool to access it, once loaded.</p>
354
355 <p>To test it, follow the example at the end of the <a
356 href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
357 LLVM.  We can now run the bitcode file (<tt>hello.bc</tt>) for the program
358 through our transformation like this (or course, any bitcode file will
359 work):</p>
360
361 <div class="doc_code"><pre>
362 $ opt -load ../../../Debug/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
363 Hello: __main
364 Hello: puts
365 Hello: main
366 </pre></div>
367
368 <p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
369 pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
370 argument (which is one reason you need to <a href="#registration">register your
371 pass</a>).  Because the hello pass does not modify the program in any
372 interesting way, we just throw away the result of <tt>opt</tt> (sending it to
373 <tt>/dev/null</tt>).</p>
374
375 <p>To see what happened to the other string you registered, try running
376 <tt>opt</tt> with the <tt>--help</tt> option:</p>
377
378 <div class="doc_code"><pre>
379 $ opt -load ../../../Debug/lib/Hello.so --help
380 OVERVIEW: llvm .bc -&gt; .bc modular optimizer
381
382 USAGE: opt [options] &lt;input bitcode&gt;
383
384 OPTIONS:
385   Optimizations available:
386 ...
387     -funcresolve    - Resolve Functions
388     -gcse           - Global Common Subexpression Elimination
389     -globaldce      - Dead Global Elimination
390     <b>-hello          - Hello World Pass</b>
391     -indvars        - Canonicalize Induction Variables
392     -inline         - Function Integration/Inlining
393     -instcombine    - Combine redundant instructions
394 ...
395 </pre></div>
396
397 <p>The pass name get added as the information string for your pass, giving some
398 documentation to users of <tt>opt</tt>.  Now that you have a working pass, you
399 would go ahead and make it do the cool transformations you want.  Once you get
400 it all working and tested, it may become useful to find out how fast your pass
401 is.  The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
402 line option (<tt>--time-passes</tt>) that allows you to get information about
403 the execution time of your pass along with the other passes you queue up.  For
404 example:</p>
405
406 <div class="doc_code"><pre>
407 $ opt -load ../../../Debug/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
408 Hello: __main
409 Hello: puts
410 Hello: main
411 ===============================================================================
412                       ... Pass execution timing report ...
413 ===============================================================================
414   Total Execution Time: 0.02 seconds (0.0479059 wall clock)
415
416    ---User Time---   --System Time--   --User+System--   ---Wall Time---  --- Pass Name ---
417    0.0100 (100.0%)   0.0000 (  0.0%)   0.0100 ( 50.0%)   0.0402 ( 84.0%)  Bitcode Writer
418    0.0000 (  0.0%)   0.0100 (100.0%)   0.0100 ( 50.0%)   0.0031 (  6.4%)  Dominator Set Construction
419    0.0000 (  0.0%)   0.0000 (  0.0%)   0.0000 (  0.0%)   0.0013 (  2.7%)  Module Verifier
420  <b>  0.0000 (  0.0%)   0.0000 (  0.0%)   0.0000 (  0.0%)   0.0033 (  6.9%)  Hello World Pass</b>
421    0.0100 (100.0%)   0.0100 (100.0%)   0.0200 (100.0%)   0.0479 (100.0%)  TOTAL
422 </pre></div>
423
424 <p>As you can see, our implementation above is pretty fast :).  The additional
425 passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
426 that the LLVM emitted by your pass is still valid and well formed LLVM, which
427 hasn't been broken somehow.</p>
428
429 <p>Now that you have seen the basics of the mechanics behind passes, we can talk
430 about some more details of how they work and how to use them.</p>
431
432 </div>
433
434 <!-- *********************************************************************** -->
435 <div class="doc_section">
436   <a name="passtype">Pass classes and requirements</a>
437 </div>
438 <!-- *********************************************************************** -->
439
440 <div class="doc_text">
441
442 <p>One of the first things that you should do when designing a new pass is to
443 decide what class you should subclass for your pass.  The <a
444 href="#basiccode">Hello World</a> example uses the <tt><a
445 href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
446 did not discuss why or when this should occur.  Here we talk about the classes
447 available, from the most general to the most specific.</p>
448
449 <p>When choosing a superclass for your Pass, you should choose the <b>most
450 specific</b> class possible, while still being able to meet the requirements
451 listed.  This gives the LLVM Pass Infrastructure information necessary to
452 optimize how passes are run, so that the resultant compiler isn't unneccesarily
453 slow.</p>
454
455 </div>
456
457 <!-- ======================================================================= -->
458 <div class="doc_subsection">
459   <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
460 </div>
461
462 <div class="doc_text">
463
464 <p>The most plain and boring type of pass is the "<tt><a
465 href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
466 class.  This pass type is used for passes that do not have to be run, do not
467 change state, and never need to be updated.  This is not a normal type of
468 transformation or analysis, but can provide information about the current
469 compiler configuration.</p>
470
471 <p>Although this pass class is very infrequently used, it is important for
472 providing information about the current target machine being compiled for, and
473 other static information that can affect the various transformations.</p>
474
475 <p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
476 invalidated, and are never "run".</p>
477
478 </div>
479
480 <!-- ======================================================================= -->
481 <div class="doc_subsection">
482   <a name="ModulePass">The <tt>ModulePass</tt> class</a>
483 </div>
484
485 <div class="doc_text">
486
487 <p>The "<tt><a
488 href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
489 class is the most general of all superclasses that you can use.  Deriving from
490 <tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
491 refering to function bodies in no predictable order, or adding and removing
492 functions.  Because nothing is known about the behavior of <tt>ModulePass</tt>
493 subclasses, no optimization can be done for their execution. A module pass
494 can use function level passes (e.g. dominators) using getAnalysis interface
495 <tt> getAnalysis&lt;DominatorTree&gt;(Function)</tt>. </p> 
496
497 <p>To write a correct <tt>ModulePass</tt> subclass, derive from
498 <tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
499 following signature:</p>
500
501 </div>
502
503 <!-- _______________________________________________________________________ -->
504 <div class="doc_subsubsection">
505   <a name="runOnModule">The <tt>runOnModule</tt> method</a>
506 </div>
507
508 <div class="doc_text">
509
510 <div class="doc_code"><pre>
511   <b>virtual bool</b> runOnModule(Module &amp;M) = 0;
512 </pre></div>
513
514 <p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
515 It should return true if the module was modified by the transformation and
516 false otherwise.</p>
517
518 </div>
519
520 <!-- ======================================================================= -->
521 <div class="doc_subsection">
522   <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
523 </div>
524
525 <div class="doc_text">
526
527 <p>The "<tt><a
528 href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
529 is used by passes that need to traverse the program bottom-up on the call graph
530 (callees before callers).  Deriving from CallGraphSCCPass provides some
531 mechanics for building and traversing the CallGraph, but also allows the system
532 to optimize execution of CallGraphSCCPass's.  If your pass meets the
533 requirements outlined below, and doesn't meet the requirements of a <tt><a
534 href="#FunctionPass">FunctionPass</a></tt> or <tt><a
535 href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
536 <tt>CallGraphSCCPass</tt>.</p>
537
538 <p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
539
540 <p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
541
542 <ol>
543
544 <li>... <em>not allowed</em> to modify any <tt>Function</tt>s that are not in
545 the current SCC.</li>
546
547 <li>... <em>not allowed</em> to inspect any Function's other than those in the
548 current SCC and the direct callees of the SCC.</li>
549
550 <li>... <em>required</em> to preserve the current CallGraph object, updating it
551 to reflect any changes made to the program.</li>
552
553 <li>... <em>not allowed</em> to add or remove SCC's from the current Module,
554 though they may change the contents of an SCC.</li>
555
556 <li>... <em>allowed</em> to add or remove global variables from the current
557 Module.</li>
558
559 <li>... <em>allowed</em> to maintain state across invocations of
560     <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
561 </ol>
562
563 <p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
564 because it has to handle SCCs with more than one node in it.  All of the virtual
565 methods described below should return true if they modified the program, or
566 false if they didn't.</p>
567
568 </div>
569
570 <!-- _______________________________________________________________________ -->
571 <div class="doc_subsubsection">
572   <a name="doInitialization_scc">The <tt>doInitialization(CallGraph &amp;)</tt>
573   method</a>
574 </div>
575
576 <div class="doc_text">
577
578 <div class="doc_code"><pre>
579   <b>virtual bool</b> doInitialization(CallGraph &amp;CG);
580 </pre></div>
581
582 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
583 <tt>CallGraphSCCPass</tt>'s are not allowed to do.  They can add and remove
584 functions, get pointers to functions, etc.  The <tt>doInitialization</tt> method
585 is designed to do simple initialization type of stuff that does not depend on
586 the SCCs being processed.  The <tt>doInitialization</tt> method call is not
587 scheduled to overlap with any other pass executions (thus it should be very
588 fast).</p>
589
590 </div>
591
592 <!-- _______________________________________________________________________ -->
593 <div class="doc_subsubsection">
594   <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
595 </div>
596
597 <div class="doc_text">
598
599 <div class="doc_code"><pre>
600   <b>virtual bool</b> runOnSCC(const std::vector&lt;CallGraphNode *&gt; &amp;SCCM) = 0;
601 </pre></div>
602
603 <p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
604 should return true if the module was modified by the transformation, false
605 otherwise.</p>
606
607 </div>
608
609 <!-- _______________________________________________________________________ -->
610 <div class="doc_subsubsection">
611   <a name="doFinalization_scc">The <tt>doFinalization(CallGraph
612    &amp;)</tt> method</a>
613 </div>
614
615 <div class="doc_text">
616
617 <div class="doc_code"><pre>
618   <b>virtual bool</b> doFinalization(CallGraph &amp;CG);
619 </pre></div>
620
621 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
622 called when the pass framework has finished calling <a
623 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
624 program being compiled.</p>
625
626 </div>
627
628 <!-- ======================================================================= -->
629 <div class="doc_subsection">
630   <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
631 </div>
632
633 <div class="doc_text">
634
635 <p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
636 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
637 subclasses do have a predictable, local behavior that can be expected by the
638 system.  All <tt>FunctionPass</tt> execute on each function in the program
639 independent of all of the other functions in the program.
640 <tt>FunctionPass</tt>'s do not require that they are executed in a particular
641 order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
642
643 <p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
644
645 <ol>
646 <li>Modify a Function other than the one currently being processed.</li>
647 <li>Add or remove Function's from the current Module.</li>
648 <li>Add or remove global variables from the current Module.</li>
649 <li>Maintain state across invocations of
650     <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
651 </ol>
652
653 <p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
654 href="#basiccode">Hello World</a> pass for example).  <tt>FunctionPass</tt>'s
655 may overload three virtual methods to do their work.  All of these methods
656 should return true if they modified the program, or false if they didn't.</p>
657
658 </div>
659
660 <!-- _______________________________________________________________________ -->
661 <div class="doc_subsubsection">
662   <a name="doInitialization_mod">The <tt>doInitialization(Module &amp;)</tt>
663   method</a>
664 </div>
665
666 <div class="doc_text">
667
668 <div class="doc_code"><pre>
669   <b>virtual bool</b> doInitialization(Module &amp;M);
670 </pre></div>
671
672 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
673 <tt>FunctionPass</tt>'s are not allowed to do.  They can add and remove
674 functions, get pointers to functions, etc.  The <tt>doInitialization</tt> method
675 is designed to do simple initialization type of stuff that does not depend on
676 the functions being processed.  The <tt>doInitialization</tt> method call is not
677 scheduled to overlap with any other pass executions (thus it should be very
678 fast).</p>
679
680 <p>A good example of how this method should be used is the <a
681 href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
682 pass.  This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
683 platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls.  It
684 uses the <tt>doInitialization</tt> method to get a reference to the malloc and
685 free functions that it needs, adding prototypes to the module if necessary.</p>
686
687 </div>
688
689 <!-- _______________________________________________________________________ -->
690 <div class="doc_subsubsection">
691   <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
692 </div>
693
694 <div class="doc_text">
695
696 <div class="doc_code"><pre>
697   <b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
698 </pre></div><p>
699
700 <p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
701 the transformation or analysis work of your pass.  As usual, a true value should
702 be returned if the function is modified.</p>
703
704 </div>
705
706 <!-- _______________________________________________________________________ -->
707 <div class="doc_subsubsection">
708   <a name="doFinalization_mod">The <tt>doFinalization(Module
709   &amp;)</tt> method</a>
710 </div>
711
712 <div class="doc_text">
713
714 <div class="doc_code"><pre>
715   <b>virtual bool</b> doFinalization(Module &amp;M);
716 </pre></div>
717
718 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
719 called when the pass framework has finished calling <a
720 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
721 program being compiled.</p>
722
723 </div>
724
725 <!-- ======================================================================= -->
726 <div class="doc_subsection">
727   <a name="LoopPass">The <tt>LoopPass</tt> class </a>
728 </div>
729
730 <div class="doc_text">
731
732 <p> All <tt>LoopPass</tt> execute on each loop in the function independent of
733 all of the other loops in the function. <tt>LoopPass</tt> processes loops in
734 loop nest order such that outer most loop is processed last. </p>
735
736 <p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
737 <tt>LPPassManager</tt> interface. Implementing a loop pass is usually
738 straightforward. <tt>Looppass</tt>'s may overload three virtual methods to
739 do their work. All these methods should return true if they modified the 
740 program, or false if they didn't. </p>
741 </div>
742
743 <!-- _______________________________________________________________________ -->
744 <div class="doc_subsubsection">
745   <a name="doInitialization_loop">The <tt>doInitialization(Loop *,
746                                                  LPPassManager &amp;)</tt>
747   method</a>
748 </div>
749
750 <div class="doc_text">
751
752 <div class="doc_code"><pre>
753   <b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
754 </pre></div>
755
756 <p>The <tt>doInitialization</tt> method is designed to do simple initialization 
757 type of stuff that does not depend on the functions being processed.  The 
758 <tt>doInitialization</tt> method call is not scheduled to overlap with any 
759 other pass executions (thus it should be very fast). LPPassManager 
760 interface should be used to access Function or Module level analysis
761 information.</p>
762
763 </div>
764
765
766 <!-- _______________________________________________________________________ -->
767 <div class="doc_subsubsection">
768   <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
769 </div>
770
771 <div class="doc_text">
772
773 <div class="doc_code"><pre>
774   <b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
775 </pre></div><p>
776
777 <p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
778 the transformation or analysis work of your pass.  As usual, a true value should
779 be returned if the function is modified. <tt>LPPassManager</tt> interface
780 should be used to update loop nest.</p>
781
782 </div>
783
784 <!-- _______________________________________________________________________ -->
785 <div class="doc_subsubsection">
786   <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
787 </div>
788
789 <div class="doc_text">
790
791 <div class="doc_code"><pre>
792   <b>virtual bool</b> doFinalization();
793 </pre></div>
794
795 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
796 called when the pass framework has finished calling <a
797 href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
798 program being compiled. </p>
799
800 </div>
801
802
803
804 <!-- ======================================================================= -->
805 <div class="doc_subsection">
806   <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
807 </div>
808
809 <div class="doc_text">
810
811 <p><tt>BasicBlockPass</tt>'s are just like <a
812 href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
813 their scope of inspection and modification to a single basic block at a time.
814 As such, they are <b>not</b> allowed to do any of the following:</p>
815
816 <ol>
817 <li>Modify or inspect any basic blocks outside of the current one</li>
818 <li>Maintain state across invocations of
819     <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
820 <li>Modify the control flow graph (by altering terminator instructions)</li>
821 <li>Any of the things forbidden for
822     <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
823 </ol>
824
825 <p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
826 optimizations.  They may override the same <a
827 href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
828 href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
829 href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
830
831 </div>
832
833 <!-- _______________________________________________________________________ -->
834 <div class="doc_subsubsection">
835   <a name="doInitialization_fn">The <tt>doInitialization(Function
836   &amp;)</tt> method</a>
837 </div>
838
839 <div class="doc_text">
840
841 <div class="doc_code"><pre>
842   <b>virtual bool</b> doInitialization(Function &amp;F);
843 </pre></div>
844
845 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
846 <tt>BasicBlockPass</tt>'s are not allowed to do, but that
847 <tt>FunctionPass</tt>'s can.  The <tt>doInitialization</tt> method is designed
848 to do simple initialization that does not depend on the
849 BasicBlocks being processed.  The <tt>doInitialization</tt> method call is not
850 scheduled to overlap with any other pass executions (thus it should be very
851 fast).</p>
852
853 </div>
854
855 <!-- _______________________________________________________________________ -->
856 <div class="doc_subsubsection">
857   <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
858 </div>
859
860 <div class="doc_text">
861
862 <div class="doc_code"><pre>
863   <b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
864 </pre></div>
865
866 <p>Override this function to do the work of the <tt>BasicBlockPass</tt>.  This
867 function is not allowed to inspect or modify basic blocks other than the
868 parameter, and are not allowed to modify the CFG.  A true value must be returned
869 if the basic block is modified.</p>
870
871 </div>
872
873 <!-- _______________________________________________________________________ -->
874 <div class="doc_subsubsection">
875   <a name="doFinalization_fn">The <tt>doFinalization(Function &amp;)</tt> 
876   method</a>
877 </div>
878
879 <div class="doc_text">
880
881 <div class="doc_code"><pre>
882   <b>virtual bool</b> doFinalization(Function &amp;F);
883 </pre></div>
884
885 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
886 called when the pass framework has finished calling <a
887 href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
888 program being compiled.  This can be used to perform per-function
889 finalization.</p>
890
891 </div>
892
893 <!-- ======================================================================= -->
894 <div class="doc_subsection">
895   <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
896 </div>
897
898 <div class="doc_text">
899
900 <p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
901 executes on the machine-dependent representation of each LLVM function in the
902 program.  A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
903 the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
904 <tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
905 <tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
906
907 <ol>
908 <li>Modify any LLVM Instructions, BasicBlocks or Functions.</li>
909 <li>Modify a MachineFunction other than the one currently being processed.</li>
910 <li>Add or remove MachineFunctions from the current Module.</li>
911 <li>Add or remove global variables from the current Module.</li>
912 <li>Maintain state across invocations of <a
913 href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
914 data)</li>
915 </ol>
916
917 </div>
918
919 <!-- _______________________________________________________________________ -->
920 <div class="doc_subsubsection">
921   <a name="runOnMachineFunction">The <tt>runOnMachineFunction(MachineFunction
922   &amp;MF)</tt> method</a>
923 </div>
924
925 <div class="doc_text">
926
927 <div class="doc_code"><pre>
928   <b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
929 </pre></div>
930
931 <p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
932 <tt>MachineFunctionPass</tt>; that is, you should override this method to do the
933 work of your <tt>MachineFunctionPass</tt>.</p>
934
935 <p>The <tt>runOnMachineFunction</tt> method is called on every
936 <tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
937 <tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
938 representation of the function. If you want to get at the LLVM <tt>Function</tt>
939 for the <tt>MachineFunction</tt> you're working on, use
940 <tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
941 remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
942 <tt>MachineFunctionPass</tt>.</p>
943
944 </div>
945
946 <!-- *********************************************************************** -->
947 <div class="doc_section">
948   <a name="registration">Pass registration</a>
949 </div>
950 <!-- *********************************************************************** -->
951
952 <div class="doc_text">
953
954 <p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
955 pass registration works, and discussed some of the reasons that it is used and
956 what it does.  Here we discuss how and why passes are registered.</p>
957
958 <p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
959 template, which requires you to pass at least two
960 parameters.  The first parameter is the name of the pass that is to be used on
961 the command line to specify that the pass should be added to a program (for
962 example, with <tt>opt</tt> or <tt>bugpoint</tt>).  The second argument is the
963 name of the pass, which is to be used for the <tt>--help</tt> output of
964 programs, as
965 well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
966
967 <p>If you want your pass to be easily dumpable, you should 
968 implement the virtual <tt>print</tt> method:</p>
969
970 </div>
971
972 <!-- _______________________________________________________________________ -->
973 <div class="doc_subsubsection">
974   <a name="print">The <tt>print</tt> method</a>
975 </div>
976
977 <div class="doc_text">
978
979 <div class="doc_code"><pre>
980   <b>virtual void</b> print(llvm::OStream &amp;O, <b>const</b> Module *M) <b>const</b>;
981 </pre></div>
982
983 <p>The <tt>print</tt> method must be implemented by "analyses" in order to print
984 a human readable version of the analysis results.  This is useful for debugging
985 an analysis itself, as well as for other people to figure out how an analysis
986 works.  Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
987
988 <p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
989 and the <tt>Module</tt> parameter gives a pointer to the top level module of the
990 program that has been analyzed.  Note however that this pointer may be null in
991 certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
992 debugger), so it should only be used to enhance debug output, it should not be
993 depended on.</p>
994
995 </div>
996
997 <!-- *********************************************************************** -->
998 <div class="doc_section">
999   <a name="interaction">Specifying interactions between passes</a>
1000 </div>
1001 <!-- *********************************************************************** -->
1002
1003 <div class="doc_text">
1004
1005 <p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
1006 that passes interact with each other correctly.  Because <tt>PassManager</tt>
1007 tries to <a href="#passmanager">optimize the execution of passes</a> it must
1008 know how the passes interact with each other and what dependencies exist between
1009 the various passes.  To track this, each pass can declare the set of passes that
1010 are required to be executed before the current pass, and the passes which are
1011 invalidated by the current pass.</p>
1012
1013 <p>Typically this functionality is used to require that analysis results are
1014 computed before your pass is run.  Running arbitrary transformation passes can
1015 invalidate the computed analysis results, which is what the invalidation set
1016 specifies.  If a pass does not implement the <tt><a
1017 href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
1018 having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
1019
1020 </div>
1021
1022 <!-- _______________________________________________________________________ -->
1023 <div class="doc_subsubsection">
1024   <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
1025 </div>
1026
1027 <div class="doc_text">
1028
1029 <div class="doc_code"><pre>
1030   <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
1031 </pre></div>
1032
1033 <p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
1034 invalidated sets may be specified for your transformation.  The implementation
1035 should fill in the <tt><a
1036 href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
1037 object with information about which passes are required and not invalidated.  To
1038 do this, a pass may call any of the following methods on the AnalysisUsage
1039 object:</p>
1040 </div>
1041
1042 <!-- _______________________________________________________________________ -->
1043 <div class="doc_subsubsection">
1044   <a name="AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a>
1045 </div>
1046
1047 <div class="doc_text">
1048 <p>
1049 If your pass requires a previous pass to be executed (an analysis for example),
1050 it can use one of these methods to arrange for it to be run before your pass.
1051 LLVM has many different types of analyses and passes that can be required,
1052 spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
1053 Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
1054 be no critical edges in the CFG when your pass has been run.
1055 </p>
1056
1057 <p>
1058 Some analyses chain to other analyses to do their job.  For example, an <a
1059 href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
1060 href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes.  In
1061 cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
1062 used instead of the <tt>addRequired</tt> method.  This informs the PassManager
1063 that the transitively required pass should be alive as long as the requiring
1064 pass is.
1065 </p>
1066 </div>
1067
1068 <!-- _______________________________________________________________________ -->
1069 <div class="doc_subsubsection">
1070   <a name="AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a>
1071 </div>
1072
1073 <div class="doc_text">
1074 <p>
1075 One of the jobs of the PassManager is to optimize how and when analyses are run.
1076 In particular, it attempts to avoid recomputing data unless it needs to.  For
1077 this reason, passes are allowed to declare that they preserve (i.e., they don't
1078 invalidate) an existing analysis if it's available.  For example, a simple
1079 constant folding pass would not modify the CFG, so it can't possibly affect the
1080 results of dominator analysis.  By default, all passes are assumed to invalidate
1081 all others.
1082 </p>
1083
1084 <p>
1085 The <tt>AnalysisUsage</tt> class provides several methods which are useful in
1086 certain circumstances that are related to <tt>addPreserved</tt>.  In particular,
1087 the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
1088 not modify the LLVM program at all (which is true for analyses), and the
1089 <tt>setPreservesCFG</tt> method can be used by transformations that change
1090 instructions in the program but do not modify the CFG or terminator instructions
1091 (note that this property is implicitly set for <a
1092 href="#BasicBlockPass">BasicBlockPass</a>'s).
1093 </p>
1094
1095 <p>
1096 <tt>addPreserved</tt> is particularly useful for transformations like
1097 <tt>BreakCriticalEdges</tt>.  This pass knows how to update a small set of loop
1098 and dominator related analyses if they exist, so it can preserve them, despite
1099 the fact that it hacks on the CFG.
1100 </p>
1101 </div>
1102
1103 <!-- _______________________________________________________________________ -->
1104 <div class="doc_subsubsection">
1105   <a name="AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a>
1106 </div>
1107
1108 <div class="doc_text">
1109
1110 <div class="doc_code"><pre>
1111   <i>// This is an example implementation from an analysis, which does not modify
1112   // the program at all, yet has a prerequisite.</i>
1113   <b>void</b> <a href="http://llvm.org/doxygen/classllvm_1_1PostDominanceFrontier.html">PostDominanceFrontier</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1114     AU.setPreservesAll();
1115     AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1PostDominatorTree.html">PostDominatorTree</a>&gt;();
1116   }
1117 </pre></div>
1118
1119 <p>and:</p>
1120
1121 <div class="doc_code"><pre>
1122   <i>// This example modifies the program, but does not modify the CFG</i>
1123   <b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1124     AU.setPreservesCFG();
1125     AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
1126   }
1127 </pre></div>
1128
1129 </div>
1130
1131 <!-- _______________________________________________________________________ -->
1132 <div class="doc_subsubsection">
1133   <a name="getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and <tt>getAnalysisToUpdate&lt;&gt;</tt> methods</a>
1134 </div>
1135
1136 <div class="doc_text">
1137
1138 <p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
1139 your class, providing you with access to the passes that you declared that you
1140 required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
1141 method.  It takes a single template argument that specifies which pass class you
1142 want, and returns a reference to that pass.  For example:</p>
1143
1144 <div class="doc_code"><pre>
1145    bool LICM::runOnFunction(Function &amp;F) {
1146      LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
1147      ...
1148    }
1149 </pre></div>
1150
1151 <p>This method call returns a reference to the pass desired.  You may get a
1152 runtime assertion failure if you attempt to get an analysis that you did not
1153 declare as required in your <a
1154 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation.  This
1155 method can be called by your <tt>run*</tt> method implementation, or by any
1156 other local method invoked by your <tt>run*</tt> method.
1157
1158 A module level pass can use function level analysis info using this interface.
1159 For example:</p>
1160
1161 <div class="doc_code"><pre>
1162    bool ModuleLevelPass::runOnModule(Module &amp;M) {
1163      ...
1164      DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
1165      ...
1166    }
1167 </pre></div>
1168
1169 <p>In above example, runOnFunction for DominatorTree is called by pass manager
1170 before returning a reference to the desired pass.</p>
1171
1172 <p>
1173 If your pass is capable of updating analyses if they exist (e.g.,
1174 <tt>BreakCriticalEdges</tt>, as described above), you can use the
1175 <tt>getAnalysisToUpdate</tt> method, which returns a pointer to the analysis if
1176 it is active.  For example:</p>
1177
1178 <div class="doc_code"><pre>
1179   ...
1180   if (DominatorSet *DS = getAnalysisToUpdate&lt;DominatorSet&gt;()) {
1181     <i>// A DominatorSet is active.  This code will update it.</i>
1182   }
1183   ...
1184 </pre></div>
1185
1186 </div>
1187
1188 <!-- *********************************************************************** -->
1189 <div class="doc_section">
1190   <a name="analysisgroup">Implementing Analysis Groups</a>
1191 </div>
1192 <!-- *********************************************************************** -->
1193
1194 <div class="doc_text">
1195
1196 <p>Now that we understand the basics of how passes are defined, how they are
1197 used, and how they are required from other passes, it's time to get a little bit
1198 fancier.  All of the pass relationships that we have seen so far are very
1199 simple: one pass depends on one other specific pass to be run before it can run.
1200 For many applications, this is great, for others, more flexibility is
1201 required.</p>
1202
1203 <p>In particular, some analyses are defined such that there is a single simple
1204 interface to the analysis results, but multiple ways of calculating them.
1205 Consider alias analysis for example.  The most trivial alias analysis returns
1206 "may alias" for any alias query.  The most sophisticated analysis a
1207 flow-sensitive, context-sensitive interprocedural analysis that can take a
1208 significant amount of time to execute (and obviously, there is a lot of room
1209 between these two extremes for other implementations).  To cleanly support
1210 situations like this, the LLVM Pass Infrastructure supports the notion of
1211 Analysis Groups.</p>
1212
1213 </div>
1214
1215 <!-- _______________________________________________________________________ -->
1216 <div class="doc_subsubsection">
1217   <a name="agconcepts">Analysis Group Concepts</a>
1218 </div>
1219
1220 <div class="doc_text">
1221
1222 <p>An Analysis Group is a single simple interface that may be implemented by
1223 multiple different passes.  Analysis Groups can be given human readable names
1224 just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
1225 class.  An analysis group may have one or more implementations, one of which is
1226 the "default" implementation.</p>
1227
1228 <p>Analysis groups are used by client passes just like other passes are: the
1229 <tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
1230 In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
1231 scans the available passes to see if any implementations of the analysis group
1232 are available.  If none is available, the default implementation is created for
1233 the pass to use.  All standard rules for <A href="#interaction">interaction
1234 between passes</a> still apply.</p>
1235
1236 <p>Although <a href="#registration">Pass Registration</a> is optional for normal
1237 passes, all analysis group implementations must be registered, and must use the
1238 <A href="#registerag"><tt>RegisterAnalysisGroup</tt></a> template to join the
1239 implementation pool.  Also, a default implementation of the interface
1240 <b>must</b> be registered with <A
1241 href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
1242
1243 <p>As a concrete example of an Analysis Group in action, consider the <a
1244 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
1245 analysis group.  The default implementation of the alias analysis interface (the
1246 <tt><a
1247 href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
1248 pass) just does a few simple checks that don't require significant analysis to
1249 compute (such as: two different globals can never alias each other, etc).
1250 Passes that use the <tt><a
1251 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1252 interface (for example the <tt><a
1253 href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
1254 not care which implementation of alias analysis is actually provided, they just
1255 use the designated interface.</p>
1256
1257 <p>From the user's perspective, commands work just like normal.  Issuing the
1258 command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
1259 instantiated and added to the pass sequence.  Issuing the command '<tt>opt
1260 -somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
1261 <tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
1262 hypothetical example) instead.</p>
1263
1264 </div>
1265
1266 <!-- _______________________________________________________________________ -->
1267 <div class="doc_subsubsection">
1268   <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
1269 </div>
1270
1271 <div class="doc_text">
1272
1273 <p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
1274 group itself as well as add pass implementations to the analysis group.  First,
1275 an analysis should be registered, with a human readable name provided for it.
1276 Unlike registration of passes, there is no command line argument to be specified
1277 for the Analysis Group Interface itself, because it is "abstract":</p>
1278
1279 <div class="doc_code"><pre>
1280   <b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
1281 </pre></div>
1282
1283 <p>Once the analysis is registered, passes can declare that they are valid
1284 implementations of the interface by using the following code:</p>
1285
1286 <div class="doc_code"><pre>
1287 <b>namespace</b> {
1288   //<i> Analysis Group implementations <b>must</b> be registered normally...</i>
1289   RegisterPass&lt;FancyAA&gt;
1290   B("<i>somefancyaa</i>", "<i>A more complex alias analysis implementation</i>");
1291
1292   //<i> Declare that we implement the AliasAnalysis interface</i>
1293   RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; C(B);
1294 }
1295 </pre></div>
1296
1297 <p>This just shows a class <tt>FancyAA</tt> that is registered normally, then
1298 uses the <tt>RegisterAnalysisGroup</tt> template to "join" the <tt><a
1299 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1300 analysis group.  Every implementation of an analysis group should join using
1301 this template.  A single pass may join multiple different analysis groups with
1302 no problem.</p>
1303
1304 <div class="doc_code"><pre>
1305 <b>namespace</b> {
1306   //<i> Analysis Group implementations <b>must</b> be registered normally...</i>
1307   RegisterPass&lt;<a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a>&gt;
1308   D("<i>basicaa</i>", "<i>Basic Alias Analysis (default AA impl)</i>");
1309
1310   //<i> Declare that we implement the AliasAnalysis interface</i>
1311   RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, <b>true</b>&gt; E(D);
1312 }
1313 </pre></div>
1314
1315 <p>Here we show how the default implementation is specified (using the extra
1316 argument to the <tt>RegisterAnalysisGroup</tt> template).  There must be exactly
1317 one default implementation available at all times for an Analysis Group to be
1318 used.  Only default implementation can derive from <tt>ImmutablePass</tt>. 
1319 Here we declare that the
1320  <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
1321 pass is the default implementation for the interface.</p>
1322
1323 </div>
1324
1325 <!-- *********************************************************************** -->
1326 <div class="doc_section">
1327   <a name="passStatistics">Pass Statistics</a>
1328 </div>
1329 <!-- *********************************************************************** -->
1330
1331 <div class="doc_text">
1332 <p>The <a
1333 href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
1334 class is designed to be an easy way to expose various success
1335 metrics from passes.  These statistics are printed at the end of a
1336 run, when the -stats command line option is enabled on the command
1337 line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details. 
1338
1339 </div>
1340
1341
1342 <!-- *********************************************************************** -->
1343 <div class="doc_section">
1344   <a name="passmanager">What PassManager does</a>
1345 </div>
1346 <!-- *********************************************************************** -->
1347
1348 <div class="doc_text">
1349
1350 <p>The <a
1351 href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
1352 <a
1353 href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
1354 takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
1355 are set up correctly, and then schedules passes to run efficiently.  All of the
1356 LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
1357 passes.</p>
1358
1359 <p>The <tt>PassManager</tt> does two main things to try to reduce the execution
1360 time of a series of passes:</p>
1361
1362 <ol>
1363 <li><b>Share analysis results</b> - The PassManager attempts to avoid
1364 recomputing analysis results as much as possible.  This means keeping track of
1365 which analyses are available already, which analyses get invalidated, and which
1366 analyses are needed to be run for a pass.  An important part of work is that the
1367 <tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
1368 it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
1369 results as soon as they are no longer needed.</li>
1370
1371 <li><b>Pipeline the execution of passes on the program</b> - The
1372 <tt>PassManager</tt> attempts to get better cache and memory usage behavior out
1373 of a series of passes by pipelining the passes together.  This means that, given
1374 a series of consequtive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
1375 will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
1376 the first function, then all of the <a
1377 href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
1378 etc... until the entire program has been run through the passes.
1379
1380 <p>This improves the cache behavior of the compiler, because it is only touching
1381 the LLVM program representation for a single function at a time, instead of
1382 traversing the entire program.  It reduces the memory consumption of compiler,
1383 because, for example, only one <a
1384 href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
1385 needs to be calculated at a time.  This also makes it possible to implement
1386 some <a
1387 href="#SMP">interesting enhancements</a> in the future.</p></li>
1388
1389 </ol>
1390
1391 <p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
1392 much information it has about the behaviors of the passes it is scheduling.  For
1393 example, the "preserved" set is intentionally conservative in the face of an
1394 unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
1395 Not implementing when it should be implemented will have the effect of not
1396 allowing any analysis results to live across the execution of your pass.</p>
1397
1398 <p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
1399 options that is useful for debugging pass execution, seeing how things work, and
1400 diagnosing when you should be preserving more analyses than you currently are
1401 (To get information about all of the variants of the <tt>--debug-pass</tt>
1402 option, just type '<tt>opt --help-hidden</tt>').</p>
1403
1404 <p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
1405 how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
1406 Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
1407
1408 <div class="doc_code"><pre>
1409 $ opt -load ../../../Debug/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1410 Module Pass Manager
1411   Function Pass Manager
1412     Dominator Set Construction
1413     Immediate Dominators Construction
1414     Global Common Subexpression Elimination
1415 --  Immediate Dominators Construction
1416 --  Global Common Subexpression Elimination
1417     Natural Loop Construction
1418     Loop Invariant Code Motion
1419 --  Natural Loop Construction
1420 --  Loop Invariant Code Motion
1421     Module Verifier
1422 --  Dominator Set Construction
1423 --  Module Verifier
1424   Bitcode Writer
1425 --Bitcode Writer
1426 </pre></div>
1427
1428 <p>This output shows us when passes are constructed and when the analysis
1429 results are known to be dead (prefixed with '<tt>--</tt>').  Here we see that
1430 GCSE uses dominator and immediate dominator information to do its job.  The LICM
1431 pass uses natural loop information, which uses dominator sets, but not immediate
1432 dominators.  Because immediate dominators are no longer useful after the GCSE
1433 pass, it is immediately destroyed.  The dominator sets are then reused to
1434 compute natural loop information, which is then used by the LICM pass.</p>
1435
1436 <p>After the LICM pass, the module verifier runs (which is automatically added
1437 by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
1438 resultant LLVM code is well formed.  After it finishes, the dominator set
1439 information is destroyed, after being computed once, and shared by three
1440 passes.</p>
1441
1442 <p>Lets see how this changes when we run the <a href="#basiccode">Hello
1443 World</a> pass in between the two passes:</p>
1444
1445 <div class="doc_code"><pre>
1446 $ opt -load ../../../Debug/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1447 Module Pass Manager
1448   Function Pass Manager
1449     Dominator Set Construction
1450     Immediate Dominators Construction
1451     Global Common Subexpression Elimination
1452 <b>--  Dominator Set Construction</b>
1453 --  Immediate Dominators Construction
1454 --  Global Common Subexpression Elimination
1455 <b>    Hello World Pass
1456 --  Hello World Pass
1457     Dominator Set Construction</b>
1458     Natural Loop Construction
1459     Loop Invariant Code Motion
1460 --  Natural Loop Construction
1461 --  Loop Invariant Code Motion
1462     Module Verifier
1463 --  Dominator Set Construction
1464 --  Module Verifier
1465   Bitcode Writer
1466 --Bitcode Writer
1467 Hello: __main
1468 Hello: puts
1469 Hello: main
1470 </pre></div>
1471
1472 <p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
1473 Dominator Set pass, even though it doesn't modify the code at all!  To fix this,
1474 we need to add the following <a
1475 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
1476
1477 <div class="doc_code"><pre>
1478     <i>// We don't modify the program, so we preserve all analyses</i>
1479     <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1480       AU.setPreservesAll();
1481     }
1482 </pre></div>
1483
1484 <p>Now when we run our pass, we get this output:</p>
1485
1486 <div class="doc_code"><pre>
1487 $ opt -load ../../../Debug/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1488 Pass Arguments:  -gcse -hello -licm
1489 Module Pass Manager
1490   Function Pass Manager
1491     Dominator Set Construction
1492     Immediate Dominators Construction
1493     Global Common Subexpression Elimination
1494 --  Immediate Dominators Construction
1495 --  Global Common Subexpression Elimination
1496     Hello World Pass
1497 --  Hello World Pass
1498     Natural Loop Construction
1499     Loop Invariant Code Motion
1500 --  Loop Invariant Code Motion
1501 --  Natural Loop Construction
1502     Module Verifier
1503 --  Dominator Set Construction
1504 --  Module Verifier
1505   Bitcode Writer
1506 --Bitcode Writer
1507 Hello: __main
1508 Hello: puts
1509 Hello: main
1510 </pre></div>
1511
1512 <p>Which shows that we don't accidentally invalidate dominator information
1513 anymore, and therefore do not have to compute it twice.</p>
1514
1515 </div>
1516
1517 <!-- _______________________________________________________________________ -->
1518 <div class="doc_subsubsection">
1519   <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
1520 </div>
1521
1522 <div class="doc_text">
1523
1524 <div class="doc_code"><pre>
1525   <b>virtual void</b> releaseMemory();
1526 </pre></div>
1527
1528 <p>The <tt>PassManager</tt> automatically determines when to compute analysis
1529 results, and how long to keep them around for.  Because the lifetime of the pass
1530 object itself is effectively the entire duration of the compilation process, we
1531 need some way to free analysis results when they are no longer useful.  The
1532 <tt>releaseMemory</tt> virtual method is the way to do this.</p>
1533
1534 <p>If you are writing an analysis or any other pass that retains a significant
1535 amount of state (for use by another pass which "requires" your pass and uses the
1536 <a href="#getAnalysis">getAnalysis</a> method) you should implement
1537 <tt>releaseMEmory</tt> to, well, release the memory allocated to maintain this
1538 internal state.  This method is called after the <tt>run*</tt> method for the
1539 class, before the next call of <tt>run*</tt> in your pass.</p>
1540
1541 </div>
1542
1543 <!-- *********************************************************************** -->
1544 <div class="doc_section">
1545   <a name="registering">Registering dynamically loaded passes</a>
1546 </div>
1547 <!-- *********************************************************************** -->
1548
1549 <div class="doc_text">
1550
1551 <p><i>Size matters</i> when constructing production quality tools using llvm, 
1552 both for the purposes of distribution, and for regulating the resident code size
1553 when running on the target system. Therefore, it becomes desirable to
1554 selectively use some passes, while omitting others and maintain the flexibility
1555 to change configurations later on. You want to be able to do all this, and,
1556 provide feedback to the user. This is where pass registration comes into
1557 play.</p>
1558
1559 <p>The fundamental mechanisms for pass registration are the
1560 <tt>MachinePassRegistry</tt> class and subclasses of
1561 <tt>MachinePassRegistryNode</tt>.</p>
1562
1563 <p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
1564 <tt>MachinePassRegistryNode</tt> objects.  This instance maintains the list and
1565 communicates additions and deletions to the command line interface.</p>
1566
1567 <p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
1568 information provided about a particular pass.  This information includes the
1569 command line name, the command help string and the address of the function used
1570 to create an instance of the pass.  A global static constructor of one of these
1571 instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
1572 the static destructor <i>unregisters</i>. Thus a pass that is statically linked
1573 in the tool will be registered at start up. A dynamically loaded pass will
1574 register on load and unregister at unload.</p>
1575
1576 </div>
1577
1578 <!-- _______________________________________________________________________ -->
1579 <div class="doc_subsection">
1580   <a name="registering_existing">Using existing registries</a>
1581 </div>
1582
1583 <div class="doc_text">
1584
1585 <p>There are predefined registries to track instruction scheduling
1586 (<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
1587 machine passes.  Here we will describe how to <i>register</i> a register
1588 allocator machine pass.</p>
1589
1590 <p>Implement your register allocator machine pass.  In your register allocator
1591 .cpp file add the following include;</p>
1592
1593 <div class="doc_code"><pre>
1594   #include "llvm/CodeGen/RegAllocRegistry.h"
1595 </pre></div>
1596
1597 <p>Also in your register allocator .cpp file, define a creator function in the
1598 form; </p>
1599
1600 <div class="doc_code"><pre>
1601   FunctionPass *createMyRegisterAllocator() {
1602     return new MyRegisterAllocator();
1603   }
1604 </pre></div>
1605
1606 <p>Note that the signature of this function should match the type of
1607 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.  In the same file add the
1608 "installing" declaration, in the form;</p>
1609
1610 <div class="doc_code"><pre>
1611   static RegisterRegAlloc myRegAlloc("myregalloc",
1612     "  my register allocator help string",
1613     createMyRegisterAllocator);
1614 </pre></div>
1615
1616 <p>Note the two spaces prior to the help string produces a tidy result on the
1617 --help query.</p>
1618
1619 <div class="doc_code"><pre>
1620 $ llc --help
1621   ...
1622   -regalloc                    - Register allocator to use: (default = linearscan)
1623     =linearscan                -   linear scan register allocator
1624     =local                     -   local register allocator
1625     =simple                    -   simple register allocator
1626     =myregalloc                -   my register allocator help string
1627   ...
1628 </pre></div>
1629
1630 <p>And that's it.  The user is now free to use <tt>-regalloc=myregalloc</tt> as
1631 an option.  Registering instruction schedulers is similar except use the
1632 <tt>RegisterScheduler</tt> class.  Note that the
1633 <tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
1634 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
1635
1636 <p>To force the load/linking of your register allocator into the llc/lli tools,
1637 add your creator function's global declaration to "Passes.h" and add a "pseudo"
1638 call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
1639
1640 </div>
1641
1642
1643 <!-- _______________________________________________________________________ -->
1644 <div class="doc_subsection">
1645   <a name="registering_new">Creating new registries</a>
1646 </div>
1647
1648 <div class="doc_text">
1649
1650 <p>The easiest way to get started is to clone one of the existing registries; we
1651 recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>.  The key things to modify
1652 are the class name and the <tt>FunctionPassCtor</tt> type.</p>
1653
1654 <p>Then you need to declare the registry.  Example: if your pass registry is
1655 <tt>RegisterMyPasses</tt> then define;</p>
1656
1657 <div class="doc_code"><pre>
1658 MachinePassRegistry RegisterMyPasses::Registry;
1659 </pre></div>
1660
1661 <p>And finally, declare the command line option for your passes.  Example:</p> 
1662
1663 <div class="doc_code"><pre>
1664   cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
1665           RegisterPassParser&lt;RegisterMyPasses&gt &gt
1666   MyPassOpt("mypass",
1667             cl::init(&amp;createDefaultMyPass),
1668             cl::desc("my pass option help")); 
1669 </pre></div>
1670
1671 <p>Here the command option is "mypass", with createDefaultMyPass as the default
1672 creator.</p>
1673
1674 </div>
1675
1676 <!-- *********************************************************************** -->
1677 <div class="doc_section">
1678   <a name="debughints">Using GDB with dynamically loaded passes</a>
1679 </div>
1680 <!-- *********************************************************************** -->
1681
1682 <div class="doc_text">
1683
1684 <p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
1685 should be.  First of all, you can't set a breakpoint in a shared object that has
1686 not been loaded yet, and second of all there are problems with inlined functions
1687 in shared objects.  Here are some suggestions to debugging your pass with
1688 GDB.</p>
1689
1690 <p>For sake of discussion, I'm going to assume that you are debugging a
1691 transformation invoked by <tt>opt</tt>, although nothing described here depends
1692 on that.</p>
1693
1694 </div>
1695
1696 <!-- _______________________________________________________________________ -->
1697 <div class="doc_subsubsection">
1698   <a name="breakpoint">Setting a breakpoint in your pass</a>
1699 </div>
1700
1701 <div class="doc_text">
1702
1703 <p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
1704
1705 <div class="doc_code"><pre>
1706 $ <b>gdb opt</b>
1707 GNU gdb 5.0
1708 Copyright 2000 Free Software Foundation, Inc.
1709 GDB is free software, covered by the GNU General Public License, and you are
1710 welcome to change it and/or distribute copies of it under certain conditions.
1711 Type "show copying" to see the conditions.
1712 There is absolutely no warranty for GDB.  Type "show warranty" for details.
1713 This GDB was configured as "sparc-sun-solaris2.6"...
1714 (gdb)
1715 </pre></div>
1716
1717 <p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
1718 time to load.  Be patient.  Since we cannot set a breakpoint in our pass yet
1719 (the shared object isn't loaded until runtime), we must execute the process, and
1720 have it stop before it invokes our pass, but after it has loaded the shared
1721 object.  The most foolproof way of doing this is to set a breakpoint in
1722 <tt>PassManager::run</tt> and then run the process with the arguments you
1723 want:</p>
1724
1725 <div class="doc_code"><pre>
1726 (gdb) <b>break llvm::PassManager::run</b>
1727 Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
1728 (gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug/lib/[libname].so -[passoption]</b>
1729 Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug/lib/[libname].so -[passoption]
1730 Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
1731 70      bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
1732 (gdb)
1733 </pre></div>
1734
1735 <p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
1736 now free to set breakpoints in your pass so that you can trace through execution
1737 or do other standard debugging stuff.</p>
1738
1739 </div>
1740
1741 <!-- _______________________________________________________________________ -->
1742 <div class="doc_subsubsection">
1743   <a name="debugmisc">Miscellaneous Problems</a>
1744 </div>
1745
1746 <div class="doc_text">
1747
1748 <p>Once you have the basics down, there are a couple of problems that GDB has,
1749 some with solutions, some without.</p>
1750
1751 <ul>
1752 <li>Inline functions have bogus stack information.  In general, GDB does a
1753 pretty good job getting stack traces and stepping through inline functions.
1754 When a pass is dynamically loaded however, it somehow completely loses this
1755 capability.  The only solution I know of is to de-inline a function (move it
1756 from the body of a class to a .cpp file).</li>
1757
1758 <li>Restarting the program breaks breakpoints.  After following the information
1759 above, you have succeeded in getting some breakpoints planted in your pass.  Nex
1760 thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
1761 and you start getting errors about breakpoints being unsettable.  The only way I
1762 have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
1763 already set in your pass, run the program, and re-set the breakpoints once
1764 execution stops in <tt>PassManager::run</tt>.</li>
1765
1766 </ul>
1767
1768 <p>Hopefully these tips will help with common case debugging situations.  If
1769 you'd like to contribute some tips of your own, just contact <a
1770 href="mailto:sabre@nondot.org">Chris</a>.</p>
1771
1772 </div>
1773
1774 <!-- *********************************************************************** -->
1775 <div class="doc_section">
1776   <a name="future">Future extensions planned</a>
1777 </div>
1778 <!-- *********************************************************************** -->
1779
1780 <div class="doc_text">
1781
1782 <p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
1783 some nifty stuff, there are things we'd like to add in the future.  Here is
1784 where we are going:</p>
1785
1786 </div>
1787
1788 <!-- _______________________________________________________________________ -->
1789 <div class="doc_subsubsection">
1790   <a name="SMP">Multithreaded LLVM</a>
1791 </div>
1792
1793 <div class="doc_text">
1794
1795 <p>Multiple CPU machines are becoming more common and compilation can never be
1796 fast enough: obviously we should allow for a multithreaded compiler.  Because of
1797 the semantics defined for passes above (specifically they cannot maintain state
1798 across invocations of their <tt>run*</tt> methods), a nice clean way to
1799 implement a multithreaded compiler would be for the <tt>PassManager</tt> class
1800 to create multiple instances of each pass object, and allow the separate
1801 instances to be hacking on different parts of the program at the same time.</p>
1802
1803 <p>This implementation would prevent each of the passes from having to implement
1804 multithreaded constructs, requiring only the LLVM core to have locking in a few
1805 places (for global resources).  Although this is a simple extension, we simply
1806 haven't had time (or multiprocessor machines, thus a reason) to implement this.
1807 Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
1808
1809 </div>
1810
1811 <!-- *********************************************************************** -->
1812 <hr>
1813 <address>
1814   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1815   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1816   <a href="http://validator.w3.org/check/referer"><img
1817   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
1818
1819   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1820   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1821   Last modified: $Date$
1822 </address>
1823
1824 </body>
1825 </html>