Documentation: convert WritingAnLLVMBackend.html to reST
[oota-llvm.git] / docs / WritingAnLLVMBackend.rst
1 ================================
2 Writing an LLVM Compiler Backend
3 ================================
4
5 .. sectionauthor:: Mason Woo <http://www.woo.com> and Misha Brukman <http://misha.brukman.net>
6
7 .. contents::
8    :local:
9
10 Introduction
11 ============
12
13 This document describes techniques for writing compiler backends that convert
14 the LLVM Intermediate Representation (IR) to code for a specified machine or
15 other languages.  Code intended for a specific machine can take the form of
16 either assembly code or binary code (usable for a JIT compiler).
17
18 The backend of LLVM features a target-independent code generator that may
19 create output for several types of target CPUs --- including X86, PowerPC,
20 ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
21 of the Cell processor or GPUs to support the execution of compute kernels.
22
23 The document focuses on existing examples found in subdirectories of
24 ``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
25 focuses on the example of creating a static compiler (one that emits text
26 assembly) for a SPARC target, because SPARC has fairly standard
27 characteristics, such as a RISC instruction set and straightforward calling
28 conventions.
29
30 Audience
31 --------
32
33 The audience for this document is anyone who needs to write an LLVM backend to
34 generate code for a specific hardware or software target.
35
36 Prerequisite Reading
37 --------------------
38
39 These essential documents must be read before reading this document:
40
41 * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
42   the LLVM assembly language.
43
44 * :doc:`CodeGenerator` --- a guide to the components (classes and code
45   generation algorithms) for translating the LLVM internal representation into
46   machine code for a specified target.  Pay particular attention to the
47   descriptions of code generation stages: Instruction Selection, Scheduling and
48   Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
49   Insertion, Late Machine Code Optimizations, and Code Emission.
50
51 * :doc:`TableGenFundamentals` --- a document that describes the TableGen
52   (``tblgen``) application that manages domain-specific information to support
53   LLVM code generation.  TableGen processes input from a target description
54   file (``.td`` suffix) and generates C++ code that can be used for code
55   generation.
56
57 * `Writing an LLVM Pass <WritingAnLLVMPass.html>`_ --- The assembly printer is
58   a ``FunctionPass``, as are several SelectionDAG processing steps.
59
60 To follow the SPARC examples in this document, have a copy of `The SPARC
61 Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
62 reference.  For details about the ARM instruction set, refer to the `ARM
63 Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
64 the GNU Assembler format (``GAS``), see `Using As
65 <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
66 assembly printer.  "Using As" contains a list of target machine dependent
67 features.
68
69 Basic Steps
70 -----------
71
72 To write a compiler backend for LLVM that converts the LLVM IR to code for a
73 specified target (machine or other language), follow these steps:
74
75 * Create a subclass of the ``TargetMachine`` class that describes
76   characteristics of your target machine.  Copy existing examples of specific
77   ``TargetMachine`` class and header files; for example, start with
78   ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
79   names for your target.  Similarly, change code that references "``Sparc``" to
80   reference your target.
81
82 * Describe the register set of the target.  Use TableGen to generate code for
83   register definition, register aliases, and register classes from a
84   target-specific ``RegisterInfo.td`` input file.  You should also write
85   additional code for a subclass of the ``TargetRegisterInfo`` class that
86   represents the class register file data used for register allocation and also
87   describes the interactions between registers.
88
89 * Describe the instruction set of the target.  Use TableGen to generate code
90   for target-specific instructions from target-specific versions of
91   ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
92   additional code for a subclass of the ``TargetInstrInfo`` class to represent
93   machine instructions supported by the target machine.
94
95 * Describe the selection and conversion of the LLVM IR from a Directed Acyclic
96   Graph (DAG) representation of instructions to native target-specific
97   instructions.  Use TableGen to generate code that matches patterns and
98   selects instructions based on additional information in a target-specific
99   version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
100   where ``XXX`` identifies the specific target, to perform pattern matching and
101   DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
102   to replace or remove operations and data types that are not supported
103   natively in a SelectionDAG.
104
105 * Write code for an assembly printer that converts LLVM IR to a GAS format for
106   your target machine.  You should add assembly strings to the instructions
107   defined in your target-specific version of ``TargetInstrInfo.td``.  You
108   should also write code for a subclass of ``AsmPrinter`` that performs the
109   LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
110
111 * Optionally, add support for subtargets (i.e., variants with different
112   capabilities).  You should also write code for a subclass of the
113   ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
114   ``-mattr=`` command-line options.
115
116 * Optionally, add JIT support and create a machine code emitter (subclass of
117   ``TargetJITInfo``) that is used to emit binary code directly into memory.
118
119 In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
120 implement them later.  Initially, you may not know which private members that
121 the class will need and which components will need to be subclassed.
122
123 Preliminaries
124 -------------
125
126 To actually create your compiler backend, you need to create and modify a few
127 files.  The absolute minimum is discussed here.  But to actually use the LLVM
128 target-independent code generator, you must perform the steps described in the
129 :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
130
131 First, you should create a subdirectory under ``lib/Target`` to hold all the
132 files related to your target.  If your target is called "Dummy", create the
133 directory ``lib/Target/Dummy``.
134
135 In this new directory, create a ``Makefile``.  It is easiest to copy a
136 ``Makefile`` of another target and modify it.  It should at least contain the
137 ``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
138 ``$(LEVEL)/Makefile.common``.  The library can be named ``LLVMDummy`` (for
139 example, see the MIPS target).  Alternatively, you can split the library into
140 ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
141 implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
142 PowerPC target).
143
144 Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
145 any other naming scheme will confuse ``llvm-config`` and produce a lot of
146 (seemingly unrelated) linker errors when linking ``llc``.
147
148 To make your target actually do something, you need to implement a subclass of
149 ``TargetMachine``.  This implementation should typically be in the file
150 ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
151 directory will be built and should work.  To use LLVM's target independent code
152 generator, you should do what all current machine backends do: create a
153 subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
154 subclass of ``TargetMachine``.)
155
156 To get LLVM to actually build and link your target, you need to add it to the
157 ``TARGETS_TO_BUILD`` variable.  To do this, you modify the configure script to
158 know about your target when parsing the ``--enable-targets`` option.  Search
159 the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
160 there (some creativity required), and then reconfigure.  Alternatively, you can
161 change ``autotools/configure.ac`` and regenerate configure by running
162 ``./autoconf/AutoRegen.sh``.
163
164 Target Machine
165 ==============
166
167 ``LLVMTargetMachine`` is designed as a base class for targets implemented with
168 the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
169 should be specialized by a concrete target class that implements the various
170 virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
171 ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
172 ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
173 numerous command-line options.
174
175 To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
176 by copying an existing ``TargetMachine`` class and header.  You should name the
177 files that you create to reflect your specific target.  For instance, for the
178 SPARC target, name the files ``SparcTargetMachine.h`` and
179 ``SparcTargetMachine.cpp``.
180
181 For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
182 have access methods to obtain objects that represent target components.  These
183 methods are named ``get*Info``, and are intended to obtain the instruction set
184 (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
185 (``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
186 implement the ``getDataLayout`` method to access an object with target-specific
187 data characteristics, such as data type size and alignment requirements.
188
189 For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
190 declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
191 simply return a class member.
192
193 .. code-block:: c++
194
195   namespace llvm {
196
197   class Module;
198
199   class SparcTargetMachine : public LLVMTargetMachine {
200     const DataLayout DataLayout;       // Calculates type size & alignment
201     SparcSubtarget Subtarget;
202     SparcInstrInfo InstrInfo;
203     TargetFrameInfo FrameInfo;
204
205   protected:
206     virtual const TargetAsmInfo *createTargetAsmInfo() const;
207
208   public:
209     SparcTargetMachine(const Module &M, const std::string &FS);
210
211     virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
212     virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
213     virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
214     virtual const TargetRegisterInfo *getRegisterInfo() const {
215       return &InstrInfo.getRegisterInfo();
216     }
217     virtual const DataLayout *getDataLayout() const { return &DataLayout; }
218     static unsigned getModuleMatchQuality(const Module &M);
219
220     // Pass Pipeline Configuration
221     virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
222     virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
223   };
224
225   } // end namespace llvm
226
227 * ``getInstrInfo()``
228 * ``getRegisterInfo()``
229 * ``getFrameInfo()``
230 * ``getDataLayout()``
231 * ``getSubtargetImpl()``
232
233 For some targets, you also need to support the following methods:
234
235 * ``getTargetLowering()``
236 * ``getJITInfo()``
237
238 In addition, the ``XXXTargetMachine`` constructor should specify a
239 ``TargetDescription`` string that determines the data layout for the target
240 machine, including characteristics such as pointer size, alignment, and
241 endianness.  For example, the constructor for ``SparcTargetMachine`` contains
242 the following:
243
244 .. code-block:: c++
245
246   SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
247     : DataLayout("E-p:32:32-f128:128:128"),
248       Subtarget(M, FS), InstrInfo(Subtarget),
249       FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
250   }
251
252 Hyphens separate portions of the ``TargetDescription`` string.
253
254 * An upper-case "``E``" in the string indicates a big-endian target data model.
255   A lower-case "``e``" indicates little-endian.
256
257 * "``p:``" is followed by pointer information: size, ABI alignment, and
258   preferred alignment.  If only two figures follow "``p:``", then the first
259   value is pointer size, and the second value is both ABI and preferred
260   alignment.
261
262 * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
263   "``a``" (corresponding to integer, floating point, vector, or aggregate).
264   "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
265   alignment. "``f``" is followed by three values: the first indicates the size
266   of a long double, then ABI alignment, and then ABI preferred alignment.
267
268 Target Registration
269 ===================
270
271 You must also register your target with the ``TargetRegistry``, which is what
272 other LLVM tools use to be able to lookup and use your target at runtime.  The
273 ``TargetRegistry`` can be used directly, but for most targets there are helper
274 templates which should take care of the work for you.
275
276 All targets should declare a global ``Target`` object which is used to
277 represent the target during registration.  Then, in the target's ``TargetInfo``
278 library, the target should define that object and use the ``RegisterTarget``
279 template to register the target.  For example, the Sparc registration code
280 looks like this:
281
282 .. code-block:: c++
283
284   Target llvm::TheSparcTarget;
285
286   extern "C" void LLVMInitializeSparcTargetInfo() {
287     RegisterTarget<Triple::sparc, /*HasJIT=*/false>
288       X(TheSparcTarget, "sparc", "Sparc");
289   }
290
291 This allows the ``TargetRegistry`` to look up the target by name or by target
292 triple.  In addition, most targets will also register additional features which
293 are available in separate libraries.  These registration steps are separate,
294 because some clients may wish to only link in some parts of the target --- the
295 JIT code generator does not require the use of the assembler printer, for
296 example.  Here is an example of registering the Sparc assembly printer:
297
298 .. code-block:: c++
299
300   extern "C" void LLVMInitializeSparcAsmPrinter() {
301     RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
302   }
303
304 For more information, see "`llvm/Target/TargetRegistry.h
305 </doxygen/TargetRegistry_8h-source.html>`_".
306
307 Register Set and Register Classes
308 =================================
309
310 You should describe a concrete target-specific class that represents the
311 register file of a target machine.  This class is called ``XXXRegisterInfo``
312 (where ``XXX`` identifies the target) and represents the class register file
313 data that is used for register allocation.  It also describes the interactions
314 between registers.
315
316 You also need to define register classes to categorize related registers.  A
317 register class should be added for groups of registers that are all treated the
318 same way for some instruction.  Typical examples are register classes for
319 integer, floating-point, or vector registers.  A register allocator allows an
320 instruction to use any register in a specified register class to perform the
321 instruction in a similar manner.  Register classes allocate virtual registers
322 to instructions from these sets, and register classes let the
323 target-independent register allocator automatically choose the actual
324 registers.
325
326 Much of the code for registers, including register definition, register
327 aliases, and register classes, is generated by TableGen from
328 ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
329 and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
330 implementation of ``XXXRegisterInfo`` requires hand-coding.
331
332 Defining a Register
333 -------------------
334
335 The ``XXXRegisterInfo.td`` file typically starts with register definitions for
336 a target machine.  The ``Register`` class (specified in ``Target.td``) is used
337 to define an object for each register.  The specified string ``n`` becomes the
338 ``Name`` of the register.  The basic ``Register`` object does not have any
339 subregisters and does not specify any aliases.
340
341 .. code-block:: llvm
342
343   class Register<string n> {
344     string Namespace = "";
345     string AsmName = n;
346     string Name = n;
347     int SpillSize = 0;
348     int SpillAlignment = 0;
349     list<Register> Aliases = [];
350     list<Register> SubRegs = [];
351     list<int> DwarfNumbers = [];
352   }
353
354 For example, in the ``X86RegisterInfo.td`` file, there are register definitions
355 that utilize the ``Register`` class, such as:
356
357 .. code-block:: llvm
358
359   def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
360
361 This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
362 that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
363 register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
364 representing 3 different modes: the first element is for X86-64, the second for
365 exception handling (EH) on X86-32, and the third is generic. -1 is a special
366 Dwarf number that indicates the gcc number is undefined, and -2 indicates the
367 register number is invalid for this mode.
368
369 From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
370 generates this code in the ``X86GenRegisterInfo.inc`` file:
371
372 .. code-block:: c++
373
374   static const unsigned GR8[] = { X86::AL, ... };
375
376   const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
377
378   const TargetRegisterDesc RegisterDescriptors[] = {
379     ...
380   { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
381
382 From the register info file, TableGen generates a ``TargetRegisterDesc`` object
383 for each register.  ``TargetRegisterDesc`` is defined in
384 ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
385
386 .. code-block:: c++
387
388   struct TargetRegisterDesc {
389     const char     *AsmName;      // Assembly language name for the register
390     const char     *Name;         // Printable name for the reg (for debugging)
391     const unsigned *AliasSet;     // Register Alias Set
392     const unsigned *SubRegs;      // Sub-register set
393     const unsigned *ImmSubRegs;   // Immediate sub-register set
394     const unsigned *SuperRegs;    // Super-register set
395   };
396
397 TableGen uses the entire target description file (``.td``) to determine text
398 names for the register (in the ``AsmName`` and ``Name`` fields of
399 ``TargetRegisterDesc``) and the relationships of other registers to the defined
400 register (in the other ``TargetRegisterDesc`` fields).  In this example, other
401 definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
402 aliases for one another, so TableGen generates a null-terminated array
403 (``AL_AliasSet``) for this register alias set.
404
405 The ``Register`` class is commonly used as a base class for more complex
406 classes.  In ``Target.td``, the ``Register`` class is the base for the
407 ``RegisterWithSubRegs`` class that is used to define registers that need to
408 specify subregisters in the ``SubRegs`` list, as shown here:
409
410 .. code-block:: llvm
411
412   class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
413     let SubRegs = subregs;
414   }
415
416 In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
417 a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
418 and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
419 feature common to these subclasses.  Note the use of "``let``" expressions to
420 override values that are initially defined in a superclass (such as ``SubRegs``
421 field in the ``Rd`` class).
422
423 .. code-block:: llvm
424
425   class SparcReg<string n> : Register<n> {
426     field bits<5> Num;
427     let Namespace = "SP";
428   }
429   // Ri - 32-bit integer registers
430   class Ri<bits<5> num, string n> :
431   SparcReg<n> {
432     let Num = num;
433   }
434   // Rf - 32-bit floating-point registers
435   class Rf<bits<5> num, string n> :
436   SparcReg<n> {
437     let Num = num;
438   }
439   // Rd - Slots in the FP register file for 64-bit floating-point values.
440   class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
441     let Num = num;
442     let SubRegs = subregs;
443   }
444
445 In the ``SparcRegisterInfo.td`` file, there are register definitions that
446 utilize these subclasses of ``Register``, such as:
447
448 .. code-block:: llvm
449
450   def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
451   def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
452   ...
453   def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
454   def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
455   ...
456   def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
457   def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
458
459 The last two registers shown above (``D0`` and ``D1``) are double-precision
460 floating-point registers that are aliases for pairs of single-precision
461 floating-point sub-registers.  In addition to aliases, the sub-register and
462 super-register relationships of the defined register are in fields of a
463 register's ``TargetRegisterDesc``.
464
465 Defining a Register Class
466 -------------------------
467
468 The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
469 object that represents a group of related registers and also defines the
470 default allocation order of the registers.  A target description file
471 ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
472 using the following class:
473
474 .. code-block:: llvm
475
476   class RegisterClass<string namespace,
477   list<ValueType> regTypes, int alignment, dag regList> {
478     string Namespace = namespace;
479     list<ValueType> RegTypes = regTypes;
480     int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
481     int Alignment = alignment;
482
483     // CopyCost is the cost of copying a value between two registers
484     // default value 1 means a single instruction
485     // A negative value means copying is extremely expensive or impossible
486     int CopyCost = 1;
487     dag MemberList = regList;
488
489     // for register classes that are subregisters of this class
490     list<RegisterClass> SubRegClassList = [];
491
492     code MethodProtos = [{}];  // to insert arbitrary code
493     code MethodBodies = [{}];
494   }
495
496 To define a ``RegisterClass``, use the following 4 arguments:
497
498 * The first argument of the definition is the name of the namespace.
499
500 * The second argument is a list of ``ValueType`` register type values that are
501   defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
502   integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
503   floating-point types (``f32``, ``f64``), and vector types (for example,
504   ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
505   must have the same ``ValueType``, but some registers may store vector data in
506   different configurations.  For example a register that can process a 128-bit
507   vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
508   32-bit integers, and so on.
509
510 * The third argument of the ``RegisterClass`` definition specifies the
511   alignment required of the registers when they are stored or loaded to
512   memory.
513
514 * The final argument, ``regList``, specifies which registers are in this class.
515   If an alternative allocation order method is not specified, then ``regList``
516   also defines the order of allocation used by the register allocator.  Besides
517   simply listing registers with ``(add R0, R1, ...)``, more advanced set
518   operators are available.  See ``include/llvm/Target/Target.td`` for more
519   information.
520
521 In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
522 ``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
523 first argument defines the namespace with the string "``SP``".  ``FPRegs``
524 defines a group of 32 single-precision floating-point registers (``F0`` to
525 ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
526 (``D0-D15``).
527
528 .. code-block:: llvm
529
530   // F0, F1, F2, ..., F31
531   def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
532
533   def DFPRegs : RegisterClass<"SP", [f64], 64,
534                               (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
535                                    D9, D10, D11, D12, D13, D14, D15)>;
536
537   def IntRegs : RegisterClass<"SP", [i32], 32,
538       (add L0, L1, L2, L3, L4, L5, L6, L7,
539            I0, I1, I2, I3, I4, I5,
540            O0, O1, O2, O3, O4, O5, O7,
541            G1,
542            // Non-allocatable regs:
543            G2, G3, G4,
544            O6,        // stack ptr
545            I6,        // frame ptr
546            I7,        // return address
547            G0,        // constant zero
548            G5, G6, G7 // reserved for kernel
549       )>;
550
551 Using ``SparcRegisterInfo.td`` with TableGen generates several output files
552 that are intended for inclusion in other source code that you write.
553 ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
554 be included in the header file for the implementation of the SPARC register
555 implementation that you write (``SparcRegisterInfo.h``).  In
556 ``SparcGenRegisterInfo.h.inc`` a new structure is defined called
557 ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
558 specifies types, based upon the defined register classes: ``DFPRegsClass``,
559 ``FPRegsClass``, and ``IntRegsClass``.
560
561 ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
562 included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
563 implementation.  The code below shows only the generated integer registers and
564 associated register classes.  The order of registers in ``IntRegs`` reflects
565 the order in the definition of ``IntRegs`` in the target description file.
566
567 .. code-block:: c++
568
569   // IntRegs Register Class...
570   static const unsigned IntRegs[] = {
571     SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
572     SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
573     SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
574     SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
575     SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
576     SP::G6, SP::G7,
577   };
578
579   // IntRegsVTs Register Class Value Types...
580   static const MVT::ValueType IntRegsVTs[] = {
581     MVT::i32, MVT::Other
582   };
583
584   namespace SP {   // Register class instances
585     DFPRegsClass    DFPRegsRegClass;
586     FPRegsClass     FPRegsRegClass;
587     IntRegsClass    IntRegsRegClass;
588   ...
589     // IntRegs Sub-register Classess...
590     static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
591       NULL
592     };
593   ...
594     // IntRegs Super-register Classess...
595     static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
596       NULL
597     };
598   ...
599     // IntRegs Register Class sub-classes...
600     static const TargetRegisterClass* const IntRegsSubclasses [] = {
601       NULL
602     };
603   ...
604     // IntRegs Register Class super-classes...
605     static const TargetRegisterClass* const IntRegsSuperclasses [] = {
606       NULL
607     };
608
609     IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
610       IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
611       IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
612   }
613
614 The register allocators will avoid using reserved registers, and callee saved
615 registers are not used until all the volatile registers have been used.  That
616 is usually good enough, but in some cases it may be necessary to provide custom
617 allocation orders.
618
619 Implement a subclass of ``TargetRegisterInfo``
620 ----------------------------------------------
621
622 The final step is to hand code portions of ``XXXRegisterInfo``, which
623 implements the interface described in ``TargetRegisterInfo.h`` (see
624 :ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
625 ``false``, unless overridden.  Here is a list of functions that are overridden
626 for the SPARC implementation in ``SparcRegisterInfo.cpp``:
627
628 * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
629   order of the desired callee-save stack frame offset.
630
631 * ``getReservedRegs`` --- Returns a bitset indexed by physical register
632   numbers, indicating if a particular register is unavailable.
633
634 * ``hasFP`` --- Return a Boolean indicating if a function should have a
635   dedicated frame pointer register.
636
637 * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
638   instructions are used, this can be called to eliminate them.
639
640 * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
641   instructions that may use them.
642
643 * ``emitPrologue`` --- Insert prologue code into the function.
644
645 * ``emitEpilogue`` --- Insert epilogue code into the function.
646
647 .. _instruction-set:
648
649 Instruction Set
650 ===============
651
652 During the early stages of code generation, the LLVM IR code is converted to a
653 ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
654 containing target instructions.  An ``SDNode`` has an opcode, operands, type
655 requirements, and operation properties.  For example, is an operation
656 commutative, does an operation load from memory.  The various operation node
657 types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
658 (values of the ``NodeType`` enum in the ``ISD`` namespace).
659
660 TableGen uses the following target description (``.td``) input files to
661 generate much of the code for instruction definition:
662
663 * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
664   other fundamental classes are defined.
665
666 * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
667   generators, contains ``SDTC*`` classes (selection DAG type constraint),
668   definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
669   ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
670   ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
671
672 * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
673   instructions.
674
675 * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
676   condition codes, and instructions of an instruction set.  For architecture
677   modifications, a different file name may be used.  For example, for Pentium
678   with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
679   MMX, this file is ``X86InstrMMX.td``.
680
681 There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
682 the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
683 its contents are only directly important for subtargets.
684
685 You should describe a concrete target-specific class ``XXXInstrInfo`` that
686 represents machine instructions supported by a target machine.
687 ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
688 which describes one instruction.  An instruction descriptor defines:
689
690 * Opcode mnemonic
691 * Number of operands
692 * List of implicit register definitions and uses
693 * Target-independent properties (such as memory access, is commutable)
694 * Target-specific flags
695
696 The Instruction class (defined in ``Target.td``) is mostly used as a base for
697 more complex instruction classes.
698
699 .. code-block:: llvm
700
701   class Instruction {
702     string Namespace = "";
703     dag OutOperandList;    // A dag containing the MI def operand list.
704     dag InOperandList;     // A dag containing the MI use operand list.
705     string AsmString = ""; // The .s format to print the instruction with.
706     list<dag> Pattern;     // Set to the DAG pattern for this instruction.
707     list<Register> Uses = [];
708     list<Register> Defs = [];
709     list<Predicate> Predicates = [];  // predicates turned into isel match code
710     ... remainder not shown for space ...
711   }
712
713 A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
714 target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
715 instruction objects should represent instructions from the architecture manual
716 of the target machine (such as the SPARC Architecture Manual for the SPARC
717 target).
718
719 A single instruction from the architecture manual is often modeled as multiple
720 target instructions, depending upon its operands.  For example, a manual might
721 describe an add instruction that takes a register or an immediate operand.  An
722 LLVM target could model this with two instructions named ``ADDri`` and
723 ``ADDrr``.
724
725 You should define a class for each instruction category and define each opcode
726 as a subclass of the category with appropriate parameters such as the fixed
727 binary encoding of opcodes and extended opcodes.  You should map the register
728 bits to the bits of the instruction in which they are encoded (for the JIT).
729 Also you should specify how the instruction should be printed when the
730 automatic assembly printer is used.
731
732 As is described in the SPARC Architecture Manual, Version 8, there are three
733 major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
734 instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
735 bits of a register) instructions.  Format 3 is for other instructions.
736
737 Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
738 ``InstSP`` is a base class for other instruction classes.  Additional base
739 classes are specified for more precise formats: for example in
740 ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
741 branches.  There are three other base classes: ``F3_1`` for register/register
742 operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
743 floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
744 ``Pseudo`` for synthetic SPARC instructions.
745
746 ``SparcInstrInfo.td`` largely consists of operand and instruction definitions
747 for the SPARC target.  In ``SparcInstrInfo.td``, the following target
748 description file entry, ``LDrr``, defines the Load Integer instruction for a
749 Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
750 parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
751 category of operation.  The second parameter (``000000``\ :sub:`2`) is the
752 specific operation value for ``LD``/Load Word.  The third parameter is the
753 output destination, which is a register operand and defined in the ``Register``
754 target description file (``IntRegs``).
755
756 .. code-block:: llvm
757
758   def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
759                    "ld [$addr], $dst",
760                    [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
761
762 The fourth parameter is the input source, which uses the address operand
763 ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
764
765 .. code-block:: llvm
766
767   def MEMrr : Operand<i32> {
768     let PrintMethod = "printMemOperand";
769     let MIOperandInfo = (ops IntRegs, IntRegs);
770   }
771
772 The fifth parameter is a string that is used by the assembly printer and can be
773 left as an empty string until the assembly printer interface is implemented.
774 The sixth and final parameter is the pattern used to match the instruction
775 during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
776 This parameter is detailed in the next section, :ref:`instruction-selector`.
777
778 Instruction class definitions are not overloaded for different operand types,
779 so separate versions of instructions are needed for register, memory, or
780 immediate value operands.  For example, to perform a Load Integer instruction
781 for a Word from an immediate operand to a register, the following instruction
782 class is defined:
783
784 .. code-block:: llvm
785
786   def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
787                    "ld [$addr], $dst",
788                    [(set IntRegs:$dst, (load ADDRri:$addr))]>;
789
790 Writing these definitions for so many similar instructions can involve a lot of
791 cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
792 creation of templates to define several instruction classes at once (using the
793 ``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
794 pattern ``F3_12`` is defined to create 2 instruction classes each time
795 ``F3_12`` is invoked:
796
797 .. code-block:: llvm
798
799   multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
800     def rr  : F3_1 <2, Op3Val,
801                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
802                    !strconcat(OpcStr, " $b, $c, $dst"),
803                    [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
804     def ri  : F3_2 <2, Op3Val,
805                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
806                    !strconcat(OpcStr, " $b, $c, $dst"),
807                    [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
808   }
809
810 So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
811 instructions, as seen below, it creates four instruction objects: ``XORrr``,
812 ``XORri``, ``ADDrr``, and ``ADDri``.
813
814 .. code-block:: llvm
815
816   defm XOR   : F3_12<"xor", 0b000011, xor>;
817   defm ADD   : F3_12<"add", 0b000000, add>;
818
819 ``SparcInstrInfo.td`` also includes definitions for condition codes that are
820 referenced by branch instructions.  The following definitions in
821 ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
822 For example, the 10\ :sup:`th` bit represents the "greater than" condition for
823 integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
824 floats.
825
826 .. code-block:: llvm
827
828   def ICC_NE  : ICC_VAL< 9>;  // Not Equal
829   def ICC_E   : ICC_VAL< 1>;  // Equal
830   def ICC_G   : ICC_VAL<10>;  // Greater
831   ...
832   def FCC_U   : FCC_VAL<23>;  // Unordered
833   def FCC_G   : FCC_VAL<22>;  // Greater
834   def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
835   ...
836
837 (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
838 condition codes.  Care must be taken to ensure the values in ``Sparc.h``
839 correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
840 ``SPCC::FCC_U = 23`` and so on.)
841
842 Instruction Operand Mapping
843 ---------------------------
844
845 The code generator backend maps instruction operands to fields in the
846 instruction.  Operands are assigned to unbound fields in the instruction in the
847 order they are defined.  Fields are bound when they are assigned a value.  For
848 example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
849 format instruction having three operands.
850
851 .. code-block:: llvm
852
853   def XNORrr  : F3_1<2, 0b000111,
854                      (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
855                      "xnor $b, $c, $dst",
856                      [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
857
858 The instruction templates in ``SparcInstrFormats.td`` show the base class for
859 ``F3_1`` is ``InstSP``.
860
861 .. code-block:: llvm
862
863   class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
864     field bits<32> Inst;
865     let Namespace = "SP";
866     bits<2> op;
867     let Inst{31-30} = op;
868     dag OutOperandList = outs;
869     dag InOperandList = ins;
870     let AsmString   = asmstr;
871     let Pattern = pattern;
872   }
873
874 ``InstSP`` leaves the ``op`` field unbound.
875
876 .. code-block:: llvm
877
878   class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
879       : InstSP<outs, ins, asmstr, pattern> {
880     bits<5> rd;
881     bits<6> op3;
882     bits<5> rs1;
883     let op{1} = 1;   // Op = 2 or 3
884     let Inst{29-25} = rd;
885     let Inst{24-19} = op3;
886     let Inst{18-14} = rs1;
887   }
888
889 ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
890 fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
891 ``rs1`` fields.
892
893 .. code-block:: llvm
894
895   class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
896              string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
897     bits<8> asi = 0; // asi not currently used
898     bits<5> rs2;
899     let op         = opVal;
900     let op3        = op3val;
901     let Inst{13}   = 0;     // i field = 0
902     let Inst{12-5} = asi;   // address space identifier
903     let Inst{4-0}  = rs2;
904   }
905
906 ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
907 format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
908 fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
909 and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
910
911 Instruction Relation Mapping
912 ----------------------------
913
914 This TableGen feature is used to relate instructions with each other.  It is
915 particularly useful when you have multiple instruction formats and need to
916 switch between them after instruction selection.  This entire feature is driven
917 by relation models which can be defined in ``XXXInstrInfo.td`` files
918 according to the target-specific instruction set.  Relation models are defined
919 using ``InstrMapping`` class as a base.  TableGen parses all the models
920 and generates instruction relation maps using the specified information.
921 Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
922 along with the functions to query them.  For the detailed information on how to
923 use this feature, please refer to :doc:`HowToUseInstrMappings`.
924
925 Implement a subclass of ``TargetInstrInfo``
926 -------------------------------------------
927
928 The final step is to hand code portions of ``XXXInstrInfo``, which implements
929 the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
930 These functions return ``0`` or a Boolean or they assert, unless overridden.
931 Here's a list of functions that are overridden for the SPARC implementation in
932 ``SparcInstrInfo.cpp``:
933
934 * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
935   load from a stack slot, return the register number of the destination and the
936   ``FrameIndex`` of the stack slot.
937
938 * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
939   store to a stack slot, return the register number of the destination and the
940   ``FrameIndex`` of the stack slot.
941
942 * ``copyPhysReg`` --- Copy values between a pair of physical registers.
943
944 * ``storeRegToStackSlot`` --- Store a register value to a stack slot.
945
946 * ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
947
948 * ``storeRegToAddr`` --- Store a register value to memory.
949
950 * ``loadRegFromAddr`` --- Load a register value from memory.
951
952 * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
953   store instruction for the specified operand(s).
954
955 Branch Folding and If Conversion
956 --------------------------------
957
958 Performance can be improved by combining instructions or by eliminating
959 instructions that are never reached.  The ``AnalyzeBranch`` method in
960 ``XXXInstrInfo`` may be implemented to examine conditional instructions and
961 remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
962 machine basic block (MBB) for opportunities for improvement, such as branch
963 folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
964 function passes (see the source files ``BranchFolding.cpp`` and
965 ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
966 to improve the control flow graph that represents the instructions.
967
968 Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
969 examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
970 does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
971 shown below.
972
973 ``AnalyzeBranch`` returns a Boolean value and takes four parameters:
974
975 * ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
976
977 * ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
978   conditional branch that evaluates to true, ``TBB`` is the destination.
979
980 * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
981   false, ``FBB`` is returned as the destination.
982
983 * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
984   condition for a conditional branch.
985
986 In the simplest case, if a block ends without a branch, then it falls through
987 to the successor block.  No destination blocks are specified for either ``TBB``
988 or ``FBB``, so both parameters return ``NULL``.  The start of the
989 ``AnalyzeBranch`` (see code below for the ARM target) shows the function
990 parameters and the code for the simplest case.
991
992 .. code-block:: c++
993
994   bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
995                                    MachineBasicBlock *&TBB,
996                                    MachineBasicBlock *&FBB,
997                                    std::vector<MachineOperand> &Cond) const
998   {
999     MachineBasicBlock::iterator I = MBB.end();
1000     if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1001       return false;
1002
1003 If a block ends with a single unconditional branch instruction, then
1004 ``AnalyzeBranch`` (shown below) should return the destination of that branch in
1005 the ``TBB`` parameter.
1006
1007 .. code-block:: c++
1008
1009     if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1010       TBB = LastInst->getOperand(0).getMBB();
1011       return false;
1012     }
1013
1014 If a block ends with two unconditional branches, then the second branch is
1015 never reached.  In that situation, as shown below, remove the last branch
1016 instruction and return the penultimate branch in the ``TBB`` parameter.
1017
1018 .. code-block:: c++
1019
1020     if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
1021         (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1022       TBB = SecondLastInst->getOperand(0).getMBB();
1023       I = LastInst;
1024       I->eraseFromParent();
1025       return false;
1026     }
1027
1028 A block may end with a single conditional branch instruction that falls through
1029 to successor block if the condition evaluates to false.  In that case,
1030 ``AnalyzeBranch`` (shown below) should return the destination of that
1031 conditional branch in the ``TBB`` parameter and a list of operands in the
1032 ``Cond`` parameter to evaluate the condition.
1033
1034 .. code-block:: c++
1035
1036     if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1037       // Block ends with fall-through condbranch.
1038       TBB = LastInst->getOperand(0).getMBB();
1039       Cond.push_back(LastInst->getOperand(1));
1040       Cond.push_back(LastInst->getOperand(2));
1041       return false;
1042     }
1043
1044 If a block ends with both a conditional branch and an ensuing unconditional
1045 branch, then ``AnalyzeBranch`` (shown below) should return the conditional
1046 branch destination (assuming it corresponds to a conditional evaluation of
1047 "``true``") in the ``TBB`` parameter and the unconditional branch destination
1048 in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
1049 list of operands to evaluate the condition should be returned in the ``Cond``
1050 parameter.
1051
1052 .. code-block:: c++
1053
1054     unsigned SecondLastOpc = SecondLastInst->getOpcode();
1055
1056     if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
1057         (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
1058       TBB =  SecondLastInst->getOperand(0).getMBB();
1059       Cond.push_back(SecondLastInst->getOperand(1));
1060       Cond.push_back(SecondLastInst->getOperand(2));
1061       FBB = LastInst->getOperand(0).getMBB();
1062       return false;
1063     }
1064
1065 For the last two cases (ending with a single conditional branch or ending with
1066 one conditional and one unconditional branch), the operands returned in the
1067 ``Cond`` parameter can be passed to methods of other instructions to create new
1068 branches or perform other operations.  An implementation of ``AnalyzeBranch``
1069 requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
1070 subsequent operations.
1071
1072 ``AnalyzeBranch`` should return false indicating success in most circumstances.
1073 ``AnalyzeBranch`` should only return true when the method is stumped about what
1074 to do, for example, if a block has three terminating branches.
1075 ``AnalyzeBranch`` may return true if it encounters a terminator it cannot
1076 handle, such as an indirect branch.
1077
1078 .. _instruction-selector:
1079
1080 Instruction Selector
1081 ====================
1082
1083 LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
1084 the ``SelectionDAG`` ideally represent native target instructions.  During code
1085 generation, instruction selection passes are performed to convert non-native
1086 DAG instructions into native target-specific instructions.  The pass described
1087 in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
1088 instruction selection.  Optionally, a pass may be defined (in
1089 ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
1090 instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
1091 operations and data types not supported natively (legalizes) in a
1092 ``SelectionDAG``.
1093
1094 TableGen generates code for instruction selection using the following target
1095 description input files:
1096
1097 * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
1098   target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
1099   included in ``XXXISelDAGToDAG.cpp``.
1100
1101 * ``XXXCallingConv.td`` --- Contains the calling and return value conventions
1102   for the target architecture, and it generates ``XXXGenCallingConv.inc``,
1103   which is included in ``XXXISelLowering.cpp``.
1104
1105 The implementation of an instruction selection pass must include a header that
1106 declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
1107 ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
1108 selection pass into the queue of passes to run.
1109
1110 The LLVM static compiler (``llc``) is an excellent tool for visualizing the
1111 contents of DAGs.  To display the ``SelectionDAG`` before or after specific
1112 processing phases, use the command line options for ``llc``, described at
1113 :ref:`SelectionDAG-Process`.
1114
1115 To describe instruction selector behavior, you should add patterns for lowering
1116 LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
1117 definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
1118 this entry defines a register store operation, and the last parameter describes
1119 a pattern with the store DAG operator.
1120
1121 .. code-block:: llvm
1122
1123   def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1124                    "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>;
1125
1126 ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
1127
1128 .. code-block:: llvm
1129
1130   def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
1131
1132 The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
1133 defined in an implementation of the Instructor Selector (such as
1134 ``SparcISelDAGToDAG.cpp``).
1135
1136 In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
1137 below:
1138
1139 .. code-block:: llvm
1140
1141   def store : PatFrag<(ops node:$val, node:$ptr),
1142                       (st node:$val, node:$ptr), [{
1143     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
1144       return !ST->isTruncatingStore() &&
1145              ST->getAddressingMode() == ISD::UNINDEXED;
1146     return false;
1147   }]>;
1148
1149 ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
1150 ``SelectCode`` method that is used to call the appropriate processing method
1151 for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
1152 for the ``ISD::STORE`` opcode.
1153
1154 .. code-block:: c++
1155
1156   SDNode *SelectCode(SDValue N) {
1157     ...
1158     MVT::ValueType NVT = N.getNode()->getValueType(0);
1159     switch (N.getOpcode()) {
1160     case ISD::STORE: {
1161       switch (NVT) {
1162       default:
1163         return Select_ISD_STORE(N);
1164         break;
1165       }
1166       break;
1167     }
1168     ...
1169
1170 The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
1171 code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
1172 is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
1173 instruction.
1174
1175 .. code-block:: c++
1176
1177   SDNode *Select_ISD_STORE(const SDValue &N) {
1178     SDValue Chain = N.getOperand(0);
1179     if (Predicate_store(N.getNode())) {
1180       SDValue N1 = N.getOperand(1);
1181       SDValue N2 = N.getOperand(2);
1182       SDValue CPTmp0;
1183       SDValue CPTmp1;
1184
1185       // Pattern: (st:void IntRegs:i32:$src,
1186       //           ADDRrr:i32:$addr)<<P:Predicate_store>>
1187       // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1188       // Pattern complexity = 13  cost = 1  size = 0
1189       if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
1190           N1.getNode()->getValueType(0) == MVT::i32 &&
1191           N2.getNode()->getValueType(0) == MVT::i32) {
1192         return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1193       }
1194   ...
1195
1196 The SelectionDAG Legalize Phase
1197 -------------------------------
1198
1199 The Legalize phase converts a DAG to use types and operations that are natively
1200 supported by the target.  For natively unsupported types and operations, you
1201 need to add code to the target-specific ``XXXTargetLowering`` implementation to
1202 convert unsupported types and operations to supported ones.
1203
1204 In the constructor for the ``XXXTargetLowering`` class, first use the
1205 ``addRegisterClass`` method to specify which types are supported and which
1206 register classes are associated with them.  The code for the register classes
1207 are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
1208 ``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
1209 constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
1210 starts with the following code:
1211
1212 .. code-block:: c++
1213
1214   addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1215   addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1216   addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1217
1218 You should examine the node types in the ``ISD`` namespace
1219 (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
1220 the target natively supports.  For operations that do **not** have native
1221 support, add a callback to the constructor for the ``XXXTargetLowering`` class,
1222 so the instruction selection process knows what to do.  The ``TargetLowering``
1223 class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
1224
1225 * ``setOperationAction`` --- General operation.
1226 * ``setLoadExtAction`` --- Load with extension.
1227 * ``setTruncStoreAction`` --- Truncating store.
1228 * ``setIndexedLoadAction`` --- Indexed load.
1229 * ``setIndexedStoreAction`` --- Indexed store.
1230 * ``setConvertAction`` --- Type conversion.
1231 * ``setCondCodeAction`` --- Support for a given condition code.
1232
1233 Note: on older releases, ``setLoadXAction`` is used instead of
1234 ``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
1235 be supported.  Examine your release to see what methods are specifically
1236 supported.
1237
1238 These callbacks are used to determine that an operation does or does not work
1239 with a specified type (or types).  And in all cases, the third parameter is a
1240 ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
1241 ``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
1242 ``LegalAction`` values.
1243
1244 Promote
1245 ^^^^^^^
1246
1247 For an operation without native support for a given type, the specified type
1248 may be promoted to a larger type that is supported.  For example, SPARC does
1249 not support a sign-extending load for Boolean values (``i1`` type), so in
1250 ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
1251 ``i1`` type values to a large type before loading.
1252
1253 .. code-block:: c++
1254
1255   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1256
1257 Expand
1258 ^^^^^^
1259
1260 For a type without native support, a value may need to be broken down further,
1261 rather than promoted.  For an operation without native support, a combination
1262 of other operations may be used to similar effect.  In SPARC, the
1263 floating-point sine and cosine trig operations are supported by expansion to
1264 other operations, as indicated by the third parameter, ``Expand``, to
1265 ``setOperationAction``:
1266
1267 .. code-block:: c++
1268
1269   setOperationAction(ISD::FSIN, MVT::f32, Expand);
1270   setOperationAction(ISD::FCOS, MVT::f32, Expand);
1271
1272 Custom
1273 ^^^^^^
1274
1275 For some operations, simple type promotion or operation expansion may be
1276 insufficient.  In some cases, a special intrinsic function must be implemented.
1277
1278 For example, a constant value may require special treatment, or an operation
1279 may require spilling and restoring registers in the stack and working with
1280 register allocators.
1281
1282 As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
1283 from a floating point value to a signed integer, first the
1284 ``setOperationAction`` should be called with ``Custom`` as the third parameter:
1285
1286 .. code-block:: c++
1287
1288   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1289
1290 In the ``LowerOperation`` method, for each ``Custom`` operation, a case
1291 statement should be added to indicate what function to call.  In the following
1292 code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
1293
1294 .. code-block:: c++
1295
1296   SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1297     switch (Op.getOpcode()) {
1298     case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1299     ...
1300     }
1301   }
1302
1303 Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
1304 convert the floating-point value to an integer.
1305
1306 .. code-block:: c++
1307
1308   static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
1309     assert(Op.getValueType() == MVT::i32);
1310     Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1311     return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1312   }
1313
1314 Legal
1315 ^^^^^
1316
1317 The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
1318 **is** natively supported.  ``Legal`` represents the default condition, so it
1319 is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
1320 operation to count the bits set in an integer) is natively supported only for
1321 SPARC v9.  The following code enables the ``Expand`` conversion technique for
1322 non-v9 SPARC implementations.
1323
1324 .. code-block:: c++
1325
1326   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1327   ...
1328   if (TM.getSubtarget<SparcSubtarget>().isV9())
1329     setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1330
1331 Calling Conventions
1332 -------------------
1333
1334 To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
1335 interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
1336 ``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
1337 file ``XXXGenCallingConv.td`` and generate the header file
1338 ``XXXGenCallingConv.inc``, which is typically included in
1339 ``XXXISelLowering.cpp``.  You can use the interfaces in
1340 ``TargetCallingConv.td`` to specify:
1341
1342 * The order of parameter allocation.
1343
1344 * Where parameters and return values are placed (that is, on the stack or in
1345   registers).
1346
1347 * Which registers may be used.
1348
1349 * Whether the caller or callee unwinds the stack.
1350
1351 The following example demonstrates the use of the ``CCIfType`` and
1352 ``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
1353 if the current argument is of type ``f32`` or ``f64``), then the action is
1354 performed.  In this case, the ``CCAssignToReg`` action assigns the argument
1355 value to the first available register: either ``R0`` or ``R1``.
1356
1357 .. code-block:: llvm
1358
1359   CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
1360
1361 ``SparcCallingConv.td`` contains definitions for a target-specific return-value
1362 calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
1363 (``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
1364 which registers are used for specified scalar return types.  A single-precision
1365 float is returned to register ``F0``, and a double-precision float goes to
1366 register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
1367
1368 .. code-block:: llvm
1369
1370   def RetCC_Sparc32 : CallingConv<[
1371     CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
1372     CCIfType<[f32], CCAssignToReg<[F0]>>,
1373     CCIfType<[f64], CCAssignToReg<[D0]>>
1374   ]>;
1375
1376 The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
1377 ``CCAssignToStack``, which assigns the value to a stack slot with the specified
1378 size and alignment.  In the example below, the first parameter, 4, indicates
1379 the size of the slot, and the second parameter, also 4, indicates the stack
1380 alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
1381 size is used; if alignment is zero, then the ABI alignment is used.)
1382
1383 .. code-block:: llvm
1384
1385   def CC_Sparc32 : CallingConv<[
1386     // All arguments get passed in integer registers if there is space.
1387     CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
1388     CCAssignToStack<4, 4>
1389   ]>;
1390
1391 ``CCDelegateTo`` is another commonly used interface, which tries to find a
1392 specified sub-calling convention, and, if a match is found, it is invoked.  In
1393 the following example (in ``X86CallingConv.td``), the definition of
1394 ``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
1395 assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
1396 invoked.
1397
1398 .. code-block:: llvm
1399
1400   def RetCC_X86_32_C : CallingConv<[
1401     CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
1402     CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
1403     CCDelegateTo<RetCC_X86Common>
1404   ]>;
1405
1406 ``CCIfCC`` is an interface that attempts to match the given name to the current
1407 calling convention.  If the name identifies the current calling convention,
1408 then a specified action is invoked.  In the following example (in
1409 ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
1410 ``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
1411 use, then ``RetCC_X86_32_SSE`` is invoked.
1412
1413 .. code-block:: llvm
1414
1415   def RetCC_X86_32 : CallingConv<[
1416     CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
1417     CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
1418     CCDelegateTo<RetCC_X86_32_C>
1419   ]>;
1420
1421 Other calling convention interfaces include:
1422
1423 * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
1424
1425 * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
1426   attribute, then apply the action.
1427
1428 * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
1429   attribute, then apply the action.
1430
1431 * ``CCIfNotVarArg <action>`` --- If the current function does not take a
1432   variable number of arguments, apply the action.
1433
1434 * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
1435   ``CCAssignToReg``, but with a shadow list of registers.
1436
1437 * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
1438   minimum specified size and alignment.
1439
1440 * ``CCPromoteToType <type>`` --- Promote the current value to the specified
1441   type.
1442
1443 * ``CallingConv <[actions]>`` --- Define each calling convention that is
1444   supported.
1445
1446 Assembly Printer
1447 ================
1448
1449 During the code emission stage, the code generator may utilize an LLVM pass to
1450 produce assembly output.  To do this, you want to implement the code for a
1451 printer that converts LLVM IR to a GAS-format assembly language for your target
1452 machine, using the following steps:
1453
1454 * Define all the assembly strings for your target, adding them to the
1455   instructions defined in the ``XXXInstrInfo.td`` file.  (See
1456   :ref:`instruction-set`.)  TableGen will produce an output file
1457   (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
1458   method for the ``XXXAsmPrinter`` class.
1459
1460 * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
1461   the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
1462
1463 * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
1464   ``TargetAsmInfo`` properties and sometimes new implementations for methods.
1465
1466 * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
1467   performs the LLVM-to-assembly conversion.
1468
1469 The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
1470 ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
1471 ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
1472 replacement values that override the default values in ``TargetAsmInfo.cpp``.
1473 For example in ``SparcTargetAsmInfo.cpp``:
1474
1475 .. code-block:: c++
1476
1477   SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
1478     Data16bitsDirective = "\t.half\t";
1479     Data32bitsDirective = "\t.word\t";
1480     Data64bitsDirective = 0;  // .xword is only supported by V9.
1481     ZeroDirective = "\t.skip\t";
1482     CommentString = "!";
1483     ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
1484   }
1485
1486 The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
1487 where the target specific ``TargetAsmInfo`` class uses an overridden methods:
1488 ``ExpandInlineAsm``.
1489
1490 A target-specific implementation of ``AsmPrinter`` is written in
1491 ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
1492 the LLVM to printable assembly.  The implementation must include the following
1493 headers that have declarations for the ``AsmPrinter`` and
1494 ``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
1495 ``FunctionPass``.
1496
1497 .. code-block:: c++
1498
1499   #include "llvm/CodeGen/AsmPrinter.h"
1500   #include "llvm/CodeGen/MachineFunctionPass.h"
1501
1502 As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
1503 up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
1504 instantiated to process variable names.
1505
1506 In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
1507 ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
1508 ``MachineFunctionPass``, the ``runOnFunction`` method invokes
1509 ``runOnMachineFunction``.  Target-specific implementations of
1510 ``runOnMachineFunction`` differ, but generally do the following to process each
1511 machine function:
1512
1513 * Call ``SetupMachineFunction`` to perform initialization.
1514
1515 * Call ``EmitConstantPool`` to print out (to the output stream) constants which
1516   have been spilled to memory.
1517
1518 * Call ``EmitJumpTableInfo`` to print out jump tables used by the current
1519   function.
1520
1521 * Print out the label for the current function.
1522
1523 * Print out the code for the function, including basic block labels and the
1524   assembly for the instruction (using ``printInstruction``)
1525
1526 The ``XXXAsmPrinter`` implementation must also include the code generated by
1527 TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
1528 ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
1529 method that may call these methods:
1530
1531 * ``printOperand``
1532 * ``printMemOperand``
1533 * ``printCCOperand`` (for conditional statements)
1534 * ``printDataDirective``
1535 * ``printDeclare``
1536 * ``printImplicitDef``
1537 * ``printInlineAsm``
1538
1539 The implementations of ``printDeclare``, ``printImplicitDef``,
1540 ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
1541 adequate for printing assembly and do not need to be overridden.
1542
1543 The ``printOperand`` method is implemented with a long ``switch``/``case``
1544 statement for the type of operand: register, immediate, basic block, external
1545 symbol, global address, constant pool index, or jump table index.  For an
1546 instruction with a memory address operand, the ``printMemOperand`` method
1547 should be implemented to generate the proper output.  Similarly,
1548 ``printCCOperand`` should be used to print a conditional operand.
1549
1550 ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
1551 called to shut down the assembly printer.  During ``doFinalization``, global
1552 variables and constants are printed to output.
1553
1554 Subtarget Support
1555 =================
1556
1557 Subtarget support is used to inform the code generation process of instruction
1558 set variations for a given chip set.  For example, the LLVM SPARC
1559 implementation provided covers three major versions of the SPARC microprocessor
1560 architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
1561 64-bit architecture), and the UltraSPARC architecture.  V8 has 16
1562 double-precision floating-point registers that are also usable as either 32
1563 single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
1564 V9 has 32 double-precision floating-point registers that are also usable as 16
1565 quad-precision registers, but cannot be used as single-precision registers.
1566 The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
1567 extensions.
1568
1569 If subtarget support is needed, you should implement a target-specific
1570 ``XXXSubtarget`` class for your architecture.  This class should process the
1571 command-line options ``-mcpu=`` and ``-mattr=``.
1572
1573 TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
1574 generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
1575 ``SubtargetFeature`` interface is defined.  The first 4 string parameters of
1576 the ``SubtargetFeature`` interface are a feature name, an attribute set by the
1577 feature, the value of the attribute, and a description of the feature.  (The
1578 fifth parameter is a list of features whose presence is implied, and its
1579 default value is an empty array.)
1580
1581 .. code-block:: llvm
1582
1583   class SubtargetFeature<string n, string a, string v, string d,
1584                          list<SubtargetFeature> i = []> {
1585     string Name = n;
1586     string Attribute = a;
1587     string Value = v;
1588     string Desc = d;
1589     list<SubtargetFeature> Implies = i;
1590   }
1591
1592 In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
1593 following features.
1594
1595 .. code-block:: llvm
1596
1597   def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
1598                        "Enable SPARC-V9 instructions">;
1599   def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
1600                        "V8DeprecatedInsts", "true",
1601                        "Enable deprecated V8 instructions in V9 mode">;
1602   def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
1603                        "Enable UltraSPARC Visual Instruction Set extensions">;
1604
1605 Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
1606 define particular SPARC processor subtypes that may have the previously
1607 described features.
1608
1609 .. code-block:: llvm
1610
1611   class Proc<string Name, list<SubtargetFeature> Features>
1612     : Processor<Name, NoItineraries, Features>;
1613
1614   def : Proc<"generic",         []>;
1615   def : Proc<"v8",              []>;
1616   def : Proc<"supersparc",      []>;
1617   def : Proc<"sparclite",       []>;
1618   def : Proc<"f934",            []>;
1619   def : Proc<"hypersparc",      []>;
1620   def : Proc<"sparclite86x",    []>;
1621   def : Proc<"sparclet",        []>;
1622   def : Proc<"tsc701",          []>;
1623   def : Proc<"v9",              [FeatureV9]>;
1624   def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
1625   def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
1626   def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
1627
1628 From ``Target.td`` and ``Sparc.td`` files, the resulting
1629 ``SparcGenSubtarget.inc`` specifies enum values to identify the features,
1630 arrays of constants to represent the CPU features and CPU subtypes, and the
1631 ``ParseSubtargetFeatures`` method that parses the features string that sets
1632 specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
1633 should be included in the ``SparcSubtarget.cpp``.  The target-specific
1634 implementation of the ``XXXSubtarget`` method should follow this pseudocode:
1635
1636 .. code-block:: c++
1637
1638   XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
1639     // Set the default features
1640     // Determine default and user specified characteristics of the CPU
1641     // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
1642     // Perform any additional operations
1643   }
1644
1645 JIT Support
1646 ===========
1647
1648 The implementation of a target machine optionally includes a Just-In-Time (JIT)
1649 code generator that emits machine code and auxiliary structures as binary
1650 output that can be written directly to memory.  To do this, implement JIT code
1651 generation by performing the following steps:
1652
1653 * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
1654   that transforms target-machine instructions into relocatable machine
1655   code.
1656
1657 * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
1658   target-specific code-generation activities, such as emitting machine code and
1659   stubs.
1660
1661 * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
1662   through its ``getJITInfo`` method.
1663
1664 There are several different approaches to writing the JIT support code.  For
1665 instance, TableGen and target descriptor files may be used for creating a JIT
1666 code generator, but are not mandatory.  For the Alpha and PowerPC target
1667 machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
1668 contains the binary coding of machine instructions and the
1669 ``getBinaryCodeForInstr`` method to access those codes.  Other JIT
1670 implementations do not.
1671
1672 Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
1673 ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
1674 ``MachineCodeEmitter`` class containing code for several callback functions
1675 that write data (in bytes, words, strings, etc.) to the output stream.
1676
1677 Machine Code Emitter
1678 --------------------
1679
1680 In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
1681 implemented as a function pass (subclass of ``MachineFunctionPass``).  The
1682 target-specific implementation of ``runOnMachineFunction`` (invoked by
1683 ``runOnFunction`` in ``MachineFunctionPass``) iterates through the
1684 ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
1685 emit binary code.  ``emitInstruction`` is largely implemented with case
1686 statements on the instruction types defined in ``XXXInstrInfo.h``.  For
1687 example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
1688 around the following ``switch``/``case`` statements:
1689
1690 .. code-block:: c++
1691
1692   switch (Desc->TSFlags & X86::FormMask) {
1693   case X86II::Pseudo:  // for not yet implemented instructions
1694      ...               // or pseudo-instructions
1695      break;
1696   case X86II::RawFrm:  // for instructions with a fixed opcode value
1697      ...
1698      break;
1699   case X86II::AddRegFrm: // for instructions that have one register operand
1700      ...                 // added to their opcode
1701      break;
1702   case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
1703      ...                 // to specify a destination (register)
1704      break;
1705   case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
1706      ...                 // to specify a destination (memory)
1707      break;
1708   case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
1709      ...                 // to specify a source (register)
1710      break;
1711   case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
1712      ...                 // to specify a source (memory)
1713      break;
1714   case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
1715   case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
1716   case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
1717   case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
1718      ...
1719      break;
1720   case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
1721   case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
1722   case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
1723   case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
1724      ...
1725      break;
1726   case X86II::MRMInitReg: // for instructions whose source and
1727      ...                  // destination are the same register
1728      break;
1729   }
1730
1731 The implementations of these case statements often first emit the opcode and
1732 then get the operand(s).  Then depending upon the operand, helper methods may
1733 be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
1734 for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
1735 the opcode added to the register operand.  Then an object representing the
1736 machine operand, ``MO1``, is extracted.  The helper methods such as
1737 ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
1738 ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
1739 (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
1740 ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
1741 and ``emitJumpTableAddress`` that emit the data into the output stream.)
1742
1743 .. code-block:: c++
1744
1745   case X86II::AddRegFrm:
1746     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
1747
1748     if (CurOp != NumOps) {
1749       const MachineOperand &MO1 = MI.getOperand(CurOp++);
1750       unsigned Size = X86InstrInfo::sizeOfImm(Desc);
1751       if (MO1.isImmediate())
1752         emitConstant(MO1.getImm(), Size);
1753       else {
1754         unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1755           : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1756         if (Opcode == X86::MOV64ri)
1757           rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
1758         if (MO1.isGlobalAddress()) {
1759           bool NeedStub = isa<Function>(MO1.getGlobal());
1760           bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
1761           emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1762                             NeedStub, isLazy);
1763         } else if (MO1.isExternalSymbol())
1764           emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1765         else if (MO1.isConstantPoolIndex())
1766           emitConstPoolAddress(MO1.getIndex(), rt);
1767         else if (MO1.isJumpTableIndex())
1768           emitJumpTableAddress(MO1.getIndex(), rt);
1769       }
1770     }
1771     break;
1772
1773 In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
1774 is a ``RelocationType`` enum that may be used to relocate addresses (for
1775 example, a global address with a PIC base offset).  The ``RelocationType`` enum
1776 for that target is defined in the short target-specific ``XXXRelocations.h``
1777 file.  The ``RelocationType`` is used by the ``relocate`` method defined in
1778 ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
1779
1780 For example, ``X86Relocations.h`` specifies the following relocation types for
1781 the X86 addresses.  In all four cases, the relocated value is added to the
1782 value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
1783 there is an additional initial adjustment.
1784
1785 .. code-block:: c++
1786
1787   enum RelocationType {
1788     reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
1789     reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
1790     reloc_absolute_word = 2, // absolute relocation; no additional adjustment
1791     reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
1792   };
1793
1794 Target JIT Info
1795 ---------------
1796
1797 ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
1798 code-generation activities, such as emitting machine code and stubs.  At
1799 minimum, a target-specific version of ``XXXJITInfo`` implements the following:
1800
1801 * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
1802   function that is used for compilation.
1803
1804 * ``emitFunctionStub`` --- Returns a native function with a specified address
1805   for a callback function.
1806
1807 * ``relocate`` --- Changes the addresses of referenced globals, based on
1808   relocation types.
1809
1810 * Callback function that are wrappers to a function stub that is used when the
1811   real target is not initially known.
1812
1813 ``getLazyResolverFunction`` is generally trivial to implement.  It makes the
1814 incoming parameter as the global ``JITCompilerFunction`` and returns the
1815 callback function that will be used a function wrapper.  For the Alpha target
1816 (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
1817 simply:
1818
1819 .. code-block:: c++
1820
1821   TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
1822                                               JITCompilerFn F) {
1823     JITCompilerFunction = F;
1824     return AlphaCompilationCallback;
1825   }
1826
1827 For the X86 target, the ``getLazyResolverFunction`` implementation is a little
1828 more complicated, because it returns a different callback function for
1829 processors with SSE instructions and XMM registers.
1830
1831 The callback function initially saves and later restores the callee register
1832 values, incoming arguments, and frame and return address.  The callback
1833 function needs low-level access to the registers or stack, so it is typically
1834 implemented with assembler.
1835