Add mention of Glasgow Haskell Compiler.
[oota-llvm.git] / docs / TableGenFundamentals.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6   <title>TableGen Fundamentals</title>
7   <link rel="stylesheet" href="_static/llvm.css" type="text/css">
8 </head>
9 <body>
10
11 <h1>TableGen Fundamentals</h1>
12
13 <div>
14 <ul>
15   <li><a href="#introduction">Introduction</a>
16   <ol>
17     <li><a href="#concepts">Basic concepts</a></li>
18     <li><a href="#example">An example record</a></li>
19     <li><a href="#running">Running TableGen</a></li>
20   </ol></li>
21   <li><a href="#syntax">TableGen syntax</a>
22   <ol>
23     <li><a href="#primitives">TableGen primitives</a>
24     <ol>
25       <li><a href="#comments">TableGen comments</a></li>
26       <li><a href="#types">The TableGen type system</a></li>
27       <li><a href="#values">TableGen values and expressions</a></li>
28     </ol></li>
29     <li><a href="#classesdefs">Classes and definitions</a>
30     <ol>
31       <li><a href="#valuedef">Value definitions</a></li>
32       <li><a href="#recordlet">'let' expressions</a></li>
33       <li><a href="#templateargs">Class template arguments</a></li>
34       <li><a href="#multiclass">Multiclass definitions and instances</a></li>
35     </ol></li>
36     <li><a href="#filescope">File scope entities</a>
37     <ol>
38       <li><a href="#include">File inclusion</a></li>
39       <li><a href="#globallet">'let' expressions</a></li>
40       <li><a href="#foreach">'foreach' blocks</a></li>
41     </ol></li>
42   </ol></li>
43   <li><a href="#backends">TableGen backends</a>
44   <ol>
45     <li><a href="#">todo</a></li>
46   </ol></li>
47 </ul>
48 </div>
49
50 <div class="doc_author">
51   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
52 </div>
53
54 <!-- *********************************************************************** -->
55 <h2><a name="introduction">Introduction</a></h2>
56 <!-- *********************************************************************** -->
57
58 <div>
59
60 <p>TableGen's purpose is to help a human develop and maintain records of
61 domain-specific information.  Because there may be a large number of these
62 records, it is specifically designed to allow writing flexible descriptions and
63 for common features of these records to be factored out.  This reduces the
64 amount of duplication in the description, reduces the chance of error, and
65 makes it easier to structure domain specific information.</p>
66
67 <p>The core part of TableGen <a href="#syntax">parses a file</a>, instantiates
68 the declarations, and hands the result off to a domain-specific "<a
69 href="#backends">TableGen backend</a>" for processing.  The current major user
70 of TableGen is the <a href="CodeGenerator.html">LLVM code generator</a>.</p>
71
72 <p>Note that if you work on TableGen much, and use emacs or vim, that you can
73 find an emacs "TableGen mode" and a vim language file in the
74 <tt>llvm/utils/emacs</tt> and <tt>llvm/utils/vim</tt> directories of your LLVM
75 distribution, respectively.</p>
76
77 <!-- ======================================================================= -->
78 <h3><a name="concepts">Basic concepts</a></h3>
79
80 <div>
81
82 <p>TableGen files consist of two key parts: 'classes' and 'definitions', both
83 of which are considered 'records'.</p>
84
85 <p><b>TableGen records</b> have a unique name, a list of values, and a list of
86 superclasses.  The list of values is the main data that TableGen builds for each
87 record; it is this that holds the domain specific information for the
88 application.  The interpretation of this data is left to a specific <a
89 href="#backends">TableGen backend</a>, but the structure and format rules are
90 taken care of and are fixed by TableGen.</p>
91
92 <p><b>TableGen definitions</b> are the concrete form of 'records'.  These
93 generally do not have any undefined values, and are marked with the
94 '<tt>def</tt>' keyword.</p>
95
96 <p><b>TableGen classes</b> are abstract records that are used to build and
97 describe other records.  These 'classes' allow the end-user to build
98 abstractions for either the domain they are targeting (such as "Register",
99 "RegisterClass", and "Instruction" in the LLVM code generator) or for the
100 implementor to help factor out common properties of records (such as "FPInst",
101 which is used to represent floating point instructions in the X86 backend).
102 TableGen keeps track of all of the classes that are used to build up a
103 definition, so the backend can find all definitions of a particular class, such
104 as "Instruction".</p>
105
106 <p><b>TableGen multiclasses</b> are groups of abstract records that are
107 instantiated all at once.  Each instantiation can result in multiple
108 TableGen definitions.  If a multiclass inherits from another multiclass,
109 the definitions in the sub-multiclass become part of the current
110 multiclass, as if they were declared in the current multiclass.</p>
111
112 </div>
113
114 <!-- ======================================================================= -->
115 <h3><a name="example">An example record</a></h3>
116
117 <div>
118
119 <p>With no other arguments, TableGen parses the specified file and prints out
120 all of the classes, then all of the definitions.  This is a good way to see what
121 the various definitions expand to fully.  Running this on the <tt>X86.td</tt>
122 file prints this (at the time of this writing):</p>
123
124 <div class="doc_code">
125 <pre>
126 ...
127 <b>def</b> ADD32rr {   <i>// Instruction X86Inst I</i>
128   <b>string</b> Namespace = "X86";
129   <b>dag</b> OutOperandList = (outs GR32:$dst);
130   <b>dag</b> InOperandList = (ins GR32:$src1, GR32:$src2);
131   <b>string</b> AsmString = "add{l}\t{$src2, $dst|$dst, $src2}";
132   <b>list</b>&lt;dag&gt; Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))];
133   <b>list</b>&lt;Register&gt; Uses = [];
134   <b>list</b>&lt;Register&gt; Defs = [EFLAGS];
135   <b>list</b>&lt;Predicate&gt; Predicates = [];
136   <b>int</b> CodeSize = 3;
137   <b>int</b> AddedComplexity = 0;
138   <b>bit</b> isReturn = 0;
139   <b>bit</b> isBranch = 0;
140   <b>bit</b> isIndirectBranch = 0;
141   <b>bit</b> isBarrier = 0;
142   <b>bit</b> isCall = 0;
143   <b>bit</b> canFoldAsLoad = 0;
144   <b>bit</b> mayLoad = 0;
145   <b>bit</b> mayStore = 0;
146   <b>bit</b> isImplicitDef = 0;
147   <b>bit</b> isConvertibleToThreeAddress = 1;
148   <b>bit</b> isCommutable = 1;
149   <b>bit</b> isTerminator = 0;
150   <b>bit</b> isReMaterializable = 0;
151   <b>bit</b> isPredicable = 0;
152   <b>bit</b> hasDelaySlot = 0;
153   <b>bit</b> usesCustomInserter = 0;
154   <b>bit</b> hasCtrlDep = 0;
155   <b>bit</b> isNotDuplicable = 0;
156   <b>bit</b> hasSideEffects = 0;
157   <b>bit</b> neverHasSideEffects = 0;
158   InstrItinClass Itinerary = NoItinerary;
159   <b>string</b> Constraints = "";
160   <b>string</b> DisableEncoding = "";
161   <b>bits</b>&lt;8&gt; Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
162   Format Form = MRMDestReg;
163   <b>bits</b>&lt;6&gt; FormBits = { 0, 0, 0, 0, 1, 1 };
164   ImmType ImmT = NoImm;
165   <b>bits</b>&lt;3&gt; ImmTypeBits = { 0, 0, 0 };
166   <b>bit</b> hasOpSizePrefix = 0;
167   <b>bit</b> hasAdSizePrefix = 0;
168   <b>bits</b>&lt;4&gt; Prefix = { 0, 0, 0, 0 };
169   <b>bit</b> hasREX_WPrefix = 0;
170   FPFormat FPForm = ?;
171   <b>bits</b>&lt;3&gt; FPFormBits = { 0, 0, 0 };
172 }
173 ...
174 </pre>
175 </div>
176
177 <p>This definition corresponds to a 32-bit register-register add instruction in
178 the X86.  The string after the '<tt>def</tt>' string indicates the name of the
179 record&mdash;"<tt>ADD32rr</tt>" in this case&mdash;and the comment at the end of
180 the line indicates the superclasses of the definition.  The body of the record
181 contains all of the data that TableGen assembled for the record, indicating that
182 the instruction is part of the "X86" namespace, the pattern indicating how the
183 the instruction should be emitted into the assembly file, that it is a
184 two-address instruction, has a particular encoding, etc.  The contents and
185 semantics of the information in the record is specific to the needs of the X86
186 backend, and is only shown as an example.</p>
187
188 <p>As you can see, a lot of information is needed for every instruction
189 supported by the code generator, and specifying it all manually would be
190 unmaintainable, prone to bugs, and tiring to do in the first place.  Because we
191 are using TableGen, all of the information was derived from the following
192 definition:</p>
193
194 <div class="doc_code">
195 <pre>
196 let Defs = [EFLAGS],
197     isCommutable = 1,                  <i>// X = ADD Y,Z --&gt; X = ADD Z,Y</i>
198     isConvertibleToThreeAddress = 1 <b>in</b> <i>// Can transform into LEA.</i>
199 def ADD32rr  : I&lt;0x01, MRMDestReg, (outs GR32:$dst),
200                                    (ins GR32:$src1, GR32:$src2),
201                  "add{l}\t{$src2, $dst|$dst, $src2}",
202                  [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]&gt;;
203 </pre>
204 </div>
205
206 <p>This definition makes use of the custom class <tt>I</tt> (extended from the
207 custom class <tt>X86Inst</tt>), which is defined in the X86-specific TableGen
208 file, to factor out the common features that instructions of its class share.  A
209 key feature of TableGen is that it allows the end-user to define the
210 abstractions they prefer to use when describing their information.</p>
211
212 <p>Each def record has a special entry called "NAME."  This is the
213 name of the def ("ADD32rr" above).  In the general case def names can
214 be formed from various kinds of string processing expressions and NAME
215 resolves to the final value obtained after resolving all of those
216 expressions.  The user may refer to NAME anywhere she desires to use
217 the ultimate name of the def.  NAME should not be defined anywhere
218 else in user code to avoid conflict problems.</p>
219
220 </div>
221
222 <!-- ======================================================================= -->
223 <h3><a name="running">Running TableGen</a></h3>
224
225 <div>
226
227 <p>TableGen runs just like any other LLVM tool.  The first (optional) argument
228 specifies the file to read.  If a filename is not specified, <tt>tblgen</tt>
229 reads from standard input.</p>
230
231 <p>To be useful, one of the <a href="#backends">TableGen backends</a> must be
232 used.  These backends are selectable on the command line (type '<tt>tblgen
233 -help</tt>' for a list).  For example, to get a list of all of the definitions
234 that subclass a particular type (which can be useful for building up an enum
235 list of these records), use the <tt>-print-enums</tt> option:</p>
236
237 <div class="doc_code">
238 <pre>
239 $ tblgen X86.td -print-enums -class=Register
240 AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX,
241 ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP,
242 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D,
243 R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15,
244 R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI,
245 RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
246 XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5,
247 XMM6, XMM7, XMM8, XMM9,
248
249 $ tblgen X86.td -print-enums -class=Instruction 
250 ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri,
251 ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8,
252 ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm,
253 ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr,
254 ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ...
255 </pre>
256 </div>
257
258 <p>The default backend prints out all of the records, as described <a
259 href="#example">above</a>.</p>
260
261 <p>If you plan to use TableGen, you will most likely have to <a
262 href="#backends">write a backend</a> that extracts the information specific to
263 what you need and formats it in the appropriate way.</p>
264
265 </div>
266
267 </div>
268
269 <!-- *********************************************************************** -->
270 <h2><a name="syntax">TableGen syntax</a></h2>
271 <!-- *********************************************************************** -->
272
273 <div>
274
275 <p>TableGen doesn't care about the meaning of data (that is up to the backend to
276 define), but it does care about syntax, and it enforces a simple type system.
277 This section describes the syntax and the constructs allowed in a TableGen file.
278 </p>
279
280 <!-- ======================================================================= -->
281 <h3><a name="primitives">TableGen primitives</a></h3>
282
283 <div>
284
285 <!-- -------------------------------------------------------------------------->
286 <h4><a name="comments">TableGen comments</a></h4>
287
288 <div>
289
290 <p>TableGen supports BCPL style "<tt>//</tt>" comments, which run to the end of
291 the line, and it also supports <b>nestable</b> "<tt>/* */</tt>" comments.</p>
292
293 </div>
294
295 <!-- -------------------------------------------------------------------------->
296 <h4>
297   <a name="types">The TableGen type system</a>
298 </h4>
299
300 <div>
301
302 <p>TableGen files are strongly typed, in a simple (but complete) type-system.
303 These types are used to perform automatic conversions, check for errors, and to
304 help interface designers constrain the input that they allow.  Every <a
305 href="#valuedef">value definition</a> is required to have an associated type.
306 </p>
307
308 <p>TableGen supports a mixture of very low-level types (such as <tt>bit</tt>)
309 and very high-level types (such as <tt>dag</tt>).  This flexibility is what
310 allows it to describe a wide range of information conveniently and compactly.
311 The TableGen types are:</p>
312
313 <dl>
314 <dt><tt><b>bit</b></tt></dt>
315   <dd>A 'bit' is a boolean value that can hold either 0 or 1.</dd>
316
317 <dt><tt><b>int</b></tt></dt>
318   <dd>The 'int' type represents a simple 32-bit integer value, such as 5.</dd>
319
320 <dt><tt><b>string</b></tt></dt>
321   <dd>The 'string' type represents an ordered sequence of characters of
322   arbitrary length.</dd>
323
324 <dt><tt><b>bits</b>&lt;n&gt;</tt></dt>
325   <dd>A 'bits' type is an arbitrary, but fixed, size integer that is broken up
326   into individual bits.  This type is useful because it can handle some bits
327   being defined while others are undefined.</dd>
328
329 <dt><tt><b>list</b>&lt;ty&gt;</tt></dt>
330   <dd>This type represents a list whose elements are some other type.  The
331   contained type is arbitrary: it can even be another list type.</dd>
332
333 <dt>Class type</dt>
334   <dd>Specifying a class name in a type context means that the defined value
335   must be a subclass of the specified class.  This is useful in conjunction with
336   the <b><tt>list</tt></b> type, for example, to constrain the elements of the
337   list to a common base class (e.g., a <tt><b>list</b>&lt;Register&gt;</tt> can
338   only contain definitions derived from the "<tt>Register</tt>" class).</dd>
339
340 <dt><tt><b>dag</b></tt></dt>
341   <dd>This type represents a nestable directed graph of elements.</dd>
342
343 <dt><tt><b>code</b></tt></dt>
344   <dd>This represents a big hunk of text.  This is lexically distinct from 
345   string values because it doesn't require escapeing double quotes and other
346   common characters that occur in code.</dd>
347 </dl>
348
349 <p>To date, these types have been sufficient for describing things that
350 TableGen has been used for, but it is straight-forward to extend this list if
351 needed.</p>
352
353 </div>
354
355 <!-- -------------------------------------------------------------------------->
356 <h4>
357   <a name="values">TableGen values and expressions</a>
358 </h4>
359
360 <div>
361
362 <p>TableGen allows for a pretty reasonable number of different expression forms
363 when building up values.  These forms allow the TableGen file to be written in a
364 natural syntax and flavor for the application.  The current expression forms
365 supported include:</p>
366
367 <dl>
368 <dt><tt>?</tt></dt>
369   <dd>uninitialized field</dd>
370 <dt><tt>0b1001011</tt></dt>
371   <dd>binary integer value</dd>
372 <dt><tt>07654321</tt></dt>
373   <dd>octal integer value (indicated by a leading 0)</dd>
374 <dt><tt>7</tt></dt>
375   <dd>decimal integer value</dd>
376 <dt><tt>0x7F</tt></dt>
377   <dd>hexadecimal integer value</dd>
378 <dt><tt>"foo"</tt></dt>
379   <dd>string value</dd>
380 <dt><tt>[{ ... }]</tt></dt>
381   <dd>code fragment</dd>
382 <dt><tt>[ X, Y, Z ]&lt;type&gt;</tt></dt>
383   <dd>list value.  &lt;type&gt; is the type of the list 
384 element and is usually optional.  In rare cases,
385 TableGen is unable to deduce the element type in
386 which case the user must specify it explicitly.</dd>
387 <dt><tt>{ a, b, c }</tt></dt>
388   <dd>initializer for a "bits&lt;3&gt;" value</dd>
389 <dt><tt>value</tt></dt>
390   <dd>value reference</dd>
391 <dt><tt>value{17}</tt></dt>
392   <dd>access to one bit of a value</dd>
393 <dt><tt>value{15-17}</tt></dt>
394   <dd>access to multiple bits of a value</dd>
395 <dt><tt>DEF</tt></dt>
396   <dd>reference to a record definition</dd>
397 <dt><tt>CLASS&lt;val list&gt;</tt></dt>
398   <dd>reference to a new anonymous definition of CLASS with the specified
399       template arguments.</dd>
400 <dt><tt>X.Y</tt></dt>
401   <dd>reference to the subfield of a value</dd>
402 <dt><tt>list[4-7,17,2-3]</tt></dt>
403   <dd>A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from
404   it.  Elements may be included multiple times.</dd>
405 <dt><tt>foreach &lt;var&gt; = &lt;list&gt; in { &lt;body&gt; }</tt></dt>
406 <dt><tt>foreach &lt;var&gt; = &lt;list&gt; in &lt;def&gt;</tt></dt>
407   <dd> Replicate &lt;body&gt; or &lt;def&gt;, replacing instances of
408   &lt;var&gt; with each value in &lt;list&gt;.  &lt;var&gt; is scoped at the
409   level of the <tt>foreach</tt> loop and must not conflict with any other object
410   introduced in &lt;body&gt; or &lt;def&gt;.  Currently only <tt>def</tt>s are
411   expanded within &lt;body&gt;.
412   </dd>
413 <dt><tt>(DEF a, b)</tt></dt>
414   <dd>a dag value.  The first element is required to be a record definition, the
415   remaining elements in the list may be arbitrary other values, including nested
416   `<tt>dag</tt>' values.</dd>
417 <dt><tt>!strconcat(a, b)</tt></dt>
418   <dd>A string value that is the result of concatenating the 'a' and 'b'
419   strings.</dd>
420 <dt><tt>str1#str2</tt></dt>
421   <dd>"#" (paste) is a shorthand for !strconcat.  It may concatenate
422   things that are not quoted strings, in which case an implicit
423   !cast&lt;string&gt; is done on the operand of the paste.</dd>
424 <dt><tt>!cast&lt;type&gt;(a)</tt></dt>
425   <dd>A symbol of type <em>type</em> obtained by looking up the string 'a' in
426 the symbol table.  If the type of 'a' does not match <em>type</em>, TableGen
427 aborts with an error. !cast&lt;string&gt; is a special case in that the argument must
428 be an object defined by a 'def' construct.</dd>
429 <dt><tt>!subst(a, b, c)</tt></dt>
430   <dd>If 'a' and 'b' are of string type or are symbol references, substitute 
431 'b' for 'a' in 'c.'  This operation is analogous to $(subst) in GNU make.</dd>
432 <dt><tt>!foreach(a, b, c)</tt></dt>
433   <dd>For each member 'b' of dag or list 'a' apply operator 'c.'  'b' is a 
434 dummy variable that should be declared as a member variable of an instantiated 
435 class.  This operation is analogous to $(foreach) in GNU make.</dd>
436 <dt><tt>!head(a)</tt></dt>
437   <dd>The first element of list 'a.'</dd>
438 <dt><tt>!tail(a)</tt></dt>
439   <dd>The 2nd-N elements of list 'a.'</dd>
440 <dt><tt>!empty(a)</tt></dt>
441   <dd>An integer {0,1} indicating whether list 'a' is empty.</dd>
442 <dt><tt>!if(a,b,c)</tt></dt>
443   <dd>'b' if the result of 'int' or 'bit' operator 'a' is nonzero,
444       'c' otherwise.</dd>
445 <dt><tt>!eq(a,b)</tt></dt>
446   <dd>'bit 1' if string a is equal to string b, 0 otherwise.  This
447       only operates on string, int and bit objects.  Use !cast&lt;string&gt; to
448       compare other types of objects.</dd>
449 </dl>
450
451 <p>Note that all of the values have rules specifying how they convert to values
452 for different types.  These rules allow you to assign a value like "<tt>7</tt>"
453 to a "<tt>bits&lt;4&gt;</tt>" value, for example.</p>
454
455 </div>
456
457 </div>
458
459 <!-- ======================================================================= -->
460 <h3>
461   <a name="classesdefs">Classes and definitions</a>
462 </h3>
463
464 <div>
465
466 <p>As mentioned in the <a href="#concepts">intro</a>, classes and definitions
467 (collectively known as 'records') in TableGen are the main high-level unit of
468 information that TableGen collects.  Records are defined with a <tt>def</tt> or
469 <tt>class</tt> keyword, the record name, and an optional list of "<a
470 href="#templateargs">template arguments</a>".  If the record has superclasses,
471 they are specified as a comma separated list that starts with a colon character
472 ("<tt>:</tt>").  If <a href="#valuedef">value definitions</a> or <a
473 href="#recordlet">let expressions</a> are needed for the class, they are
474 enclosed in curly braces ("<tt>{}</tt>"); otherwise, the record ends with a
475 semicolon.</p>
476
477 <p>Here is a simple TableGen file:</p>
478
479 <div class="doc_code">
480 <pre>
481 <b>class</b> C { <b>bit</b> V = 1; }
482 <b>def</b> X : C;
483 <b>def</b> Y : C {
484   <b>string</b> Greeting = "hello";
485 }
486 </pre>
487 </div>
488
489 <p>This example defines two definitions, <tt>X</tt> and <tt>Y</tt>, both of
490 which derive from the <tt>C</tt> class.  Because of this, they both get the
491 <tt>V</tt> bit value.  The <tt>Y</tt> definition also gets the Greeting member
492 as well.</p>
493
494 <p>In general, classes are useful for collecting together the commonality
495 between a group of records and isolating it in a single place.  Also, classes
496 permit the specification of default values for their subclasses, allowing the
497 subclasses to override them as they wish.</p>
498
499 <!---------------------------------------------------------------------------->
500 <h4>
501   <a name="valuedef">Value definitions</a>
502 </h4>
503
504 <div>
505
506 <p>Value definitions define named entries in records.  A value must be defined
507 before it can be referred to as the operand for another value definition or
508 before the value is reset with a <a href="#recordlet">let expression</a>.  A
509 value is defined by specifying a <a href="#types">TableGen type</a> and a name.
510 If an initial value is available, it may be specified after the type with an
511 equal sign.  Value definitions require terminating semicolons.</p>
512
513 </div>
514
515 <!-- -------------------------------------------------------------------------->
516 <h4>
517   <a name="recordlet">'let' expressions</a>
518 </h4>
519
520 <div>
521
522 <p>A record-level let expression is used to change the value of a value
523 definition in a record.  This is primarily useful when a superclass defines a
524 value that a derived class or definition wants to override.  Let expressions
525 consist of the '<tt>let</tt>' keyword followed by a value name, an equal sign
526 ("<tt>=</tt>"), and a new value.  For example, a new class could be added to the
527 example above, redefining the <tt>V</tt> field for all of its subclasses:</p>
528
529 <div class="doc_code">
530 <pre>
531 <b>class</b> D : C { let V = 0; }
532 <b>def</b> Z : D;
533 </pre>
534 </div>
535
536 <p>In this case, the <tt>Z</tt> definition will have a zero value for its "V"
537 value, despite the fact that it derives (indirectly) from the <tt>C</tt> class,
538 because the <tt>D</tt> class overrode its value.</p>
539
540 </div>
541
542 <!-- -------------------------------------------------------------------------->
543 <h4>
544   <a name="templateargs">Class template arguments</a>
545 </h4>
546
547 <div>
548
549 <p>TableGen permits the definition of parameterized classes as well as normal
550 concrete classes.  Parameterized TableGen classes specify a list of variable
551 bindings (which may optionally have defaults) that are bound when used.  Here is
552 a simple example:</p>
553
554 <div class="doc_code">
555 <pre>
556 <b>class</b> FPFormat&lt;<b>bits</b>&lt;3&gt; val&gt; {
557   <b>bits</b>&lt;3&gt; Value = val;
558 }
559 <b>def</b> NotFP      : FPFormat&lt;0&gt;;
560 <b>def</b> ZeroArgFP  : FPFormat&lt;1&gt;;
561 <b>def</b> OneArgFP   : FPFormat&lt;2&gt;;
562 <b>def</b> OneArgFPRW : FPFormat&lt;3&gt;;
563 <b>def</b> TwoArgFP   : FPFormat&lt;4&gt;;
564 <b>def</b> CompareFP  : FPFormat&lt;5&gt;;
565 <b>def</b> CondMovFP  : FPFormat&lt;6&gt;;
566 <b>def</b> SpecialFP  : FPFormat&lt;7&gt;;
567 </pre>
568 </div>
569
570 <p>In this case, template arguments are used as a space efficient way to specify
571 a list of "enumeration values", each with a "<tt>Value</tt>" field set to the
572 specified integer.</p>
573
574 <p>The more esoteric forms of <a href="#values">TableGen expressions</a> are
575 useful in conjunction with template arguments.  As an example:</p>
576
577 <div class="doc_code">
578 <pre>
579 <b>class</b> ModRefVal&lt;<b>bits</b>&lt;2&gt; val&gt; {
580   <b>bits</b>&lt;2&gt; Value = val;
581 }
582
583 <b>def</b> None   : ModRefVal&lt;0&gt;;
584 <b>def</b> Mod    : ModRefVal&lt;1&gt;;
585 <b>def</b> Ref    : ModRefVal&lt;2&gt;;
586 <b>def</b> ModRef : ModRefVal&lt;3&gt;;
587
588 <b>class</b> Value&lt;ModRefVal MR&gt; {
589   <i>// Decode some information into a more convenient format, while providing
590   // a nice interface to the user of the "Value" class.</i>
591   <b>bit</b> isMod = MR.Value{0};
592   <b>bit</b> isRef = MR.Value{1};
593
594   <i>// other stuff...</i>
595 }
596
597 <i>// Example uses</i>
598 <b>def</b> bork : Value&lt;Mod&gt;;
599 <b>def</b> zork : Value&lt;Ref&gt;;
600 <b>def</b> hork : Value&lt;ModRef&gt;;
601 </pre>
602 </div>
603
604 <p>This is obviously a contrived example, but it shows how template arguments
605 can be used to decouple the interface provided to the user of the class from the
606 actual internal data representation expected by the class.  In this case,
607 running <tt>tblgen</tt> on the example prints the following definitions:</p>
608
609 <div class="doc_code">
610 <pre>
611 <b>def</b> bork {      <i>// Value</i>
612   <b>bit</b> isMod = 1;
613   <b>bit</b> isRef = 0;
614 }
615 <b>def</b> hork {      <i>// Value</i>
616   <b>bit</b> isMod = 1;
617   <b>bit</b> isRef = 1;
618 }
619 <b>def</b> zork {      <i>// Value</i>
620   <b>bit</b> isMod = 0;
621   <b>bit</b> isRef = 1;
622 }
623 </pre>
624 </div>
625
626 <p> This shows that TableGen was able to dig into the argument and extract a
627 piece of information that was requested by the designer of the "Value" class.
628 For more realistic examples, please see existing users of TableGen, such as the
629 X86 backend.</p>
630
631 </div>
632
633 <!-- -------------------------------------------------------------------------->
634 <h4>
635   <a name="multiclass">Multiclass definitions and instances</a>
636 </h4>
637
638 <div>
639
640 <p>
641 While classes with template arguments are a good way to factor commonality
642 between two instances of a definition, multiclasses allow a convenient notation
643 for defining multiple definitions at once (instances of implicitly constructed
644 classes).  For example, consider an 3-address instruction set whose instructions
645 come in two forms: "<tt>reg = reg op reg</tt>" and "<tt>reg = reg op imm</tt>"
646 (e.g. SPARC). In this case, you'd like to specify in one place that this
647 commonality exists, then in a separate place indicate what all the ops are.
648 </p>
649
650 <p>
651 Here is an example TableGen fragment that shows this idea:
652 </p>
653
654 <div class="doc_code">
655 <pre>
656 <b>def</b> ops;
657 <b>def</b> GPR;
658 <b>def</b> Imm;
659 <b>class</b> inst&lt;<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist&gt;;
660
661 <b>multiclass</b> ri_inst&lt;<b>int</b> opc, <b>string</b> asmstr&gt; {
662   def _rr : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
663                  (ops GPR:$dst, GPR:$src1, GPR:$src2)&gt;;
664   def _ri : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
665                  (ops GPR:$dst, GPR:$src1, Imm:$src2)&gt;;
666 }
667
668 <i>// Instantiations of the ri_inst multiclass.</i>
669 <b>defm</b> ADD : ri_inst&lt;0b111, "add"&gt;;
670 <b>defm</b> SUB : ri_inst&lt;0b101, "sub"&gt;;
671 <b>defm</b> MUL : ri_inst&lt;0b100, "mul"&gt;;
672 ...
673 </pre>
674 </div>
675
676 <p>The name of the resultant definitions has the multidef fragment names
677    appended to them, so this defines <tt>ADD_rr</tt>, <tt>ADD_ri</tt>,
678    <tt>SUB_rr</tt>, etc.  A defm may inherit from multiple multiclasses,
679    instantiating definitions from each multiclass.  Using a multiclass
680    this way is exactly equivalent to instantiating the classes multiple
681    times yourself, e.g. by writing:</p>
682
683 <div class="doc_code">
684 <pre>
685 <b>def</b> ops;
686 <b>def</b> GPR;
687 <b>def</b> Imm;
688 <b>class</b> inst&lt;<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist&gt;;
689
690 <b>class</b> rrinst&lt;<b>int</b> opc, <b>string</b> asmstr&gt;
691   : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
692          (ops GPR:$dst, GPR:$src1, GPR:$src2)&gt;;
693
694 <b>class</b> riinst&lt;<b>int</b> opc, <b>string</b> asmstr&gt;
695   : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
696          (ops GPR:$dst, GPR:$src1, Imm:$src2)&gt;;
697
698 <i>// Instantiations of the ri_inst multiclass.</i>
699 <b>def</b> ADD_rr : rrinst&lt;0b111, "add"&gt;;
700 <b>def</b> ADD_ri : riinst&lt;0b111, "add"&gt;;
701 <b>def</b> SUB_rr : rrinst&lt;0b101, "sub"&gt;;
702 <b>def</b> SUB_ri : riinst&lt;0b101, "sub"&gt;;
703 <b>def</b> MUL_rr : rrinst&lt;0b100, "mul"&gt;;
704 <b>def</b> MUL_ri : riinst&lt;0b100, "mul"&gt;;
705 ...
706 </pre>
707 </div>
708
709 <p>
710 A defm can also be used inside a multiclass providing several levels of
711 multiclass instanciations.
712 </p>
713
714 <div class="doc_code">
715 <pre>
716 <b>class</b> Instruction&lt;bits&lt;4&gt; opc, string Name&gt; {
717   bits&lt;4&gt; opcode = opc;
718   string name = Name;
719 }
720
721 <b>multiclass</b> basic_r&lt;bits&lt;4&gt; opc&gt; {
722   <b>def</b> rr : Instruction&lt;opc, "rr"&gt;;
723   <b>def</b> rm : Instruction&lt;opc, "rm"&gt;;
724 }
725
726 <b>multiclass</b> basic_s&lt;bits&lt;4&gt; opc&gt; {
727   <b>defm</b> SS : basic_r&lt;opc&gt;;
728   <b>defm</b> SD : basic_r&lt;opc&gt;;
729   <b>def</b> X : Instruction&lt;opc, "x"&gt;;
730 }
731
732 <b>multiclass</b> basic_p&lt;bits&lt;4&gt; opc&gt; {
733   <b>defm</b> PS : basic_r&lt;opc&gt;;
734   <b>defm</b> PD : basic_r&lt;opc&gt;;
735   <b>def</b> Y : Instruction&lt;opc, "y"&gt;;
736 }
737
738 <b>defm</b> ADD : basic_s&lt;0xf&gt;, basic_p&lt;0xf&gt;;
739 ...
740
741 <i>// Results</i>
742 <b>def</b> ADDPDrm { ...
743 <b>def</b> ADDPDrr { ...
744 <b>def</b> ADDPSrm { ...
745 <b>def</b> ADDPSrr { ...
746 <b>def</b> ADDSDrm { ...
747 <b>def</b> ADDSDrr { ...
748 <b>def</b> ADDY { ...
749 <b>def</b> ADDX { ...
750 </pre>
751 </div>
752
753 <p>
754 defm declarations can inherit from classes too, the
755 rule to follow is that the class list must start after the
756 last multiclass, and there must be at least one multiclass
757 before them.
758 </p>
759
760 <div class="doc_code">
761 <pre>
762 <b>class</b> XD { bits&lt;4&gt; Prefix = 11; }
763 <b>class</b> XS { bits&lt;4&gt; Prefix = 12; }
764
765 <b>class</b> I&lt;bits<4&gt; op> {
766   bits&lt;4&gt; opcode = op;
767 }
768
769 <b>multiclass</b> R {
770   <b>def</b> rr : I&lt;4&gt;;
771   <b>def</b> rm : I&lt;2&gt;;
772 }
773
774 <b>multiclass</b> Y {
775   <b>defm</b> SS : R, XD;
776   <b>defm</b> SD : R, XS;
777 }
778
779 <b>defm</b> Instr : Y;
780
781 <i>// Results</i>
782 <b>def</b> InstrSDrm {
783   bits&lt;4&gt; opcode = { 0, 0, 1, 0 };
784   bits&lt;4&gt; Prefix = { 1, 1, 0, 0 };
785 }
786 ...
787 <b>def</b> InstrSSrr {
788   bits&lt;4&gt; opcode = { 0, 1, 0, 0 };
789   bits&lt;4&gt; Prefix = { 1, 0, 1, 1 };
790 }
791 </pre>
792 </div>
793
794 </div>
795
796 </div>
797
798 <!-- ======================================================================= -->
799 <h3>
800   <a name="filescope">File scope entities</a>
801 </h3>
802
803 <div>
804
805 <!-- -------------------------------------------------------------------------->
806 <h4>
807   <a name="include">File inclusion</a>
808 </h4>
809
810 <div>
811 <p>TableGen supports the '<tt>include</tt>' token, which textually substitutes
812 the specified file in place of the include directive.  The filename should be
813 specified as a double quoted string immediately after the '<tt>include</tt>'
814 keyword.  Example:</p>
815
816 <div class="doc_code">
817 <pre>
818 <b>include</b> "foo.td"
819 </pre>
820 </div>
821
822 </div>
823
824 <!-- -------------------------------------------------------------------------->
825 <h4>
826   <a name="globallet">'let' expressions</a>
827 </h4>
828
829 <div>
830
831 <p>"Let" expressions at file scope are similar to <a href="#recordlet">"let"
832 expressions within a record</a>, except they can specify a value binding for
833 multiple records at a time, and may be useful in certain other cases.
834 File-scope let expressions are really just another way that TableGen allows the
835 end-user to factor out commonality from the records.</p>
836
837 <p>File-scope "let" expressions take a comma-separated list of bindings to
838 apply, and one or more records to bind the values in.  Here are some
839 examples:</p>
840
841 <div class="doc_code">
842 <pre>
843 <b>let</b> isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 <b>in</b>
844   <b>def</b> RET : I&lt;0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]&gt;;
845
846 <b>let</b> isCall = 1 <b>in</b>
847   <i>// All calls clobber the non-callee saved registers...</i>
848   <b>let</b> Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
849               MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
850               XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] <b>in</b> {
851     <b>def</b> CALLpcrel32 : Ii32&lt;0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
852                            "call\t${dst:call}", []&gt;;
853     <b>def</b> CALL32r     : I&lt;0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
854                         "call\t{*}$dst", [(X86call GR32:$dst)]&gt;;
855     <b>def</b> CALL32m     : I&lt;0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
856                         "call\t{*}$dst", []&gt;;
857   }
858 </pre>
859 </div>
860
861 <p>File-scope "let" expressions are often useful when a couple of definitions
862 need to be added to several records, and the records do not otherwise need to be
863 opened, as in the case with the <tt>CALL*</tt> instructions above.</p>
864
865 <p>It's also possible to use "let" expressions inside multiclasses, providing
866 more ways to factor out commonality from the records, specially if using
867 several levels of multiclass instanciations. This also avoids the need of using
868 "let" expressions within subsequent records inside a multiclass.</p> 
869
870 <pre class="doc_code">
871 <b>multiclass </b>basic_r&lt;bits&lt;4&gt; opc&gt; {
872   <b>let </b>Predicates = [HasSSE2] in {
873     <b>def </b>rr : Instruction&lt;opc, "rr"&gt;;
874     <b>def </b>rm : Instruction&lt;opc, "rm"&gt;;
875   }
876   <b>let </b>Predicates = [HasSSE3] in
877     <b>def </b>rx : Instruction&lt;opc, "rx"&gt;;
878 }
879
880 <b>multiclass </b>basic_ss&lt;bits&lt;4&gt; opc&gt; {
881   <b>let </b>IsDouble = 0 in
882     <b>defm </b>SS : basic_r&lt;opc&gt;;
883
884   <b>let </b>IsDouble = 1 in
885     <b>defm </b>SD : basic_r&lt;opc&gt;;
886 }
887
888 <b>defm </b>ADD : basic_ss&lt;0xf&gt;;
889 </pre>
890 </div>
891
892 <!-- -------------------------------------------------------------------------->
893 <h4>
894   <a name="foreach">Looping</a>
895 </h4>
896
897 <div>
898 <p>TableGen supports the '<tt>foreach</tt>' block, which textually replicates
899 the loop body, substituting iterator values for iterator references in the
900 body.  Example:</p>
901
902 <div class="doc_code">
903 <pre>
904 <b>foreach</b> i = [0, 1, 2, 3] in {
905   <b>def</b> R#i : Register&lt;...&gt;;
906   <b>def</b> F#i : Register&lt;...&gt;;
907 }
908 </pre>
909 </div>
910
911 <p>This will create objects <tt>R0</tt>, <tt>R1</tt>, <tt>R2</tt> and
912 <tt>R3</tt>.  <tt>foreach</tt> blocks may be nested. If there is only
913 one item in the body the braces may be elided:</p>
914
915 <div class="doc_code">
916 <pre>
917 <b>foreach</b> i = [0, 1, 2, 3] in
918   <b>def</b> R#i : Register&lt;...&gt;;
919
920 </pre>
921 </div>
922
923 </div>
924
925 </div>
926
927 </div>
928
929 <!-- *********************************************************************** -->
930 <h2><a name="codegen">Code Generator backend info</a></h2>
931 <!-- *********************************************************************** -->
932
933 <div>
934
935 <p>Expressions used by code generator to describe instructions and isel
936 patterns:</p>
937
938 <dl>
939 <dt><tt>(implicit a)</tt></dt>
940   <dd>an implicitly defined physical register.  This tells the dag instruction
941   selection emitter the input pattern's extra definitions matches implicit
942   physical register definitions.</dd>
943 </dl>
944 </div>
945
946 <!-- *********************************************************************** -->
947 <h2><a name="backends">TableGen backends</a></h2>
948 <!-- *********************************************************************** -->
949
950 <div>
951
952 <p>TODO: How they work, how to write one.  This section should not contain
953 details about any particular backend, except maybe -print-enums as an example.
954 This should highlight the APIs in <tt>TableGen/Record.h</tt>.</p>
955
956 </div>
957
958 <!-- *********************************************************************** -->
959
960 <hr>
961 <address>
962   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
963   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
964   <a href="http://validator.w3.org/check/referer"><img
965   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
966
967   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
968   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
969   Last modified: $Date$
970 </address>
971
972 </body>
973 </html>