I plan to release a version of dragonegg based on llvm-2.7 shortly
[oota-llvm.git] / docs / ProgrammersManual.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
6   <title>LLVM Programmer's Manual</title>
7   <link rel="stylesheet" href="llvm.css" type="text/css">
8 </head>
9 <body>
10
11 <div class="doc_title">
12   LLVM Programmer's Manual
13 </div>
14
15 <ol>
16   <li><a href="#introduction">Introduction</a></li>
17   <li><a href="#general">General Information</a>
18     <ul>
19       <li><a href="#stl">The C++ Standard Template Library</a></li>
20 <!--
21       <li>The <tt>-time-passes</tt> option</li>
22       <li>How to use the LLVM Makefile system</li>
23       <li>How to write a regression test</li>
24
25 --> 
26     </ul>
27   </li>
28   <li><a href="#apis">Important and useful LLVM APIs</a>
29     <ul>
30       <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
31 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
32       <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
33 and <tt>Twine</tt> classes)</a>
34         <ul>
35           <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
36           <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
37         </ul>
38       </li>
39       <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
40 option</a>
41         <ul>
42           <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
43 and the <tt>-debug-only</tt> option</a> </li>
44         </ul>
45       </li>
46       <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
47 option</a></li>
48 <!--
49       <li>The <tt>InstVisitor</tt> template
50       <li>The general graph API
51 --> 
52       <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
53     </ul>
54   </li>
55   <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
56     <ul>
57     <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
58     <ul>
59       <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
60       <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
61       <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
62       <li><a href="#dss_vector">&lt;vector&gt;</a></li>
63       <li><a href="#dss_deque">&lt;deque&gt;</a></li>
64       <li><a href="#dss_list">&lt;list&gt;</a></li>
65       <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
66       <li><a href="#dss_other">Other Sequential Container Options</a></li>
67     </ul></li>
68     <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
69     <ul>
70       <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
71       <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
72       <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
73       <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
74       <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
75       <li><a href="#dss_set">&lt;set&gt;</a></li>
76       <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
77       <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
78       <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
79     </ul></li>
80     <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
81     <ul>
82       <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
83       <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
84       <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
85       <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
86       <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
87       <li><a href="#dss_map">&lt;map&gt;</a></li>
88       <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
89     </ul></li>
90     <li><a href="#ds_string">String-like containers</a>
91     <!--<ul>
92        todo
93     </ul>--></li>
94     <li><a href="#ds_bit">BitVector-like containers</a>
95     <ul>
96       <li><a href="#dss_bitvector">A dense bitvector</a></li>
97       <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
98       <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
99     </ul></li>
100   </ul>
101   </li>
102   <li><a href="#common">Helpful Hints for Common Operations</a>
103     <ul>
104       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
105         <ul>
106           <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
107 in a <tt>Function</tt></a> </li>
108           <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
109 in a <tt>BasicBlock</tt></a> </li>
110           <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
111 in a <tt>Function</tt></a> </li>
112           <li><a href="#iterate_convert">Turning an iterator into a
113 class pointer</a> </li>
114           <li><a href="#iterate_complex">Finding call sites: a more
115 complex example</a> </li>
116           <li><a href="#calls_and_invokes">Treating calls and invokes
117 the same way</a> </li>
118           <li><a href="#iterate_chains">Iterating over def-use &amp;
119 use-def chains</a> </li>
120           <li><a href="#iterate_preds">Iterating over predecessors &amp;
121 successors of blocks</a></li>
122         </ul>
123       </li>
124       <li><a href="#simplechanges">Making simple changes</a>
125         <ul>
126           <li><a href="#schanges_creating">Creating and inserting new
127                  <tt>Instruction</tt>s</a> </li>
128           <li><a href="#schanges_deleting">Deleting              <tt>Instruction</tt>s</a> </li>
129           <li><a href="#schanges_replacing">Replacing an                 <tt>Instruction</tt>
130 with another <tt>Value</tt></a> </li>
131           <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>  
132         </ul>
133       </li>
134       <li><a href="#create_types">How to Create Types</a></li>
135 <!--
136     <li>Working with the Control Flow Graph
137     <ul>
138       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
139       <li>
140       <li>
141     </ul>
142 --> 
143     </ul>
144   </li>
145
146   <li><a href="#threading">Threads and LLVM</a>
147   <ul>
148     <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
149         </a></li>
150     <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
151     <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
152     <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
153     <li><a href="#jitthreading">Threads and the JIT</a></li>
154   </ul>
155   </li>
156
157   <li><a href="#advanced">Advanced Topics</a>
158   <ul>
159   <li><a href="#TypeResolve">LLVM Type Resolution</a>
160   <ul>
161     <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
162     <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
163     <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
164     <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
165   </ul></li>
166
167   <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes</a></li>
168   <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
169   </ul></li>
170
171   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
172     <ul>
173       <li><a href="#Type">The <tt>Type</tt> class</a> </li>
174       <li><a href="#Module">The <tt>Module</tt> class</a></li>
175       <li><a href="#Value">The <tt>Value</tt> class</a>
176       <ul>
177         <li><a href="#User">The <tt>User</tt> class</a>
178         <ul>
179           <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
180           <li><a href="#Constant">The <tt>Constant</tt> class</a>
181           <ul>
182             <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
183             <ul>
184               <li><a href="#Function">The <tt>Function</tt> class</a></li>
185               <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
186             </ul>
187             </li>
188           </ul>
189           </li>
190         </ul>
191         </li>
192         <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
193         <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
194       </ul>
195       </li>
196     </ul>
197   </li>
198 </ol>
199
200 <div class="doc_author">    
201   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>, 
202                 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, 
203                 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>, 
204                 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>,
205                 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a> and
206                 <a href="mailto:owen@apple.com">Owen Anderson</a></p>
207 </div>
208
209 <!-- *********************************************************************** -->
210 <div class="doc_section">
211   <a name="introduction">Introduction </a>
212 </div>
213 <!-- *********************************************************************** -->
214
215 <div class="doc_text">
216
217 <p>This document is meant to highlight some of the important classes and
218 interfaces available in the LLVM source-base.  This manual is not
219 intended to explain what LLVM is, how it works, and what LLVM code looks
220 like.  It assumes that you know the basics of LLVM and are interested
221 in writing transformations or otherwise analyzing or manipulating the
222 code.</p>
223
224 <p>This document should get you oriented so that you can find your
225 way in the continuously growing source code that makes up the LLVM
226 infrastructure. Note that this manual is not intended to serve as a
227 replacement for reading the source code, so if you think there should be
228 a method in one of these classes to do something, but it's not listed,
229 check the source.  Links to the <a href="/doxygen/">doxygen</a> sources
230 are provided to make this as easy as possible.</p>
231
232 <p>The first section of this document describes general information that is
233 useful to know when working in the LLVM infrastructure, and the second describes
234 the Core LLVM classes.  In the future this manual will be extended with
235 information describing how to use extension libraries, such as dominator
236 information, CFG traversal routines, and useful utilities like the <tt><a
237 href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
238
239 </div>
240
241 <!-- *********************************************************************** -->
242 <div class="doc_section">
243   <a name="general">General Information</a>
244 </div>
245 <!-- *********************************************************************** -->
246
247 <div class="doc_text">
248
249 <p>This section contains general information that is useful if you are working
250 in the LLVM source-base, but that isn't specific to any particular API.</p>
251
252 </div>
253
254 <!-- ======================================================================= -->
255 <div class="doc_subsection">
256   <a name="stl">The C++ Standard Template Library</a>
257 </div>
258
259 <div class="doc_text">
260
261 <p>LLVM makes heavy use of the C++ Standard Template Library (STL),
262 perhaps much more than you are used to, or have seen before.  Because of
263 this, you might want to do a little background reading in the
264 techniques used and capabilities of the library.  There are many good
265 pages that discuss the STL, and several books on the subject that you
266 can get, so it will not be discussed in this document.</p>
267
268 <p>Here are some useful links:</p>
269
270 <ol>
271
272 <li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
273 reference</a> - an excellent reference for the STL and other parts of the
274 standard C++ library.</li>
275
276 <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
277 O'Reilly book in the making.  It has a decent Standard Library
278 Reference that rivals Dinkumware's, and is unfortunately no longer free since the
279 book has been published.</li>
280
281 <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
282 Questions</a></li>
283
284 <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
285 Contains a useful <a
286 href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
287 STL</a>.</li>
288
289 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
290 Page</a></li>
291
292 <li><a href="http://64.78.49.204/">
293 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
294 the book).</a></li>
295
296 </ol>
297   
298 <p>You are also encouraged to take a look at the <a
299 href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
300 to write maintainable code more than where to put your curly braces.</p>
301
302 </div>
303
304 <!-- ======================================================================= -->
305 <div class="doc_subsection">
306   <a name="stl">Other useful references</a>
307 </div>
308
309 <div class="doc_text">
310
311 <ol>
312 <li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
313 Branch and Tag Primer</a></li>
314 <li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
315 static and shared libraries across platforms</a></li>
316 </ol>
317
318 </div>
319
320 <!-- *********************************************************************** -->
321 <div class="doc_section">
322   <a name="apis">Important and useful LLVM APIs</a>
323 </div>
324 <!-- *********************************************************************** -->
325
326 <div class="doc_text">
327
328 <p>Here we highlight some LLVM APIs that are generally useful and good to
329 know about when writing transformations.</p>
330
331 </div>
332
333 <!-- ======================================================================= -->
334 <div class="doc_subsection">
335   <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
336   <tt>dyn_cast&lt;&gt;</tt> templates</a>
337 </div>
338
339 <div class="doc_text">
340
341 <p>The LLVM source-base makes extensive use of a custom form of RTTI.
342 These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
343 operator, but they don't have some drawbacks (primarily stemming from
344 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
345 have a v-table). Because they are used so often, you must know what they
346 do and how they work. All of these templates are defined in the <a
347  href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
348 file (note that you very rarely have to include this file directly).</p>
349
350 <dl>
351   <dt><tt>isa&lt;&gt;</tt>: </dt>
352
353   <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
354   "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
355   a reference or pointer points to an instance of the specified class.  This can
356   be very useful for constraint checking of various sorts (example below).</p>
357   </dd>
358
359   <dt><tt>cast&lt;&gt;</tt>: </dt>
360
361   <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
362   converts a pointer or reference from a base class to a derived class, causing
363   an assertion failure if it is not really an instance of the right type.  This
364   should be used in cases where you have some information that makes you believe
365   that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
366   and <tt>cast&lt;&gt;</tt> template is:</p>
367
368 <div class="doc_code">
369 <pre>
370 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
371   if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
372     return true;
373
374   // <i>Otherwise, it must be an instruction...</i>
375   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
376 }
377 </pre>
378 </div>
379
380   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
381   by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
382   operator.</p>
383
384   </dd>
385
386   <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
387
388   <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
389   It checks to see if the operand is of the specified type, and if so, returns a
390   pointer to it (this operator does not work with references). If the operand is
391   not of the correct type, a null pointer is returned.  Thus, this works very
392   much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
393   used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
394   operator is used in an <tt>if</tt> statement or some other flow control
395   statement like this:</p>
396
397 <div class="doc_code">
398 <pre>
399 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
400   // <i>...</i>
401 }
402 </pre>
403 </div>
404    
405   <p>This form of the <tt>if</tt> statement effectively combines together a call
406   to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
407   statement, which is very convenient.</p>
408
409   <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
410   <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
411   abused.  In particular, you should not use big chained <tt>if/then/else</tt>
412   blocks to check for lots of different variants of classes.  If you find
413   yourself wanting to do this, it is much cleaner and more efficient to use the
414   <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
415
416   </dd>
417
418   <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
419   
420   <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
421   <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
422   argument (which it then propagates).  This can sometimes be useful, allowing
423   you to combine several null checks into one.</p></dd>
424
425   <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
426
427   <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
428   <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
429   as an argument (which it then propagates).  This can sometimes be useful,
430   allowing you to combine several null checks into one.</p></dd>
431
432 </dl>
433
434 <p>These five templates can be used with any classes, whether they have a
435 v-table or not.  To add support for these templates, you simply need to add
436 <tt>classof</tt> static methods to the class you are interested casting
437 to. Describing this is currently outside the scope of this document, but there
438 are lots of examples in the LLVM source base.</p>
439
440 </div>
441
442
443 <!-- ======================================================================= -->
444 <div class="doc_subsection">
445   <a name="string_apis">Passing strings (the <tt>StringRef</tt>
446 and <tt>Twine</tt> classes)</a>
447 </div>
448
449 <div class="doc_text">
450
451 <p>Although LLVM generally does not do much string manipulation, we do have
452 several important APIs which take strings.  Two important examples are the
453 Value class -- which has names for instructions, functions, etc. -- and the
454 StringMap class which is used extensively in LLVM and Clang.</p>
455
456 <p>These are generic classes, and they need to be able to accept strings which
457 may have embedded null characters.  Therefore, they cannot simply take
458 a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
459 clients to perform a heap allocation which is usually unnecessary.  Instead,
460 many LLVM APIs use a <tt>const StringRef&amp;</tt> or a <tt>const 
461 Twine&amp;</tt> for passing strings efficiently.</p>
462
463 </div>
464
465 <!-- _______________________________________________________________________ -->
466 <div class="doc_subsubsection">
467   <a name="StringRef">The <tt>StringRef</tt> class</a>
468 </div>
469
470 <div class="doc_text">
471
472 <p>The <tt>StringRef</tt> data type represents a reference to a constant string
473 (a character array and a length) and supports the common operations available
474 on <tt>std:string</tt>, but does not require heap allocation.</p>
475
476 <p>It can be implicitly constructed using a C style null-terminated string,
477 an <tt>std::string</tt>, or explicitly with a character pointer and length.
478 For example, the <tt>StringRef</tt> find function is declared as:</p>
479
480 <div class="doc_code">
481   iterator find(const StringRef &amp;Key);
482 </div>
483
484 <p>and clients can call it using any one of:</p>
485
486 <div class="doc_code">
487 <pre>
488   Map.find("foo");                 <i>// Lookup "foo"</i>
489   Map.find(std::string("bar"));    <i>// Lookup "bar"</i>
490   Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
491 </pre>
492 </div>
493
494 <p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
495 instance, which can be used directly or converted to an <tt>std::string</tt>
496 using the <tt>str</tt> member function.  See 
497 "<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
498 for more information.</p>
499
500 <p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
501 pointers to external memory it is not generally safe to store an instance of the
502 class (unless you know that the external storage will not be freed).</p>
503
504 </div>
505
506 <!-- _______________________________________________________________________ -->
507 <div class="doc_subsubsection">
508   <a name="Twine">The <tt>Twine</tt> class</a>
509 </div>
510
511 <div class="doc_text">
512
513 <p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
514 strings.  For example, a common LLVM paradigm is to name one instruction based on
515 the name of another instruction with a suffix, for example:</p>
516
517 <div class="doc_code">
518 <pre>
519     New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
520 </pre>
521 </div>
522
523 <p>The <tt>Twine</tt> class is effectively a
524 lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
525 which points to temporary (stack allocated) objects.  Twines can be implicitly
526 constructed as the result of the plus operator applied to strings (i.e., a C
527 strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>).  The twine delays the
528 actual concatenation of strings until it is actually required, at which point
529 it can be efficiently rendered directly into a character array.  This avoids
530 unnecessary heap allocation involved in constructing the temporary results of
531 string concatenation. See
532 "<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
533 for more information.</p>
534
535 <p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
536 and should almost never be stored or mentioned directly.  They are intended
537 solely for use when defining a function which should be able to efficiently
538 accept concatenated strings.</p>
539
540 </div>
541
542
543 <!-- ======================================================================= -->
544 <div class="doc_subsection">
545   <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
546 </div>
547
548 <div class="doc_text">
549
550 <p>Often when working on your pass you will put a bunch of debugging printouts
551 and other code into your pass.  After you get it working, you want to remove
552 it, but you may need it again in the future (to work out new bugs that you run
553 across).</p>
554
555 <p> Naturally, because of this, you don't want to delete the debug printouts,
556 but you don't want them to always be noisy.  A standard compromise is to comment
557 them out, allowing you to enable them if you need them in the future.</p>
558
559 <p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
560 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
561 this problem.  Basically, you can put arbitrary code into the argument of the
562 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
563 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
564
565 <div class="doc_code">
566 <pre>
567 DEBUG(errs() &lt;&lt; "I am here!\n");
568 </pre>
569 </div>
570
571 <p>Then you can run your pass like this:</p>
572
573 <div class="doc_code">
574 <pre>
575 $ opt &lt; a.bc &gt; /dev/null -mypass
576 <i>&lt;no output&gt;</i>
577 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
578 I am here!
579 </pre>
580 </div>
581
582 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
583 to not have to create "yet another" command line option for the debug output for
584 your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
585 so they do not cause a performance impact at all (for the same reason, they
586 should also not contain side-effects!).</p>
587
588 <p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
589 enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
590 "<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
591 program hasn't been started yet, you can always just run it with
592 <tt>-debug</tt>.</p>
593
594 </div>
595
596 <!-- _______________________________________________________________________ -->
597 <div class="doc_subsubsection">
598   <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
599   the <tt>-debug-only</tt> option</a>
600 </div>
601
602 <div class="doc_text">
603
604 <p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
605 just turns on <b>too much</b> information (such as when working on the code
606 generator).  If you want to enable debug information with more fine-grained
607 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
608 option as follows:</p>
609
610 <div class="doc_code">
611 <pre>
612 #undef  DEBUG_TYPE
613 DEBUG(errs() &lt;&lt; "No debug type\n");
614 #define DEBUG_TYPE "foo"
615 DEBUG(errs() &lt;&lt; "'foo' debug type\n");
616 #undef  DEBUG_TYPE
617 #define DEBUG_TYPE "bar"
618 DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
619 #undef  DEBUG_TYPE
620 #define DEBUG_TYPE ""
621 DEBUG(errs() &lt;&lt; "No debug type (2)\n");
622 </pre>
623 </div>
624
625 <p>Then you can run your pass like this:</p>
626
627 <div class="doc_code">
628 <pre>
629 $ opt &lt; a.bc &gt; /dev/null -mypass
630 <i>&lt;no output&gt;</i>
631 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
632 No debug type
633 'foo' debug type
634 'bar' debug type
635 No debug type (2)
636 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
637 'foo' debug type
638 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
639 'bar' debug type
640 </pre>
641 </div>
642
643 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
644 a file, to specify the debug type for the entire module (if you do this before
645 you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
646 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
647 "bar", because there is no system in place to ensure that names do not
648 conflict. If two different modules use the same string, they will all be turned
649 on when the name is specified. This allows, for example, all debug information
650 for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
651 even if the source lives in multiple files.</p>
652
653 <p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
654 would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
655 statement. It takes an additional first parameter, which is the type to use. For
656 example, the preceding example could be written as:</p>
657
658
659 <div class="doc_code">
660 <pre>
661 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
662 DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
663 DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
664 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
665 </pre>
666 </div>
667
668 </div>
669
670 <!-- ======================================================================= -->
671 <div class="doc_subsection">
672   <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
673   option</a>
674 </div>
675
676 <div class="doc_text">
677
678 <p>The "<tt><a
679 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
680 provides a class named <tt>Statistic</tt> that is used as a unified way to
681 keep track of what the LLVM compiler is doing and how effective various
682 optimizations are.  It is useful to see what optimizations are contributing to
683 making a particular program run faster.</p>
684
685 <p>Often you may run your pass on some big program, and you're interested to see
686 how many times it makes a certain transformation.  Although you can do this with
687 hand inspection, or some ad-hoc method, this is a real pain and not very useful
688 for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
689 keep track of this information, and the calculated information is presented in a
690 uniform manner with the rest of the passes being executed.</p>
691
692 <p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
693 it are as follows:</p>
694
695 <ol>
696     <li><p>Define your statistic like this:</p>
697
698 <div class="doc_code">
699 <pre>
700 #define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
701 STATISTIC(NumXForms, "The # of times I did stuff");
702 </pre>
703 </div>
704
705   <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
706     specified by the first argument.  The pass name is taken from the DEBUG_TYPE
707     macro, and the description is taken from the second argument.  The variable
708     defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
709
710     <li><p>Whenever you make a transformation, bump the counter:</p>
711
712 <div class="doc_code">
713 <pre>
714 ++NumXForms;   // <i>I did stuff!</i>
715 </pre>
716 </div>
717
718     </li>
719   </ol>
720
721   <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
722   statistics gathered, use the '<tt>-stats</tt>' option:</p>
723
724 <div class="doc_code">
725 <pre>
726 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
727 <i>... statistics output ...</i>
728 </pre>
729 </div>
730
731   <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
732 suite, it gives a report that looks like this:</p>
733
734 <div class="doc_code">
735 <pre>
736    7646 bitcodewriter   - Number of normal instructions
737     725 bitcodewriter   - Number of oversized instructions
738  129996 bitcodewriter   - Number of bitcode bytes written
739    2817 raise           - Number of insts DCEd or constprop'd
740    3213 raise           - Number of cast-of-self removed
741    5046 raise           - Number of expression trees converted
742      75 raise           - Number of other getelementptr's formed
743     138 raise           - Number of load/store peepholes
744      42 deadtypeelim    - Number of unused typenames removed from symtab
745     392 funcresolve     - Number of varargs functions resolved
746      27 globaldce       - Number of global variables removed
747       2 adce            - Number of basic blocks removed
748     134 cee             - Number of branches revectored
749      49 cee             - Number of setcc instruction eliminated
750     532 gcse            - Number of loads removed
751    2919 gcse            - Number of instructions removed
752      86 indvars         - Number of canonical indvars added
753      87 indvars         - Number of aux indvars removed
754      25 instcombine     - Number of dead inst eliminate
755     434 instcombine     - Number of insts combined
756     248 licm            - Number of load insts hoisted
757    1298 licm            - Number of insts hoisted to a loop pre-header
758       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
759      75 mem2reg         - Number of alloca's promoted
760    1444 cfgsimplify     - Number of blocks simplified
761 </pre>
762 </div>
763
764 <p>Obviously, with so many optimizations, having a unified framework for this
765 stuff is very nice.  Making your pass fit well into the framework makes it more
766 maintainable and useful.</p>
767
768 </div>
769
770 <!-- ======================================================================= -->
771 <div class="doc_subsection">
772   <a name="ViewGraph">Viewing graphs while debugging code</a>
773 </div>
774
775 <div class="doc_text">
776
777 <p>Several of the important data structures in LLVM are graphs: for example
778 CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
779 LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
780 <a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
781 DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
782 nice to instantly visualize these graphs.</p>
783
784 <p>LLVM provides several callbacks that are available in a debug build to do
785 exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
786 the current LLVM tool will pop up a window containing the CFG for the function
787 where each basic block is a node in the graph, and each node contains the
788 instructions in the block.  Similarly, there also exists 
789 <tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
790 <tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
791 and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
792 you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
793 up a window.  Alternatively, you can sprinkle calls to these functions in your
794 code in places you want to debug.</p>
795
796 <p>Getting this to work requires a small amount of configuration.  On Unix
797 systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
798 toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
799 Mac OS/X, download and install the Mac OS/X <a 
800 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
801 <tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
802 it) to your path.  Once in your system and path are set up, rerun the LLVM
803 configure script and rebuild LLVM to enable this functionality.</p>
804
805 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
806 <i>interesting</i> nodes in large complex graphs.  From gdb, if you
807 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
808 next <tt>call DAG.viewGraph()</tt> would highlight the node in the
809 specified color (choices of colors can be found at <a
810 href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
811 complex node attributes can be provided with <tt>call
812 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
813 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
814 Attributes</a>.)  If you want to restart and clear all the current graph
815 attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
816
817 </div>
818
819 <!-- *********************************************************************** -->
820 <div class="doc_section">
821   <a name="datastructure">Picking the Right Data Structure for a Task</a>
822 </div>
823 <!-- *********************************************************************** -->
824
825 <div class="doc_text">
826
827 <p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
828  and we commonly use STL data structures.  This section describes the trade-offs
829  you should consider when you pick one.</p>
830
831 <p>
832 The first step is a choose your own adventure: do you want a sequential
833 container, a set-like container, or a map-like container?  The most important
834 thing when choosing a container is the algorithmic properties of how you plan to
835 access the container.  Based on that, you should use:</p>
836
837 <ul>
838 <li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
839     of an value based on another value.  Map-like containers also support
840     efficient queries for containment (whether a key is in the map).  Map-like
841     containers generally do not support efficient reverse mapping (values to
842     keys).  If you need that, use two maps.  Some map-like containers also
843     support efficient iteration through the keys in sorted order.  Map-like
844     containers are the most expensive sort, only use them if you need one of
845     these capabilities.</li>
846
847 <li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
848     stuff into a container that automatically eliminates duplicates.  Some
849     set-like containers support efficient iteration through the elements in
850     sorted order.  Set-like containers are more expensive than sequential
851     containers.
852 </li>
853
854 <li>a <a href="#ds_sequential">sequential</a> container provides
855     the most efficient way to add elements and keeps track of the order they are
856     added to the collection.  They permit duplicates and support efficient
857     iteration, but do not support efficient look-up based on a key.
858 </li>
859
860 <li>a <a href="#ds_string">string</a> container is a specialized sequential
861     container or reference structure that is used for character or byte
862     arrays.</li>
863
864 <li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
865     perform set operations on sets of numeric id's, while automatically
866     eliminating duplicates.  Bit containers require a maximum of 1 bit for each
867     identifier you want to store.
868 </li>
869 </ul>
870
871 <p>
872 Once the proper category of container is determined, you can fine tune the
873 memory use, constant factors, and cache behaviors of access by intelligently
874 picking a member of the category.  Note that constant factors and cache behavior
875 can be a big deal.  If you have a vector that usually only contains a few
876 elements (but could contain many), for example, it's much better to use
877 <a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
878 .  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
879 cost of adding the elements to the container. </p>
880
881 </div>
882
883 <!-- ======================================================================= -->
884 <div class="doc_subsection">
885   <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
886 </div>
887
888 <div class="doc_text">
889 There are a variety of sequential containers available for you, based on your
890 needs.  Pick the first in this section that will do what you want.
891 </div>
892
893 <!-- _______________________________________________________________________ -->
894 <div class="doc_subsubsection">
895   <a name="dss_fixedarrays">Fixed Size Arrays</a>
896 </div>
897
898 <div class="doc_text">
899 <p>Fixed size arrays are very simple and very fast.  They are good if you know
900 exactly how many elements you have, or you have a (low) upper bound on how many
901 you have.</p>
902 </div>
903
904 <!-- _______________________________________________________________________ -->
905 <div class="doc_subsubsection">
906   <a name="dss_heaparrays">Heap Allocated Arrays</a>
907 </div>
908
909 <div class="doc_text">
910 <p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
911 the number of elements is variable, if you know how many elements you will need
912 before the array is allocated, and if the array is usually large (if not,
913 consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
914 allocated array is the cost of the new/delete (aka malloc/free).  Also note that
915 if you are allocating an array of a type with a constructor, the constructor and
916 destructors will be run for every element in the array (re-sizable vectors only
917 construct those elements actually used).</p>
918 </div>
919
920 <!-- _______________________________________________________________________ -->
921 <div class="doc_subsubsection">
922   <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
923 </div>
924
925 <div class="doc_text">
926 <p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
927 just like <tt>vector&lt;Type&gt;</tt>:
928 it supports efficient iteration, lays out elements in memory order (so you can
929 do pointer arithmetic between elements), supports efficient push_back/pop_back
930 operations, supports efficient random access to its elements, etc.</p>
931
932 <p>The advantage of SmallVector is that it allocates space for
933 some number of elements (N) <b>in the object itself</b>.  Because of this, if
934 the SmallVector is dynamically smaller than N, no malloc is performed.  This can
935 be a big win in cases where the malloc/free call is far more expensive than the
936 code that fiddles around with the elements.</p>
937
938 <p>This is good for vectors that are "usually small" (e.g. the number of
939 predecessors/successors of a block is usually less than 8).  On the other hand,
940 this makes the size of the SmallVector itself large, so you don't want to
941 allocate lots of them (doing so will waste a lot of space).  As such,
942 SmallVectors are most useful when on the stack.</p>
943
944 <p>SmallVector also provides a nice portable and efficient replacement for
945 <tt>alloca</tt>.</p>
946
947 </div>
948
949 <!-- _______________________________________________________________________ -->
950 <div class="doc_subsubsection">
951   <a name="dss_vector">&lt;vector&gt;</a>
952 </div>
953
954 <div class="doc_text">
955 <p>
956 std::vector is well loved and respected.  It is useful when SmallVector isn't:
957 when the size of the vector is often large (thus the small optimization will
958 rarely be a benefit) or if you will be allocating many instances of the vector
959 itself (which would waste space for elements that aren't in the container).
960 vector is also useful when interfacing with code that expects vectors :).
961 </p>
962
963 <p>One worthwhile note about std::vector: avoid code like this:</p>
964
965 <div class="doc_code">
966 <pre>
967 for ( ... ) {
968    std::vector&lt;foo&gt; V;
969    use V;
970 }
971 </pre>
972 </div>
973
974 <p>Instead, write this as:</p>
975
976 <div class="doc_code">
977 <pre>
978 std::vector&lt;foo&gt; V;
979 for ( ... ) {
980    use V;
981    V.clear();
982 }
983 </pre>
984 </div>
985
986 <p>Doing so will save (at least) one heap allocation and free per iteration of
987 the loop.</p>
988
989 </div>
990
991 <!-- _______________________________________________________________________ -->
992 <div class="doc_subsubsection">
993   <a name="dss_deque">&lt;deque&gt;</a>
994 </div>
995
996 <div class="doc_text">
997 <p>std::deque is, in some senses, a generalized version of std::vector.  Like
998 std::vector, it provides constant time random access and other similar
999 properties, but it also provides efficient access to the front of the list.  It
1000 does not guarantee continuity of elements within memory.</p>
1001
1002 <p>In exchange for this extra flexibility, std::deque has significantly higher
1003 constant factor costs than std::vector.  If possible, use std::vector or
1004 something cheaper.</p>
1005 </div>
1006
1007 <!-- _______________________________________________________________________ -->
1008 <div class="doc_subsubsection">
1009   <a name="dss_list">&lt;list&gt;</a>
1010 </div>
1011
1012 <div class="doc_text">
1013 <p>std::list is an extremely inefficient class that is rarely useful.
1014 It performs a heap allocation for every element inserted into it, thus having an
1015 extremely high constant factor, particularly for small data types.  std::list
1016 also only supports bidirectional iteration, not random access iteration.</p>
1017
1018 <p>In exchange for this high cost, std::list supports efficient access to both
1019 ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
1020 addition, the iterator invalidation characteristics of std::list are stronger
1021 than that of a vector class: inserting or removing an element into the list does
1022 not invalidate iterator or pointers to other elements in the list.</p>
1023 </div>
1024
1025 <!-- _______________________________________________________________________ -->
1026 <div class="doc_subsubsection">
1027   <a name="dss_ilist">llvm/ADT/ilist.h</a>
1028 </div>
1029
1030 <div class="doc_text">
1031 <p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
1032 intrusive, because it requires the element to store and provide access to the
1033 prev/next pointers for the list.</p>
1034
1035 <p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
1036 requires an <tt>ilist_traits</tt> implementation for the element type, but it
1037 provides some novel characteristics.  In particular, it can efficiently store
1038 polymorphic objects, the traits class is informed when an element is inserted or
1039 removed from the list, and <tt>ilist</tt>s are guaranteed to support a
1040 constant-time splice operation.</p>
1041
1042 <p>These properties are exactly what we want for things like
1043 <tt>Instruction</tt>s and basic blocks, which is why these are implemented with
1044 <tt>ilist</tt>s.</p>
1045
1046 Related classes of interest are explained in the following subsections:
1047     <ul>
1048       <li><a href="#dss_ilist_traits">ilist_traits</a></li>
1049       <li><a href="#dss_iplist">iplist</a></li>
1050       <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
1051       <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
1052     </ul>
1053 </div>
1054
1055 <!-- _______________________________________________________________________ -->
1056 <div class="doc_subsubsection">
1057   <a name="dss_ilist_traits">ilist_traits</a>
1058 </div>
1059
1060 <div class="doc_text">
1061 <p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
1062 mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
1063 publicly derive from this traits class.</p>
1064 </div>
1065
1066 <!-- _______________________________________________________________________ -->
1067 <div class="doc_subsubsection">
1068   <a name="dss_iplist">iplist</a>
1069 </div>
1070
1071 <div class="doc_text">
1072 <p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
1073 supports a slightly narrower interface. Notably, inserters from
1074 <tt>T&amp;</tt> are absent.</p>
1075
1076 <p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
1077 used for a wide variety of customizations.</p>
1078 </div>
1079
1080 <!-- _______________________________________________________________________ -->
1081 <div class="doc_subsubsection">
1082   <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
1083 </div>
1084
1085 <div class="doc_text">
1086 <p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
1087 that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
1088 in the default manner.</p>
1089
1090 <p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
1091 <tt>T</tt>, usually <tt>T</tt> publicly derives from
1092 <tt>ilist_node&lt;T&gt;</tt>.</p>
1093 </div>
1094
1095 <!-- _______________________________________________________________________ -->
1096 <div class="doc_subsubsection">
1097   <a name="dss_ilist_sentinel">Sentinels</a>
1098 </div>
1099
1100 <div class="doc_text">
1101 <p><tt>ilist</tt>s have another specialty that must be considered. To be a good
1102 citizen in the C++ ecosystem, it needs to support the standard container
1103 operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
1104 <tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
1105 case of non-empty <tt>ilist</tt>s.</p>
1106
1107 <p>The only sensible solution to this problem is to allocate a so-called
1108 <i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
1109 iterator, providing the back-link to the last element. However conforming to the
1110 C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
1111 also must not be dereferenced.</p>
1112
1113 <p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
1114 how to allocate and store the sentinel. The corresponding policy is dictated
1115 by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
1116 whenever the need for a sentinel arises.</p>
1117
1118 <p>While the default policy is sufficient in most cases, it may break down when
1119 <tt>T</tt> does not provide a default constructor. Also, in the case of many
1120 instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
1121 is wasted. To alleviate the situation with numerous and voluminous
1122 <tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
1123 sentinels</i>.</p>
1124
1125 <p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
1126 which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
1127 arithmetic is used to obtain the sentinel, which is relative to the
1128 <tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
1129 extra pointer, which serves as the back-link of the sentinel. This is the only
1130 field in the ghostly sentinel which can be legally accessed.</p>
1131 </div>
1132
1133 <!-- _______________________________________________________________________ -->
1134 <div class="doc_subsubsection">
1135   <a name="dss_other">Other Sequential Container options</a>
1136 </div>
1137
1138 <div class="doc_text">
1139 <p>Other STL containers are available, such as std::string.</p>
1140
1141 <p>There are also various STL adapter classes such as std::queue,
1142 std::priority_queue, std::stack, etc.  These provide simplified access to an
1143 underlying container but don't affect the cost of the container itself.</p>
1144
1145 </div>
1146
1147
1148 <!-- ======================================================================= -->
1149 <div class="doc_subsection">
1150   <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
1151 </div>
1152
1153 <div class="doc_text">
1154
1155 <p>Set-like containers are useful when you need to canonicalize multiple values
1156 into a single representation.  There are several different choices for how to do
1157 this, providing various trade-offs.</p>
1158
1159 </div>
1160
1161
1162 <!-- _______________________________________________________________________ -->
1163 <div class="doc_subsubsection">
1164   <a name="dss_sortedvectorset">A sorted 'vector'</a>
1165 </div>
1166
1167 <div class="doc_text">
1168
1169 <p>If you intend to insert a lot of elements, then do a lot of queries, a
1170 great approach is to use a vector (or other sequential container) with
1171 std::sort+std::unique to remove duplicates.  This approach works really well if
1172 your usage pattern has these two distinct phases (insert then query), and can be
1173 coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1174 </p>
1175
1176 <p>
1177 This combination provides the several nice properties: the result data is
1178 contiguous in memory (good for cache locality), has few allocations, is easy to
1179 address (iterators in the final vector are just indices or pointers), and can be
1180 efficiently queried with a standard binary or radix search.</p>
1181
1182 </div>
1183
1184 <!-- _______________________________________________________________________ -->
1185 <div class="doc_subsubsection">
1186   <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1187 </div>
1188
1189 <div class="doc_text">
1190
1191 <p>If you have a set-like data structure that is usually small and whose elements
1192 are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
1193 has space for N elements in place (thus, if the set is dynamically smaller than
1194 N, no malloc traffic is required) and accesses them with a simple linear search.
1195 When the set grows beyond 'N' elements, it allocates a more expensive representation that
1196 guarantees efficient access (for most types, it falls back to std::set, but for
1197 pointers it uses something far better, <a
1198 href="#dss_smallptrset">SmallPtrSet</a>).</p>
1199
1200 <p>The magic of this class is that it handles small sets extremely efficiently,
1201 but gracefully handles extremely large sets without loss of efficiency.  The
1202 drawback is that the interface is quite small: it supports insertion, queries
1203 and erasing, but does not support iteration.</p>
1204
1205 </div>
1206
1207 <!-- _______________________________________________________________________ -->
1208 <div class="doc_subsubsection">
1209   <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1210 </div>
1211
1212 <div class="doc_text">
1213
1214 <p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is 
1215 transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators.  If
1216 more than 'N' insertions are performed, a single quadratically
1217 probed hash table is allocated and grows as needed, providing extremely
1218 efficient access (constant time insertion/deleting/queries with low constant
1219 factors) and is very stingy with malloc traffic.</p>
1220
1221 <p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
1222 whenever an insertion occurs.  Also, the values visited by the iterators are not
1223 visited in sorted order.</p>
1224
1225 </div>
1226
1227 <!-- _______________________________________________________________________ -->
1228 <div class="doc_subsubsection">
1229   <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1230 </div>
1231
1232 <div class="doc_text">
1233
1234 <p>
1235 DenseSet is a simple quadratically probed hash table.  It excels at supporting
1236 small values: it uses a single allocation to hold all of the pairs that
1237 are currently inserted in the set.  DenseSet is a great way to unique small
1238 values that are not simple pointers (use <a 
1239 href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
1240 the same requirements for the value type that <a 
1241 href="#dss_densemap">DenseMap</a> has.
1242 </p>
1243
1244 </div>
1245
1246 <!-- _______________________________________________________________________ -->
1247 <div class="doc_subsubsection">
1248   <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1249 </div>
1250
1251 <div class="doc_text">
1252
1253 <p>
1254 FoldingSet is an aggregate class that is really good at uniquing
1255 expensive-to-create or polymorphic objects.  It is a combination of a chained
1256 hash table with intrusive links (uniqued objects are required to inherit from
1257 FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1258 its ID process.</p>
1259
1260 <p>Consider a case where you want to implement a "getOrCreateFoo" method for
1261 a complex object (for example, a node in the code generator).  The client has a
1262 description of *what* it wants to generate (it knows the opcode and all the
1263 operands), but we don't want to 'new' a node, then try inserting it into a set
1264 only to find out it already exists, at which point we would have to delete it
1265 and return the node that already exists.
1266 </p>
1267
1268 <p>To support this style of client, FoldingSet perform a query with a
1269 FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1270 element that we want to query for.  The query either returns the element
1271 matching the ID or it returns an opaque ID that indicates where insertion should
1272 take place.  Construction of the ID usually does not require heap traffic.</p>
1273
1274 <p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1275 in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1276 Because the elements are individually allocated, pointers to the elements are
1277 stable: inserting or removing elements does not invalidate any pointers to other
1278 elements.
1279 </p>
1280
1281 </div>
1282
1283 <!-- _______________________________________________________________________ -->
1284 <div class="doc_subsubsection">
1285   <a name="dss_set">&lt;set&gt;</a>
1286 </div>
1287
1288 <div class="doc_text">
1289
1290 <p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1291 many things but great at nothing.  std::set allocates memory for each element
1292 inserted (thus it is very malloc intensive) and typically stores three pointers
1293 per element in the set (thus adding a large amount of per-element space
1294 overhead).  It offers guaranteed log(n) performance, which is not particularly
1295 fast from a complexity standpoint (particularly if the elements of the set are
1296 expensive to compare, like strings), and has extremely high constant factors for
1297 lookup, insertion and removal.</p>
1298
1299 <p>The advantages of std::set are that its iterators are stable (deleting or
1300 inserting an element from the set does not affect iterators or pointers to other
1301 elements) and that iteration over the set is guaranteed to be in sorted order.
1302 If the elements in the set are large, then the relative overhead of the pointers
1303 and malloc traffic is not a big deal, but if the elements of the set are small,
1304 std::set is almost never a good choice.</p>
1305
1306 </div>
1307
1308 <!-- _______________________________________________________________________ -->
1309 <div class="doc_subsubsection">
1310   <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1311 </div>
1312
1313 <div class="doc_text">
1314 <p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1315 a set-like container along with a <a href="#ds_sequential">Sequential 
1316 Container</a>.  The important property
1317 that this provides is efficient insertion with uniquing (duplicate elements are
1318 ignored) with iteration support.  It implements this by inserting elements into
1319 both a set-like container and the sequential container, using the set-like
1320 container for uniquing and the sequential container for iteration.
1321 </p>
1322
1323 <p>The difference between SetVector and other sets is that the order of
1324 iteration is guaranteed to match the order of insertion into the SetVector.
1325 This property is really important for things like sets of pointers.  Because
1326 pointer values are non-deterministic (e.g. vary across runs of the program on
1327 different machines), iterating over the pointers in the set will
1328 not be in a well-defined order.</p>
1329
1330 <p>
1331 The drawback of SetVector is that it requires twice as much space as a normal
1332 set and has the sum of constant factors from the set-like container and the 
1333 sequential container that it uses.  Use it *only* if you need to iterate over 
1334 the elements in a deterministic order.  SetVector is also expensive to delete
1335 elements out of (linear time), unless you use it's "pop_back" method, which is
1336 faster.
1337 </p>
1338
1339 <p>SetVector is an adapter class that defaults to using std::vector and std::set
1340 for the underlying containers, so it is quite expensive.  However,
1341 <tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1342 defaults to using a SmallVector and SmallSet of a specified size.  If you use
1343 this, and if your sets are dynamically smaller than N, you will save a lot of 
1344 heap traffic.</p>
1345
1346 </div>
1347
1348 <!-- _______________________________________________________________________ -->
1349 <div class="doc_subsubsection">
1350   <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1351 </div>
1352
1353 <div class="doc_text">
1354
1355 <p>
1356 UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1357 retains a unique ID for each element inserted into the set.  It internally
1358 contains a map and a vector, and it assigns a unique ID for each value inserted
1359 into the set.</p>
1360
1361 <p>UniqueVector is very expensive: its cost is the sum of the cost of
1362 maintaining both the map and vector, it has high complexity, high constant
1363 factors, and produces a lot of malloc traffic.  It should be avoided.</p>
1364
1365 </div>
1366
1367
1368 <!-- _______________________________________________________________________ -->
1369 <div class="doc_subsubsection">
1370   <a name="dss_otherset">Other Set-Like Container Options</a>
1371 </div>
1372
1373 <div class="doc_text">
1374
1375 <p>
1376 The STL provides several other options, such as std::multiset and the various 
1377 "hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1378 never use hash_set and unordered_set because they are generally very expensive 
1379 (each insertion requires a malloc) and very non-portable.
1380 </p>
1381
1382 <p>std::multiset is useful if you're not interested in elimination of
1383 duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
1384 don't delete duplicate entries) or some other approach is almost always
1385 better.</p>
1386
1387 </div>
1388
1389 <!-- ======================================================================= -->
1390 <div class="doc_subsection">
1391   <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1392 </div>
1393
1394 <div class="doc_text">
1395 Map-like containers are useful when you want to associate data to a key.  As
1396 usual, there are a lot of different ways to do this. :)
1397 </div>
1398
1399 <!-- _______________________________________________________________________ -->
1400 <div class="doc_subsubsection">
1401   <a name="dss_sortedvectormap">A sorted 'vector'</a>
1402 </div>
1403
1404 <div class="doc_text">
1405
1406 <p>
1407 If your usage pattern follows a strict insert-then-query approach, you can
1408 trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1409 for set-like containers</a>.  The only difference is that your query function
1410 (which uses std::lower_bound to get efficient log(n) lookup) should only compare
1411 the key, not both the key and value.  This yields the same advantages as sorted
1412 vectors for sets.
1413 </p>
1414 </div>
1415
1416 <!-- _______________________________________________________________________ -->
1417 <div class="doc_subsubsection">
1418   <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1419 </div>
1420
1421 <div class="doc_text">
1422
1423 <p>
1424 Strings are commonly used as keys in maps, and they are difficult to support
1425 efficiently: they are variable length, inefficient to hash and compare when
1426 long, expensive to copy, etc.  StringMap is a specialized container designed to
1427 cope with these issues.  It supports mapping an arbitrary range of bytes to an
1428 arbitrary other object.</p>
1429
1430 <p>The StringMap implementation uses a quadratically-probed hash table, where
1431 the buckets store a pointer to the heap allocated entries (and some other
1432 stuff).  The entries in the map must be heap allocated because the strings are
1433 variable length.  The string data (key) and the element object (value) are
1434 stored in the same allocation with the string data immediately after the element
1435 object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1436 to the key string for a value.</p>
1437
1438 <p>The StringMap is very fast for several reasons: quadratic probing is very
1439 cache efficient for lookups, the hash value of strings in buckets is not
1440 recomputed when lookup up an element, StringMap rarely has to touch the
1441 memory for unrelated objects when looking up a value (even when hash collisions
1442 happen), hash table growth does not recompute the hash values for strings
1443 already in the table, and each pair in the map is store in a single allocation
1444 (the string data is stored in the same allocation as the Value of a pair).</p>
1445
1446 <p>StringMap also provides query methods that take byte ranges, so it only ever
1447 copies a string if a value is inserted into the table.</p>
1448 </div>
1449
1450 <!-- _______________________________________________________________________ -->
1451 <div class="doc_subsubsection">
1452   <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1453 </div>
1454
1455 <div class="doc_text">
1456 <p>
1457 IndexedMap is a specialized container for mapping small dense integers (or
1458 values that can be mapped to small dense integers) to some other type.  It is
1459 internally implemented as a vector with a mapping function that maps the keys to
1460 the dense integer range.
1461 </p>
1462
1463 <p>
1464 This is useful for cases like virtual registers in the LLVM code generator: they
1465 have a dense mapping that is offset by a compile-time constant (the first
1466 virtual register ID).</p>
1467
1468 </div>
1469
1470 <!-- _______________________________________________________________________ -->
1471 <div class="doc_subsubsection">
1472   <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1473 </div>
1474
1475 <div class="doc_text">
1476
1477 <p>
1478 DenseMap is a simple quadratically probed hash table.  It excels at supporting
1479 small keys and values: it uses a single allocation to hold all of the pairs that
1480 are currently inserted in the map.  DenseMap is a great way to map pointers to
1481 pointers, or map other small types to each other.
1482 </p>
1483
1484 <p>
1485 There are several aspects of DenseMap that you should be aware of, however.  The
1486 iterators in a densemap are invalidated whenever an insertion occurs, unlike
1487 map.  Also, because DenseMap allocates space for a large number of key/value
1488 pairs (it starts with 64 by default), it will waste a lot of space if your keys
1489 or values are large.  Finally, you must implement a partial specialization of
1490 DenseMapInfo for the key that you want, if it isn't already supported.  This
1491 is required to tell DenseMap about two special marker values (which can never be
1492 inserted into the map) that it needs internally.</p>
1493
1494 </div>
1495
1496 <!-- _______________________________________________________________________ -->
1497 <div class="doc_subsubsection">
1498   <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
1499 </div>
1500
1501 <div class="doc_text">
1502
1503 <p>
1504 ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
1505 Value*s (or subclasses) to another type.  When a Value is deleted or RAUW'ed,
1506 ValueMap will update itself so the new version of the key is mapped to the same
1507 value, just as if the key were a WeakVH.  You can configure exactly how this
1508 happens, and what else happens on these two events, by passing
1509 a <code>Config</code> parameter to the ValueMap template.</p>
1510
1511 </div>
1512
1513 <!-- _______________________________________________________________________ -->
1514 <div class="doc_subsubsection">
1515   <a name="dss_map">&lt;map&gt;</a>
1516 </div>
1517
1518 <div class="doc_text">
1519
1520 <p>
1521 std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1522 a single allocation per pair inserted into the map, it offers log(n) lookup with
1523 an extremely large constant factor, imposes a space penalty of 3 pointers per
1524 pair in the map, etc.</p>
1525
1526 <p>std::map is most useful when your keys or values are very large, if you need
1527 to iterate over the collection in sorted order, or if you need stable iterators
1528 into the map (i.e. they don't get invalidated if an insertion or deletion of
1529 another element takes place).</p>
1530
1531 </div>
1532
1533 <!-- _______________________________________________________________________ -->
1534 <div class="doc_subsubsection">
1535   <a name="dss_othermap">Other Map-Like Container Options</a>
1536 </div>
1537
1538 <div class="doc_text">
1539
1540 <p>
1541 The STL provides several other options, such as std::multimap and the various 
1542 "hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1543 never use hash_set and unordered_set because they are generally very expensive 
1544 (each insertion requires a malloc) and very non-portable.</p>
1545
1546 <p>std::multimap is useful if you want to map a key to multiple values, but has
1547 all the drawbacks of std::map.  A sorted vector or some other approach is almost
1548 always better.</p>
1549
1550 </div>
1551
1552 <!-- ======================================================================= -->
1553 <div class="doc_subsection">
1554   <a name="ds_string">String-like containers</a>
1555 </div>
1556
1557 <div class="doc_text">
1558
1559 <p>
1560 TODO: const char* vs stringref vs smallstring vs std::string.  Describe twine,
1561 xref to #string_apis.
1562 </p>
1563
1564 </div>
1565
1566 <!-- ======================================================================= -->
1567 <div class="doc_subsection">
1568   <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1569 </div>
1570
1571 <div class="doc_text">
1572 <p>Unlike the other containers, there are only two bit storage containers, and 
1573 choosing when to use each is relatively straightforward.</p>
1574
1575 <p>One additional option is 
1576 <tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1577 implementation in many common compilers (e.g. commonly available versions of 
1578 GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1579 deprecate this container and/or change it significantly somehow.  In any case,
1580 please don't use it.</p>
1581 </div>
1582
1583 <!-- _______________________________________________________________________ -->
1584 <div class="doc_subsubsection">
1585   <a name="dss_bitvector">BitVector</a>
1586 </div>
1587
1588 <div class="doc_text">
1589 <p> The BitVector container provides a dynamic size set of bits for manipulation.
1590 It supports individual bit setting/testing, as well as set operations.  The set
1591 operations take time O(size of bitvector), but operations are performed one word
1592 at a time, instead of one bit at a time.  This makes the BitVector very fast for
1593 set operations compared to other containers.  Use the BitVector when you expect
1594 the number of set bits to be high (IE a dense set).
1595 </p>
1596 </div>
1597
1598 <!-- _______________________________________________________________________ -->
1599 <div class="doc_subsubsection">
1600   <a name="dss_smallbitvector">SmallBitVector</a>
1601 </div>
1602
1603 <div class="doc_text">
1604 <p> The SmallBitVector container provides the same interface as BitVector, but
1605 it is optimized for the case where only a small number of bits, less than
1606 25 or so, are needed. It also transparently supports larger bit counts, but
1607 slightly less efficiently than a plain BitVector, so SmallBitVector should
1608 only be used when larger counts are rare.
1609 </p>
1610
1611 <p>
1612 At this time, SmallBitVector does not support set operations (and, or, xor),
1613 and its operator[] does not provide an assignable lvalue.
1614 </p>
1615 </div>
1616
1617 <!-- _______________________________________________________________________ -->
1618 <div class="doc_subsubsection">
1619   <a name="dss_sparsebitvector">SparseBitVector</a>
1620 </div>
1621
1622 <div class="doc_text">
1623 <p> The SparseBitVector container is much like BitVector, with one major
1624 difference: Only the bits that are set, are stored.  This makes the
1625 SparseBitVector much more space efficient than BitVector when the set is sparse,
1626 as well as making set operations O(number of set bits) instead of O(size of
1627 universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1628 (either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1629 </p>
1630 </div>
1631
1632 <!-- *********************************************************************** -->
1633 <div class="doc_section">
1634   <a name="common">Helpful Hints for Common Operations</a>
1635 </div>
1636 <!-- *********************************************************************** -->
1637
1638 <div class="doc_text">
1639
1640 <p>This section describes how to perform some very simple transformations of
1641 LLVM code.  This is meant to give examples of common idioms used, showing the
1642 practical side of LLVM transformations.  <p> Because this is a "how-to" section,
1643 you should also read about the main classes that you will be working with.  The
1644 <a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1645 and descriptions of the main classes that you should know about.</p>
1646
1647 </div>
1648
1649 <!-- NOTE: this section should be heavy on example code -->
1650 <!-- ======================================================================= -->
1651 <div class="doc_subsection">
1652   <a name="inspection">Basic Inspection and Traversal Routines</a>
1653 </div>
1654
1655 <div class="doc_text">
1656
1657 <p>The LLVM compiler infrastructure have many different data structures that may
1658 be traversed.  Following the example of the C++ standard template library, the
1659 techniques used to traverse these various data structures are all basically the
1660 same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1661 method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1662 function returns an iterator pointing to one past the last valid element of the
1663 sequence, and there is some <tt>XXXiterator</tt> data type that is common
1664 between the two operations.</p>
1665
1666 <p>Because the pattern for iteration is common across many different aspects of
1667 the program representation, the standard template library algorithms may be used
1668 on them, and it is easier to remember how to iterate. First we show a few common
1669 examples of the data structures that need to be traversed.  Other data
1670 structures are traversed in very similar ways.</p>
1671
1672 </div>
1673
1674 <!-- _______________________________________________________________________ -->
1675 <div class="doc_subsubsection">
1676   <a name="iterate_function">Iterating over the </a><a
1677   href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1678   href="#Function"><tt>Function</tt></a>
1679 </div>
1680
1681 <div class="doc_text">
1682
1683 <p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1684 transform in some way; in particular, you'd like to manipulate its
1685 <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
1686 the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1687 an example that prints the name of a <tt>BasicBlock</tt> and the number of
1688 <tt>Instruction</tt>s it contains:</p>
1689
1690 <div class="doc_code">
1691 <pre>
1692 // <i>func is a pointer to a Function instance</i>
1693 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1694   // <i>Print out the name of the basic block if it has one, and then the</i>
1695   // <i>number of instructions that it contains</i>
1696   errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
1697              &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1698 </pre>
1699 </div>
1700
1701 <p>Note that i can be used as if it were a pointer for the purposes of
1702 invoking member functions of the <tt>Instruction</tt> class.  This is
1703 because the indirection operator is overloaded for the iterator
1704 classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
1705 exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1706
1707 </div>
1708
1709 <!-- _______________________________________________________________________ -->
1710 <div class="doc_subsubsection">
1711   <a name="iterate_basicblock">Iterating over the </a><a
1712   href="#Instruction"><tt>Instruction</tt></a>s in a <a
1713   href="#BasicBlock"><tt>BasicBlock</tt></a>
1714 </div>
1715
1716 <div class="doc_text">
1717
1718 <p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1719 easy to iterate over the individual instructions that make up
1720 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1721 a <tt>BasicBlock</tt>:</p>
1722
1723 <div class="doc_code">
1724 <pre>
1725 // <i>blk is a pointer to a BasicBlock instance</i>
1726 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1727    // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1728    // <i>is overloaded for Instruction&amp;</i>
1729    errs() &lt;&lt; *i &lt;&lt; "\n";
1730 </pre>
1731 </div>
1732
1733 <p>However, this isn't really the best way to print out the contents of a
1734 <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
1735 anything you'll care about, you could have just invoked the print routine on the
1736 basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
1737
1738 </div>
1739
1740 <!-- _______________________________________________________________________ -->
1741 <div class="doc_subsubsection">
1742   <a name="iterate_institer">Iterating over the </a><a
1743   href="#Instruction"><tt>Instruction</tt></a>s in a <a
1744   href="#Function"><tt>Function</tt></a>
1745 </div>
1746
1747 <div class="doc_text">
1748
1749 <p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1750 <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1751 <tt>InstIterator</tt> should be used instead. You'll need to include <a
1752 href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1753 and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
1754 small example that shows how to dump all instructions in a function to the standard error stream:<p>
1755
1756 <div class="doc_code">
1757 <pre>
1758 #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1759
1760 // <i>F is a pointer to a Function instance</i>
1761 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1762   errs() &lt;&lt; *I &lt;&lt; "\n";
1763 </pre>
1764 </div>
1765
1766 <p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
1767 work list with its initial contents.  For example, if you wanted to
1768 initialize a work list to contain all instructions in a <tt>Function</tt>
1769 F, all you would need to do is something like:</p>
1770
1771 <div class="doc_code">
1772 <pre>
1773 std::set&lt;Instruction*&gt; worklist;
1774 // or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1775
1776 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1777    worklist.insert(&amp;*I);
1778 </pre>
1779 </div>
1780
1781 <p>The STL set <tt>worklist</tt> would now contain all instructions in the
1782 <tt>Function</tt> pointed to by F.</p>
1783
1784 </div>
1785
1786 <!-- _______________________________________________________________________ -->
1787 <div class="doc_subsubsection">
1788   <a name="iterate_convert">Turning an iterator into a class pointer (and
1789   vice-versa)</a>
1790 </div>
1791
1792 <div class="doc_text">
1793
1794 <p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1795 instance when all you've got at hand is an iterator.  Well, extracting
1796 a reference or a pointer from an iterator is very straight-forward.
1797 Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1798 is a <tt>BasicBlock::const_iterator</tt>:</p>
1799
1800 <div class="doc_code">
1801 <pre>
1802 Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
1803 Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1804 const Instruction&amp; inst = *j;
1805 </pre>
1806 </div>
1807
1808 <p>However, the iterators you'll be working with in the LLVM framework are
1809 special: they will automatically convert to a ptr-to-instance type whenever they
1810 need to.  Instead of dereferencing the iterator and then taking the address of
1811 the result, you can simply assign the iterator to the proper pointer type and
1812 you get the dereference and address-of operation as a result of the assignment
1813 (behind the scenes, this is a result of overloading casting mechanisms).  Thus
1814 the last line of the last example,</p>
1815
1816 <div class="doc_code">
1817 <pre>
1818 Instruction *pinst = &amp;*i;
1819 </pre>
1820 </div>
1821
1822 <p>is semantically equivalent to</p>
1823
1824 <div class="doc_code">
1825 <pre>
1826 Instruction *pinst = i;
1827 </pre>
1828 </div>
1829
1830 <p>It's also possible to turn a class pointer into the corresponding iterator,
1831 and this is a constant time operation (very efficient).  The following code
1832 snippet illustrates use of the conversion constructors provided by LLVM
1833 iterators.  By using these, you can explicitly grab the iterator of something
1834 without actually obtaining it via iteration over some structure:</p>
1835
1836 <div class="doc_code">
1837 <pre>
1838 void printNextInstruction(Instruction* inst) {
1839   BasicBlock::iterator it(inst);
1840   ++it; // <i>After this line, it refers to the instruction after *inst</i>
1841   if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
1842 }
1843 </pre>
1844 </div>
1845
1846 <p>Unfortunately, these implicit conversions come at a cost; they prevent
1847 these iterators from conforming to standard iterator conventions, and thus
1848 from being usable with standard algorithms and containers. For example, they
1849 prevent the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
1850 from compiling:</p>
1851
1852 <div class="doc_code">
1853 <pre>
1854   llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
1855 </pre>
1856 </div>
1857
1858 <p>Because of this, these implicit conversions may be removed some day,
1859 and <tt>operator*</tt> changed to return a pointer instead of a reference.</p>
1860
1861 </div>
1862
1863 <!--_______________________________________________________________________-->
1864 <div class="doc_subsubsection">
1865   <a name="iterate_complex">Finding call sites: a slightly more complex
1866   example</a>
1867 </div>
1868
1869 <div class="doc_text">
1870
1871 <p>Say that you're writing a FunctionPass and would like to count all the
1872 locations in the entire module (that is, across every <tt>Function</tt>) where a
1873 certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
1874 learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1875 much more straight-forward manner, but this example will allow us to explore how
1876 you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1877 is what we want to do:</p>
1878
1879 <div class="doc_code">
1880 <pre>
1881 initialize callCounter to zero
1882 for each Function f in the Module
1883   for each BasicBlock b in f
1884     for each Instruction i in b
1885       if (i is a CallInst and calls the given function)
1886         increment callCounter
1887 </pre>
1888 </div>
1889
1890 <p>And the actual code is (remember, because we're writing a
1891 <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1892 override the <tt>runOnFunction</tt> method):</p>
1893
1894 <div class="doc_code">
1895 <pre>
1896 Function* targetFunc = ...;
1897
1898 class OurFunctionPass : public FunctionPass {
1899   public:
1900     OurFunctionPass(): callCounter(0) { }
1901
1902     virtual runOnFunction(Function&amp; F) {
1903       for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
1904         for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
1905           if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1906  href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1907             // <i>We know we've encountered a call instruction, so we</i>
1908             // <i>need to determine if it's a call to the</i>
1909             // <i>function pointed to by m_func or not.</i>
1910             if (callInst-&gt;getCalledFunction() == targetFunc)
1911               ++callCounter;
1912           }
1913         }
1914       }
1915     }
1916
1917   private:
1918     unsigned callCounter;
1919 };
1920 </pre>
1921 </div>
1922
1923 </div>
1924
1925 <!--_______________________________________________________________________-->
1926 <div class="doc_subsubsection">
1927   <a name="calls_and_invokes">Treating calls and invokes the same way</a>
1928 </div>
1929
1930 <div class="doc_text">
1931
1932 <p>You may have noticed that the previous example was a bit oversimplified in
1933 that it did not deal with call sites generated by 'invoke' instructions. In
1934 this, and in other situations, you may find that you want to treat
1935 <tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
1936 most-specific common base class is <tt>Instruction</tt>, which includes lots of
1937 less closely-related things. For these cases, LLVM provides a handy wrapper
1938 class called <a
1939 href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
1940 It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
1941 methods that provide functionality common to <tt>CallInst</tt>s and
1942 <tt>InvokeInst</tt>s.</p>
1943
1944 <p>This class has "value semantics": it should be passed by value, not by
1945 reference and it should not be dynamically allocated or deallocated using
1946 <tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
1947 assignable and constructable, with costs equivalents to that of a bare pointer.
1948 If you look at its definition, it has only a single pointer member.</p>
1949
1950 </div>
1951
1952 <!--_______________________________________________________________________-->
1953 <div class="doc_subsubsection">
1954   <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
1955 </div>
1956
1957 <div class="doc_text">
1958
1959 <p>Frequently, we might have an instance of the <a
1960 href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
1961 determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
1962 <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
1963 For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
1964 particular function <tt>foo</tt>. Finding all of the instructions that
1965 <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
1966 of <tt>F</tt>:</p>
1967
1968 <div class="doc_code">
1969 <pre>
1970 Function *F = ...;
1971
1972 for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
1973   if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
1974     errs() &lt;&lt; "F is used in instruction:\n";
1975     errs() &lt;&lt; *Inst &lt;&lt; "\n";
1976   }
1977 </pre>
1978 </div>
1979
1980 <p>Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
1981 operation. Instead of performing <tt>*i</tt> above several times, consider
1982 doing it only once in the loop body and reusing its result.</p>
1983
1984 <p>Alternatively, it's common to have an instance of the <a
1985 href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
1986 <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
1987 <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
1988 <tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
1989 all of the values that a particular instruction uses (that is, the operands of
1990 the particular <tt>Instruction</tt>):</p>
1991
1992 <div class="doc_code">
1993 <pre>
1994 Instruction *pi = ...;
1995
1996 for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
1997   Value *v = *i;
1998   // <i>...</i>
1999 }
2000 </pre>
2001 </div>
2002
2003 <p>Declaring objects as <tt>const</tt> is an important tool of enforcing
2004 mutation free algorithms (such as analyses, etc.). For this purpose above
2005 iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
2006 and <tt>Value::const_op_iterator</tt>.  They automatically arise when
2007 calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
2008 <tt>const User*</tt>s respectively.  Upon dereferencing, they return
2009 <tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.</p>
2010
2011 </div>
2012
2013 <!--_______________________________________________________________________-->
2014 <div class="doc_subsubsection">
2015   <a name="iterate_preds">Iterating over predecessors &amp;
2016 successors of blocks</a>
2017 </div>
2018
2019 <div class="doc_text">
2020
2021 <p>Iterating over the predecessors and successors of a block is quite easy
2022 with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
2023 this to iterate over all predecessors of BB:</p>
2024
2025 <div class="doc_code">
2026 <pre>
2027 #include "llvm/Support/CFG.h"
2028 BasicBlock *BB = ...;
2029
2030 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2031   BasicBlock *Pred = *PI;
2032   // <i>...</i>
2033 }
2034 </pre>
2035 </div>
2036
2037 <p>Similarly, to iterate over successors use
2038 succ_iterator/succ_begin/succ_end.</p>
2039
2040 </div>
2041
2042
2043 <!-- ======================================================================= -->
2044 <div class="doc_subsection">
2045   <a name="simplechanges">Making simple changes</a>
2046 </div>
2047
2048 <div class="doc_text">
2049
2050 <p>There are some primitive transformation operations present in the LLVM
2051 infrastructure that are worth knowing about.  When performing
2052 transformations, it's fairly common to manipulate the contents of basic
2053 blocks. This section describes some of the common methods for doing so
2054 and gives example code.</p>
2055
2056 </div>
2057
2058 <!--_______________________________________________________________________-->
2059 <div class="doc_subsubsection">
2060   <a name="schanges_creating">Creating and inserting new
2061   <tt>Instruction</tt>s</a>
2062 </div>
2063
2064 <div class="doc_text">
2065
2066 <p><i>Instantiating Instructions</i></p>
2067
2068 <p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
2069 constructor for the kind of instruction to instantiate and provide the necessary
2070 parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
2071 (const-ptr-to) <tt>Type</tt>. Thus:</p> 
2072
2073 <div class="doc_code">
2074 <pre>
2075 AllocaInst* ai = new AllocaInst(Type::Int32Ty);
2076 </pre>
2077 </div>
2078
2079 <p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
2080 one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
2081 subclass is likely to have varying default parameters which change the semantics
2082 of the instruction, so refer to the <a
2083 href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
2084 Instruction</a> that you're interested in instantiating.</p>
2085
2086 <p><i>Naming values</i></p>
2087
2088 <p>It is very useful to name the values of instructions when you're able to, as
2089 this facilitates the debugging of your transformations.  If you end up looking
2090 at generated LLVM machine code, you definitely want to have logical names
2091 associated with the results of instructions!  By supplying a value for the
2092 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
2093 associate a logical name with the result of the instruction's execution at
2094 run time.  For example, say that I'm writing a transformation that dynamically
2095 allocates space for an integer on the stack, and that integer is going to be
2096 used as some kind of index by some other code.  To accomplish this, I place an
2097 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
2098 <tt>Function</tt>, and I'm intending to use it within the same
2099 <tt>Function</tt>. I might do:</p>
2100
2101 <div class="doc_code">
2102 <pre>
2103 AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
2104 </pre>
2105 </div>
2106
2107 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
2108 execution value, which is a pointer to an integer on the run time stack.</p>
2109
2110 <p><i>Inserting instructions</i></p>
2111
2112 <p>There are essentially two ways to insert an <tt>Instruction</tt>
2113 into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
2114
2115 <ul>
2116   <li>Insertion into an explicit instruction list
2117
2118     <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
2119     <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
2120     before <tt>*pi</tt>, we do the following: </p>
2121
2122 <div class="doc_code">
2123 <pre>
2124 BasicBlock *pb = ...;
2125 Instruction *pi = ...;
2126 Instruction *newInst = new Instruction(...);
2127
2128 pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
2129 </pre>
2130 </div>
2131
2132     <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
2133     the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
2134     classes provide constructors which take a pointer to a
2135     <tt>BasicBlock</tt> to be appended to. For example code that
2136     looked like: </p>
2137
2138 <div class="doc_code">
2139 <pre>
2140 BasicBlock *pb = ...;
2141 Instruction *newInst = new Instruction(...);
2142
2143 pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
2144 </pre>
2145 </div>
2146
2147     <p>becomes: </p>
2148
2149 <div class="doc_code">
2150 <pre>
2151 BasicBlock *pb = ...;
2152 Instruction *newInst = new Instruction(..., pb);
2153 </pre>
2154 </div>
2155
2156     <p>which is much cleaner, especially if you are creating
2157     long instruction streams.</p></li>
2158
2159   <li>Insertion into an implicit instruction list
2160
2161     <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
2162     are implicitly associated with an existing instruction list: the instruction
2163     list of the enclosing basic block. Thus, we could have accomplished the same
2164     thing as the above code without being given a <tt>BasicBlock</tt> by doing:
2165     </p>
2166
2167 <div class="doc_code">
2168 <pre>
2169 Instruction *pi = ...;
2170 Instruction *newInst = new Instruction(...);
2171
2172 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
2173 </pre>
2174 </div>
2175
2176     <p>In fact, this sequence of steps occurs so frequently that the
2177     <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
2178     constructors which take (as a default parameter) a pointer to an
2179     <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
2180     precede.  That is, <tt>Instruction</tt> constructors are capable of
2181     inserting the newly-created instance into the <tt>BasicBlock</tt> of a
2182     provided instruction, immediately before that instruction.  Using an
2183     <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
2184     parameter, the above code becomes:</p>
2185
2186 <div class="doc_code">
2187 <pre>
2188 Instruction* pi = ...;
2189 Instruction* newInst = new Instruction(..., pi);
2190 </pre>
2191 </div>
2192
2193     <p>which is much cleaner, especially if you're creating a lot of
2194     instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
2195 </ul>
2196
2197 </div>
2198
2199 <!--_______________________________________________________________________-->
2200 <div class="doc_subsubsection">
2201   <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
2202 </div>
2203
2204 <div class="doc_text">
2205
2206 <p>Deleting an instruction from an existing sequence of instructions that form a
2207 <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
2208 you must have a pointer to the instruction that you wish to delete.  Second, you
2209 need to obtain the pointer to that instruction's basic block. You use the
2210 pointer to the basic block to get its list of instructions and then use the
2211 erase function to remove your instruction. For example:</p>
2212
2213 <div class="doc_code">
2214 <pre>
2215 <a href="#Instruction">Instruction</a> *I = .. ;
2216 I-&gt;eraseFromParent();
2217 </pre>
2218 </div>
2219
2220 </div>
2221
2222 <!--_______________________________________________________________________-->
2223 <div class="doc_subsubsection">
2224   <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2225   <tt>Value</tt></a>
2226 </div>
2227
2228 <div class="doc_text">
2229
2230 <p><i>Replacing individual instructions</i></p>
2231
2232 <p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
2233 permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
2234 and <tt>ReplaceInstWithInst</tt>.</p>
2235
2236 <h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
2237
2238 <ul>
2239   <li><tt>ReplaceInstWithValue</tt>
2240
2241     <p>This function replaces all uses of a given instruction with a value,
2242     and then removes the original instruction. The following example
2243     illustrates the replacement of the result of a particular
2244     <tt>AllocaInst</tt> that allocates memory for a single integer with a null
2245     pointer to an integer.</p>
2246
2247 <div class="doc_code">
2248 <pre>
2249 AllocaInst* instToReplace = ...;
2250 BasicBlock::iterator ii(instToReplace);
2251
2252 ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2253                      Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
2254 </pre></div></li>
2255
2256   <li><tt>ReplaceInstWithInst</tt> 
2257
2258     <p>This function replaces a particular instruction with another
2259     instruction, inserting the new instruction into the basic block at the
2260     location where the old instruction was, and replacing any uses of the old
2261     instruction with the new instruction. The following example illustrates
2262     the replacement of one <tt>AllocaInst</tt> with another.</p>
2263
2264 <div class="doc_code">
2265 <pre>
2266 AllocaInst* instToReplace = ...;
2267 BasicBlock::iterator ii(instToReplace);
2268
2269 ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2270                     new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
2271 </pre></div></li>
2272 </ul>
2273
2274 <p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2275
2276 <p>You can use <tt>Value::replaceAllUsesWith</tt> and
2277 <tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
2278 doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2279 and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2280 information.</p>
2281
2282 <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2283 include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2284 ReplaceInstWithValue, ReplaceInstWithInst -->
2285
2286 </div>
2287
2288 <!--_______________________________________________________________________-->
2289 <div class="doc_subsubsection">
2290   <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2291 </div>
2292
2293 <div class="doc_text">
2294
2295 <p>Deleting a global variable from a module is just as easy as deleting an 
2296 Instruction. First, you must have a pointer to the global variable that you wish
2297  to delete.  You use this pointer to erase it from its parent, the module.
2298  For example:</p>
2299
2300 <div class="doc_code">
2301 <pre>
2302 <a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2303
2304 GV-&gt;eraseFromParent();
2305 </pre>
2306 </div>
2307
2308 </div>
2309
2310 <!-- ======================================================================= -->
2311 <div class="doc_subsection">
2312   <a name="create_types">How to Create Types</a>
2313 </div>
2314
2315 <div class="doc_text">
2316
2317 <p>In generating IR, you may need some complex types.  If you know these types
2318 statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
2319 in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them.  <tt>TypeBuilder</tt>
2320 has two forms depending on whether you're building types for cross-compilation
2321 or native library use.  <tt>TypeBuilder&lt;T, true&gt;</tt> requires
2322 that <tt>T</tt> be independent of the host environment, meaning that it's built
2323 out of types from
2324 the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
2325 namespace and pointers, functions, arrays, etc. built of
2326 those.  <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
2327 whose size may depend on the host compiler.  For example,</p>
2328
2329 <div class="doc_code">
2330 <pre>
2331 FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
2332 </pre>
2333 </div>
2334
2335 <p>is easier to read and write than the equivalent</p>
2336
2337 <div class="doc_code">
2338 <pre>
2339 std::vector&lt;const Type*&gt; params;
2340 params.push_back(PointerType::getUnqual(Type::Int32Ty));
2341 FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
2342 </pre>
2343 </div>
2344
2345 <p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
2346 comment</a> for more details.</p>
2347
2348 </div>
2349
2350 <!-- *********************************************************************** -->
2351 <div class="doc_section">
2352   <a name="threading">Threads and LLVM</a>
2353 </div>
2354 <!-- *********************************************************************** -->
2355
2356 <div class="doc_text">
2357 <p>
2358 This section describes the interaction of the LLVM APIs with multithreading,
2359 both on the part of client applications, and in the JIT, in the hosted
2360 application.
2361 </p>
2362
2363 <p>
2364 Note that LLVM's support for multithreading is still relatively young.  Up 
2365 through version 2.5, the execution of threaded hosted applications was
2366 supported, but not threaded client access to the APIs.  While this use case is
2367 now supported, clients <em>must</em> adhere to the guidelines specified below to
2368 ensure proper operation in multithreaded mode.
2369 </p>
2370
2371 <p>
2372 Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
2373 intrinsics in order to support threaded operation.  If you need a
2374 multhreading-capable LLVM on a platform without a suitably modern system
2375 compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and 
2376 using the resultant compiler to build a copy of LLVM with multithreading
2377 support.
2378 </p>
2379 </div>
2380
2381 <!-- ======================================================================= -->
2382 <div class="doc_subsection">
2383   <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
2384 </div>
2385
2386 <div class="doc_text">
2387
2388 <p>
2389 In order to properly protect its internal data structures while avoiding 
2390 excessive locking overhead in the single-threaded case, the LLVM must intialize
2391 certain data structures necessary to provide guards around its internals.  To do
2392 so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
2393 making any concurrent LLVM API calls.  To subsequently tear down these
2394 structures, use the <tt>llvm_stop_multithreaded()</tt> call.  You can also use
2395 the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
2396 mode.
2397 </p>
2398
2399 <p>
2400 Note that both of these calls must be made <em>in isolation</em>.  That is to
2401 say that no other LLVM API calls may be executing at any time during the 
2402 execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
2403 </tt>.  It's is the client's responsibility to enforce this isolation.
2404 </p>
2405
2406 <p>
2407 The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
2408 failure of the initialization.  Failure typically indicates that your copy of
2409 LLVM was built without multithreading support, typically because GCC atomic
2410 intrinsics were not found in your system compiler.  In this case, the LLVM API
2411 will not be safe for concurrent calls.  However, it <em>will</em> be safe for
2412 hosting threaded applications in the JIT, though <a href="#jitthreading">care
2413 must be taken</a> to ensure that side exits and the like do not accidentally
2414 result in concurrent LLVM API calls.
2415 </p>
2416 </div>
2417
2418 <!-- ======================================================================= -->
2419 <div class="doc_subsection">
2420   <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
2421 </div>
2422
2423 <div class="doc_text">
2424 <p>
2425 When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
2426 to deallocate memory used for internal structures.  This will also invoke 
2427 <tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
2428 As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
2429 <tt>llvm_stop_multithreaded()</tt>.
2430 </p>
2431
2432 <p>
2433 Note that, if you use scope-based shutdown, you can use the
2434 <tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
2435 destructor.
2436 </div>
2437
2438 <!-- ======================================================================= -->
2439 <div class="doc_subsection">
2440   <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
2441 </div>
2442
2443 <div class="doc_text">
2444 <p>
2445 <tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
2446 initialization of static resources, such as the global type tables.  Before the
2447 invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy 
2448 initialization scheme.  Once <tt>llvm_start_multithreaded()</tt> returns,
2449 however, it uses double-checked locking to implement thread-safe lazy
2450 initialization.
2451 </p>
2452
2453 <p>
2454 Note that, because no other threads are allowed to issue LLVM API calls before
2455 <tt>llvm_start_multithreaded()</tt> returns, it is possible to have 
2456 <tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
2457 </p>
2458
2459 <p>
2460 The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt> 
2461 APIs provide access to the global lock used to implement the double-checked
2462 locking for lazy initialization.  These should only be used internally to LLVM,
2463 and only if you know what you're doing!
2464 </p>
2465 </div>
2466
2467 <!-- ======================================================================= -->
2468 <div class="doc_subsection">
2469   <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
2470 </div>
2471
2472 <div class="doc_text">
2473 <p>
2474 <tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
2475 to operate multiple, isolated instances of LLVM concurrently within the same
2476 address space.  For instance, in a hypothetical compile-server, the compilation
2477 of an individual translation unit is conceptually independent from all the 
2478 others, and it would be desirable to be able to compile incoming translation 
2479 units concurrently on independent server threads.  Fortunately, 
2480 <tt>LLVMContext</tt> exists to enable just this kind of scenario!
2481 </p>
2482
2483 <p>
2484 Conceptually, <tt>LLVMContext</tt> provides isolation.  Every LLVM entity 
2485 (<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
2486 in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>.  Entities in 
2487 different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
2488 different contexts cannot be linked together, <tt>Function</tt>s cannot be added
2489 to <tt>Module</tt>s in different contexts, etc.  What this means is that is is
2490 safe to compile on multiple threads simultaneously, as long as no two threads
2491 operate on entities within the same context.
2492 </p>
2493
2494 <p>
2495 In practice, very few places in the API require the explicit specification of a
2496 <tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
2497 Because every <tt>Type</tt> carries a reference to its owning context, most
2498 other entities can determine what context they belong to by looking at their
2499 own <tt>Type</tt>.  If you are adding new entities to LLVM IR, please try to
2500 maintain this interface design.
2501 </p>
2502
2503 <p>
2504 For clients that do <em>not</em> require the benefits of isolation, LLVM 
2505 provides a convenience API <tt>getGlobalContext()</tt>.  This returns a global,
2506 lazily initialized <tt>LLVMContext</tt> that may be used in situations where
2507 isolation is not a concern.
2508 </p>
2509 </div>
2510
2511 <!-- ======================================================================= -->
2512 <div class="doc_subsection">
2513   <a name="jitthreading">Threads and the JIT</a>
2514 </div>
2515
2516 <div class="doc_text">
2517 <p>
2518 LLVM's "eager" JIT compiler is safe to use in threaded programs.  Multiple
2519 threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
2520 <tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
2521 run code output by the JIT concurrently.  The user must still ensure that only
2522 one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
2523 might be modifying it.  One way to do that is to always hold the JIT lock while
2524 accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
2525 <tt>CallbackVH</tt>s).  Another way is to only
2526 call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
2527 </p>
2528
2529 <p>When the JIT is configured to compile lazily (using
2530 <tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
2531 <a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
2532 updating call sites after a function is lazily-jitted.  It's still possible to
2533 use the lazy JIT in a threaded program if you ensure that only one thread at a
2534 time can call any particular lazy stub and that the JIT lock guards any IR
2535 access, but we suggest using only the eager JIT in threaded programs.
2536 </p>
2537 </div>
2538
2539 <!-- *********************************************************************** -->
2540 <div class="doc_section">
2541   <a name="advanced">Advanced Topics</a>
2542 </div>
2543 <!-- *********************************************************************** -->
2544
2545 <div class="doc_text">
2546 <p>
2547 This section describes some of the advanced or obscure API's that most clients
2548 do not need to be aware of.  These API's tend manage the inner workings of the
2549 LLVM system, and only need to be accessed in unusual circumstances.
2550 </p>
2551 </div>
2552
2553 <!-- ======================================================================= -->
2554 <div class="doc_subsection">
2555   <a name="TypeResolve">LLVM Type Resolution</a>
2556 </div>
2557
2558 <div class="doc_text">
2559
2560 <p>
2561 The LLVM type system has a very simple goal: allow clients to compare types for
2562 structural equality with a simple pointer comparison (aka a shallow compare).
2563 This goal makes clients much simpler and faster, and is used throughout the LLVM
2564 system.
2565 </p>
2566
2567 <p>
2568 Unfortunately achieving this goal is not a simple matter.  In particular,
2569 recursive types and late resolution of opaque types makes the situation very
2570 difficult to handle.  Fortunately, for the most part, our implementation makes
2571 most clients able to be completely unaware of the nasty internal details.  The
2572 primary case where clients are exposed to the inner workings of it are when
2573 building a recursive type.  In addition to this case, the LLVM bitcode reader,
2574 assembly parser, and linker also have to be aware of the inner workings of this
2575 system.
2576 </p>
2577
2578 <p>
2579 For our purposes below, we need three concepts.  First, an "Opaque Type" is 
2580 exactly as defined in the <a href="LangRef.html#t_opaque">language 
2581 reference</a>.  Second an "Abstract Type" is any type which includes an 
2582 opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
2583 Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32, 
2584 float }</tt>").
2585 </p>
2586
2587 </div>
2588
2589 <!-- ______________________________________________________________________ -->
2590 <div class="doc_subsubsection">
2591   <a name="BuildRecType">Basic Recursive Type Construction</a>
2592 </div>
2593
2594 <div class="doc_text">
2595
2596 <p>
2597 Because the most common question is "how do I build a recursive type with LLVM",
2598 we answer it now and explain it as we go.  Here we include enough to cause this
2599 to be emitted to an output .ll file:
2600 </p>
2601
2602 <div class="doc_code">
2603 <pre>
2604 %mylist = type { %mylist*, i32 }
2605 </pre>
2606 </div>
2607
2608 <p>
2609 To build this, use the following LLVM APIs:
2610 </p>
2611
2612 <div class="doc_code">
2613 <pre>
2614 // <i>Create the initial outer struct</i>
2615 <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
2616 std::vector&lt;const Type*&gt; Elts;
2617 Elts.push_back(PointerType::getUnqual(StructTy));
2618 Elts.push_back(Type::Int32Ty);
2619 StructType *NewSTy = StructType::get(Elts);
2620
2621 // <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
2622 // <i>the struct and the opaque type are actually the same.</i>
2623 cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
2624
2625 // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
2626 // <i>kept up-to-date</i>
2627 NewSTy = cast&lt;StructType&gt;(StructTy.get());
2628
2629 // <i>Add a name for the type to the module symbol table (optional)</i>
2630 MyModule-&gt;addTypeName("mylist", NewSTy);
2631 </pre>
2632 </div>
2633
2634 <p>
2635 This code shows the basic approach used to build recursive types: build a
2636 non-recursive type using 'opaque', then use type unification to close the cycle.
2637 The type unification step is performed by the <tt><a
2638 href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
2639 described next.  After that, we describe the <a
2640 href="#PATypeHolder">PATypeHolder class</a>.
2641 </p>
2642
2643 </div>
2644
2645 <!-- ______________________________________________________________________ -->
2646 <div class="doc_subsubsection">
2647   <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
2648 </div>
2649
2650 <div class="doc_text">
2651 <p>
2652 The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
2653 While this method is actually a member of the DerivedType class, it is most
2654 often used on OpaqueType instances.  Type unification is actually a recursive
2655 process.  After unification, types can become structurally isomorphic to
2656 existing types, and all duplicates are deleted (to preserve pointer equality).
2657 </p>
2658
2659 <p>
2660 In the example above, the OpaqueType object is definitely deleted.
2661 Additionally, if there is an "{ \2*, i32}" type already created in the system,
2662 the pointer and struct type created are <b>also</b> deleted.  Obviously whenever
2663 a type is deleted, any "Type*" pointers in the program are invalidated.  As
2664 such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
2665 live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
2666 types can never move or be deleted).  To deal with this, the <a
2667 href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
2668 reference to a possibly refined type, and the <a
2669 href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
2670 complex datastructures.
2671 </p>
2672
2673 </div>
2674
2675 <!-- ______________________________________________________________________ -->
2676 <div class="doc_subsubsection">
2677   <a name="PATypeHolder">The PATypeHolder Class</a>
2678 </div>
2679
2680 <div class="doc_text">
2681 <p>
2682 PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
2683 happily goes about nuking types that become isomorphic to existing types, it
2684 automatically updates all PATypeHolder objects to point to the new type.  In the
2685 example above, this allows the code to maintain a pointer to the resultant
2686 resolved recursive type, even though the Type*'s are potentially invalidated.
2687 </p>
2688
2689 <p>
2690 PATypeHolder is an extremely light-weight object that uses a lazy union-find
2691 implementation to update pointers.  For example the pointer from a Value to its
2692 Type is maintained by PATypeHolder objects.
2693 </p>
2694
2695 </div>
2696
2697 <!-- ______________________________________________________________________ -->
2698 <div class="doc_subsubsection">
2699   <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
2700 </div>
2701
2702 <div class="doc_text">
2703
2704 <p>
2705 Some data structures need more to perform more complex updates when types get
2706 resolved.  To support this, a class can derive from the AbstractTypeUser class.
2707 This class
2708 allows it to get callbacks when certain types are resolved.  To register to get
2709 callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
2710 methods can be called on a type.  Note that these methods only work for <i>
2711   abstract</i> types.  Concrete types (those that do not include any opaque 
2712 objects) can never be refined.
2713 </p>
2714 </div>
2715
2716
2717 <!-- ======================================================================= -->
2718 <div class="doc_subsection">
2719   <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
2720    <tt>TypeSymbolTable</tt> classes</a>
2721 </div>
2722
2723 <div class="doc_text">
2724 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2725 ValueSymbolTable</a></tt> class provides a symbol table that the <a
2726 href="#Function"><tt>Function</tt></a> and <a href="#Module">
2727 <tt>Module</tt></a> classes use for naming value definitions. The symbol table
2728 can provide a name for any <a href="#Value"><tt>Value</tt></a>. 
2729 The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
2730 TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
2731 names for types.</p>
2732
2733 <p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
2734 by most clients.  It should only be used when iteration over the symbol table 
2735 names themselves are required, which is very special purpose.  Note that not 
2736 all LLVM
2737 <tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
2738 an empty name) do not exist in the symbol table.
2739 </p>
2740
2741 <p>These symbol tables support iteration over the values/types in the symbol
2742 table with <tt>begin/end/iterator</tt> and supports querying to see if a
2743 specific name is in the symbol table (with <tt>lookup</tt>).  The
2744 <tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2745 simply call <tt>setName</tt> on a value, which will autoinsert it into the
2746 appropriate symbol table.  For types, use the Module::addTypeName method to
2747 insert entries into the symbol table.</p>
2748
2749 </div>
2750
2751
2752
2753 <!-- ======================================================================= -->
2754 <div class="doc_subsection">
2755   <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2756 </div>
2757
2758 <div class="doc_text">
2759 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
2760 User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
2761 towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2762 Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
2763 Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
2764 addition and removal.</p>
2765
2766 <!-- ______________________________________________________________________ -->
2767 <div class="doc_subsubsection">
2768   <a name="Use2User">Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects</a>
2769 </div>
2770
2771 <div class="doc_text">
2772 <p>
2773 A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
2774 or refer to them out-of-line by means of a pointer. A mixed variant
2775 (some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2776 that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2777 </p>
2778 </div>
2779
2780 <p>
2781 We have 2 different layouts in the <tt>User</tt> (sub)classes:
2782 <ul>
2783 <li><p>Layout a)
2784 The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2785 object and there are a fixed number of them.</p>
2786
2787 <li><p>Layout b)
2788 The <tt>Use</tt> object(s) are referenced by a pointer to an
2789 array from the <tt>User</tt> object and there may be a variable
2790 number of them.</p>
2791 </ul>
2792 <p>
2793 As of v2.4 each layout still possesses a direct pointer to the
2794 start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
2795 we stick to this redundancy for the sake of simplicity.
2796 The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
2797 has. (Theoretically this information can also be calculated
2798 given the scheme presented below.)</p>
2799 <p>
2800 Special forms of allocation operators (<tt>operator new</tt>)
2801 enforce the following memory layouts:</p>
2802
2803 <ul>
2804 <li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
2805
2806 <pre>
2807 ...---.---.---.---.-------...
2808   | P | P | P | P | User
2809 '''---'---'---'---'-------'''
2810 </pre>
2811
2812 <li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
2813 <pre>
2814 .-------...
2815 | User
2816 '-------'''
2817     |
2818     v
2819     .---.---.---.---...
2820     | P | P | P | P |
2821     '---'---'---'---'''
2822 </pre>
2823 </ul>
2824 <i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2825     is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
2826
2827 <!-- ______________________________________________________________________ -->
2828 <div class="doc_subsubsection">
2829   <a name="Waymarking">The waymarking algorithm</a>
2830 </div>
2831
2832 <div class="doc_text">
2833 <p>
2834 Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
2835 their <tt>User</tt> objects, there must be a fast and exact method to
2836 recover it. This is accomplished by the following scheme:</p>
2837 </div>
2838
2839 A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
2840 start of the <tt>User</tt> object:
2841 <ul>
2842 <li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2843 <li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2844 <li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2845 <li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2846 </ul>
2847 <p>
2848 Given a <tt>Use*</tt>, all we have to do is to walk till we get
2849 a stop and we either have a <tt>User</tt> immediately behind or
2850 we have to walk to the next stop picking up digits
2851 and calculating the offset:</p>
2852 <pre>
2853 .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2854 | 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2855 '---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2856     |+15                |+10            |+6         |+3     |+1
2857     |                   |               |           |       |__>
2858     |                   |               |           |__________>
2859     |                   |               |______________________>
2860     |                   |______________________________________>
2861     |__________________________________________________________>
2862 </pre>
2863 <p>
2864 Only the significant number of bits need to be stored between the
2865 stops, so that the <i>worst case is 20 memory accesses</i> when there are
2866 1000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
2867
2868 <!-- ______________________________________________________________________ -->
2869 <div class="doc_subsubsection">
2870   <a name="ReferenceImpl">Reference implementation</a>
2871 </div>
2872
2873 <div class="doc_text">
2874 <p>
2875 The following literate Haskell fragment demonstrates the concept:</p>
2876 </div>
2877
2878 <div class="doc_code">
2879 <pre>
2880 > import Test.QuickCheck
2881
2882 > digits :: Int -> [Char] -> [Char]
2883 > digits 0 acc = '0' : acc
2884 > digits 1 acc = '1' : acc
2885 > digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2886
2887 > dist :: Int -> [Char] -> [Char]
2888 > dist 0 [] = ['S']
2889 > dist 0 acc = acc
2890 > dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2891 > dist n acc = dist (n - 1) $ dist 1 acc
2892
2893 > takeLast n ss = reverse $ take n $ reverse ss
2894
2895 > test = takeLast 40 $ dist 20 []
2896
2897 </pre>
2898 </div>
2899 <p>
2900 Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2901 <p>
2902 The reverse algorithm computes the length of the string just by examining
2903 a certain prefix:</p>
2904
2905 <div class="doc_code">
2906 <pre>
2907 > pref :: [Char] -> Int
2908 > pref "S" = 1
2909 > pref ('s':'1':rest) = decode 2 1 rest
2910 > pref (_:rest) = 1 + pref rest
2911
2912 > decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
2913 > decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
2914 > decode walk acc _ = walk + acc
2915
2916 </pre>
2917 </div>
2918 <p>
2919 Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
2920 <p>
2921 We can <i>quickCheck</i> this with following property:</p>
2922
2923 <div class="doc_code">
2924 <pre>
2925 > testcase = dist 2000 []
2926 > testcaseLength = length testcase
2927
2928 > identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
2929 >     where arr = takeLast n testcase
2930
2931 </pre>
2932 </div>
2933 <p>
2934 As expected &lt;quickCheck identityProp&gt; gives:</p>
2935
2936 <pre>
2937 *Main> quickCheck identityProp
2938 OK, passed 100 tests.
2939 </pre>
2940 <p>
2941 Let's be a bit more exhaustive:</p>
2942
2943 <div class="doc_code">
2944 <pre>
2945
2946 > deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
2947
2948 </pre>
2949 </div>
2950 <p>
2951 And here is the result of &lt;deepCheck identityProp&gt;:</p>
2952
2953 <pre>
2954 *Main> deepCheck identityProp
2955 OK, passed 500 tests.
2956 </pre>
2957
2958 <!-- ______________________________________________________________________ -->
2959 <div class="doc_subsubsection">
2960   <a name="Tagging">Tagging considerations</a>
2961 </div>
2962
2963 <p>
2964 To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
2965 never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
2966 new <tt>Use**</tt> on every modification. Accordingly getters must strip the
2967 tag bits.</p>
2968 <p>
2969 For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
2970 Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
2971 that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
2972 the LSBit set. (Portability is relying on the fact that all known compilers place the
2973 <tt>vptr</tt> in the first word of the instances.)</p>
2974
2975 </div>
2976
2977   <!-- *********************************************************************** -->
2978 <div class="doc_section">
2979   <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2980 </div>
2981 <!-- *********************************************************************** -->
2982
2983 <div class="doc_text">
2984 <p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2985 <br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2986
2987 <p>The Core LLVM classes are the primary means of representing the program
2988 being inspected or transformed.  The core LLVM classes are defined in
2989 header files in the <tt>include/llvm/</tt> directory, and implemented in
2990 the <tt>lib/VMCore</tt> directory.</p>
2991
2992 </div>
2993
2994 <!-- ======================================================================= -->
2995 <div class="doc_subsection">
2996   <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2997 </div>
2998
2999 <div class="doc_text">
3000
3001   <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
3002   a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
3003   through its subclasses. Certain primitive types (<tt>VoidType</tt>,
3004   <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
3005   subclasses. They are hidden because they offer no useful functionality beyond
3006   what the <tt>Type</tt> class offers except to distinguish themselves from 
3007   other subclasses of <tt>Type</tt>.</p>
3008   <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
3009   named, but this is not a requirement. There exists exactly 
3010   one instance of a given shape at any one time.  This allows type equality to
3011   be performed with address equality of the Type Instance. That is, given two 
3012   <tt>Type*</tt> values, the types are identical if the pointers are identical.
3013   </p>
3014 </div>
3015
3016 <!-- _______________________________________________________________________ -->
3017 <div class="doc_subsubsection">
3018   <a name="m_Type">Important Public Methods</a>
3019 </div>
3020
3021 <div class="doc_text">
3022
3023 <ul>
3024   <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
3025
3026   <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
3027   floating point types.</li>
3028
3029   <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
3030   an OpaqueType anywhere in its definition).</li>
3031
3032   <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
3033   that don't have a size are abstract types, labels and void.</li>
3034
3035 </ul>
3036 </div>
3037
3038 <!-- _______________________________________________________________________ -->
3039 <div class="doc_subsubsection">
3040   <a name="derivedtypes">Important Derived Types</a>
3041 </div>
3042 <div class="doc_text">
3043 <dl>
3044   <dt><tt>IntegerType</tt></dt>
3045   <dd>Subclass of DerivedType that represents integer types of any bit width. 
3046   Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
3047   <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
3048   <ul>
3049     <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
3050     type of a specific bit width.</li>
3051     <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
3052     type.</li>
3053   </ul>
3054   </dd>
3055   <dt><tt>SequentialType</tt></dt>
3056   <dd>This is subclassed by ArrayType and PointerType
3057     <ul>
3058       <li><tt>const Type * getElementType() const</tt>: Returns the type of each
3059       of the elements in the sequential type. </li>
3060     </ul>
3061   </dd>
3062   <dt><tt>ArrayType</tt></dt>
3063   <dd>This is a subclass of SequentialType and defines the interface for array 
3064   types.
3065     <ul>
3066       <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
3067       elements in the array. </li>
3068     </ul>
3069   </dd>
3070   <dt><tt>PointerType</tt></dt>
3071   <dd>Subclass of SequentialType for pointer types.</dd>
3072   <dt><tt>VectorType</tt></dt>
3073   <dd>Subclass of SequentialType for vector types. A 
3074   vector type is similar to an ArrayType but is distinguished because it is 
3075   a first class type whereas ArrayType is not. Vector types are used for 
3076   vector operations and are usually small vectors of of an integer or floating 
3077   point type.</dd>
3078   <dt><tt>StructType</tt></dt>
3079   <dd>Subclass of DerivedTypes for struct types.</dd>
3080   <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
3081   <dd>Subclass of DerivedTypes for function types.
3082     <ul>
3083       <li><tt>bool isVarArg() const</tt>: Returns true if it's a vararg
3084       function</li>
3085       <li><tt> const Type * getReturnType() const</tt>: Returns the
3086       return type of the function.</li>
3087       <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
3088       the type of the ith parameter.</li>
3089       <li><tt> const unsigned getNumParams() const</tt>: Returns the
3090       number of formal parameters.</li>
3091     </ul>
3092   </dd>
3093   <dt><tt>OpaqueType</tt></dt>
3094   <dd>Sublcass of DerivedType for abstract types. This class 
3095   defines no content and is used as a placeholder for some other type. Note 
3096   that OpaqueType is used (temporarily) during type resolution for forward 
3097   references of types. Once the referenced type is resolved, the OpaqueType 
3098   is replaced with the actual type. OpaqueType can also be used for data 
3099   abstraction. At link time opaque types can be resolved to actual types 
3100   of the same name.</dd>
3101 </dl>
3102 </div>
3103
3104
3105
3106 <!-- ======================================================================= -->
3107 <div class="doc_subsection">
3108   <a name="Module">The <tt>Module</tt> class</a>
3109 </div>
3110
3111 <div class="doc_text">
3112
3113 <p><tt>#include "<a
3114 href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
3115 <a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
3116
3117 <p>The <tt>Module</tt> class represents the top level structure present in LLVM
3118 programs.  An LLVM module is effectively either a translation unit of the
3119 original program or a combination of several translation units merged by the
3120 linker.  The <tt>Module</tt> class keeps track of a list of <a
3121 href="#Function"><tt>Function</tt></a>s, a list of <a
3122 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
3123 href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
3124 helpful member functions that try to make common operations easy.</p>
3125
3126 </div>
3127
3128 <!-- _______________________________________________________________________ -->
3129 <div class="doc_subsubsection">
3130   <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
3131 </div>
3132
3133 <div class="doc_text">
3134
3135 <ul>
3136   <li><tt>Module::Module(std::string name = "")</tt></li>
3137 </ul>
3138
3139 <p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
3140 provide a name for it (probably based on the name of the translation unit).</p>
3141
3142 <ul>
3143   <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
3144     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
3145
3146     <tt>begin()</tt>, <tt>end()</tt>
3147     <tt>size()</tt>, <tt>empty()</tt>
3148
3149     <p>These are forwarding methods that make it easy to access the contents of
3150     a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
3151     list.</p></li>
3152
3153   <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
3154
3155     <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
3156     necessary to use when you need to update the list or perform a complex
3157     action that doesn't have a forwarding method.</p>
3158
3159     <p><!--  Global Variable --></p></li> 
3160 </ul>
3161
3162 <hr>
3163
3164 <ul>
3165   <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
3166
3167     <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
3168
3169     <tt>global_begin()</tt>, <tt>global_end()</tt>
3170     <tt>global_size()</tt>, <tt>global_empty()</tt>
3171
3172     <p> These are forwarding methods that make it easy to access the contents of
3173     a <tt>Module</tt> object's <a
3174     href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
3175
3176   <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
3177
3178     <p>Returns the list of <a
3179     href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
3180     use when you need to update the list or perform a complex action that
3181     doesn't have a forwarding method.</p>
3182
3183     <p><!--  Symbol table stuff --> </p></li>
3184 </ul>
3185
3186 <hr>
3187
3188 <ul>
3189   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3190
3191     <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3192     for this <tt>Module</tt>.</p>
3193
3194     <p><!--  Convenience methods --></p></li>
3195 </ul>
3196
3197 <hr>
3198
3199 <ul>
3200   <li><tt><a href="#Function">Function</a> *getFunction(const std::string
3201   &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
3202
3203     <p>Look up the specified function in the <tt>Module</tt> <a
3204     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
3205     <tt>null</tt>.</p></li>
3206
3207   <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
3208   std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
3209
3210     <p>Look up the specified function in the <tt>Module</tt> <a
3211     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
3212     external declaration for the function and return it.</p></li>
3213
3214   <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
3215
3216     <p>If there is at least one entry in the <a
3217     href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
3218     href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
3219     string.</p></li>
3220
3221   <li><tt>bool addTypeName(const std::string &amp;Name, const <a
3222   href="#Type">Type</a> *Ty)</tt>
3223
3224     <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3225     mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
3226     name, true is returned and the <a
3227     href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
3228 </ul>
3229
3230 </div>
3231
3232
3233 <!-- ======================================================================= -->
3234 <div class="doc_subsection">
3235   <a name="Value">The <tt>Value</tt> class</a>
3236 </div>
3237
3238 <div class="doc_text">
3239
3240 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
3241 <br> 
3242 doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
3243
3244 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
3245 base.  It represents a typed value that may be used (among other things) as an
3246 operand to an instruction.  There are many different types of <tt>Value</tt>s,
3247 such as <a href="#Constant"><tt>Constant</tt></a>s,<a
3248 href="#Argument"><tt>Argument</tt></a>s. Even <a
3249 href="#Instruction"><tt>Instruction</tt></a>s and <a
3250 href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
3251
3252 <p>A particular <tt>Value</tt> may be used many times in the LLVM representation
3253 for a program.  For example, an incoming argument to a function (represented
3254 with an instance of the <a href="#Argument">Argument</a> class) is "used" by
3255 every instruction in the function that references the argument.  To keep track
3256 of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
3257 href="#User"><tt>User</tt></a>s that is using it (the <a
3258 href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
3259 graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
3260 def-use information in the program, and is accessible through the <tt>use_</tt>*
3261 methods, shown below.</p>
3262
3263 <p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
3264 and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
3265 method. In addition, all LLVM values can be named.  The "name" of the
3266 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
3267
3268 <div class="doc_code">
3269 <pre>
3270 %<b>foo</b> = add i32 1, 2
3271 </pre>
3272 </div>
3273
3274 <p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
3275 that the name of any value may be missing (an empty string), so names should
3276 <b>ONLY</b> be used for debugging (making the source code easier to read,
3277 debugging printouts), they should not be used to keep track of values or map
3278 between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
3279 <tt>Value</tt> itself instead.</p>
3280
3281 <p>One important aspect of LLVM is that there is no distinction between an SSA
3282 variable and the operation that produces it.  Because of this, any reference to
3283 the value produced by an instruction (or the value available as an incoming
3284 argument, for example) is represented as a direct pointer to the instance of
3285 the class that
3286 represents this value.  Although this may take some getting used to, it
3287 simplifies the representation and makes it easier to manipulate.</p>
3288
3289 </div>
3290
3291 <!-- _______________________________________________________________________ -->
3292 <div class="doc_subsubsection">
3293   <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
3294 </div>
3295
3296 <div class="doc_text">
3297
3298 <ul>
3299   <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
3300 use-list<br>
3301     <tt>Value::const_use_iterator</tt> - Typedef for const_iterator over
3302 the use-list<br>
3303     <tt>unsigned use_size()</tt> - Returns the number of users of the
3304 value.<br>
3305     <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
3306     <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
3307 the use-list.<br>
3308     <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
3309 use-list.<br>
3310     <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
3311 element in the list.
3312     <p> These methods are the interface to access the def-use
3313 information in LLVM.  As with all other iterators in LLVM, the naming
3314 conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
3315   </li>
3316   <li><tt><a href="#Type">Type</a> *getType() const</tt>
3317     <p>This method returns the Type of the Value.</p>
3318   </li>
3319   <li><tt>bool hasName() const</tt><br>
3320     <tt>std::string getName() const</tt><br>
3321     <tt>void setName(const std::string &amp;Name)</tt>
3322     <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
3323 be aware of the <a href="#nameWarning">precaution above</a>.</p>
3324   </li>
3325   <li><tt>void replaceAllUsesWith(Value *V)</tt>
3326
3327     <p>This method traverses the use list of a <tt>Value</tt> changing all <a
3328     href="#User"><tt>User</tt>s</a> of the current value to refer to
3329     "<tt>V</tt>" instead.  For example, if you detect that an instruction always
3330     produces a constant value (for example through constant folding), you can
3331     replace all uses of the instruction with the constant like this:</p>
3332
3333 <div class="doc_code">
3334 <pre>
3335 Inst-&gt;replaceAllUsesWith(ConstVal);
3336 </pre>
3337 </div>
3338
3339 </ul>
3340
3341 </div>
3342
3343 <!-- ======================================================================= -->
3344 <div class="doc_subsection">
3345   <a name="User">The <tt>User</tt> class</a>
3346 </div>
3347
3348 <div class="doc_text">
3349   
3350 <p>
3351 <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
3352 doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
3353 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3354
3355 <p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
3356 refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
3357 that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
3358 referring to.  The <tt>User</tt> class itself is a subclass of
3359 <tt>Value</tt>.</p>
3360
3361 <p>The operands of a <tt>User</tt> point directly to the LLVM <a
3362 href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
3363 Single Assignment (SSA) form, there can only be one definition referred to,
3364 allowing this direct connection.  This connection provides the use-def
3365 information in LLVM.</p>
3366
3367 </div>
3368
3369 <!-- _______________________________________________________________________ -->
3370 <div class="doc_subsubsection">
3371   <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
3372 </div>
3373
3374 <div class="doc_text">
3375
3376 <p>The <tt>User</tt> class exposes the operand list in two ways: through
3377 an index access interface and through an iterator based interface.</p>
3378
3379 <ul>
3380   <li><tt>Value *getOperand(unsigned i)</tt><br>
3381     <tt>unsigned getNumOperands()</tt>
3382     <p> These two methods expose the operands of the <tt>User</tt> in a
3383 convenient form for direct access.</p></li>
3384
3385   <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
3386 list<br>
3387     <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
3388 the operand list.<br>
3389     <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
3390 operand list.
3391     <p> Together, these methods make up the iterator based interface to
3392 the operands of a <tt>User</tt>.</p></li>
3393 </ul>
3394
3395 </div>    
3396
3397 <!-- ======================================================================= -->
3398 <div class="doc_subsection">
3399   <a name="Instruction">The <tt>Instruction</tt> class</a>
3400 </div>
3401
3402 <div class="doc_text">
3403
3404 <p><tt>#include "</tt><tt><a
3405 href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
3406 doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
3407 Superclasses: <a href="#User"><tt>User</tt></a>, <a
3408 href="#Value"><tt>Value</tt></a></p>
3409
3410 <p>The <tt>Instruction</tt> class is the common base class for all LLVM
3411 instructions.  It provides only a few methods, but is a very commonly used
3412 class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
3413 opcode (instruction type) and the parent <a
3414 href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
3415 into.  To represent a specific type of instruction, one of many subclasses of
3416 <tt>Instruction</tt> are used.</p>
3417
3418 <p> Because the <tt>Instruction</tt> class subclasses the <a
3419 href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
3420 way as for other <a href="#User"><tt>User</tt></a>s (with the
3421 <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
3422 <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
3423 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
3424 file contains some meta-data about the various different types of instructions
3425 in LLVM.  It describes the enum values that are used as opcodes (for example
3426 <tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
3427 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
3428 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
3429 href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
3430 this file confuses doxygen, so these enum values don't show up correctly in the
3431 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
3432
3433 </div>
3434
3435 <!-- _______________________________________________________________________ -->
3436 <div class="doc_subsubsection">
3437   <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
3438   class</a>
3439 </div>
3440 <div class="doc_text">
3441   <ul>
3442     <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
3443     <p>This subclasses represents all two operand instructions whose operands
3444     must be the same type, except for the comparison instructions.</p></li>
3445     <li><tt><a name="CastInst">CastInst</a></tt>
3446     <p>This subclass is the parent of the 12 casting instructions. It provides
3447     common operations on cast instructions.</p>
3448     <li><tt><a name="CmpInst">CmpInst</a></tt>
3449     <p>This subclass respresents the two comparison instructions, 
3450     <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3451     <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3452     <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3453     <p>This subclass is the parent of all terminator instructions (those which
3454     can terminate a block).</p>
3455   </ul>
3456   </div>
3457
3458 <!-- _______________________________________________________________________ -->
3459 <div class="doc_subsubsection">
3460   <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
3461   class</a>
3462 </div>
3463
3464 <div class="doc_text">
3465
3466 <ul>
3467   <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
3468     <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3469 this  <tt>Instruction</tt> is embedded into.</p></li>
3470   <li><tt>bool mayWriteToMemory()</tt>
3471     <p>Returns true if the instruction writes to memory, i.e. it is a
3472       <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
3473   <li><tt>unsigned getOpcode()</tt>
3474     <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
3475   <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
3476     <p>Returns another instance of the specified instruction, identical
3477 in all ways to the original except that the instruction has no parent
3478 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3479 and it has no name</p></li>
3480 </ul>
3481
3482 </div>
3483
3484 <!-- ======================================================================= -->
3485 <div class="doc_subsection">
3486   <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3487 </div>
3488
3489 <div class="doc_text">
3490
3491 <p>Constant represents a base class for different types of constants. It
3492 is subclassed by ConstantInt, ConstantArray, etc. for representing 
3493 the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
3494 a subclass, which represents the address of a global variable or function.
3495 </p>
3496
3497 </div>
3498
3499 <!-- _______________________________________________________________________ -->
3500 <div class="doc_subsubsection">Important Subclasses of Constant </div>
3501 <div class="doc_text">
3502 <ul>
3503   <li>ConstantInt : This subclass of Constant represents an integer constant of
3504   any width.
3505     <ul>
3506       <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3507       value of this constant, an APInt value.</li>
3508       <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3509       value to an int64_t via sign extension. If the value (not the bit width)
3510       of the APInt is too large to fit in an int64_t, an assertion will result.
3511       For this reason, use of this method is discouraged.</li>
3512       <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3513       value to a uint64_t via zero extension. IF the value (not the bit width)
3514       of the APInt is too large to fit in a uint64_t, an assertion will result.
3515       For this reason, use of this method is discouraged.</li>
3516       <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3517       ConstantInt object that represents the value provided by <tt>Val</tt>.
3518       The type is implied as the IntegerType that corresponds to the bit width
3519       of <tt>Val</tt>.</li>
3520       <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
3521       Returns the ConstantInt object that represents the value provided by 
3522       <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3523     </ul>
3524   </li>
3525   <li>ConstantFP : This class represents a floating point constant.
3526     <ul>
3527       <li><tt>double getValue() const</tt>: Returns the underlying value of 
3528       this constant. </li>
3529     </ul>
3530   </li>
3531   <li>ConstantArray : This represents a constant array.
3532     <ul>
3533       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
3534       a vector of component constants that makeup this array. </li>
3535     </ul>
3536   </li>
3537   <li>ConstantStruct : This represents a constant struct.
3538     <ul>
3539       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
3540       a vector of component constants that makeup this array. </li>
3541     </ul>
3542   </li>
3543   <li>GlobalValue : This represents either a global variable or a function. In 
3544   either case, the value is a constant fixed address (after linking). 
3545   </li>
3546 </ul>
3547 </div>
3548
3549
3550 <!-- ======================================================================= -->
3551 <div class="doc_subsection">
3552   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3553 </div>
3554
3555 <div class="doc_text">
3556
3557 <p><tt>#include "<a
3558 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3559 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3560 Class</a><br>
3561 Superclasses: <a href="#Constant"><tt>Constant</tt></a>, 
3562 <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3563
3564 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3565 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3566 visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3567 Because they are visible at global scope, they are also subject to linking with
3568 other globals defined in different translation units.  To control the linking
3569 process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3570 <tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3571 defined by the <tt>LinkageTypes</tt> enumeration.</p>
3572
3573 <p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3574 <tt>static</tt> in C), it is not visible to code outside the current translation
3575 unit, and does not participate in linking.  If it has external linkage, it is
3576 visible to external code, and does participate in linking.  In addition to
3577 linkage information, <tt>GlobalValue</tt>s keep track of which <a
3578 href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3579
3580 <p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3581 by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3582 global is always a pointer to its contents. It is important to remember this
3583 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3584 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3585 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3586 i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3587 the address of the first element of this array and the value of the
3588 <tt>GlobalVariable</tt> are the same, they have different types. The
3589 <tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3590 is <tt>i32.</tt> Because of this, accessing a global value requires you to
3591 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3592 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3593 Language Reference Manual</a>.</p>
3594
3595 </div>
3596
3597 <!-- _______________________________________________________________________ -->
3598 <div class="doc_subsubsection">
3599   <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
3600   class</a>
3601 </div>
3602
3603 <div class="doc_text">
3604
3605 <ul>
3606   <li><tt>bool hasInternalLinkage() const</tt><br>
3607     <tt>bool hasExternalLinkage() const</tt><br>
3608     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3609     <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3610     <p> </p>
3611   </li>
3612   <li><tt><a href="#Module">Module</a> *getParent()</tt>
3613     <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3614 GlobalValue is currently embedded into.</p></li>
3615 </ul>
3616
3617 </div>
3618
3619 <!-- ======================================================================= -->
3620 <div class="doc_subsection">
3621   <a name="Function">The <tt>Function</tt> class</a>
3622 </div>
3623
3624 <div class="doc_text">
3625
3626 <p><tt>#include "<a
3627 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3628 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3629 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
3630 <a href="#Constant"><tt>Constant</tt></a>, 
3631 <a href="#User"><tt>User</tt></a>, 
3632 <a href="#Value"><tt>Value</tt></a></p>
3633
3634 <p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
3635 actually one of the more complex classes in the LLVM hierarchy because it must
3636 keep track of a large amount of data.  The <tt>Function</tt> class keeps track
3637 of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal 
3638 <a href="#Argument"><tt>Argument</tt></a>s, and a 
3639 <a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3640
3641 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3642 commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
3643 ordering of the blocks in the function, which indicate how the code will be
3644 laid out by the backend.  Additionally, the first <a
3645 href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3646 <tt>Function</tt>.  It is not legal in LLVM to explicitly branch to this initial
3647 block.  There are no implicit exit nodes, and in fact there may be multiple exit
3648 nodes from a single <tt>Function</tt>.  If the <a
3649 href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3650 the <tt>Function</tt> is actually a function declaration: the actual body of the
3651 function hasn't been linked in yet.</p>
3652
3653 <p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3654 <tt>Function</tt> class also keeps track of the list of formal <a
3655 href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
3656 container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3657 nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3658 the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3659
3660 <p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3661 LLVM feature that is only used when you have to look up a value by name.  Aside
3662 from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3663 internally to make sure that there are not conflicts between the names of <a
3664 href="#Instruction"><tt>Instruction</tt></a>s, <a
3665 href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3666 href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3667
3668 <p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3669 and therefore also a <a href="#Constant">Constant</a>. The value of the function
3670 is its address (after linking) which is guaranteed to be constant.</p>
3671 </div>
3672
3673 <!-- _______________________________________________________________________ -->
3674 <div class="doc_subsubsection">
3675   <a name="m_Function">Important Public Members of the <tt>Function</tt>
3676   class</a>
3677 </div>
3678
3679 <div class="doc_text">
3680
3681 <ul>
3682   <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3683   *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3684
3685     <p>Constructor used when you need to create new <tt>Function</tt>s to add
3686     the the program.  The constructor must specify the type of the function to
3687     create and what type of linkage the function should have. The <a 
3688     href="#FunctionType"><tt>FunctionType</tt></a> argument
3689     specifies the formal arguments and return value for the function. The same
3690     <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3691     create multiple functions. The <tt>Parent</tt> argument specifies the Module
3692     in which the function is defined. If this argument is provided, the function
3693     will automatically be inserted into that module's list of
3694     functions.</p></li>
3695
3696   <li><tt>bool isDeclaration()</tt>
3697
3698     <p>Return whether or not the <tt>Function</tt> has a body defined.  If the
3699     function is "external", it does not have a body, and thus must be resolved
3700     by linking with a function defined in a different translation unit.</p></li>
3701
3702   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3703     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3704
3705     <tt>begin()</tt>, <tt>end()</tt>
3706     <tt>size()</tt>, <tt>empty()</tt>
3707
3708     <p>These are forwarding methods that make it easy to access the contents of
3709     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3710     list.</p></li>
3711
3712   <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3713
3714     <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
3715     is necessary to use when you need to update the list or perform a complex
3716     action that doesn't have a forwarding method.</p></li>
3717
3718   <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3719 iterator<br>
3720     <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3721
3722     <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3723     <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3724
3725     <p>These are forwarding methods that make it easy to access the contents of
3726     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3727     list.</p></li>
3728
3729   <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3730
3731     <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
3732     necessary to use when you need to update the list or perform a complex
3733     action that doesn't have a forwarding method.</p></li>
3734
3735   <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3736
3737     <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3738     function.  Because the entry block for the function is always the first
3739     block, this returns the first block of the <tt>Function</tt>.</p></li>
3740
3741   <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3742     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3743
3744     <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3745     <tt>Function</tt> and returns the return type of the function, or the <a
3746     href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3747     function.</p></li>
3748
3749   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3750
3751     <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3752     for this <tt>Function</tt>.</p></li>
3753 </ul>
3754
3755 </div>
3756
3757 <!-- ======================================================================= -->
3758 <div class="doc_subsection">
3759   <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3760 </div>
3761
3762 <div class="doc_text">
3763
3764 <p><tt>#include "<a
3765 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3766 <br>
3767 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3768  Class</a><br>
3769 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
3770 <a href="#Constant"><tt>Constant</tt></a>,
3771 <a href="#User"><tt>User</tt></a>,
3772 <a href="#Value"><tt>Value</tt></a></p>
3773
3774 <p>Global variables are represented with the (surprise surprise)
3775 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3776 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3777 always referenced by their address (global values must live in memory, so their
3778 "name" refers to their constant address). See 
3779 <a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
3780 variables may have an initial value (which must be a 
3781 <a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
3782 they may be marked as "constant" themselves (indicating that their contents 
3783 never change at runtime).</p>
3784 </div>
3785
3786 <!-- _______________________________________________________________________ -->
3787 <div class="doc_subsubsection">
3788   <a name="m_GlobalVariable">Important Public Members of the
3789   <tt>GlobalVariable</tt> class</a>
3790 </div>
3791
3792 <div class="doc_text">
3793
3794 <ul>
3795   <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3796   isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3797   *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3798
3799     <p>Create a new global variable of the specified type. If
3800     <tt>isConstant</tt> is true then the global variable will be marked as
3801     unchanging for the program. The Linkage parameter specifies the type of
3802     linkage (internal, external, weak, linkonce, appending) for the variable.
3803     If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3804     LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3805     global variable will have internal linkage.  AppendingLinkage concatenates
3806     together all instances (in different translation units) of the variable
3807     into a single variable but is only applicable to arrays.  &nbsp;See
3808     the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3809     further details on linkage types. Optionally an initializer, a name, and the
3810     module to put the variable into may be specified for the global variable as
3811     well.</p></li>
3812
3813   <li><tt>bool isConstant() const</tt>
3814
3815     <p>Returns true if this is a global variable that is known not to
3816     be modified at runtime.</p></li>
3817
3818   <li><tt>bool hasInitializer()</tt>
3819
3820     <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3821
3822   <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3823
3824     <p>Returns the initial value for a <tt>GlobalVariable</tt>.  It is not legal
3825     to call this method if there is no initializer.</p></li>
3826 </ul>
3827
3828 </div>
3829
3830
3831 <!-- ======================================================================= -->
3832 <div class="doc_subsection">
3833   <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3834 </div>
3835
3836 <div class="doc_text">
3837
3838 <p><tt>#include "<a
3839 href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
3840 doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
3841 Class</a><br>
3842 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3843
3844 <p>This class represents a single entry multiple exit section of the code,
3845 commonly known as a basic block by the compiler community.  The
3846 <tt>BasicBlock</tt> class maintains a list of <a
3847 href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3848 Matching the language definition, the last element of this list of instructions
3849 is always a terminator instruction (a subclass of the <a
3850 href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3851
3852 <p>In addition to tracking the list of instructions that make up the block, the
3853 <tt>BasicBlock</tt> class also keeps track of the <a
3854 href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3855
3856 <p>Note that <tt>BasicBlock</tt>s themselves are <a
3857 href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3858 like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3859 <tt>label</tt>.</p>
3860
3861 </div>
3862
3863 <!-- _______________________________________________________________________ -->
3864 <div class="doc_subsubsection">
3865   <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
3866   class</a>
3867 </div>
3868
3869 <div class="doc_text">
3870 <ul>
3871
3872 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3873  href="#Function">Function</a> *Parent = 0)</tt>
3874
3875 <p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3876 insertion into a function.  The constructor optionally takes a name for the new
3877 block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
3878 the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3879 automatically inserted at the end of the specified <a
3880 href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3881 manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3882
3883 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3884 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3885 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3886 <tt>size()</tt>, <tt>empty()</tt>
3887 STL-style functions for accessing the instruction list.
3888
3889 <p>These methods and typedefs are forwarding functions that have the same
3890 semantics as the standard library methods of the same names.  These methods
3891 expose the underlying instruction list of a basic block in a way that is easy to
3892 manipulate.  To get the full complement of container operations (including
3893 operations to update the list), you must use the <tt>getInstList()</tt>
3894 method.</p></li>
3895
3896 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3897
3898 <p>This method is used to get access to the underlying container that actually
3899 holds the Instructions.  This method must be used when there isn't a forwarding
3900 function in the <tt>BasicBlock</tt> class for the operation that you would like
3901 to perform.  Because there are no forwarding functions for "updating"
3902 operations, you need to use this if you want to update the contents of a
3903 <tt>BasicBlock</tt>.</p></li>
3904
3905 <li><tt><a href="#Function">Function</a> *getParent()</tt>
3906
3907 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3908 embedded into, or a null pointer if it is homeless.</p></li>
3909
3910 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3911
3912 <p> Returns a pointer to the terminator instruction that appears at the end of
3913 the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
3914 instruction in the block is not a terminator, then a null pointer is
3915 returned.</p></li>
3916
3917 </ul>
3918
3919 </div>
3920
3921
3922 <!-- ======================================================================= -->
3923 <div class="doc_subsection">
3924   <a name="Argument">The <tt>Argument</tt> class</a>
3925 </div>
3926
3927 <div class="doc_text">
3928
3929 <p>This subclass of Value defines the interface for incoming formal
3930 arguments to a function. A Function maintains a list of its formal
3931 arguments. An argument has a pointer to the parent Function.</p>
3932
3933 </div>
3934
3935 <!-- *********************************************************************** -->
3936 <hr>
3937 <address>
3938   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
3939   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
3940   <a href="http://validator.w3.org/check/referer"><img
3941   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
3942
3943   <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3944   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3945   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
3946   Last modified: $Date$
3947 </address>
3948
3949 </body>
3950 </html>