Fix more crlf issues.
[oota-llvm.git] / docs / Passes.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <title>LLVM's Analysis and Transform Passes</title>
6   <link rel="stylesheet" href="_static/llvm.css" type="text/css">
7   <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8 </head>
9 <body>
10
11 <!--
12
13 If Passes.html is up to date, the following "one-liner" should print
14 an empty diff.
15
16 egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
17       -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
18 perl >help <<'EOT' && diff -u help html; rm -f help html
19 open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
20 while (<HTML>) {
21   m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
22   $order{$1} = sprintf("%03d", 1 + int %order);
23 }
24 open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
25 while (<HELP>) {
26   m:^    -([^ ]+) +- (.*)$: or next;
27   my $o = $order{$1};
28   $o = "000" unless defined $o;
29   push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
30   push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
31 }
32 @x = map { s/^\d\d\d//; $_ } sort @x;
33 @y = map { s/^\d\d\d//; $_ } sort @y;
34 print @x, @y;
35 EOT
36
37 This (real) one-liner can also be helpful when converting comments to HTML:
38
39 perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'
40
41   -->
42
43 <h1>LLVM's Analysis and Transform Passes</h1>
44
45 <ol>
46   <li><a href="#intro">Introduction</a></li>
47   <li><a href="#analyses">Analysis Passes</a>
48   <li><a href="#transforms">Transform Passes</a></li>
49   <li><a href="#utilities">Utility Passes</a></li>
50 </ol>
51
52 <div class="doc_author">
53   <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
54             and Gordon Henriksen</p>
55 </div>
56
57 <!-- ======================================================================= -->
58 <h2><a name="intro">Introduction</a></h2>
59 <div>
60   <p>This document serves as a high level summary of the optimization features 
61   that LLVM provides. Optimizations are implemented as Passes that traverse some
62   portion of a program to either collect information or transform the program.
63   The table below divides the passes that LLVM provides into three categories.
64   Analysis passes compute information that other passes can use or for debugging
65   or program visualization purposes. Transform passes can use (or invalidate)
66   the analysis passes. Transform passes all mutate the program in some way. 
67   Utility passes provides some utility but don't otherwise fit categorization.
68   For example passes to extract functions to bitcode or write a module to
69   bitcode are neither analysis nor transform passes.
70   <p>The table below provides a quick summary of each pass and links to the more
71   complete pass description later in the document.</p>
72
73 <table>
74 <tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
75 <tr><th>Option</th><th>Name</th></tr>
76 <tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
77 <tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
78 <tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
79 <tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
80 <tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
81 <tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
82 <tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
83 <tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
84 <tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
85 <tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
86 <tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
87 <tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
88 <tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
89 <tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
90 <tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
91 <tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
92 <tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
93 <tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
94 <tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
95 <tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
96 <tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
97 <tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
98 <tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
99 <tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
100 <tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
101 <tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
102 <tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
103 <tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
104 <tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
105 <tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
106 <tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
107 <tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
108 <tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
109 <tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
110 <tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
111 <tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
112 <tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
113 <tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
114 <tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
115 <tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
116 <tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
117 <tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
118 <tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
119 <tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
120 <tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
121
122
123 <tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
124 <tr><th>Option</th><th>Name</th></tr>
125 <tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
126 <tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
127 <tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
128 <tr><td><a href="#bb-vectorize">-bb-vectorize</a></td><td>Combine instructions to form vector instructions within basic blocks</td></tr>
129 <tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
130 <tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
131 <tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
132 <tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
133 <tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
134 <tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
135 <tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
136 <tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
137 <tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
138 <tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
139 <tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
140 <tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
141 <tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
142 <tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
143 <tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
144 <tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
145 <tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
146 <tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
147 <tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
148 <tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
149 <tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
150 <tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
151 <tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
152 <tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
153 <tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
154 <tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
155 <tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
156 <tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
157 <tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
158 <tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
159 <tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
160 <tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
161 <tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
162 <tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
163 <tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
164 <tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
165 <tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
166 <tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
167 <tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
168 <tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
169 <tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
170 <tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
171 <tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
172 <tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
173 <tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
174 <tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
175 <tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
176 <tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
177 <tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
178 <tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
179 <tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
180 <tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
181 <tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
182 <tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
183 <tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
184 <tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
185 <tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
186
187
188 <tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
189 <tr><th>Option</th><th>Name</th></tr>
190 <tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
191 <tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
192 <tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
193 <tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
194 <tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
195 <tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
196 <tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
197 <tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
198 <tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
199 <tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
200 <tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
201 </table>
202
203 </div>
204
205 <!-- ======================================================================= -->
206 <h2><a name="analyses">Analysis Passes</a></h2>
207 <div>
208   <p>This section describes the LLVM Analysis Passes.</p>
209
210 <!-------------------------------------------------------------------------- -->
211 <h3>
212   <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
213 </h3>
214 <div>
215   <p>This is a simple N^2 alias analysis accuracy evaluator.
216   Basically, for each function in the program, it simply queries to see how the
217   alias analysis implementation answers alias queries between each pair of
218   pointers in the function.</p>
219
220   <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
221   Spadini, and Wojciech Stryjewski.</p>
222 </div>
223
224 <!-------------------------------------------------------------------------- -->
225 <h3>
226   <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
227 </h3>
228 <div>
229   <p>A basic alias analysis pass that implements identities (two different
230   globals cannot alias, etc), but does no stateful analysis.</p>
231 </div>
232
233 <!-------------------------------------------------------------------------- -->
234 <h3>
235   <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
236 </h3>
237 <div>
238   <p>Yet to be written.</p>
239 </div>
240
241 <!-------------------------------------------------------------------------- -->
242 <h3>
243   <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
244 </h3>
245 <div>
246   <p>
247   A pass which can be used to count how many alias queries
248   are being made and how the alias analysis implementation being used responds.
249   </p>
250 </div>
251
252 <!-------------------------------------------------------------------------- -->
253 <h3>
254   <a name="debug-aa">-debug-aa: AA use debugger</a>
255 </h3>
256 <div>
257   <p>
258   This simple pass checks alias analysis users to ensure that if they
259   create a new value, they do not query AA without informing it of the value.
260   It acts as a shim over any other AA pass you want.
261   </p>
262   
263   <p>
264   Yes keeping track of every value in the program is expensive, but this is 
265   a debugging pass.
266   </p>
267 </div>
268
269 <!-------------------------------------------------------------------------- -->
270 <h3>
271   <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
272 </h3>
273 <div>
274   <p>
275   This pass is a simple dominator construction algorithm for finding forward
276   dominator frontiers.
277   </p>
278 </div>
279
280 <!-------------------------------------------------------------------------- -->
281 <h3>
282   <a name="domtree">-domtree: Dominator Tree Construction</a>
283 </h3>
284 <div>
285   <p>
286   This pass is a simple dominator construction algorithm for finding forward
287   dominators.
288   </p>
289 </div>
290
291 <!-------------------------------------------------------------------------- -->
292 <h3>
293   <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
294 </h3>
295 <div>
296   <p>
297   This pass, only available in <code>opt</code>, prints the call graph into a
298   <code>.dot</code> graph.  This graph can then be processed with the "dot" tool
299   to convert it to postscript or some other suitable format.
300   </p>
301 </div>
302
303 <!-------------------------------------------------------------------------- -->
304 <h3>
305   <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
306 </h3>
307 <div>
308   <p>
309   This pass, only available in <code>opt</code>, prints the control flow graph
310   into a <code>.dot</code> graph.  This graph can then be processed with the
311   "dot" tool to convert it to postscript or some other suitable format.
312   </p>
313 </div>
314
315 <!-------------------------------------------------------------------------- -->
316 <h3>
317   <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
318 </h3>
319 <div>
320   <p>
321   This pass, only available in <code>opt</code>, prints the control flow graph
322   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
323   then be processed with the "dot" tool to convert it to postscript or some
324   other suitable format.
325   </p>
326 </div>
327
328 <!-------------------------------------------------------------------------- -->
329 <h3>
330   <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
331 </h3>
332 <div>
333   <p>
334   This pass, only available in <code>opt</code>, prints the dominator tree
335   into a <code>.dot</code> graph.  This graph can then be processed with the
336   "dot" tool to convert it to postscript or some other suitable format.
337   </p>
338 </div>
339
340 <!-------------------------------------------------------------------------- -->
341 <h3>
342   <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
343 </h3>
344 <div>
345   <p>
346   This pass, only available in <code>opt</code>, prints the dominator tree
347   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
348   then be processed with the "dot" tool to convert it to postscript or some
349   other suitable format.
350   </p>
351 </div>
352
353 <!-------------------------------------------------------------------------- -->
354 <h3>
355   <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
356 </h3>
357 <div>
358   <p>
359   This pass, only available in <code>opt</code>, prints the post dominator tree
360   into a <code>.dot</code> graph.  This graph can then be processed with the
361   "dot" tool to convert it to postscript or some other suitable format.
362   </p>
363 </div>
364
365 <!-------------------------------------------------------------------------- -->
366 <h3>
367   <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
368 </h3>
369 <div>
370   <p>
371   This pass, only available in <code>opt</code>, prints the post dominator tree
372   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
373   then be processed with the "dot" tool to convert it to postscript or some
374   other suitable format.
375   </p>
376 </div>
377
378 <!-------------------------------------------------------------------------- -->
379 <h3>
380   <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
381 </h3>
382 <div>
383   <p>
384   This simple pass provides alias and mod/ref information for global values
385   that do not have their address taken, and keeps track of whether functions
386   read or write memory (are "pure").  For this simple (but very common) case,
387   we can provide pretty accurate and useful information.
388   </p>
389 </div>
390
391 <!-------------------------------------------------------------------------- -->
392 <h3>
393   <a name="instcount">-instcount: Counts the various types of Instructions</a>
394 </h3>
395 <div>
396   <p>
397   This pass collects the count of all instructions and reports them
398   </p>
399 </div>
400
401 <!-------------------------------------------------------------------------- -->
402 <h3>
403   <a name="intervals">-intervals: Interval Partition Construction</a>
404 </h3>
405 <div>
406   <p>
407   This analysis calculates and represents the interval partition of a function,
408   or a preexisting interval partition.
409   </p>
410   
411   <p>
412   In this way, the interval partition may be used to reduce a flow graph down
413   to its degenerate single node interval partition (unless it is irreducible).
414   </p>
415 </div>
416
417 <!-------------------------------------------------------------------------- -->
418 <h3>
419   <a name="iv-users">-iv-users: Induction Variable Users</a>
420 </h3>
421 <div>
422   <p>Bookkeeping for "interesting" users of expressions computed from 
423   induction variables.</p>
424 </div>
425
426 <!-------------------------------------------------------------------------- -->
427 <h3>
428   <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
429 </h3>
430 <div>
431   <p>Interface for lazy computation of value constraint information.</p>
432 </div>
433
434 <!-------------------------------------------------------------------------- -->
435 <h3>
436   <a name="lda">-lda: Loop Dependence Analysis</a>
437 </h3>
438 <div>
439   <p>Loop dependence analysis framework, which is used to detect dependences in
440   memory accesses in loops.</p>
441 </div>
442
443 <!-------------------------------------------------------------------------- -->
444 <h3>
445   <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
446 </h3>
447 <div>
448   <p>LibCall Alias Analysis.</p>
449 </div>
450
451 <!-------------------------------------------------------------------------- -->
452 <h3>
453   <a name="lint">-lint: Statically lint-checks LLVM IR</a>
454 </h3>
455 <div>
456   <p>This pass statically checks for common and easily-identified constructs
457   which produce undefined or likely unintended behavior in LLVM IR.</p>
458  
459   <p>It is not a guarantee of correctness, in two ways. First, it isn't
460   comprehensive. There are checks which could be done statically which are
461   not yet implemented. Some of these are indicated by TODO comments, but
462   those aren't comprehensive either. Second, many conditions cannot be
463   checked statically. This pass does no dynamic instrumentation, so it
464   can't check for all possible problems.</p>
465   
466   <p>Another limitation is that it assumes all code will be executed. A store
467   through a null pointer in a basic block which is never reached is harmless,
468   but this pass will warn about it anyway.</p>
469  
470   <p>Optimization passes may make conditions that this pass checks for more or
471   less obvious. If an optimization pass appears to be introducing a warning,
472   it may be that the optimization pass is merely exposing an existing
473   condition in the code.</p>
474   
475   <p>This code may be run before instcombine. In many cases, instcombine checks
476   for the same kinds of things and turns instructions with undefined behavior
477   into unreachable (or equivalent). Because of this, this pass makes some
478   effort to look through bitcasts and so on.
479   </p>
480 </div>
481
482 <!-------------------------------------------------------------------------- -->
483 <h3>
484   <a name="loops">-loops: Natural Loop Information</a>
485 </h3>
486 <div>
487   <p>
488   This analysis is used to identify natural loops and determine the loop depth
489   of various nodes of the CFG.  Note that the loops identified may actually be
490   several natural loops that share the same header node... not just a single
491   natural loop.
492   </p>
493 </div>
494
495 <!-------------------------------------------------------------------------- -->
496 <h3>
497   <a name="memdep">-memdep: Memory Dependence Analysis</a>
498 </h3>
499 <div>
500   <p>
501   An analysis that determines, for a given memory operation, what preceding 
502   memory operations it depends on.  It builds on alias analysis information, and 
503   tries to provide a lazy, caching interface to a common kind of alias 
504   information query.
505   </p>
506 </div>
507
508 <!-------------------------------------------------------------------------- -->
509 <h3>
510   <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
511 </h3>
512 <div>
513   <p>This pass decodes the debug info metadata in a module and prints in a
514  (sufficiently-prepared-) human-readable form.
515
516  For example, run this pass from opt along with the -analyze option, and
517  it'll print to standard output.
518   </p>
519 </div>
520
521 <!-------------------------------------------------------------------------- -->
522 <h3>
523   <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
524 </h3>
525 <div>
526   <p>
527   This is the default implementation of the Alias Analysis interface. It always
528   returns "I don't know" for alias queries.  NoAA is unlike other alias analysis
529   implementations, in that it does not chain to a previous analysis. As such it
530   doesn't follow many of the rules that other alias analyses must.
531   </p>
532 </div>
533
534 <!-------------------------------------------------------------------------- -->
535 <h3>
536   <a name="no-profile">-no-profile: No Profile Information</a>
537 </h3>
538 <div>
539   <p>
540   The default "no profile" implementation of the abstract
541   <code>ProfileInfo</code> interface.
542   </p>
543 </div>
544
545 <!-------------------------------------------------------------------------- -->
546 <h3>
547   <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
548 </h3>
549 <div>
550   <p>
551   This pass is a simple post-dominator construction algorithm for finding
552   post-dominator frontiers.
553   </p>
554 </div>
555
556 <!-------------------------------------------------------------------------- -->
557 <h3>
558   <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
559 </h3>
560 <div>
561   <p>
562   This pass is a simple post-dominator construction algorithm for finding
563   post-dominators.
564   </p>
565 </div>
566
567 <!-------------------------------------------------------------------------- -->
568 <h3>
569   <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
570 </h3>
571 <div>
572   <p>Yet to be written.</p>
573 </div>
574
575 <!-------------------------------------------------------------------------- -->
576 <h3>
577   <a name="print-callgraph">-print-callgraph: Print a call graph</a>
578 </h3>
579 <div>
580   <p>
581   This pass, only available in <code>opt</code>, prints the call graph to
582   standard error in a human-readable form.
583   </p>
584 </div>
585
586 <!-------------------------------------------------------------------------- -->
587 <h3>
588   <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
589 </h3>
590 <div>
591   <p>
592   This pass, only available in <code>opt</code>, prints the SCCs of the call
593   graph to standard error in a human-readable form.
594   </p>
595 </div>
596
597 <!-------------------------------------------------------------------------- -->
598 <h3>
599   <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
600 </h3>
601 <div>
602   <p>
603   This pass, only available in <code>opt</code>, prints the SCCs of each
604   function CFG to standard error in a human-readable form.
605   </p>
606 </div>
607
608 <!-------------------------------------------------------------------------- -->
609 <h3>
610   <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
611 </h3>
612 <div>
613   <p>Pass that prints instructions, and associated debug info:</p>
614   <ul>
615   
616   <li>source/line/col information</li>
617   <li>original variable name</li>
618   <li>original type name</li>
619   </ul>
620 </div>
621
622 <!-------------------------------------------------------------------------- -->
623 <h3>
624   <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
625 </h3>
626 <div>
627   <p>Dominator Info Printer.</p>
628 </div>
629
630 <!-------------------------------------------------------------------------- -->
631 <h3>
632   <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
633 </h3>
634 <div>
635   <p>
636   This pass, only available in <code>opt</code>, prints out call sites to
637   external functions that are called with constant arguments.  This can be
638   useful when looking for standard library functions we should constant fold
639   or handle in alias analyses.
640   </p>
641 </div>
642
643 <!-------------------------------------------------------------------------- -->
644 <h3>
645   <a name="print-function">-print-function: Print function to stderr</a>
646 </h3>
647 <div>
648   <p>
649   The <code>PrintFunctionPass</code> class is designed to be pipelined with
650   other <code>FunctionPass</code>es, and prints out the functions of the module
651   as they are processed.
652   </p>
653 </div>
654
655 <!-------------------------------------------------------------------------- -->
656 <h3>
657   <a name="print-module">-print-module: Print module to stderr</a>
658 </h3>
659 <div>
660   <p>
661   This pass simply prints out the entire module when it is executed.
662   </p>
663 </div>
664
665 <!-------------------------------------------------------------------------- -->
666 <h3>
667   <a name="print-used-types">-print-used-types: Find Used Types</a>
668 </h3>
669 <div>
670   <p>
671   This pass is used to seek out all of the types in use by the program.  Note
672   that this analysis explicitly does not include types only used by the symbol
673   table.
674 </div>
675
676 <!-------------------------------------------------------------------------- -->
677 <h3>
678   <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
679 </h3>
680 <div>
681   <p>Profiling information that estimates the profiling information 
682   in a very crude and unimaginative way.
683   </p>
684 </div>
685
686 <!-------------------------------------------------------------------------- -->
687 <h3>
688   <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
689 </h3>
690 <div>
691   <p>
692   A concrete implementation of profiling information that loads the information
693   from a profile dump file.
694   </p>
695 </div>
696
697 <!-------------------------------------------------------------------------- -->
698 <h3>
699   <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
700 </h3>
701 <div>
702   <p>Pass that checks profiling information for plausibility.</p>
703 </div>
704 <h3>
705   <a name="regions">-regions: Detect single entry single exit regions</a>
706 </h3>
707 <div>
708   <p>
709   The <code>RegionInfo</code> pass detects single entry single exit regions in a
710   function, where a region is defined as any subgraph that is connected to the
711   remaining graph at only two spots. Furthermore, an hierarchical region tree is
712   built.
713   </p>
714 </div>
715
716 <!-------------------------------------------------------------------------- -->
717 <h3>
718   <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
719 </h3>
720 <div>
721   <p>
722   The <code>ScalarEvolution</code> analysis can be used to analyze and
723   catagorize scalar expressions in loops.  It specializes in recognizing general
724   induction variables, representing them with the abstract and opaque
725   <code>SCEV</code> class.  Given this analysis, trip counts of loops and other
726   important properties can be obtained.
727   </p>
728   
729   <p>
730   This analysis is primarily useful for induction variable substitution and
731   strength reduction.
732   </p>
733 </div>
734
735 <!-------------------------------------------------------------------------- -->
736 <h3>
737   <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
738 </h3>
739 <div>
740   <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
741  
742   This differs from traditional loop dependence analysis in that it tests
743   for dependencies within a single iteration of a loop, rather than
744   dependencies between different iterations.
745  
746   ScalarEvolution has a more complete understanding of pointer arithmetic
747   than BasicAliasAnalysis' collection of ad-hoc analyses.
748   </p>
749 </div>
750
751 <!-------------------------------------------------------------------------- -->
752 <h3>
753   <a name="targetdata">-targetdata: Target Data Layout</a>
754 </h3>
755 <div>
756   <p>Provides other passes access to information on how the size and alignment
757   required by the target ABI for various data types.</p>
758 </div>
759
760 </div>
761
762 <!-- ======================================================================= -->
763 <h2><a name="transforms">Transform Passes</a></h2>
764 <div>
765   <p>This section describes the LLVM Transform Passes.</p>
766
767 <!-------------------------------------------------------------------------- -->
768 <h3>
769   <a name="adce">-adce: Aggressive Dead Code Elimination</a>
770 </h3>
771 <div>
772   <p>ADCE aggressively tries to eliminate code. This pass is similar to
773   <a href="#dce">DCE</a> but it assumes that values are dead until proven 
774   otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to 
775   the liveness of values.</p>
776 </div>
777
778 <!-------------------------------------------------------------------------- -->
779 <h3>
780   <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
781 </h3>
782 <div>
783   <p>A custom inliner that handles only functions that are marked as 
784   "always inline".</p>
785 </div>
786
787 <!-------------------------------------------------------------------------- -->
788 <h3>
789   <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
790 </h3>
791 <div>
792   <p>
793   This pass promotes "by reference" arguments to be "by value" arguments.  In
794   practice, this means looking for internal functions that have pointer
795   arguments.  If it can prove, through the use of alias analysis, that an
796   argument is *only* loaded, then it can pass the value into the function
797   instead of the address of the value.  This can cause recursive simplification
798   of code and lead to the elimination of allocas (especially in C++ template
799   code like the STL).
800   </p>
801   
802   <p>
803   This pass also handles aggregate arguments that are passed into a function,
804   scalarizing them if the elements of the aggregate are only loaded.  Note that
805   it refuses to scalarize aggregates which would require passing in more than
806   three operands to the function, because passing thousands of operands for a
807   large array or structure is unprofitable!
808   </p>
809   
810   <p>
811   Note that this transformation could also be done for arguments that are only
812   stored to (returning the value instead), but does not currently.  This case
813   would be best handled when and if LLVM starts supporting multiple return
814   values from functions.
815   </p>
816 </div>
817
818 <!-------------------------------------------------------------------------- -->
819 <h3>
820   <a name="bb-vectorize">-bb-vectorize: Basic-Block Vectorization</a>
821 </h3>
822 <div>
823   <p>This pass combines instructions inside basic blocks to form vector
824   instructions. It iterates over each basic block, attempting to pair
825   compatible instructions, repeating this process until no additional
826   pairs are selected for vectorization. When the outputs of some pair
827   of compatible instructions are used as inputs by some other pair of
828   compatible instructions, those pairs are part of a potential
829   vectorization chain. Instruction pairs are only fused into vector
830   instructions when they are part of a chain longer than some
831   threshold length. Moreover, the pass attempts to find the best
832   possible chain for each pair of compatible instructions. These
833   heuristics are intended to prevent vectorization in cases where
834   it would not yield a performance increase of the resulting code.
835   </p>
836 </div>
837
838 <!-------------------------------------------------------------------------- -->
839 <h3>
840   <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
841 </h3>
842 <div>
843   <p>This pass is a very simple profile guided basic block placement algorithm.
844   The idea is to put frequently executed blocks together at the start of the
845   function and hopefully increase the number of fall-through conditional
846   branches.  If there is no profile information for a particular function, this
847   pass basically orders blocks in depth-first order.</p>
848 </div>
849
850 <!-------------------------------------------------------------------------- -->
851 <h3>
852   <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
853 </h3>
854 <div>
855   <p>
856   Break all of the critical edges in the CFG by inserting a dummy basic block.
857   It may be "required" by passes that cannot deal with critical edges. This
858   transformation obviously invalidates the CFG, but can update forward dominator
859   (set, immediate dominators, tree, and frontier) information.
860   </p>
861 </div>
862
863 <!-------------------------------------------------------------------------- -->
864 <h3>
865   <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
866 </h3>
867 <div>
868   This pass munges the code in the input function to better prepare it for
869   SelectionDAG-based code generation. This works around limitations in it's
870   basic-block-at-a-time approach. It should eventually be removed.
871 </div>
872
873 <!-------------------------------------------------------------------------- -->
874 <h3>
875   <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
876 </h3>
877 <div>
878   <p>
879   Merges duplicate global constants together into a single constant that is
880   shared.  This is useful because some passes (ie TraceValues) insert a lot of
881   string constants into the program, regardless of whether or not an existing
882   string is available.
883   </p>
884 </div>
885
886 <!-------------------------------------------------------------------------- -->
887 <h3>
888   <a name="constprop">-constprop: Simple constant propagation</a>
889 </h3>
890 <div>
891   <p>This file implements constant propagation and merging. It looks for
892   instructions involving only constant operands and replaces them with a
893   constant value instead of an instruction. For example:</p>
894   <blockquote><pre>add i32 1, 2</pre></blockquote>
895   <p>becomes</p>
896   <blockquote><pre>i32 3</pre></blockquote>
897   <p>NOTE: this pass has a habit of making definitions be dead.  It is a good 
898   idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass 
899   sometime after running this pass.</p>
900 </div>
901
902 <!-------------------------------------------------------------------------- -->
903 <h3>
904   <a name="dce">-dce: Dead Code Elimination</a>
905 </h3>
906 <div>
907   <p>
908   Dead code elimination is similar to <a href="#die">dead instruction
909   elimination</a>, but it rechecks instructions that were used by removed
910   instructions to see if they are newly dead.
911   </p>
912 </div>
913
914 <!-------------------------------------------------------------------------- -->
915 <h3>
916   <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
917 </h3>
918 <div>
919   <p>
920   This pass deletes dead arguments from internal functions.  Dead argument
921   elimination removes arguments which are directly dead, as well as arguments
922   only passed into function calls as dead arguments of other functions.  This
923   pass also deletes dead arguments in a similar way.
924   </p>
925   
926   <p>
927   This pass is often useful as a cleanup pass to run after aggressive
928   interprocedural passes, which add possibly-dead arguments.
929   </p>
930 </div>
931
932 <!-------------------------------------------------------------------------- -->
933 <h3>
934   <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
935 </h3>
936 <div>
937   <p>
938   This pass is used to cleanup the output of GCC.  It eliminate names for types
939   that are unused in the entire translation unit, using the <a
940   href="#findusedtypes">find used types</a> pass.
941   </p>
942 </div>
943
944 <!-------------------------------------------------------------------------- -->
945 <h3>
946   <a name="die">-die: Dead Instruction Elimination</a>
947 </h3>
948 <div>
949   <p>
950   Dead instruction elimination performs a single pass over the function,
951   removing instructions that are obviously dead.
952   </p>
953 </div>
954
955 <!-------------------------------------------------------------------------- -->
956 <h3>
957   <a name="dse">-dse: Dead Store Elimination</a>
958 </h3>
959 <div>
960   <p>
961   A trivial dead store elimination that only considers basic-block local
962   redundant stores.
963   </p>
964 </div>
965
966 <!-------------------------------------------------------------------------- -->
967 <h3>
968   <a name="functionattrs">-functionattrs: Deduce function attributes</a>
969 </h3>
970 <div>
971   <p>A simple interprocedural pass which walks the call-graph, looking for 
972   functions which do not access or only read non-local memory, and marking them 
973   readnone/readonly.  In addition, it marks function arguments (of pointer type) 
974   'nocapture' if a call to the function does not create any copies of the pointer 
975   value that outlive the call. This more or less means that the pointer is only
976   dereferenced, and not returned from the function or stored in a global.
977   This pass is implemented as a bottom-up traversal of the call-graph.
978   </p>
979 </div>
980
981 <!-------------------------------------------------------------------------- -->
982 <h3>
983   <a name="globaldce">-globaldce: Dead Global Elimination</a>
984 </h3>
985 <div>
986   <p>
987   This transform is designed to eliminate unreachable internal globals from the
988   program.  It uses an aggressive algorithm, searching out globals that are
989   known to be alive.  After it finds all of the globals which are needed, it
990   deletes whatever is left over.  This allows it to delete recursive chunks of
991   the program which are unreachable.
992   </p>
993 </div>
994
995 <!-------------------------------------------------------------------------- -->
996 <h3>
997   <a name="globalopt">-globalopt: Global Variable Optimizer</a>
998 </h3>
999 <div>
1000   <p>
1001   This pass transforms simple global variables that never have their address
1002   taken.  If obviously true, it marks read/write globals as constant, deletes
1003   variables only stored to, etc.
1004   </p>
1005 </div>
1006
1007 <!-------------------------------------------------------------------------- -->
1008 <h3>
1009   <a name="gvn">-gvn: Global Value Numbering</a>
1010 </h3>
1011 <div>
1012   <p>
1013   This pass performs global value numbering to eliminate fully and partially
1014   redundant instructions.  It also performs redundant load elimination.
1015   </p>
1016 </div>
1017
1018 <!-------------------------------------------------------------------------- -->
1019 <h3>
1020   <a name="indvars">-indvars: Canonicalize Induction Variables</a>
1021 </h3>
1022 <div>
1023   <p>
1024   This transformation analyzes and transforms the induction variables (and
1025   computations derived from them) into simpler forms suitable for subsequent
1026   analysis and transformation.
1027   </p>
1028   
1029   <p>
1030   This transformation makes the following changes to each loop with an
1031   identifiable induction variable:
1032   </p>
1033   
1034   <ol>
1035     <li>All loops are transformed to have a <em>single</em> canonical
1036         induction variable which starts at zero and steps by one.</li>
1037     <li>The canonical induction variable is guaranteed to be the first PHI node
1038         in the loop header block.</li>
1039     <li>Any pointer arithmetic recurrences are raised to use array
1040         subscripts.</li>
1041   </ol>
1042   
1043   <p>
1044   If the trip count of a loop is computable, this pass also makes the following
1045   changes:
1046   </p>
1047   
1048   <ol>
1049     <li>The exit condition for the loop is canonicalized to compare the
1050         induction value against the exit value.  This turns loops like:
1051         <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
1052         into
1053         <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
1054     <li>Any use outside of the loop of an expression derived from the indvar
1055         is changed to compute the derived value outside of the loop, eliminating
1056         the dependence on the exit value of the induction variable.  If the only
1057         purpose of the loop is to compute the exit value of some derived
1058         expression, this transformation will make the loop dead.</li>
1059   </ol>
1060   
1061   <p>
1062   This transformation should be followed by strength reduction after all of the
1063   desired loop transformations have been performed.  Additionally, on targets
1064   where it is profitable, the loop could be transformed to count down to zero
1065   (the "do loop" optimization).
1066   </p>
1067 </div>
1068
1069 <!-------------------------------------------------------------------------- -->
1070 <h3>
1071   <a name="inline">-inline: Function Integration/Inlining</a>
1072 </h3>
1073 <div>
1074   <p>
1075   Bottom-up inlining of functions into callees.
1076   </p>
1077 </div>
1078
1079 <!-------------------------------------------------------------------------- -->
1080 <h3>
1081   <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
1082 </h3>
1083 <div>
1084   <p>
1085   This pass instruments the specified program with counters for edge profiling.
1086   Edge profiling can give a reasonable approximation of the hot paths through a
1087   program, and is used for a wide variety of program transformations.
1088   </p>
1089   
1090   <p>
1091   Note that this implementation is very naïve.  It inserts a counter for
1092   <em>every</em> edge in the program, instead of using control flow information
1093   to prune the number of counters inserted.
1094   </p>
1095 </div>
1096
1097 <!-------------------------------------------------------------------------- -->
1098 <h3>
1099   <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
1100 </h3>
1101 <div>
1102   <p>This pass instruments the specified program with counters for edge profiling.
1103   Edge profiling can give a reasonable approximation of the hot paths through a
1104   program, and is used for a wide variety of program transformations.
1105   </p>
1106 </div>
1107
1108 <!-------------------------------------------------------------------------- -->
1109 <h3>
1110   <a name="instcombine">-instcombine: Combine redundant instructions</a>
1111 </h3>
1112 <div>
1113   <p>
1114   Combine instructions to form fewer, simple
1115   instructions.  This pass does not modify the CFG This pass is where algebraic
1116   simplification happens.
1117   </p>
1118   
1119   <p>
1120   This pass combines things like:
1121   </p>
1122   
1123 <blockquote><pre
1124 >%Y = add i32 %X, 1
1125 %Z = add i32 %Y, 1</pre></blockquote>
1126   
1127   <p>
1128   into:
1129   </p>
1130
1131 <blockquote><pre
1132 >%Z = add i32 %X, 2</pre></blockquote>
1133   
1134   <p>
1135   This is a simple worklist driven algorithm.
1136   </p>
1137   
1138   <p>
1139   This pass guarantees that the following canonicalizations are performed on
1140   the program:
1141   </p>
1142
1143   <ul>
1144     <li>If a binary operator has a constant operand, it is moved to the right-
1145         hand side.</li>
1146     <li>Bitwise operators with constant operands are always grouped so that
1147         shifts are performed first, then <code>or</code>s, then
1148         <code>and</code>s, then <code>xor</code>s.</li>
1149     <li>Compare instructions are converted from <code>&lt;</code>,
1150         <code>&gt;</code>, <code>≤</code>, or <code>≥</code> to
1151         <code>=</code> or <code>≠</code> if possible.</li>
1152     <li>All <code>cmp</code> instructions on boolean values are replaced with
1153         logical operations.</li>
1154     <li><code>add <var>X</var>, <var>X</var></code> is represented as
1155         <code>mul <var>X</var>, 2</code> â‡’ <code>shl <var>X</var>, 1</code></li>
1156     <li>Multiplies with a constant power-of-two argument are transformed into
1157         shifts.</li>
1158     <li>… etc.</li>
1159   </ul>
1160 </div>
1161
1162 <!-------------------------------------------------------------------------- -->
1163 <h3>
1164   <a name="internalize">-internalize: Internalize Global Symbols</a>
1165 </h3>
1166 <div>
1167   <p>
1168   This pass loops over all of the functions in the input module, looking for a
1169   main function.  If a main function is found, all other functions and all
1170   global variables with initializers are marked as internal.
1171   </p>
1172 </div>
1173
1174 <!-------------------------------------------------------------------------- -->
1175 <h3>
1176   <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
1177 </h3>
1178 <div>
1179   <p>
1180   This pass implements an <em>extremely</em> simple interprocedural constant
1181   propagation pass.  It could certainly be improved in many different ways,
1182   like using a worklist.  This pass makes arguments dead, but does not remove
1183   them.  The existing dead argument elimination pass should be run after this
1184   to clean up the mess.
1185   </p>
1186 </div>
1187
1188 <!-------------------------------------------------------------------------- -->
1189 <h3>
1190   <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
1191 </h3>
1192 <div>
1193   <p>
1194   An interprocedural variant of <a href="#sccp">Sparse Conditional Constant 
1195   Propagation</a>.
1196   </p>
1197 </div>
1198
1199 <!-------------------------------------------------------------------------- -->
1200 <h3>
1201   <a name="jump-threading">-jump-threading: Jump Threading</a>
1202 </h3>
1203 <div>
1204   <p>
1205   Jump threading tries to find distinct threads of control flow running through
1206   a basic block. This pass looks at blocks that have multiple predecessors and
1207   multiple successors.  If one or more of the predecessors of the block can be
1208   proven to always cause a jump to one of the successors, we forward the edge
1209   from the predecessor to the successor by duplicating the contents of this
1210   block.
1211   </p>
1212   <p>
1213   An example of when this can occur is code like this:
1214   </p>
1215
1216   <pre
1217 >if () { ...
1218   X = 4;
1219 }
1220 if (X &lt; 3) {</pre>
1221
1222   <p>
1223   In this case, the unconditional branch at the end of the first if can be
1224   revectored to the false side of the second if.
1225   </p>
1226 </div>
1227
1228 <!-------------------------------------------------------------------------- -->
1229 <h3>
1230   <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
1231 </h3>
1232 <div>
1233   <p>
1234   This pass transforms loops by placing phi nodes at the end of the loops for
1235   all values that are live across the loop boundary.  For example, it turns
1236   the left into the right code:
1237   </p>
1238   
1239   <pre
1240 >for (...)                for (...)
1241   if (c)                   if (c)
1242     X1 = ...                 X1 = ...
1243   else                     else
1244     X2 = ...                 X2 = ...
1245   X3 = phi(X1, X2)         X3 = phi(X1, X2)
1246 ... = X3 + 4              X4 = phi(X3)
1247                           ... = X4 + 4</pre>
1248   
1249   <p>
1250   This is still valid LLVM; the extra phi nodes are purely redundant, and will
1251   be trivially eliminated by <code>InstCombine</code>.  The major benefit of
1252   this transformation is that it makes many other loop optimizations, such as 
1253   LoopUnswitching, simpler.
1254   </p>
1255 </div>
1256
1257 <!-------------------------------------------------------------------------- -->
1258 <h3>
1259   <a name="licm">-licm: Loop Invariant Code Motion</a>
1260 </h3>
1261 <div>
1262   <p>
1263   This pass performs loop invariant code motion, attempting to remove as much
1264   code from the body of a loop as possible.  It does this by either hoisting
1265   code into the preheader block, or by sinking code to the exit blocks if it is
1266   safe.  This pass also promotes must-aliased memory locations in the loop to
1267   live in registers, thus hoisting and sinking "invariant" loads and stores.
1268   </p>
1269   
1270   <p>
1271   This pass uses alias analysis for two purposes:
1272   </p>
1273   
1274   <ul>
1275     <li>Moving loop invariant loads and calls out of loops.  If we can determine
1276         that a load or call inside of a loop never aliases anything stored to,
1277         we can hoist it or sink it like any other instruction.</li>
1278     <li>Scalar Promotion of Memory - If there is a store instruction inside of
1279         the loop, we try to move the store to happen AFTER the loop instead of
1280         inside of the loop.  This can only happen if a few conditions are true:
1281         <ul>
1282           <li>The pointer stored through is loop invariant.</li>
1283           <li>There are no stores or loads in the loop which <em>may</em> alias
1284               the pointer.  There are no calls in the loop which mod/ref the
1285               pointer.</li>
1286         </ul>
1287         If these conditions are true, we can promote the loads and stores in the
1288         loop of the pointer to use a temporary alloca'd variable.  We then use
1289         the mem2reg functionality to construct the appropriate SSA form for the
1290         variable.</li>
1291   </ul>
1292 </div>
1293
1294 <!-------------------------------------------------------------------------- -->
1295 <h3>
1296   <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
1297 </h3>
1298 <div>
1299   <p>
1300   This file implements the Dead Loop Deletion Pass.  This pass is responsible
1301   for eliminating loops with non-infinite computable trip counts that have no
1302   side effects or volatile instructions, and do not contribute to the
1303   computation of the function's return value.
1304   </p>
1305 </div>
1306
1307 <!-------------------------------------------------------------------------- -->
1308 <h3>
1309   <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
1310 </h3>
1311 <div>
1312   <p>
1313   A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to 
1314   extract each top-level loop into its own new function. If the loop is the
1315   <em>only</em> loop in a given function, it is not touched. This is a pass most
1316   useful for debugging via bugpoint.
1317   </p>
1318 </div>
1319
1320 <!-------------------------------------------------------------------------- -->
1321 <h3>
1322   <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
1323 </h3>
1324 <div>
1325   <p>
1326   Similar to <a href="#loop-extract">Extract loops into new functions</a>,
1327   this pass extracts one natural loop from the program into a function if it
1328   can. This is used by bugpoint.
1329   </p>
1330 </div>
1331
1332 <!-------------------------------------------------------------------------- -->
1333 <h3>
1334   <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
1335 </h3>
1336 <div>
1337   <p>
1338   This pass performs a strength reduction on array references inside loops that
1339   have as one or more of their components the loop induction variable.  This is
1340   accomplished by creating a new value to hold the initial value of the array
1341   access for the first iteration, and then creating a new GEP instruction in
1342   the loop to increment the value by the appropriate amount.
1343   </p>
1344 </div>
1345
1346 <!-------------------------------------------------------------------------- -->
1347 <h3>
1348   <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
1349 </h3>
1350 <div>
1351   <p>A simple loop rotation transformation.</p>
1352 </div>
1353
1354 <!-------------------------------------------------------------------------- -->
1355 <h3>
1356   <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
1357 </h3>
1358 <div>
1359   <p>
1360   This pass performs several transformations to transform natural loops into a
1361   simpler form, which makes subsequent analyses and transformations simpler and
1362   more effective.
1363   </p>
1364   
1365   <p>
1366   Loop pre-header insertion guarantees that there is a single, non-critical
1367   entry edge from outside of the loop to the loop header.  This simplifies a
1368   number of analyses and transformations, such as LICM.
1369   </p>
1370   
1371   <p>
1372   Loop exit-block insertion guarantees that all exit blocks from the loop
1373   (blocks which are outside of the loop that have predecessors inside of the
1374   loop) only have predecessors from inside of the loop (and are thus dominated
1375   by the loop header).  This simplifies transformations such as store-sinking
1376   that are built into LICM.
1377   </p>
1378   
1379   <p>
1380   This pass also guarantees that loops will have exactly one backedge.
1381   </p>
1382   
1383   <p>
1384   Note that the simplifycfg pass will clean up blocks which are split out but
1385   end up being unnecessary, so usage of this pass should not pessimize
1386   generated code.
1387   </p>
1388   
1389   <p>
1390   This pass obviously modifies the CFG, but updates loop information and
1391   dominator information.
1392   </p>
1393 </div>
1394
1395 <!-------------------------------------------------------------------------- -->
1396 <h3>
1397   <a name="loop-unroll">-loop-unroll: Unroll loops</a>
1398 </h3>
1399 <div>
1400   <p>
1401   This pass implements a simple loop unroller.  It works best when loops have
1402   been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
1403   allowing it to determine the trip counts of loops easily.
1404   </p>
1405 </div>
1406
1407 <!-------------------------------------------------------------------------- -->
1408 <h3>
1409   <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
1410 </h3>
1411 <div>
1412   <p>
1413   This pass transforms loops that contain branches on loop-invariant conditions
1414   to have multiple loops.  For example, it turns the left into the right code:
1415   </p>
1416   
1417   <pre
1418 >for (...)                  if (lic)
1419   A                          for (...)
1420   if (lic)                     A; B; C
1421     B                      else
1422   C                          for (...)
1423                                A; C</pre>
1424   
1425   <p>
1426   This can increase the size of the code exponentially (doubling it every time
1427   a loop is unswitched) so we only unswitch if the resultant code will be
1428   smaller than a threshold.
1429   </p>
1430   
1431   <p>
1432   This pass expects LICM to be run before it to hoist invariant conditions out
1433   of the loop, to make the unswitching opportunity obvious.
1434   </p>
1435 </div>
1436
1437 <!-------------------------------------------------------------------------- -->
1438 <h3>
1439   <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
1440 </h3>
1441 <div>
1442   <p>
1443   This pass lowers atomic intrinsics to non-atomic form for use in a known
1444   non-preemptible environment.
1445   </p>
1446
1447   <p>
1448   The pass does not verify that the environment is non-preemptible (in
1449   general this would require knowledge of the entire call graph of the
1450   program including any libraries which may not be available in bitcode form);
1451   it simply lowers every atomic intrinsic.
1452   </p>
1453 </div>
1454
1455 <!-------------------------------------------------------------------------- -->
1456 <h3>
1457   <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
1458 </h3>
1459 <div>
1460   <p>
1461   This transformation is designed for use by code generators which do not yet
1462   support stack unwinding.  This pass supports two models of exception handling
1463   lowering, the 'cheap' support and the 'expensive' support.
1464   </p>
1465   
1466   <p>
1467   'Cheap' exception handling support gives the program the ability to execute
1468   any program which does not "throw an exception", by turning 'invoke'
1469   instructions into calls and by turning 'unwind' instructions into calls to
1470   abort().  If the program does dynamically use the unwind instruction, the
1471   program will print a message then abort.
1472   </p>
1473   
1474   <p>
1475   'Expensive' exception handling support gives the full exception handling
1476   support to the program at the cost of making the 'invoke' instruction
1477   really expensive.  It basically inserts setjmp/longjmp calls to emulate the
1478   exception handling as necessary.
1479   </p>
1480   
1481   <p>
1482   Because the 'expensive' support slows down programs a lot, and EH is only
1483   used for a subset of the programs, it must be specifically enabled by the
1484   <tt>-enable-correct-eh-support</tt> option.
1485   </p>
1486   
1487   <p>
1488   Note that after this pass runs the CFG is not entirely accurate (exceptional
1489   control flow edges are not correct anymore) so only very simple things should
1490   be done after the lowerinvoke pass has run (like generation of native code).
1491   This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
1492   support the invoke instruction yet" lowering pass.
1493   </p>
1494 </div>
1495
1496 <!-------------------------------------------------------------------------- -->
1497 <h3>
1498   <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
1499 </h3>
1500 <div>
1501   <p>
1502   Rewrites <tt>switch</tt> instructions with a sequence of branches, which
1503   allows targets to get away with not implementing the switch instruction until
1504   it is convenient.
1505   </p>
1506 </div>
1507
1508 <!-------------------------------------------------------------------------- -->
1509 <h3>
1510   <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
1511 </h3>
1512 <div>
1513   <p>
1514   This file promotes memory references to be register references.  It promotes
1515   <tt>alloca</tt> instructions which only have <tt>load</tt>s and
1516   <tt>store</tt>s as uses.  An <tt>alloca</tt> is transformed by using dominator
1517   frontiers to place <tt>phi</tt> nodes, then traversing the function in
1518   depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
1519   appropriate. This is just the standard SSA construction algorithm to construct
1520   "pruned" SSA form.
1521   </p>
1522 </div>
1523
1524 <!-------------------------------------------------------------------------- -->
1525 <h3>
1526   <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
1527 </h3>
1528 <div>
1529   <p>
1530   This pass performs various transformations related to eliminating memcpy
1531   calls, or transforming sets of stores into memset's.
1532   </p>
1533 </div>
1534
1535 <!-------------------------------------------------------------------------- -->
1536 <h3>
1537   <a name="mergefunc">-mergefunc: Merge Functions</a>
1538 </h3>
1539 <div>
1540   <p>This pass looks for equivalent functions that are mergable and folds them.
1541  
1542   A hash is computed from the function, based on its type and number of
1543   basic blocks.
1544  
1545   Once all hashes are computed, we perform an expensive equality comparison
1546   on each function pair. This takes n^2/2 comparisons per bucket, so it's
1547   important that the hash function be high quality. The equality comparison
1548   iterates through each instruction in each basic block.
1549  
1550   When a match is found the functions are folded. If both functions are
1551   overridable, we move the functionality into a new internal function and
1552   leave two overridable thunks to it.
1553   </p>
1554 </div>
1555
1556 <!-------------------------------------------------------------------------- -->
1557 <h3>
1558   <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
1559 </h3>
1560 <div>
1561   <p>
1562   Ensure that functions have at most one <tt>ret</tt> instruction in them.
1563   Additionally, it keeps track of which node is the new exit node of the CFG.
1564   </p>
1565 </div>
1566
1567 <!-------------------------------------------------------------------------- -->
1568 <h3>
1569   <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
1570 </h3>
1571 <div>
1572   <p>This pass performs partial inlining, typically by inlining an if 
1573   statement that surrounds the body of the function.
1574   </p>
1575 </div>
1576
1577 <!-------------------------------------------------------------------------- -->
1578 <h3>
1579   <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
1580 </h3>
1581 <div>
1582   <p>
1583   This file implements a simple interprocedural pass which walks the call-graph,
1584   turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
1585   only if the callee cannot throw an exception. It implements this as a
1586   bottom-up traversal of the call-graph.
1587   </p>
1588 </div>
1589
1590 <!-------------------------------------------------------------------------- -->
1591 <h3>
1592   <a name="reassociate">-reassociate: Reassociate expressions</a>
1593 </h3>
1594 <div>
1595   <p>
1596   This pass reassociates commutative expressions in an order that is designed
1597   to promote better constant propagation, GCSE, LICM, PRE, etc.
1598   </p>
1599   
1600   <p>
1601   For example: 4 + (<var>x</var> + 5) â‡’ <var>x</var> + (4 + 5)
1602   </p>
1603   
1604   <p>
1605   In the implementation of this algorithm, constants are assigned rank = 0,
1606   function arguments are rank = 1, and other values are assigned ranks
1607   corresponding to the reverse post order traversal of current function
1608   (starting at 2), which effectively gives values in deep loops higher rank
1609   than values not in loops.
1610   </p>
1611 </div>
1612
1613 <!-------------------------------------------------------------------------- -->
1614 <h3>
1615   <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
1616 </h3>
1617 <div>
1618   <p>
1619   This file demotes all registers to memory references.  It is intended to be
1620   the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>.  By converting to
1621   <tt>load</tt> instructions, the only values live across basic blocks are
1622   <tt>alloca</tt> instructions and <tt>load</tt> instructions before
1623   <tt>phi</tt> nodes. It is intended that this should make CFG hacking much 
1624   easier. To make later hacking easier, the entry block is split into two, such
1625   that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
1626   entry block.
1627   </p>
1628 </div>
1629
1630 <!-------------------------------------------------------------------------- -->
1631 <h3>
1632   <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
1633 </h3>
1634 <div>
1635   <p>
1636   The well-known scalar replacement of aggregates transformation.  This
1637   transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
1638   or array) into individual <tt>alloca</tt> instructions for each member if
1639   possible.  Then, if possible, it transforms the individual <tt>alloca</tt>
1640   instructions into nice clean scalar SSA form.
1641   </p>
1642   
1643   <p>
1644   This combines a simple scalar replacement of aggregates algorithm with the <a
1645   href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact, 
1646   especially for C++ programs.  As such, iterating between <tt>scalarrepl</tt>, 
1647   then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to 
1648   promote works well.
1649   </p>
1650 </div>
1651
1652 <!-------------------------------------------------------------------------- -->
1653 <h3>
1654   <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
1655 </h3>
1656 <div>
1657   <p>
1658   Sparse conditional constant propagation and merging, which can be summarized
1659   as:
1660   </p>
1661   
1662   <ol>
1663     <li>Assumes values are constant unless proven otherwise</li>
1664     <li>Assumes BasicBlocks are dead unless proven otherwise</li>
1665     <li>Proves values to be constant, and replaces them with constants</li>
1666     <li>Proves conditional branches to be unconditional</li>
1667   </ol>
1668   
1669   <p>
1670   Note that this pass has a habit of making definitions be dead.  It is a good
1671   idea to to run a DCE pass sometime after running this pass.
1672   </p>
1673 </div>
1674
1675 <!-------------------------------------------------------------------------- -->
1676 <h3>
1677   <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
1678 </h3>
1679 <div>
1680   <p>
1681   Applies a variety of small optimizations for calls to specific well-known 
1682   function calls (e.g. runtime library functions). For example, a call
1683    <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be 
1684    transformed into simply <tt>return 3</tt>.
1685   </p>
1686 </div>
1687
1688 <!-------------------------------------------------------------------------- -->
1689 <h3>
1690   <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
1691 </h3>
1692 <div>
1693   <p>
1694   Performs dead code elimination and basic block merging. Specifically:
1695   </p>
1696   
1697   <ol>
1698     <li>Removes basic blocks with no predecessors.</li>
1699     <li>Merges a basic block into its predecessor if there is only one and the
1700         predecessor only has one successor.</li>
1701     <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
1702     <li>Eliminates a basic block that only contains an unconditional
1703         branch.</li>
1704   </ol>
1705 </div>
1706
1707 <!-------------------------------------------------------------------------- -->
1708 <h3>
1709   <a name="sink">-sink: Code sinking</a>
1710 </h3>
1711 <div>
1712   <p>This pass moves instructions into successor blocks, when possible, so that
1713  they aren't executed on paths where their results aren't needed.
1714   </p>
1715 </div>
1716
1717 <!-------------------------------------------------------------------------- -->
1718 <h3>
1719   <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
1720 </h3>
1721 <div>
1722   <p>
1723   This pass finds functions that return a struct (using a pointer to the struct
1724   as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
1725   replaces them with a new function that simply returns each of the elements of
1726   that struct (using multiple return values).
1727   </p>
1728
1729   <p>
1730   This pass works under a number of conditions:
1731   </p>
1732
1733   <ul>
1734   <li>The returned struct must not contain other structs</li>
1735   <li>The returned struct must only be used to load values from</li>
1736   <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
1737   </ul>
1738 </div>
1739
1740 <!-------------------------------------------------------------------------- -->
1741 <h3>
1742   <a name="strip">-strip: Strip all symbols from a module</a>
1743 </h3>
1744 <div>
1745   <p>
1746   performs code stripping. this transformation can delete:
1747   </p>
1748   
1749   <ol>
1750     <li>names for virtual registers</li>
1751     <li>symbols for internal globals and functions</li>
1752     <li>debug information</li>
1753   </ol>
1754   
1755   <p>
1756   note that this transformation makes code much less readable, so it should
1757   only be used in situations where the <tt>strip</tt> utility would be used,
1758   such as reducing code size or making it harder to reverse engineer code.
1759   </p>
1760 </div>
1761
1762 <!-------------------------------------------------------------------------- -->
1763 <h3>
1764   <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
1765 </h3>
1766 <div>
1767   <p>
1768   performs code stripping. this transformation can delete:
1769   </p>
1770   
1771   <ol>
1772     <li>names for virtual registers</li>
1773     <li>symbols for internal globals and functions</li>
1774     <li>debug information</li>
1775   </ol>
1776   
1777   <p>
1778   note that this transformation makes code much less readable, so it should
1779   only be used in situations where the <tt>strip</tt> utility would be used,
1780   such as reducing code size or making it harder to reverse engineer code.
1781   </p>
1782 </div>
1783
1784 <!-------------------------------------------------------------------------- -->
1785 <h3>
1786   <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
1787 </h3>
1788 <div>
1789   <p>
1790   This pass loops over all of the functions in the input module, looking for
1791   dead declarations and removes them. Dead declarations are declarations of
1792   functions for which no implementation is available (i.e., declarations for
1793   unused library functions).
1794   </p>
1795 </div>
1796
1797 <!-------------------------------------------------------------------------- -->
1798 <h3>
1799   <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
1800 </h3>
1801 <div>
1802   <p>This pass implements code stripping. Specifically, it can delete:</p>
1803   <ul>
1804   <li>names for virtual registers</li>
1805   <li>symbols for internal globals and functions</li>
1806   <li>debug information</li>
1807   </ul>
1808   <p>
1809   Note that this transformation makes code much less readable, so it should
1810   only be used in situations where the 'strip' utility would be used, such as
1811   reducing code size or making it harder to reverse engineer code.
1812   </p>
1813 </div>
1814
1815 <!-------------------------------------------------------------------------- -->
1816 <h3>
1817   <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
1818 </h3>
1819 <div>
1820   <p>This pass implements code stripping. Specifically, it can delete:</p>
1821   <ul>
1822   <li>names for virtual registers</li>
1823   <li>symbols for internal globals and functions</li>
1824   <li>debug information</li>
1825   </ul>
1826   <p>
1827   Note that this transformation makes code much less readable, so it should
1828   only be used in situations where the 'strip' utility would be used, such as
1829   reducing code size or making it harder to reverse engineer code.
1830   </p>
1831 </div>
1832
1833 <!-------------------------------------------------------------------------- -->
1834 <h3>
1835   <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
1836 </h3>
1837 <div>
1838   <p>
1839   This file transforms calls of the current function (self recursion) followed
1840   by a return instruction with a branch to the entry of the function, creating
1841   a loop.  This pass also implements the following extensions to the basic
1842   algorithm:
1843   </p>
1844   
1845   <ul>
1846   <li>Trivial instructions between the call and return do not prevent the
1847       transformation from taking place, though currently the analysis cannot
1848       support moving any really useful instructions (only dead ones).
1849   <li>This pass transforms functions that are prevented from being tail
1850       recursive by an associative expression to use an accumulator variable,
1851       thus compiling the typical naive factorial or <tt>fib</tt> implementation
1852       into efficient code.
1853   <li>TRE is performed if the function returns void, if the return
1854       returns the result returned by the call, or if the function returns a
1855       run-time constant on all exits from the function.  It is possible, though
1856       unlikely, that the return returns something else (like constant 0), and
1857       can still be TRE'd.  It can be TRE'd if <em>all other</em> return 
1858       instructions in the function return the exact same value.
1859   <li>If it can prove that callees do not access theier caller stack frame,
1860       they are marked as eligible for tail call elimination (by the code
1861       generator).
1862   </ul>
1863 </div>
1864
1865 <!-------------------------------------------------------------------------- -->
1866 <h3>
1867   <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
1868 </h3>
1869 <div>
1870   <p>
1871   This pass performs a limited form of tail duplication, intended to simplify
1872   CFGs by removing some unconditional branches.  This pass is necessary to
1873   straighten out loops created by the C front-end, but also is capable of
1874   making other code nicer.  After this pass is run, the CFG simplify pass
1875   should be run to clean up the mess.
1876   </p>
1877 </div>
1878
1879 </div>
1880
1881 <!-- ======================================================================= -->
1882 <h2><a name="utilities">Utility Passes</a></h2>
1883 <div>
1884   <p>This section describes the LLVM Utility Passes.</p>
1885
1886 <!-------------------------------------------------------------------------- -->
1887 <h3>
1888   <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
1889 </h3>
1890 <div>
1891   <p>
1892   Same as dead argument elimination, but deletes arguments to functions which
1893   are external.  This is only for use by <a
1894   href="Bugpoint.html">bugpoint</a>.</p>
1895 </div>
1896
1897 <!-------------------------------------------------------------------------- -->
1898 <h3>
1899   <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
1900 </h3>
1901 <div>
1902   <p>
1903   This pass is used by bugpoint to extract all blocks from the module into their
1904   own functions.</p>
1905 </div>
1906
1907 <!-------------------------------------------------------------------------- -->
1908 <h3>
1909   <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
1910 </h3>
1911 <div>
1912   <p>This is a little utility pass that gives instructions names, this is mostly
1913  useful when diffing the effect of an optimization because deleting an
1914  unnamed instruction can change all other instruction numbering, making the
1915  diff very noisy.  
1916   </p>
1917 </div>
1918
1919 <!-------------------------------------------------------------------------- -->
1920 <h3>
1921   <a name="preverify">-preverify: Preliminary module verification</a>
1922 </h3>
1923 <div>
1924   <p>
1925   Ensures that the module is in the form required by the <a
1926   href="#verifier">Module Verifier</a> pass.
1927   </p>
1928   
1929   <p>
1930   Running the verifier runs this pass automatically, so there should be no need
1931   to use it directly.
1932   </p>
1933 </div>
1934
1935 <!-------------------------------------------------------------------------- -->
1936 <h3>
1937   <a name="verify">-verify: Module Verifier</a>
1938 </h3>
1939 <div>
1940   <p>
1941   Verifies an LLVM IR code. This is useful to run after an optimization which is
1942   undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
1943   emitting bitcode, and also that malformed bitcode is likely to make LLVM
1944   crash. All language front-ends are therefore encouraged to verify their output
1945   before performing optimizing transformations.
1946   </p>
1947
1948   <ul>
1949     <li>Both of a binary operator's parameters are of the same type.</li>
1950     <li>Verify that the indices of mem access instructions match other
1951         operands.</li>
1952     <li>Verify that arithmetic and other things are only performed on
1953         first-class types.  Verify that shifts and logicals only happen on
1954         integrals f.e.</li>
1955     <li>All of the constants in a switch statement are of the correct type.</li>
1956     <li>The code is in valid SSA form.</li>
1957     <li>It is illegal to put a label into any other type (like a structure) or 
1958         to return one.</li>
1959     <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
1960         invalid.</li>
1961     <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
1962     <li>PHI nodes must be the first thing in a basic block, all grouped
1963         together.</li>
1964     <li>PHI nodes must have at least one entry.</li>
1965     <li>All basic blocks should only end with terminator insts, not contain
1966         them.</li>
1967     <li>The entry node to a function must not have predecessors.</li>
1968     <li>All Instructions must be embedded into a basic block.</li>
1969     <li>Functions cannot take a void-typed parameter.</li>
1970     <li>Verify that a function's argument list agrees with its declared
1971         type.</li>
1972     <li>It is illegal to specify a name for a void value.</li>
1973     <li>It is illegal to have an internal global value with no initializer.</li>
1974     <li>It is illegal to have a ret instruction that returns a value that does
1975         not agree with the function return value type.</li>
1976     <li>Function call argument types match the function prototype.</li>
1977     <li>All other things that are tested by asserts spread about the code.</li>
1978   </ul>
1979   
1980   <p>
1981   Note that this does not provide full security verification (like Java), but
1982   instead just tries to ensure that code is well-formed.
1983   </p>
1984 </div>
1985
1986 <!-------------------------------------------------------------------------- -->
1987 <h3>
1988   <a name="view-cfg">-view-cfg: View CFG of function</a>
1989 </h3>
1990 <div>
1991   <p>
1992   Displays the control flow graph using the GraphViz tool.
1993   </p>
1994 </div>
1995
1996 <!-------------------------------------------------------------------------- -->
1997 <h3>
1998   <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
1999 </h3>
2000 <div>
2001   <p>
2002   Displays the control flow graph using the GraphViz tool, but omitting function
2003   bodies.
2004   </p>
2005 </div>
2006
2007 <!-------------------------------------------------------------------------- -->
2008 <h3>
2009   <a name="view-dom">-view-dom: View dominance tree of function</a>
2010 </h3>
2011 <div>
2012   <p>
2013   Displays the dominator tree using the GraphViz tool.
2014   </p>
2015 </div>
2016
2017 <!-------------------------------------------------------------------------- -->
2018 <h3>
2019   <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
2020 </h3>
2021 <div>
2022   <p>
2023   Displays the dominator tree using the GraphViz tool, but omitting function
2024   bodies.
2025   </p>
2026 </div>
2027
2028 <!-------------------------------------------------------------------------- -->
2029 <h3>
2030   <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
2031 </h3>
2032 <div>
2033   <p>
2034   Displays the post dominator tree using the GraphViz tool.
2035   </p>
2036 </div>
2037
2038 <!-------------------------------------------------------------------------- -->
2039 <h3>
2040   <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
2041 </h3>
2042 <div>
2043   <p>
2044   Displays the post dominator tree using the GraphViz tool, but omitting
2045   function bodies.
2046   </p>
2047 </div>
2048
2049 </div>
2050
2051 <!-- *********************************************************************** -->
2052
2053 <hr>
2054 <address>
2055   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2056   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2057   <a href="http://validator.w3.org/check/referer"><img
2058   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2059
2060   <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
2061   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
2062   Last modified: $Date$
2063 </address>
2064
2065 </body>
2066 </html>