IR: Add 'distinct' MDNodes to bitcode and assembly
[oota-llvm.git] / docs / LangRef.rst
1 ==============================
2 LLVM Language Reference Manual
3 ==============================
4
5 .. contents::
6    :local:
7    :depth: 4
8
9 Abstract
10 ========
11
12 This document is a reference manual for the LLVM assembly language. LLVM
13 is a Static Single Assignment (SSA) based representation that provides
14 type safety, low-level operations, flexibility, and the capability of
15 representing 'all' high-level languages cleanly. It is the common code
16 representation used throughout all phases of the LLVM compilation
17 strategy.
18
19 Introduction
20 ============
21
22 The LLVM code representation is designed to be used in three different
23 forms: as an in-memory compiler IR, as an on-disk bitcode representation
24 (suitable for fast loading by a Just-In-Time compiler), and as a human
25 readable assembly language representation. This allows LLVM to provide a
26 powerful intermediate representation for efficient compiler
27 transformations and analysis, while providing a natural means to debug
28 and visualize the transformations. The three different forms of LLVM are
29 all equivalent. This document describes the human readable
30 representation and notation.
31
32 The LLVM representation aims to be light-weight and low-level while
33 being expressive, typed, and extensible at the same time. It aims to be
34 a "universal IR" of sorts, by being at a low enough level that
35 high-level ideas may be cleanly mapped to it (similar to how
36 microprocessors are "universal IR's", allowing many source languages to
37 be mapped to them). By providing type information, LLVM can be used as
38 the target of optimizations: for example, through pointer analysis, it
39 can be proven that a C automatic variable is never accessed outside of
40 the current function, allowing it to be promoted to a simple SSA value
41 instead of a memory location.
42
43 .. _wellformed:
44
45 Well-Formedness
46 ---------------
47
48 It is important to note that this document describes 'well formed' LLVM
49 assembly language. There is a difference between what the parser accepts
50 and what is considered 'well formed'. For example, the following
51 instruction is syntactically okay, but not well formed:
52
53 .. code-block:: llvm
54
55     %x = add i32 1, %x
56
57 because the definition of ``%x`` does not dominate all of its uses. The
58 LLVM infrastructure provides a verification pass that may be used to
59 verify that an LLVM module is well formed. This pass is automatically
60 run by the parser after parsing input assembly and by the optimizer
61 before it outputs bitcode. The violations pointed out by the verifier
62 pass indicate bugs in transformation passes or input to the parser.
63
64 .. _identifiers:
65
66 Identifiers
67 ===========
68
69 LLVM identifiers come in two basic types: global and local. Global
70 identifiers (functions, global variables) begin with the ``'@'``
71 character. Local identifiers (register names, types) begin with the
72 ``'%'`` character. Additionally, there are three different formats for
73 identifiers, for different purposes:
74
75 #. Named values are represented as a string of characters with their
76    prefix. For example, ``%foo``, ``@DivisionByZero``,
77    ``%a.really.long.identifier``. The actual regular expression used is
78    '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
79    characters in their names can be surrounded with quotes. Special
80    characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81    code for the character in hexadecimal. In this way, any character can
82    be used in a name value, even quotes themselves. The ``"\01"`` prefix
83    can be used on global variables to suppress mangling.
84 #. Unnamed values are represented as an unsigned numeric value with
85    their prefix. For example, ``%12``, ``@2``, ``%44``.
86 #. Constants, which are described in the section  Constants_ below.
87
88 LLVM requires that values start with a prefix for two reasons: Compilers
89 don't need to worry about name clashes with reserved words, and the set
90 of reserved words may be expanded in the future without penalty.
91 Additionally, unnamed identifiers allow a compiler to quickly come up
92 with a temporary variable without having to avoid symbol table
93 conflicts.
94
95 Reserved words in LLVM are very similar to reserved words in other
96 languages. There are keywords for different opcodes ('``add``',
97 '``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98 '``i32``', etc...), and others. These reserved words cannot conflict
99 with variable names, because none of them start with a prefix character
100 (``'%'`` or ``'@'``).
101
102 Here is an example of LLVM code to multiply the integer variable
103 '``%X``' by 8:
104
105 The easy way:
106
107 .. code-block:: llvm
108
109     %result = mul i32 %X, 8
110
111 After strength reduction:
112
113 .. code-block:: llvm
114
115     %result = shl i32 %X, 3
116
117 And the hard way:
118
119 .. code-block:: llvm
120
121     %0 = add i32 %X, %X           ; yields i32:%0
122     %1 = add i32 %0, %0           ; yields i32:%1
123     %result = add i32 %1, %1
124
125 This last way of multiplying ``%X`` by 8 illustrates several important
126 lexical features of LLVM:
127
128 #. Comments are delimited with a '``;``' and go until the end of line.
129 #. Unnamed temporaries are created when the result of a computation is
130    not assigned to a named value.
131 #. Unnamed temporaries are numbered sequentially (using a per-function
132    incrementing counter, starting with 0). Note that basic blocks and unnamed
133    function parameters are included in this numbering. For example, if the
134    entry basic block is not given a label name and all function parameters are
135    named, then it will get number 0.
136
137 It also shows a convention that we follow in this document. When
138 demonstrating instructions, we will follow an instruction with a comment
139 that defines the type and name of value produced.
140
141 High Level Structure
142 ====================
143
144 Module Structure
145 ----------------
146
147 LLVM programs are composed of ``Module``'s, each of which is a
148 translation unit of the input programs. Each module consists of
149 functions, global variables, and symbol table entries. Modules may be
150 combined together with the LLVM linker, which merges function (and
151 global variable) definitions, resolves forward declarations, and merges
152 symbol table entries. Here is an example of the "hello world" module:
153
154 .. code-block:: llvm
155
156     ; Declare the string constant as a global constant.
157     @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
158
159     ; External declaration of the puts function
160     declare i32 @puts(i8* nocapture) nounwind
161
162     ; Definition of main function
163     define i32 @main() {   ; i32()*
164       ; Convert [13 x i8]* to i8  *...
165       %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
167       ; Call puts function to write out the string to stdout.
168       call i32 @puts(i8* %cast210)
169       ret i32 0
170     }
171
172     ; Named metadata
173     !0 = !{i32 42, null, !"string"}
174     !foo = !{!0}
175
176 This example is made up of a :ref:`global variable <globalvars>` named
177 "``.str``", an external declaration of the "``puts``" function, a
178 :ref:`function definition <functionstructure>` for "``main``" and
179 :ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181 In general, a module is made up of a list of global values (where both
182 functions and global variables are global values). Global values are
183 represented by a pointer to a memory location (in this case, a pointer
184 to an array of char, and a pointer to a function), and have one of the
185 following :ref:`linkage types <linkage>`.
186
187 .. _linkage:
188
189 Linkage Types
190 -------------
191
192 All Global Variables and Functions have one of the following types of
193 linkage:
194
195 ``private``
196     Global values with "``private``" linkage are only directly
197     accessible by objects in the current module. In particular, linking
198     code into a module with an private global value may cause the
199     private to be renamed as necessary to avoid collisions. Because the
200     symbol is private to the module, all references can be updated. This
201     doesn't show up in any symbol table in the object file.
202 ``internal``
203     Similar to private, but the value shows as a local symbol
204     (``STB_LOCAL`` in the case of ELF) in the object file. This
205     corresponds to the notion of the '``static``' keyword in C.
206 ``available_externally``
207     Globals with "``available_externally``" linkage are never emitted
208     into the object file corresponding to the LLVM module. They exist to
209     allow inlining and other optimizations to take place given knowledge
210     of the definition of the global, which is known to be somewhere
211     outside the module. Globals with ``available_externally`` linkage
212     are allowed to be discarded at will, and are otherwise the same as
213     ``linkonce_odr``. This linkage type is only allowed on definitions,
214     not declarations.
215 ``linkonce``
216     Globals with "``linkonce``" linkage are merged with other globals of
217     the same name when linkage occurs. This can be used to implement
218     some forms of inline functions, templates, or other code which must
219     be generated in each translation unit that uses it, but where the
220     body may be overridden with a more definitive definition later.
221     Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222     that ``linkonce`` linkage does not actually allow the optimizer to
223     inline the body of this function into callers because it doesn't
224     know if this definition of the function is the definitive definition
225     within the program or whether it will be overridden by a stronger
226     definition. To enable inlining and other optimizations, use
227     "``linkonce_odr``" linkage.
228 ``weak``
229     "``weak``" linkage has the same merging semantics as ``linkonce``
230     linkage, except that unreferenced globals with ``weak`` linkage may
231     not be discarded. This is used for globals that are declared "weak"
232     in C source code.
233 ``common``
234     "``common``" linkage is most similar to "``weak``" linkage, but they
235     are used for tentative definitions in C, such as "``int X;``" at
236     global scope. Symbols with "``common``" linkage are merged in the
237     same way as ``weak symbols``, and they may not be deleted if
238     unreferenced. ``common`` symbols may not have an explicit section,
239     must have a zero initializer, and may not be marked
240     ':ref:`constant <globalvars>`'. Functions and aliases may not have
241     common linkage.
242
243 .. _linkage_appending:
244
245 ``appending``
246     "``appending``" linkage may only be applied to global variables of
247     pointer to array type. When two global variables with appending
248     linkage are linked together, the two global arrays are appended
249     together. This is the LLVM, typesafe, equivalent of having the
250     system linker append together "sections" with identical names when
251     .o files are linked.
252 ``extern_weak``
253     The semantics of this linkage follow the ELF object file model: the
254     symbol is weak until linked, if not linked, the symbol becomes null
255     instead of being an undefined reference.
256 ``linkonce_odr``, ``weak_odr``
257     Some languages allow differing globals to be merged, such as two
258     functions with different semantics. Other languages, such as
259     ``C++``, ensure that only equivalent globals are ever merged (the
260     "one definition rule" --- "ODR").  Such languages can use the
261     ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262     global will only be merged with equivalent globals. These linkage
263     types are otherwise the same as their non-``odr`` versions.
264 ``external``
265     If none of the above identifiers are used, the global is externally
266     visible, meaning that it participates in linkage and can be used to
267     resolve external symbol references.
268
269 It is illegal for a function *declaration* to have any linkage type
270 other than ``external`` or ``extern_weak``.
271
272 .. _callingconv:
273
274 Calling Conventions
275 -------------------
276
277 LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278 :ref:`invokes <i_invoke>` can all have an optional calling convention
279 specified for the call. The calling convention of any pair of dynamic
280 caller/callee must match, or the behavior of the program is undefined.
281 The following calling conventions are supported by LLVM, and more may be
282 added in the future:
283
284 "``ccc``" - The C calling convention
285     This calling convention (the default if no other calling convention
286     is specified) matches the target C calling conventions. This calling
287     convention supports varargs function calls and tolerates some
288     mismatch in the declared prototype and implemented declaration of
289     the function (as does normal C).
290 "``fastcc``" - The fast calling convention
291     This calling convention attempts to make calls as fast as possible
292     (e.g. by passing things in registers). This calling convention
293     allows the target to use whatever tricks it wants to produce fast
294     code for the target, without having to conform to an externally
295     specified ABI (Application Binary Interface). `Tail calls can only
296     be optimized when this, the GHC or the HiPE convention is
297     used. <CodeGenerator.html#id80>`_ This calling convention does not
298     support varargs and requires the prototype of all callees to exactly
299     match the prototype of the function definition.
300 "``coldcc``" - The cold calling convention
301     This calling convention attempts to make code in the caller as
302     efficient as possible under the assumption that the call is not
303     commonly executed. As such, these calls often preserve all registers
304     so that the call does not break any live ranges in the caller side.
305     This calling convention does not support varargs and requires the
306     prototype of all callees to exactly match the prototype of the
307     function definition. Furthermore the inliner doesn't consider such function
308     calls for inlining.
309 "``cc 10``" - GHC convention
310     This calling convention has been implemented specifically for use by
311     the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312     It passes everything in registers, going to extremes to achieve this
313     by disabling callee save registers. This calling convention should
314     not be used lightly but only for specific situations such as an
315     alternative to the *register pinning* performance technique often
316     used when implementing functional programming languages. At the
317     moment only X86 supports this convention and it has the following
318     limitations:
319
320     -  On *X86-32* only supports up to 4 bit type parameters. No
321        floating point types are supported.
322     -  On *X86-64* only supports up to 10 bit type parameters and 6
323        floating point parameters.
324
325     This calling convention supports `tail call
326     optimization <CodeGenerator.html#id80>`_ but requires both the
327     caller and callee are using it.
328 "``cc 11``" - The HiPE calling convention
329     This calling convention has been implemented specifically for use by
330     the `High-Performance Erlang
331     (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332     native code compiler of the `Ericsson's Open Source Erlang/OTP
333     system <http://www.erlang.org/download.shtml>`_. It uses more
334     registers for argument passing than the ordinary C calling
335     convention and defines no callee-saved registers. The calling
336     convention properly supports `tail call
337     optimization <CodeGenerator.html#id80>`_ but requires that both the
338     caller and the callee use it. It uses a *register pinning*
339     mechanism, similar to GHC's convention, for keeping frequently
340     accessed runtime components pinned to specific hardware registers.
341     At the moment only X86 supports this convention (both 32 and 64
342     bit).
343 "``webkit_jscc``" - WebKit's JavaScript calling convention
344     This calling convention has been implemented for `WebKit FTL JIT
345     <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346     stack right to left (as cdecl does), and returns a value in the
347     platform's customary return register.
348 "``anyregcc``" - Dynamic calling convention for code patching
349     This is a special convention that supports patching an arbitrary code
350     sequence in place of a call site. This convention forces the call
351     arguments into registers but allows them to be dynamcially
352     allocated. This can currently only be used with calls to
353     llvm.experimental.patchpoint because only this intrinsic records
354     the location of its arguments in a side table. See :doc:`StackMaps`.
355 "``preserve_mostcc``" - The `PreserveMost` calling convention
356     This calling convention attempts to make the code in the caller as little
357     intrusive as possible. This calling convention behaves identical to the `C`
358     calling convention on how arguments and return values are passed, but it
359     uses a different set of caller/callee-saved registers. This alleviates the
360     burden of saving and recovering a large register set before and after the
361     call in the caller. If the arguments are passed in callee-saved registers,
362     then they will be preserved by the callee across the call. This doesn't
363     apply for values returned in callee-saved registers.
364
365     - On X86-64 the callee preserves all general purpose registers, except for
366       R11. R11 can be used as a scratch register. Floating-point registers
367       (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369     The idea behind this convention is to support calls to runtime functions
370     that have a hot path and a cold path. The hot path is usually a small piece
371     of code that doesn't many registers. The cold path might need to call out to
372     another function and therefore only needs to preserve the caller-saved
373     registers, which haven't already been saved by the caller. The
374     `PreserveMost` calling convention is very similar to the `cold` calling
375     convention in terms of caller/callee-saved registers, but they are used for
376     different types of function calls. `coldcc` is for function calls that are
377     rarely executed, whereas `preserve_mostcc` function calls are intended to be
378     on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379     doesn't prevent the inliner from inlining the function call.
380
381     This calling convention will be used by a future version of the ObjectiveC
382     runtime and should therefore still be considered experimental at this time.
383     Although this convention was created to optimize certain runtime calls to
384     the ObjectiveC runtime, it is not limited to this runtime and might be used
385     by other runtimes in the future too. The current implementation only
386     supports X86-64, but the intention is to support more architectures in the
387     future.
388 "``preserve_allcc``" - The `PreserveAll` calling convention
389     This calling convention attempts to make the code in the caller even less
390     intrusive than the `PreserveMost` calling convention. This calling
391     convention also behaves identical to the `C` calling convention on how
392     arguments and return values are passed, but it uses a different set of
393     caller/callee-saved registers. This removes the burden of saving and
394     recovering a large register set before and after the call in the caller. If
395     the arguments are passed in callee-saved registers, then they will be
396     preserved by the callee across the call. This doesn't apply for values
397     returned in callee-saved registers.
398
399     - On X86-64 the callee preserves all general purpose registers, except for
400       R11. R11 can be used as a scratch register. Furthermore it also preserves
401       all floating-point registers (XMMs/YMMs).
402
403     The idea behind this convention is to support calls to runtime functions
404     that don't need to call out to any other functions.
405
406     This calling convention, like the `PreserveMost` calling convention, will be
407     used by a future version of the ObjectiveC runtime and should be considered
408     experimental at this time.
409 "``cc <n>``" - Numbered convention
410     Any calling convention may be specified by number, allowing
411     target-specific calling conventions to be used. Target specific
412     calling conventions start at 64.
413
414 More calling conventions can be added/defined on an as-needed basis, to
415 support Pascal conventions or any other well-known target-independent
416 convention.
417
418 .. _visibilitystyles:
419
420 Visibility Styles
421 -----------------
422
423 All Global Variables and Functions have one of the following visibility
424 styles:
425
426 "``default``" - Default style
427     On targets that use the ELF object file format, default visibility
428     means that the declaration is visible to other modules and, in
429     shared libraries, means that the declared entity may be overridden.
430     On Darwin, default visibility means that the declaration is visible
431     to other modules. Default visibility corresponds to "external
432     linkage" in the language.
433 "``hidden``" - Hidden style
434     Two declarations of an object with hidden visibility refer to the
435     same object if they are in the same shared object. Usually, hidden
436     visibility indicates that the symbol will not be placed into the
437     dynamic symbol table, so no other module (executable or shared
438     library) can reference it directly.
439 "``protected``" - Protected style
440     On ELF, protected visibility indicates that the symbol will be
441     placed in the dynamic symbol table, but that references within the
442     defining module will bind to the local symbol. That is, the symbol
443     cannot be overridden by another module.
444
445 A symbol with ``internal`` or ``private`` linkage must have ``default``
446 visibility.
447
448 .. _dllstorageclass:
449
450 DLL Storage Classes
451 -------------------
452
453 All Global Variables, Functions and Aliases can have one of the following
454 DLL storage class:
455
456 ``dllimport``
457     "``dllimport``" causes the compiler to reference a function or variable via
458     a global pointer to a pointer that is set up by the DLL exporting the
459     symbol. On Microsoft Windows targets, the pointer name is formed by
460     combining ``__imp_`` and the function or variable name.
461 ``dllexport``
462     "``dllexport``" causes the compiler to provide a global pointer to a pointer
463     in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464     Microsoft Windows targets, the pointer name is formed by combining
465     ``__imp_`` and the function or variable name. Since this storage class
466     exists for defining a dll interface, the compiler, assembler and linker know
467     it is externally referenced and must refrain from deleting the symbol.
468
469 .. _tls_model:
470
471 Thread Local Storage Models
472 ---------------------------
473
474 A variable may be defined as ``thread_local``, which means that it will
475 not be shared by threads (each thread will have a separated copy of the
476 variable). Not all targets support thread-local variables. Optionally, a
477 TLS model may be specified:
478
479 ``localdynamic``
480     For variables that are only used within the current shared library.
481 ``initialexec``
482     For variables in modules that will not be loaded dynamically.
483 ``localexec``
484     For variables defined in the executable and only used within it.
485
486 If no explicit model is given, the "general dynamic" model is used.
487
488 The models correspond to the ELF TLS models; see `ELF Handling For
489 Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490 more information on under which circumstances the different models may
491 be used. The target may choose a different TLS model if the specified
492 model is not supported, or if a better choice of model can be made.
493
494 A model can also be specified in a alias, but then it only governs how
495 the alias is accessed. It will not have any effect in the aliasee.
496
497 .. _namedtypes:
498
499 Structure Types
500 ---------------
501
502 LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503 types <t_struct>`.  Literal types are uniqued structurally, but identified types
504 are never uniqued.  An :ref:`opaque structural type <t_opaque>` can also be used
505 to forward declare a type that is not yet available.
506
507 An example of a identified structure specification is:
508
509 .. code-block:: llvm
510
511     %mytype = type { %mytype*, i32 }
512
513 Prior to the LLVM 3.0 release, identified types were structurally uniqued.  Only
514 literal types are uniqued in recent versions of LLVM.
515
516 .. _globalvars:
517
518 Global Variables
519 ----------------
520
521 Global variables define regions of memory allocated at compilation time
522 instead of run-time.
523
524 Global variables definitions must be initialized.
525
526 Global variables in other translation units can also be declared, in which
527 case they don't have an initializer.
528
529 Either global variable definitions or declarations may have an explicit section
530 to be placed in and may have an optional explicit alignment specified.
531
532 A variable may be defined as a global ``constant``, which indicates that
533 the contents of the variable will **never** be modified (enabling better
534 optimization, allowing the global data to be placed in the read-only
535 section of an executable, etc). Note that variables that need runtime
536 initialization cannot be marked ``constant`` as there is a store to the
537 variable.
538
539 LLVM explicitly allows *declarations* of global variables to be marked
540 constant, even if the final definition of the global is not. This
541 capability can be used to enable slightly better optimization of the
542 program, but requires the language definition to guarantee that
543 optimizations based on the 'constantness' are valid for the translation
544 units that do not include the definition.
545
546 As SSA values, global variables define pointer values that are in scope
547 (i.e. they dominate) all basic blocks in the program. Global variables
548 always define a pointer to their "content" type because they describe a
549 region of memory, and all memory objects in LLVM are accessed through
550 pointers.
551
552 Global variables can be marked with ``unnamed_addr`` which indicates
553 that the address is not significant, only the content. Constants marked
554 like this can be merged with other constants if they have the same
555 initializer. Note that a constant with significant address *can* be
556 merged with a ``unnamed_addr`` constant, the result being a constant
557 whose address is significant.
558
559 A global variable may be declared to reside in a target-specific
560 numbered address space. For targets that support them, address spaces
561 may affect how optimizations are performed and/or what target
562 instructions are used to access the variable. The default address space
563 is zero. The address space qualifier must precede any other attributes.
564
565 LLVM allows an explicit section to be specified for globals. If the
566 target supports it, it will emit globals to the section specified.
567 Additionally, the global can placed in a comdat if the target has the necessary
568 support.
569
570 By default, global initializers are optimized by assuming that global
571 variables defined within the module are not modified from their
572 initial values before the start of the global initializer.  This is
573 true even for variables potentially accessible from outside the
574 module, including those with external linkage or appearing in
575 ``@llvm.used`` or dllexported variables. This assumption may be suppressed
576 by marking the variable with ``externally_initialized``.
577
578 An explicit alignment may be specified for a global, which must be a
579 power of 2. If not present, or if the alignment is set to zero, the
580 alignment of the global is set by the target to whatever it feels
581 convenient. If an explicit alignment is specified, the global is forced
582 to have exactly that alignment. Targets and optimizers are not allowed
583 to over-align the global if the global has an assigned section. In this
584 case, the extra alignment could be observable: for example, code could
585 assume that the globals are densely packed in their section and try to
586 iterate over them as an array, alignment padding would break this
587 iteration. The maximum alignment is ``1 << 29``.
588
589 Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
591 Variables and aliasaes can have a
592 :ref:`Thread Local Storage Model <tls_model>`.
593
594 Syntax::
595
596     [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
597                          [unnamed_addr] [AddrSpace] [ExternallyInitialized]
598                          <global | constant> <Type> [<InitializerConstant>]
599                          [, section "name"] [, comdat [($name)]]
600                          [, align <Alignment>]
601
602 For example, the following defines a global in a numbered address space
603 with an initializer, section, and alignment:
604
605 .. code-block:: llvm
606
607     @G = addrspace(5) constant float 1.0, section "foo", align 4
608
609 The following example just declares a global variable
610
611 .. code-block:: llvm
612
613    @G = external global i32
614
615 The following example defines a thread-local global with the
616 ``initialexec`` TLS model:
617
618 .. code-block:: llvm
619
620     @G = thread_local(initialexec) global i32 0, align 4
621
622 .. _functionstructure:
623
624 Functions
625 ---------
626
627 LLVM function definitions consist of the "``define``" keyword, an
628 optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
629 style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630 an optional :ref:`calling convention <callingconv>`,
631 an optional ``unnamed_addr`` attribute, a return type, an optional
632 :ref:`parameter attribute <paramattrs>` for the return type, a function
633 name, a (possibly empty) argument list (each with optional :ref:`parameter
634 attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
635 an optional section, an optional alignment,
636 an optional :ref:`comdat <langref_comdats>`,
637 an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638 an optional :ref:`prologue <prologuedata>`, an opening
639 curly brace, a list of basic blocks, and a closing curly brace.
640
641 LLVM function declarations consist of the "``declare``" keyword, an
642 optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
643 style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644 an optional :ref:`calling convention <callingconv>`,
645 an optional ``unnamed_addr`` attribute, a return type, an optional
646 :ref:`parameter attribute <paramattrs>` for the return type, a function
647 name, a possibly empty list of arguments, an optional alignment, an optional
648 :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649 and an optional :ref:`prologue <prologuedata>`.
650
651 A function definition contains a list of basic blocks, forming the CFG (Control
652 Flow Graph) for the function. Each basic block may optionally start with a label
653 (giving the basic block a symbol table entry), contains a list of instructions,
654 and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655 function return). If an explicit label is not provided, a block is assigned an
656 implicit numbered label, using the next value from the same counter as used for
657 unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658 entry block does not have an explicit label, it will be assigned label "%0",
659 then the first unnamed temporary in that block will be "%1", etc.
660
661 The first basic block in a function is special in two ways: it is
662 immediately executed on entrance to the function, and it is not allowed
663 to have predecessor basic blocks (i.e. there can not be any branches to
664 the entry block of a function). Because the block can have no
665 predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667 LLVM allows an explicit section to be specified for functions. If the
668 target supports it, it will emit functions to the section specified.
669 Additionally, the function can placed in a COMDAT.
670
671 An explicit alignment may be specified for a function. If not present,
672 or if the alignment is set to zero, the alignment of the function is set
673 by the target to whatever it feels convenient. If an explicit alignment
674 is specified, the function is forced to have at least that much
675 alignment. All alignments must be a power of 2.
676
677 If the ``unnamed_addr`` attribute is given, the address is know to not
678 be significant and two identical functions can be merged.
679
680 Syntax::
681
682     define [linkage] [visibility] [DLLStorageClass]
683            [cconv] [ret attrs]
684            <ResultType> @<FunctionName> ([argument list])
685            [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
686            [align N] [gc] [prefix Constant] [prologue Constant] { ... }
687
688 The argument list is a comma seperated sequence of arguments where each
689 argument is of the following form
690
691 Syntax::
692
693    <type> [parameter Attrs] [name]
694
695
696 .. _langref_aliases:
697
698 Aliases
699 -------
700
701 Aliases, unlike function or variables, don't create any new data. They
702 are just a new symbol and metadata for an existing position.
703
704 Aliases have a name and an aliasee that is either a global value or a
705 constant expression.
706
707 Aliases may have an optional :ref:`linkage type <linkage>`, an optional
708 :ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709 <dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
710
711 Syntax::
712
713     @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
714
715 The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
716 ``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
717 might not correctly handle dropping a weak symbol that is aliased.
718
719 Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
720 the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721 to the same content.
722
723 Since aliases are only a second name, some restrictions apply, of which
724 some can only be checked when producing an object file:
725
726 * The expression defining the aliasee must be computable at assembly
727   time. Since it is just a name, no relocations can be used.
728
729 * No alias in the expression can be weak as the possibility of the
730   intermediate alias being overridden cannot be represented in an
731   object file.
732
733 * No global value in the expression can be a declaration, since that
734   would require a relocation, which is not possible.
735
736 .. _langref_comdats:
737
738 Comdats
739 -------
740
741 Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
743 Comdats have a name which represents the COMDAT key.  All global objects that
744 specify this key will only end up in the final object file if the linker chooses
745 that key over some other key.  Aliases are placed in the same COMDAT that their
746 aliasee computes to, if any.
747
748 Comdats have a selection kind to provide input on how the linker should
749 choose between keys in two different object files.
750
751 Syntax::
752
753     $<Name> = comdat SelectionKind
754
755 The selection kind must be one of the following:
756
757 ``any``
758     The linker may choose any COMDAT key, the choice is arbitrary.
759 ``exactmatch``
760     The linker may choose any COMDAT key but the sections must contain the
761     same data.
762 ``largest``
763     The linker will choose the section containing the largest COMDAT key.
764 ``noduplicates``
765     The linker requires that only section with this COMDAT key exist.
766 ``samesize``
767     The linker may choose any COMDAT key but the sections must contain the
768     same amount of data.
769
770 Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771 ``any`` as a selection kind.
772
773 Here is an example of a COMDAT group where a function will only be selected if
774 the COMDAT key's section is the largest:
775
776 .. code-block:: llvm
777
778    $foo = comdat largest
779    @foo = global i32 2, comdat($foo)
780
781    define void @bar() comdat($foo) {
782      ret void
783    }
784
785 As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786 the global name:
787
788 .. code-block:: llvm
789
790   $foo = comdat any
791   @foo = global i32 2, comdat
792
793
794 In a COFF object file, this will create a COMDAT section with selection kind
795 ``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796 and another COMDAT section with selection kind
797 ``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
798 section and contains the contents of the ``@bar`` symbol.
799
800 There are some restrictions on the properties of the global object.
801 It, or an alias to it, must have the same name as the COMDAT group when
802 targeting COFF.
803 The contents and size of this object may be used during link-time to determine
804 which COMDAT groups get selected depending on the selection kind.
805 Because the name of the object must match the name of the COMDAT group, the
806 linkage of the global object must not be local; local symbols can get renamed
807 if a collision occurs in the symbol table.
808
809 The combined use of COMDATS and section attributes may yield surprising results.
810 For example:
811
812 .. code-block:: llvm
813
814    $foo = comdat any
815    $bar = comdat any
816    @g1 = global i32 42, section "sec", comdat($foo)
817    @g2 = global i32 42, section "sec", comdat($bar)
818
819 From the object file perspective, this requires the creation of two sections
820 with the same name.  This is necessary because both globals belong to different
821 COMDAT groups and COMDATs, at the object file level, are represented by
822 sections.
823
824 Note that certain IR constructs like global variables and functions may create
825 COMDATs in the object file in addition to any which are specified using COMDAT
826 IR.  This arises, for example, when a global variable has linkonce_odr linkage.
827
828 .. _namedmetadatastructure:
829
830 Named Metadata
831 --------------
832
833 Named metadata is a collection of metadata. :ref:`Metadata
834 nodes <metadata>` (but not metadata strings) are the only valid
835 operands for a named metadata.
836
837 Syntax::
838
839     ; Some unnamed metadata nodes, which are referenced by the named metadata.
840     !0 = !{!"zero"}
841     !1 = !{!"one"}
842     !2 = !{!"two"}
843     ; A named metadata.
844     !name = !{!0, !1, !2}
845
846 .. _paramattrs:
847
848 Parameter Attributes
849 --------------------
850
851 The return type and each parameter of a function type may have a set of
852 *parameter attributes* associated with them. Parameter attributes are
853 used to communicate additional information about the result or
854 parameters of a function. Parameter attributes are considered to be part
855 of the function, not of the function type, so functions with different
856 parameter attributes can have the same function type.
857
858 Parameter attributes are simple keywords that follow the type specified.
859 If multiple parameter attributes are needed, they are space separated.
860 For example:
861
862 .. code-block:: llvm
863
864     declare i32 @printf(i8* noalias nocapture, ...)
865     declare i32 @atoi(i8 zeroext)
866     declare signext i8 @returns_signed_char()
867
868 Note that any attributes for the function result (``nounwind``,
869 ``readonly``) come immediately after the argument list.
870
871 Currently, only the following parameter attributes are defined:
872
873 ``zeroext``
874     This indicates to the code generator that the parameter or return
875     value should be zero-extended to the extent required by the target's
876     ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877     the caller (for a parameter) or the callee (for a return value).
878 ``signext``
879     This indicates to the code generator that the parameter or return
880     value should be sign-extended to the extent required by the target's
881     ABI (which is usually 32-bits) by the caller (for a parameter) or
882     the callee (for a return value).
883 ``inreg``
884     This indicates that this parameter or return value should be treated
885     in a special target-dependent fashion during while emitting code for
886     a function call or return (usually, by putting it in a register as
887     opposed to memory, though some targets use it to distinguish between
888     two different kinds of registers). Use of this attribute is
889     target-specific.
890 ``byval``
891     This indicates that the pointer parameter should really be passed by
892     value to the function. The attribute implies that a hidden copy of
893     the pointee is made between the caller and the callee, so the callee
894     is unable to modify the value in the caller. This attribute is only
895     valid on LLVM pointer arguments. It is generally used to pass
896     structs and arrays by value, but is also valid on pointers to
897     scalars. The copy is considered to belong to the caller not the
898     callee (for example, ``readonly`` functions should not write to
899     ``byval`` parameters). This is not a valid attribute for return
900     values.
901
902     The byval attribute also supports specifying an alignment with the
903     align attribute. It indicates the alignment of the stack slot to
904     form and the known alignment of the pointer specified to the call
905     site. If the alignment is not specified, then the code generator
906     makes a target-specific assumption.
907
908 .. _attr_inalloca:
909
910 ``inalloca``
911
912     The ``inalloca`` argument attribute allows the caller to take the
913     address of outgoing stack arguments.  An ``inalloca`` argument must
914     be a pointer to stack memory produced by an ``alloca`` instruction.
915     The alloca, or argument allocation, must also be tagged with the
916     inalloca keyword.  Only the last argument may have the ``inalloca``
917     attribute, and that argument is guaranteed to be passed in memory.
918
919     An argument allocation may be used by a call at most once because
920     the call may deallocate it.  The ``inalloca`` attribute cannot be
921     used in conjunction with other attributes that affect argument
922     storage, like ``inreg``, ``nest``, ``sret``, or ``byval``.  The
923     ``inalloca`` attribute also disables LLVM's implicit lowering of
924     large aggregate return values, which means that frontend authors
925     must lower them with ``sret`` pointers.
926
927     When the call site is reached, the argument allocation must have
928     been the most recent stack allocation that is still live, or the
929     results are undefined.  It is possible to allocate additional stack
930     space after an argument allocation and before its call site, but it
931     must be cleared off with :ref:`llvm.stackrestore
932     <int_stackrestore>`.
933
934     See :doc:`InAlloca` for more information on how to use this
935     attribute.
936
937 ``sret``
938     This indicates that the pointer parameter specifies the address of a
939     structure that is the return value of the function in the source
940     program. This pointer must be guaranteed by the caller to be valid:
941     loads and stores to the structure may be assumed by the callee
942     not to trap and to be properly aligned. This may only be applied to
943     the first parameter. This is not a valid attribute for return
944     values.
945
946 ``align <n>``
947     This indicates that the pointer value may be assumed by the optimizer to
948     have the specified alignment.
949
950     Note that this attribute has additional semantics when combined with the
951     ``byval`` attribute.
952
953 .. _noalias:
954
955 ``noalias``
956     This indicates that objects accessed via pointer values
957     :ref:`based <pointeraliasing>` on the argument or return value are not also
958     accessed, during the execution of the function, via pointer values not
959     *based* on the argument or return value. The attribute on a return value
960     also has additional semantics described below. The caller shares the
961     responsibility with the callee for ensuring that these requirements are met.
962     For further details, please see the discussion of the NoAlias response in
963     :ref:`alias analysis <Must, May, or No>`.
964
965     Note that this definition of ``noalias`` is intentionally similar
966     to the definition of ``restrict`` in C99 for function arguments.
967
968     For function return values, C99's ``restrict`` is not meaningful,
969     while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970     attribute on return values are stronger than the semantics of the attribute
971     when used on function arguments. On function return values, the ``noalias``
972     attribute indicates that the function acts like a system memory allocation
973     function, returning a pointer to allocated storage disjoint from the
974     storage for any other object accessible to the caller.
975
976 ``nocapture``
977     This indicates that the callee does not make any copies of the
978     pointer that outlive the callee itself. This is not a valid
979     attribute for return values.
980
981 .. _nest:
982
983 ``nest``
984     This indicates that the pointer parameter can be excised using the
985     :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
986     attribute for return values and can only be applied to one parameter.
987
988 ``returned``
989     This indicates that the function always returns the argument as its return
990     value. This is an optimization hint to the code generator when generating
991     the caller, allowing tail call optimization and omission of register saves
992     and restores in some cases; it is not checked or enforced when generating
993     the callee. The parameter and the function return type must be valid
994     operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995     valid attribute for return values and can only be applied to one parameter.
996
997 ``nonnull``
998     This indicates that the parameter or return pointer is not null. This
999     attribute may only be applied to pointer typed parameters. This is not
1000     checked or enforced by LLVM, the caller must ensure that the pointer
1001     passed in is non-null, or the callee must ensure that the returned pointer 
1002     is non-null.
1003
1004 ``dereferenceable(<n>)``
1005     This indicates that the parameter or return pointer is dereferenceable. This
1006     attribute may only be applied to pointer typed parameters. A pointer that
1007     is dereferenceable can be loaded from speculatively without a risk of
1008     trapping. The number of bytes known to be dereferenceable must be provided
1009     in parentheses. It is legal for the number of bytes to be less than the
1010     size of the pointee type. The ``nonnull`` attribute does not imply
1011     dereferenceability (consider a pointer to one element past the end of an
1012     array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013     ``addrspace(0)`` (which is the default address space).
1014
1015 .. _gc:
1016
1017 Garbage Collector Names
1018 -----------------------
1019
1020 Each function may specify a garbage collector name, which is simply a
1021 string:
1022
1023 .. code-block:: llvm
1024
1025     define void @f() gc "name" { ... }
1026
1027 The compiler declares the supported values of *name*. Specifying a
1028 collector will cause the compiler to alter its output in order to
1029 support the named garbage collection algorithm.
1030
1031 .. _prefixdata:
1032
1033 Prefix Data
1034 -----------
1035
1036 Prefix data is data associated with a function which the code
1037 generator will emit immediately before the function's entrypoint.
1038 The purpose of this feature is to allow frontends to associate
1039 language-specific runtime metadata with specific functions and make it
1040 available through the function pointer while still allowing the
1041 function pointer to be called.
1042
1043 To access the data for a given function, a program may bitcast the
1044 function pointer to a pointer to the constant's type and dereference
1045 index -1.  This implies that the IR symbol points just past the end of
1046 the prefix data. For instance, take the example of a function annotated
1047 with a single ``i32``,
1048
1049 .. code-block:: llvm
1050
1051     define void @f() prefix i32 123 { ... }
1052
1053 The prefix data can be referenced as,
1054
1055 .. code-block:: llvm
1056
1057     %0 = bitcast *void () @f to *i32
1058     %a = getelementptr inbounds *i32 %0, i32 -1
1059     %b = load i32* %a
1060
1061 Prefix data is laid out as if it were an initializer for a global variable
1062 of the prefix data's type.  The function will be placed such that the
1063 beginning of the prefix data is aligned. This means that if the size
1064 of the prefix data is not a multiple of the alignment size, the
1065 function's entrypoint will not be aligned. If alignment of the
1066 function's entrypoint is desired, padding must be added to the prefix
1067 data.
1068
1069 A function may have prefix data but no body.  This has similar semantics
1070 to the ``available_externally`` linkage in that the data may be used by the
1071 optimizers but will not be emitted in the object file.
1072
1073 .. _prologuedata:
1074
1075 Prologue Data
1076 -------------
1077
1078 The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1079 be inserted prior to the function body. This can be used for enabling
1080 function hot-patching and instrumentation.
1081
1082 To maintain the semantics of ordinary function calls, the prologue data must
1083 have a particular format.  Specifically, it must begin with a sequence of
1084 bytes which decode to a sequence of machine instructions, valid for the
1085 module's target, which transfer control to the point immediately succeeding
1086 the prologue data, without performing any other visible action.  This allows
1087 the inliner and other passes to reason about the semantics of the function
1088 definition without needing to reason about the prologue data.  Obviously this
1089 makes the format of the prologue data highly target dependent.
1090
1091 A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
1092 which encodes the ``nop`` instruction:
1093
1094 .. code-block:: llvm
1095
1096     define void @f() prologue i8 144 { ... }
1097
1098 Generally prologue data can be formed by encoding a relative branch instruction
1099 which skips the metadata, as in this example of valid prologue data for the
1100 x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1101
1102 .. code-block:: llvm
1103
1104     %0 = type <{ i8, i8, i8* }>
1105
1106     define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
1107
1108 A function may have prologue data but no body.  This has similar semantics
1109 to the ``available_externally`` linkage in that the data may be used by the
1110 optimizers but will not be emitted in the object file.
1111
1112 .. _attrgrp:
1113
1114 Attribute Groups
1115 ----------------
1116
1117 Attribute groups are groups of attributes that are referenced by objects within
1118 the IR. They are important for keeping ``.ll`` files readable, because a lot of
1119 functions will use the same set of attributes. In the degenerative case of a
1120 ``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1121 group will capture the important command line flags used to build that file.
1122
1123 An attribute group is a module-level object. To use an attribute group, an
1124 object references the attribute group's ID (e.g. ``#37``). An object may refer
1125 to more than one attribute group. In that situation, the attributes from the
1126 different groups are merged.
1127
1128 Here is an example of attribute groups for a function that should always be
1129 inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1130
1131 .. code-block:: llvm
1132
1133    ; Target-independent attributes:
1134    attributes #0 = { alwaysinline alignstack=4 }
1135
1136    ; Target-dependent attributes:
1137    attributes #1 = { "no-sse" }
1138
1139    ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1140    define void @f() #0 #1 { ... }
1141
1142 .. _fnattrs:
1143
1144 Function Attributes
1145 -------------------
1146
1147 Function attributes are set to communicate additional information about
1148 a function. Function attributes are considered to be part of the
1149 function, not of the function type, so functions with different function
1150 attributes can have the same function type.
1151
1152 Function attributes are simple keywords that follow the type specified.
1153 If multiple attributes are needed, they are space separated. For
1154 example:
1155
1156 .. code-block:: llvm
1157
1158     define void @f() noinline { ... }
1159     define void @f() alwaysinline { ... }
1160     define void @f() alwaysinline optsize { ... }
1161     define void @f() optsize { ... }
1162
1163 ``alignstack(<n>)``
1164     This attribute indicates that, when emitting the prologue and
1165     epilogue, the backend should forcibly align the stack pointer.
1166     Specify the desired alignment, which must be a power of two, in
1167     parentheses.
1168 ``alwaysinline``
1169     This attribute indicates that the inliner should attempt to inline
1170     this function into callers whenever possible, ignoring any active
1171     inlining size threshold for this caller.
1172 ``builtin``
1173     This indicates that the callee function at a call site should be
1174     recognized as a built-in function, even though the function's declaration
1175     uses the ``nobuiltin`` attribute. This is only valid at call sites for
1176     direct calls to functions that are declared with the ``nobuiltin``
1177     attribute.
1178 ``cold``
1179     This attribute indicates that this function is rarely called. When
1180     computing edge weights, basic blocks post-dominated by a cold
1181     function call are also considered to be cold; and, thus, given low
1182     weight.
1183 ``inlinehint``
1184     This attribute indicates that the source code contained a hint that
1185     inlining this function is desirable (such as the "inline" keyword in
1186     C/C++). It is just a hint; it imposes no requirements on the
1187     inliner.
1188 ``jumptable``
1189     This attribute indicates that the function should be added to a
1190     jump-instruction table at code-generation time, and that all address-taken
1191     references to this function should be replaced with a reference to the
1192     appropriate jump-instruction-table function pointer. Note that this creates
1193     a new pointer for the original function, which means that code that depends
1194     on function-pointer identity can break. So, any function annotated with
1195     ``jumptable`` must also be ``unnamed_addr``.
1196 ``minsize``
1197     This attribute suggests that optimization passes and code generator
1198     passes make choices that keep the code size of this function as small
1199     as possible and perform optimizations that may sacrifice runtime
1200     performance in order to minimize the size of the generated code.
1201 ``naked``
1202     This attribute disables prologue / epilogue emission for the
1203     function. This can have very system-specific consequences.
1204 ``nobuiltin``
1205     This indicates that the callee function at a call site is not recognized as
1206     a built-in function. LLVM will retain the original call and not replace it
1207     with equivalent code based on the semantics of the built-in function, unless
1208     the call site uses the ``builtin`` attribute. This is valid at call sites
1209     and on function declarations and definitions.
1210 ``noduplicate``
1211     This attribute indicates that calls to the function cannot be
1212     duplicated. A call to a ``noduplicate`` function may be moved
1213     within its parent function, but may not be duplicated within
1214     its parent function.
1215
1216     A function containing a ``noduplicate`` call may still
1217     be an inlining candidate, provided that the call is not
1218     duplicated by inlining. That implies that the function has
1219     internal linkage and only has one call site, so the original
1220     call is dead after inlining.
1221 ``noimplicitfloat``
1222     This attributes disables implicit floating point instructions.
1223 ``noinline``
1224     This attribute indicates that the inliner should never inline this
1225     function in any situation. This attribute may not be used together
1226     with the ``alwaysinline`` attribute.
1227 ``nonlazybind``
1228     This attribute suppresses lazy symbol binding for the function. This
1229     may make calls to the function faster, at the cost of extra program
1230     startup time if the function is not called during program startup.
1231 ``noredzone``
1232     This attribute indicates that the code generator should not use a
1233     red zone, even if the target-specific ABI normally permits it.
1234 ``noreturn``
1235     This function attribute indicates that the function never returns
1236     normally. This produces undefined behavior at runtime if the
1237     function ever does dynamically return.
1238 ``nounwind``
1239     This function attribute indicates that the function never returns
1240     with an unwind or exceptional control flow. If the function does
1241     unwind, its runtime behavior is undefined.
1242 ``optnone``
1243     This function attribute indicates that the function is not optimized
1244     by any optimization or code generator passes with the
1245     exception of interprocedural optimization passes.
1246     This attribute cannot be used together with the ``alwaysinline``
1247     attribute; this attribute is also incompatible
1248     with the ``minsize`` attribute and the ``optsize`` attribute.
1249
1250     This attribute requires the ``noinline`` attribute to be specified on
1251     the function as well, so the function is never inlined into any caller.
1252     Only functions with the ``alwaysinline`` attribute are valid
1253     candidates for inlining into the body of this function.
1254 ``optsize``
1255     This attribute suggests that optimization passes and code generator
1256     passes make choices that keep the code size of this function low,
1257     and otherwise do optimizations specifically to reduce code size as
1258     long as they do not significantly impact runtime performance.
1259 ``readnone``
1260     On a function, this attribute indicates that the function computes its
1261     result (or decides to unwind an exception) based strictly on its arguments,
1262     without dereferencing any pointer arguments or otherwise accessing
1263     any mutable state (e.g. memory, control registers, etc) visible to
1264     caller functions. It does not write through any pointer arguments
1265     (including ``byval`` arguments) and never changes any state visible
1266     to callers. This means that it cannot unwind exceptions by calling
1267     the ``C++`` exception throwing methods.
1268
1269     On an argument, this attribute indicates that the function does not
1270     dereference that pointer argument, even though it may read or write the
1271     memory that the pointer points to if accessed through other pointers.
1272 ``readonly``
1273     On a function, this attribute indicates that the function does not write
1274     through any pointer arguments (including ``byval`` arguments) or otherwise
1275     modify any state (e.g. memory, control registers, etc) visible to
1276     caller functions. It may dereference pointer arguments and read
1277     state that may be set in the caller. A readonly function always
1278     returns the same value (or unwinds an exception identically) when
1279     called with the same set of arguments and global state. It cannot
1280     unwind an exception by calling the ``C++`` exception throwing
1281     methods.
1282
1283     On an argument, this attribute indicates that the function does not write
1284     through this pointer argument, even though it may write to the memory that
1285     the pointer points to.
1286 ``returns_twice``
1287     This attribute indicates that this function can return twice. The C
1288     ``setjmp`` is an example of such a function. The compiler disables
1289     some optimizations (like tail calls) in the caller of these
1290     functions.
1291 ``sanitize_address``
1292     This attribute indicates that AddressSanitizer checks
1293     (dynamic address safety analysis) are enabled for this function.
1294 ``sanitize_memory``
1295     This attribute indicates that MemorySanitizer checks (dynamic detection
1296     of accesses to uninitialized memory) are enabled for this function.
1297 ``sanitize_thread``
1298     This attribute indicates that ThreadSanitizer checks
1299     (dynamic thread safety analysis) are enabled for this function.
1300 ``ssp``
1301     This attribute indicates that the function should emit a stack
1302     smashing protector. It is in the form of a "canary" --- a random value
1303     placed on the stack before the local variables that's checked upon
1304     return from the function to see if it has been overwritten. A
1305     heuristic is used to determine if a function needs stack protectors
1306     or not. The heuristic used will enable protectors for functions with:
1307
1308     - Character arrays larger than ``ssp-buffer-size`` (default 8).
1309     - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1310     - Calls to alloca() with variable sizes or constant sizes greater than
1311       ``ssp-buffer-size``.
1312
1313     Variables that are identified as requiring a protector will be arranged
1314     on the stack such that they are adjacent to the stack protector guard.
1315
1316     If a function that has an ``ssp`` attribute is inlined into a
1317     function that doesn't have an ``ssp`` attribute, then the resulting
1318     function will have an ``ssp`` attribute.
1319 ``sspreq``
1320     This attribute indicates that the function should *always* emit a
1321     stack smashing protector. This overrides the ``ssp`` function
1322     attribute.
1323
1324     Variables that are identified as requiring a protector will be arranged
1325     on the stack such that they are adjacent to the stack protector guard.
1326     The specific layout rules are:
1327
1328     #. Large arrays and structures containing large arrays
1329        (``>= ssp-buffer-size``) are closest to the stack protector.
1330     #. Small arrays and structures containing small arrays
1331        (``< ssp-buffer-size``) are 2nd closest to the protector.
1332     #. Variables that have had their address taken are 3rd closest to the
1333        protector.
1334
1335     If a function that has an ``sspreq`` attribute is inlined into a
1336     function that doesn't have an ``sspreq`` attribute or which has an
1337     ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1338     an ``sspreq`` attribute.
1339 ``sspstrong``
1340     This attribute indicates that the function should emit a stack smashing
1341     protector. This attribute causes a strong heuristic to be used when
1342     determining if a function needs stack protectors.  The strong heuristic
1343     will enable protectors for functions with:
1344
1345     - Arrays of any size and type
1346     - Aggregates containing an array of any size and type.
1347     - Calls to alloca().
1348     - Local variables that have had their address taken.
1349
1350     Variables that are identified as requiring a protector will be arranged
1351     on the stack such that they are adjacent to the stack protector guard.
1352     The specific layout rules are:
1353
1354     #. Large arrays and structures containing large arrays
1355        (``>= ssp-buffer-size``) are closest to the stack protector.
1356     #. Small arrays and structures containing small arrays
1357        (``< ssp-buffer-size``) are 2nd closest to the protector.
1358     #. Variables that have had their address taken are 3rd closest to the
1359        protector.
1360
1361     This overrides the ``ssp`` function attribute.
1362
1363     If a function that has an ``sspstrong`` attribute is inlined into a
1364     function that doesn't have an ``sspstrong`` attribute, then the
1365     resulting function will have an ``sspstrong`` attribute.
1366 ``uwtable``
1367     This attribute indicates that the ABI being targeted requires that
1368     an unwind table entry be produce for this function even if we can
1369     show that no exceptions passes by it. This is normally the case for
1370     the ELF x86-64 abi, but it can be disabled for some compilation
1371     units.
1372
1373 .. _moduleasm:
1374
1375 Module-Level Inline Assembly
1376 ----------------------------
1377
1378 Modules may contain "module-level inline asm" blocks, which corresponds
1379 to the GCC "file scope inline asm" blocks. These blocks are internally
1380 concatenated by LLVM and treated as a single unit, but may be separated
1381 in the ``.ll`` file if desired. The syntax is very simple:
1382
1383 .. code-block:: llvm
1384
1385     module asm "inline asm code goes here"
1386     module asm "more can go here"
1387
1388 The strings can contain any character by escaping non-printable
1389 characters. The escape sequence used is simply "\\xx" where "xx" is the
1390 two digit hex code for the number.
1391
1392 The inline asm code is simply printed to the machine code .s file when
1393 assembly code is generated.
1394
1395 .. _langref_datalayout:
1396
1397 Data Layout
1398 -----------
1399
1400 A module may specify a target specific data layout string that specifies
1401 how data is to be laid out in memory. The syntax for the data layout is
1402 simply:
1403
1404 .. code-block:: llvm
1405
1406     target datalayout = "layout specification"
1407
1408 The *layout specification* consists of a list of specifications
1409 separated by the minus sign character ('-'). Each specification starts
1410 with a letter and may include other information after the letter to
1411 define some aspect of the data layout. The specifications accepted are
1412 as follows:
1413
1414 ``E``
1415     Specifies that the target lays out data in big-endian form. That is,
1416     the bits with the most significance have the lowest address
1417     location.
1418 ``e``
1419     Specifies that the target lays out data in little-endian form. That
1420     is, the bits with the least significance have the lowest address
1421     location.
1422 ``S<size>``
1423     Specifies the natural alignment of the stack in bits. Alignment
1424     promotion of stack variables is limited to the natural stack
1425     alignment to avoid dynamic stack realignment. The stack alignment
1426     must be a multiple of 8-bits. If omitted, the natural stack
1427     alignment defaults to "unspecified", which does not prevent any
1428     alignment promotions.
1429 ``p[n]:<size>:<abi>:<pref>``
1430     This specifies the *size* of a pointer and its ``<abi>`` and
1431     ``<pref>``\erred alignments for address space ``n``. All sizes are in
1432     bits. The address space, ``n`` is optional, and if not specified,
1433     denotes the default address space 0.  The value of ``n`` must be
1434     in the range [1,2^23).
1435 ``i<size>:<abi>:<pref>``
1436     This specifies the alignment for an integer type of a given bit
1437     ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1438 ``v<size>:<abi>:<pref>``
1439     This specifies the alignment for a vector type of a given bit
1440     ``<size>``.
1441 ``f<size>:<abi>:<pref>``
1442     This specifies the alignment for a floating point type of a given bit
1443     ``<size>``. Only values of ``<size>`` that are supported by the target
1444     will work. 32 (float) and 64 (double) are supported on all targets; 80
1445     or 128 (different flavors of long double) are also supported on some
1446     targets.
1447 ``a:<abi>:<pref>``
1448     This specifies the alignment for an object of aggregate type.
1449 ``m:<mangling>``
1450     If present, specifies that llvm names are mangled in the output. The
1451     options are
1452
1453     * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1454     * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1455     * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1456       symbols get a ``_`` prefix.
1457     * ``w``: Windows COFF prefix:  Similar to Mach-O, but stdcall and fastcall
1458       functions also get a suffix based on the frame size.
1459 ``n<size1>:<size2>:<size3>...``
1460     This specifies a set of native integer widths for the target CPU in
1461     bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1462     ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1463     this set are considered to support most general arithmetic operations
1464     efficiently.
1465
1466 On every specification that takes a ``<abi>:<pref>``, specifying the
1467 ``<pref>`` alignment is optional. If omitted, the preceding ``:``
1468 should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1469
1470 When constructing the data layout for a given target, LLVM starts with a
1471 default set of specifications which are then (possibly) overridden by
1472 the specifications in the ``datalayout`` keyword. The default
1473 specifications are given in this list:
1474
1475 -  ``E`` - big endian
1476 -  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1477 -  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1478    same as the default address space.
1479 -  ``S0`` - natural stack alignment is unspecified
1480 -  ``i1:8:8`` - i1 is 8-bit (byte) aligned
1481 -  ``i8:8:8`` - i8 is 8-bit (byte) aligned
1482 -  ``i16:16:16`` - i16 is 16-bit aligned
1483 -  ``i32:32:32`` - i32 is 32-bit aligned
1484 -  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1485    alignment of 64-bits
1486 -  ``f16:16:16`` - half is 16-bit aligned
1487 -  ``f32:32:32`` - float is 32-bit aligned
1488 -  ``f64:64:64`` - double is 64-bit aligned
1489 -  ``f128:128:128`` - quad is 128-bit aligned
1490 -  ``v64:64:64`` - 64-bit vector is 64-bit aligned
1491 -  ``v128:128:128`` - 128-bit vector is 128-bit aligned
1492 -  ``a:0:64`` - aggregates are 64-bit aligned
1493
1494 When LLVM is determining the alignment for a given type, it uses the
1495 following rules:
1496
1497 #. If the type sought is an exact match for one of the specifications,
1498    that specification is used.
1499 #. If no match is found, and the type sought is an integer type, then
1500    the smallest integer type that is larger than the bitwidth of the
1501    sought type is used. If none of the specifications are larger than
1502    the bitwidth then the largest integer type is used. For example,
1503    given the default specifications above, the i7 type will use the
1504    alignment of i8 (next largest) while both i65 and i256 will use the
1505    alignment of i64 (largest specified).
1506 #. If no match is found, and the type sought is a vector type, then the
1507    largest vector type that is smaller than the sought vector type will
1508    be used as a fall back. This happens because <128 x double> can be
1509    implemented in terms of 64 <2 x double>, for example.
1510
1511 The function of the data layout string may not be what you expect.
1512 Notably, this is not a specification from the frontend of what alignment
1513 the code generator should use.
1514
1515 Instead, if specified, the target data layout is required to match what
1516 the ultimate *code generator* expects. This string is used by the
1517 mid-level optimizers to improve code, and this only works if it matches
1518 what the ultimate code generator uses. If you would like to generate IR
1519 that does not embed this target-specific detail into the IR, then you
1520 don't have to specify the string. This will disable some optimizations
1521 that require precise layout information, but this also prevents those
1522 optimizations from introducing target specificity into the IR.
1523
1524 .. _langref_triple:
1525
1526 Target Triple
1527 -------------
1528
1529 A module may specify a target triple string that describes the target
1530 host. The syntax for the target triple is simply:
1531
1532 .. code-block:: llvm
1533
1534     target triple = "x86_64-apple-macosx10.7.0"
1535
1536 The *target triple* string consists of a series of identifiers delimited
1537 by the minus sign character ('-'). The canonical forms are:
1538
1539 ::
1540
1541     ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1542     ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1543
1544 This information is passed along to the backend so that it generates
1545 code for the proper architecture. It's possible to override this on the
1546 command line with the ``-mtriple`` command line option.
1547
1548 .. _pointeraliasing:
1549
1550 Pointer Aliasing Rules
1551 ----------------------
1552
1553 Any memory access must be done through a pointer value associated with
1554 an address range of the memory access, otherwise the behavior is
1555 undefined. Pointer values are associated with address ranges according
1556 to the following rules:
1557
1558 -  A pointer value is associated with the addresses associated with any
1559    value it is *based* on.
1560 -  An address of a global variable is associated with the address range
1561    of the variable's storage.
1562 -  The result value of an allocation instruction is associated with the
1563    address range of the allocated storage.
1564 -  A null pointer in the default address-space is associated with no
1565    address.
1566 -  An integer constant other than zero or a pointer value returned from
1567    a function not defined within LLVM may be associated with address
1568    ranges allocated through mechanisms other than those provided by
1569    LLVM. Such ranges shall not overlap with any ranges of addresses
1570    allocated by mechanisms provided by LLVM.
1571
1572 A pointer value is *based* on another pointer value according to the
1573 following rules:
1574
1575 -  A pointer value formed from a ``getelementptr`` operation is *based*
1576    on the first operand of the ``getelementptr``.
1577 -  The result value of a ``bitcast`` is *based* on the operand of the
1578    ``bitcast``.
1579 -  A pointer value formed by an ``inttoptr`` is *based* on all pointer
1580    values that contribute (directly or indirectly) to the computation of
1581    the pointer's value.
1582 -  The "*based* on" relationship is transitive.
1583
1584 Note that this definition of *"based"* is intentionally similar to the
1585 definition of *"based"* in C99, though it is slightly weaker.
1586
1587 LLVM IR does not associate types with memory. The result type of a
1588 ``load`` merely indicates the size and alignment of the memory from
1589 which to load, as well as the interpretation of the value. The first
1590 operand type of a ``store`` similarly only indicates the size and
1591 alignment of the store.
1592
1593 Consequently, type-based alias analysis, aka TBAA, aka
1594 ``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1595 :ref:`Metadata <metadata>` may be used to encode additional information
1596 which specialized optimization passes may use to implement type-based
1597 alias analysis.
1598
1599 .. _volatile:
1600
1601 Volatile Memory Accesses
1602 ------------------------
1603
1604 Certain memory accesses, such as :ref:`load <i_load>`'s,
1605 :ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1606 marked ``volatile``. The optimizers must not change the number of
1607 volatile operations or change their order of execution relative to other
1608 volatile operations. The optimizers *may* change the order of volatile
1609 operations relative to non-volatile operations. This is not Java's
1610 "volatile" and has no cross-thread synchronization behavior.
1611
1612 IR-level volatile loads and stores cannot safely be optimized into
1613 llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1614 flagged volatile. Likewise, the backend should never split or merge
1615 target-legal volatile load/store instructions.
1616
1617 .. admonition:: Rationale
1618
1619  Platforms may rely on volatile loads and stores of natively supported
1620  data width to be executed as single instruction. For example, in C
1621  this holds for an l-value of volatile primitive type with native
1622  hardware support, but not necessarily for aggregate types. The
1623  frontend upholds these expectations, which are intentionally
1624  unspecified in the IR. The rules above ensure that IR transformation
1625  do not violate the frontend's contract with the language.
1626
1627 .. _memmodel:
1628
1629 Memory Model for Concurrent Operations
1630 --------------------------------------
1631
1632 The LLVM IR does not define any way to start parallel threads of
1633 execution or to register signal handlers. Nonetheless, there are
1634 platform-specific ways to create them, and we define LLVM IR's behavior
1635 in their presence. This model is inspired by the C++0x memory model.
1636
1637 For a more informal introduction to this model, see the :doc:`Atomics`.
1638
1639 We define a *happens-before* partial order as the least partial order
1640 that
1641
1642 -  Is a superset of single-thread program order, and
1643 -  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1644    ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1645    techniques, like pthread locks, thread creation, thread joining,
1646    etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1647    Constraints <ordering>`).
1648
1649 Note that program order does not introduce *happens-before* edges
1650 between a thread and signals executing inside that thread.
1651
1652 Every (defined) read operation (load instructions, memcpy, atomic
1653 loads/read-modify-writes, etc.) R reads a series of bytes written by
1654 (defined) write operations (store instructions, atomic
1655 stores/read-modify-writes, memcpy, etc.). For the purposes of this
1656 section, initialized globals are considered to have a write of the
1657 initializer which is atomic and happens before any other read or write
1658 of the memory in question. For each byte of a read R, R\ :sub:`byte`
1659 may see any write to the same byte, except:
1660
1661 -  If write\ :sub:`1`  happens before write\ :sub:`2`, and
1662    write\ :sub:`2` happens before R\ :sub:`byte`, then
1663    R\ :sub:`byte` does not see write\ :sub:`1`.
1664 -  If R\ :sub:`byte` happens before write\ :sub:`3`, then
1665    R\ :sub:`byte` does not see write\ :sub:`3`.
1666
1667 Given that definition, R\ :sub:`byte` is defined as follows:
1668
1669 -  If R is volatile, the result is target-dependent. (Volatile is
1670    supposed to give guarantees which can support ``sig_atomic_t`` in
1671    C/C++, and may be used for accesses to addresses that do not behave
1672    like normal memory. It does not generally provide cross-thread
1673    synchronization.)
1674 -  Otherwise, if there is no write to the same byte that happens before
1675    R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1676 -  Otherwise, if R\ :sub:`byte` may see exactly one write,
1677    R\ :sub:`byte` returns the value written by that write.
1678 -  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1679    see are atomic, it chooses one of the values written. See the :ref:`Atomic
1680    Memory Ordering Constraints <ordering>` section for additional
1681    constraints on how the choice is made.
1682 -  Otherwise R\ :sub:`byte` returns ``undef``.
1683
1684 R returns the value composed of the series of bytes it read. This
1685 implies that some bytes within the value may be ``undef`` **without**
1686 the entire value being ``undef``. Note that this only defines the
1687 semantics of the operation; it doesn't mean that targets will emit more
1688 than one instruction to read the series of bytes.
1689
1690 Note that in cases where none of the atomic intrinsics are used, this
1691 model places only one restriction on IR transformations on top of what
1692 is required for single-threaded execution: introducing a store to a byte
1693 which might not otherwise be stored is not allowed in general.
1694 (Specifically, in the case where another thread might write to and read
1695 from an address, introducing a store can change a load that may see
1696 exactly one write into a load that may see multiple writes.)
1697
1698 .. _ordering:
1699
1700 Atomic Memory Ordering Constraints
1701 ----------------------------------
1702
1703 Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1704 :ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1705 :ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1706 ordering parameters that determine which other atomic instructions on
1707 the same address they *synchronize with*. These semantics are borrowed
1708 from Java and C++0x, but are somewhat more colloquial. If these
1709 descriptions aren't precise enough, check those specs (see spec
1710 references in the :doc:`atomics guide <Atomics>`).
1711 :ref:`fence <i_fence>` instructions treat these orderings somewhat
1712 differently since they don't take an address. See that instruction's
1713 documentation for details.
1714
1715 For a simpler introduction to the ordering constraints, see the
1716 :doc:`Atomics`.
1717
1718 ``unordered``
1719     The set of values that can be read is governed by the happens-before
1720     partial order. A value cannot be read unless some operation wrote
1721     it. This is intended to provide a guarantee strong enough to model
1722     Java's non-volatile shared variables. This ordering cannot be
1723     specified for read-modify-write operations; it is not strong enough
1724     to make them atomic in any interesting way.
1725 ``monotonic``
1726     In addition to the guarantees of ``unordered``, there is a single
1727     total order for modifications by ``monotonic`` operations on each
1728     address. All modification orders must be compatible with the
1729     happens-before order. There is no guarantee that the modification
1730     orders can be combined to a global total order for the whole program
1731     (and this often will not be possible). The read in an atomic
1732     read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1733     :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1734     order immediately before the value it writes. If one atomic read
1735     happens before another atomic read of the same address, the later
1736     read must see the same value or a later value in the address's
1737     modification order. This disallows reordering of ``monotonic`` (or
1738     stronger) operations on the same address. If an address is written
1739     ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1740     read that address repeatedly, the other threads must eventually see
1741     the write. This corresponds to the C++0x/C1x
1742     ``memory_order_relaxed``.
1743 ``acquire``
1744     In addition to the guarantees of ``monotonic``, a
1745     *synchronizes-with* edge may be formed with a ``release`` operation.
1746     This is intended to model C++'s ``memory_order_acquire``.
1747 ``release``
1748     In addition to the guarantees of ``monotonic``, if this operation
1749     writes a value which is subsequently read by an ``acquire``
1750     operation, it *synchronizes-with* that operation. (This isn't a
1751     complete description; see the C++0x definition of a release
1752     sequence.) This corresponds to the C++0x/C1x
1753     ``memory_order_release``.
1754 ``acq_rel`` (acquire+release)
1755     Acts as both an ``acquire`` and ``release`` operation on its
1756     address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1757 ``seq_cst`` (sequentially consistent)
1758     In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1759     operation that only reads, ``release`` for an operation that only
1760     writes), there is a global total order on all
1761     sequentially-consistent operations on all addresses, which is
1762     consistent with the *happens-before* partial order and with the
1763     modification orders of all the affected addresses. Each
1764     sequentially-consistent read sees the last preceding write to the
1765     same address in this global order. This corresponds to the C++0x/C1x
1766     ``memory_order_seq_cst`` and Java volatile.
1767
1768 .. _singlethread:
1769
1770 If an atomic operation is marked ``singlethread``, it only *synchronizes
1771 with* or participates in modification and seq\_cst total orderings with
1772 other operations running in the same thread (for example, in signal
1773 handlers).
1774
1775 .. _fastmath:
1776
1777 Fast-Math Flags
1778 ---------------
1779
1780 LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1781 :ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1782 :ref:`frem <i_frem>`) have the following flags that can set to enable
1783 otherwise unsafe floating point operations
1784
1785 ``nnan``
1786    No NaNs - Allow optimizations to assume the arguments and result are not
1787    NaN. Such optimizations are required to retain defined behavior over
1788    NaNs, but the value of the result is undefined.
1789
1790 ``ninf``
1791    No Infs - Allow optimizations to assume the arguments and result are not
1792    +/-Inf. Such optimizations are required to retain defined behavior over
1793    +/-Inf, but the value of the result is undefined.
1794
1795 ``nsz``
1796    No Signed Zeros - Allow optimizations to treat the sign of a zero
1797    argument or result as insignificant.
1798
1799 ``arcp``
1800    Allow Reciprocal - Allow optimizations to use the reciprocal of an
1801    argument rather than perform division.
1802
1803 ``fast``
1804    Fast - Allow algebraically equivalent transformations that may
1805    dramatically change results in floating point (e.g. reassociate). This
1806    flag implies all the others.
1807
1808 .. _uselistorder:
1809
1810 Use-list Order Directives
1811 -------------------------
1812
1813 Use-list directives encode the in-memory order of each use-list, allowing the
1814 order to be recreated.  ``<order-indexes>`` is a comma-separated list of
1815 indexes that are assigned to the referenced value's uses.  The referenced
1816 value's use-list is immediately sorted by these indexes.
1817
1818 Use-list directives may appear at function scope or global scope.  They are not
1819 instructions, and have no effect on the semantics of the IR.  When they're at
1820 function scope, they must appear after the terminator of the final basic block.
1821
1822 If basic blocks have their address taken via ``blockaddress()`` expressions,
1823 ``uselistorder_bb`` can be used to reorder their use-lists from outside their
1824 function's scope.
1825
1826 :Syntax:
1827
1828 ::
1829
1830     uselistorder <ty> <value>, { <order-indexes> }
1831     uselistorder_bb @function, %block { <order-indexes> }
1832
1833 :Examples:
1834
1835 ::
1836
1837     define void @foo(i32 %arg1, i32 %arg2) {
1838     entry:
1839       ; ... instructions ...
1840     bb:
1841       ; ... instructions ...
1842
1843       ; At function scope.
1844       uselistorder i32 %arg1, { 1, 0, 2 }
1845       uselistorder label %bb, { 1, 0 }
1846     }
1847
1848     ; At global scope.
1849     uselistorder i32* @global, { 1, 2, 0 }
1850     uselistorder i32 7, { 1, 0 }
1851     uselistorder i32 (i32) @bar, { 1, 0 }
1852     uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1853
1854 .. _typesystem:
1855
1856 Type System
1857 ===========
1858
1859 The LLVM type system is one of the most important features of the
1860 intermediate representation. Being typed enables a number of
1861 optimizations to be performed on the intermediate representation
1862 directly, without having to do extra analyses on the side before the
1863 transformation. A strong type system makes it easier to read the
1864 generated code and enables novel analyses and transformations that are
1865 not feasible to perform on normal three address code representations.
1866
1867 .. _t_void:
1868
1869 Void Type
1870 ---------
1871
1872 :Overview:
1873
1874
1875 The void type does not represent any value and has no size.
1876
1877 :Syntax:
1878
1879
1880 ::
1881
1882       void
1883
1884
1885 .. _t_function:
1886
1887 Function Type
1888 -------------
1889
1890 :Overview:
1891
1892
1893 The function type can be thought of as a function signature. It consists of a
1894 return type and a list of formal parameter types. The return type of a function
1895 type is a void type or first class type --- except for :ref:`label <t_label>`
1896 and :ref:`metadata <t_metadata>` types.
1897
1898 :Syntax:
1899
1900 ::
1901
1902       <returntype> (<parameter list>)
1903
1904 ...where '``<parameter list>``' is a comma-separated list of type
1905 specifiers. Optionally, the parameter list may include a type ``...``, which
1906 indicates that the function takes a variable number of arguments.  Variable
1907 argument functions can access their arguments with the :ref:`variable argument
1908 handling intrinsic <int_varargs>` functions.  '``<returntype>``' is any type
1909 except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
1910
1911 :Examples:
1912
1913 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1914 | ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
1915 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1916 | ``float (i16, i32 *) *``        | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``.                                    |
1917 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1918 | ``i32 (i8*, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1919 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1920 | ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
1921 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1922
1923 .. _t_firstclass:
1924
1925 First Class Types
1926 -----------------
1927
1928 The :ref:`first class <t_firstclass>` types are perhaps the most important.
1929 Values of these types are the only ones which can be produced by
1930 instructions.
1931
1932 .. _t_single_value:
1933
1934 Single Value Types
1935 ^^^^^^^^^^^^^^^^^^
1936
1937 These are the types that are valid in registers from CodeGen's perspective.
1938
1939 .. _t_integer:
1940
1941 Integer Type
1942 """"""""""""
1943
1944 :Overview:
1945
1946 The integer type is a very simple type that simply specifies an
1947 arbitrary bit width for the integer type desired. Any bit width from 1
1948 bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1949
1950 :Syntax:
1951
1952 ::
1953
1954       iN
1955
1956 The number of bits the integer will occupy is specified by the ``N``
1957 value.
1958
1959 Examples:
1960 *********
1961
1962 +----------------+------------------------------------------------+
1963 | ``i1``         | a single-bit integer.                          |
1964 +----------------+------------------------------------------------+
1965 | ``i32``        | a 32-bit integer.                              |
1966 +----------------+------------------------------------------------+
1967 | ``i1942652``   | a really big integer of over 1 million bits.   |
1968 +----------------+------------------------------------------------+
1969
1970 .. _t_floating:
1971
1972 Floating Point Types
1973 """"""""""""""""""""
1974
1975 .. list-table::
1976    :header-rows: 1
1977
1978    * - Type
1979      - Description
1980
1981    * - ``half``
1982      - 16-bit floating point value
1983
1984    * - ``float``
1985      - 32-bit floating point value
1986
1987    * - ``double``
1988      - 64-bit floating point value
1989
1990    * - ``fp128``
1991      - 128-bit floating point value (112-bit mantissa)
1992
1993    * - ``x86_fp80``
1994      -  80-bit floating point value (X87)
1995
1996    * - ``ppc_fp128``
1997      - 128-bit floating point value (two 64-bits)
1998
1999 X86_mmx Type
2000 """"""""""""
2001
2002 :Overview:
2003
2004 The x86_mmx type represents a value held in an MMX register on an x86
2005 machine. The operations allowed on it are quite limited: parameters and
2006 return values, load and store, and bitcast. User-specified MMX
2007 instructions are represented as intrinsic or asm calls with arguments
2008 and/or results of this type. There are no arrays, vectors or constants
2009 of this type.
2010
2011 :Syntax:
2012
2013 ::
2014
2015       x86_mmx
2016
2017
2018 .. _t_pointer:
2019
2020 Pointer Type
2021 """"""""""""
2022
2023 :Overview:
2024
2025 The pointer type is used to specify memory locations. Pointers are
2026 commonly used to reference objects in memory.
2027
2028 Pointer types may have an optional address space attribute defining the
2029 numbered address space where the pointed-to object resides. The default
2030 address space is number zero. The semantics of non-zero address spaces
2031 are target-specific.
2032
2033 Note that LLVM does not permit pointers to void (``void*``) nor does it
2034 permit pointers to labels (``label*``). Use ``i8*`` instead.
2035
2036 :Syntax:
2037
2038 ::
2039
2040       <type> *
2041
2042 :Examples:
2043
2044 +-------------------------+--------------------------------------------------------------------------------------------------------------+
2045 | ``[4 x i32]*``          | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values.                               |
2046 +-------------------------+--------------------------------------------------------------------------------------------------------------+
2047 | ``i32 (i32*) *``        | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2048 +-------------------------+--------------------------------------------------------------------------------------------------------------+
2049 | ``i32 addrspace(5)*``   | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5.                           |
2050 +-------------------------+--------------------------------------------------------------------------------------------------------------+
2051
2052 .. _t_vector:
2053
2054 Vector Type
2055 """""""""""
2056
2057 :Overview:
2058
2059 A vector type is a simple derived type that represents a vector of
2060 elements. Vector types are used when multiple primitive data are
2061 operated in parallel using a single instruction (SIMD). A vector type
2062 requires a size (number of elements) and an underlying primitive data
2063 type. Vector types are considered :ref:`first class <t_firstclass>`.
2064
2065 :Syntax:
2066
2067 ::
2068
2069       < <# elements> x <elementtype> >
2070
2071 The number of elements is a constant integer value larger than 0;
2072 elementtype may be any integer, floating point or pointer type. Vectors
2073 of size zero are not allowed.
2074
2075 :Examples:
2076
2077 +-------------------+--------------------------------------------------+
2078 | ``<4 x i32>``     | Vector of 4 32-bit integer values.               |
2079 +-------------------+--------------------------------------------------+
2080 | ``<8 x float>``   | Vector of 8 32-bit floating-point values.        |
2081 +-------------------+--------------------------------------------------+
2082 | ``<2 x i64>``     | Vector of 2 64-bit integer values.               |
2083 +-------------------+--------------------------------------------------+
2084 | ``<4 x i64*>``    | Vector of 4 pointers to 64-bit integer values.   |
2085 +-------------------+--------------------------------------------------+
2086
2087 .. _t_label:
2088
2089 Label Type
2090 ^^^^^^^^^^
2091
2092 :Overview:
2093
2094 The label type represents code labels.
2095
2096 :Syntax:
2097
2098 ::
2099
2100       label
2101
2102 .. _t_metadata:
2103
2104 Metadata Type
2105 ^^^^^^^^^^^^^
2106
2107 :Overview:
2108
2109 The metadata type represents embedded metadata. No derived types may be
2110 created from metadata except for :ref:`function <t_function>` arguments.
2111
2112 :Syntax:
2113
2114 ::
2115
2116       metadata
2117
2118 .. _t_aggregate:
2119
2120 Aggregate Types
2121 ^^^^^^^^^^^^^^^
2122
2123 Aggregate Types are a subset of derived types that can contain multiple
2124 member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2125 aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2126 aggregate types.
2127
2128 .. _t_array:
2129
2130 Array Type
2131 """"""""""
2132
2133 :Overview:
2134
2135 The array type is a very simple derived type that arranges elements
2136 sequentially in memory. The array type requires a size (number of
2137 elements) and an underlying data type.
2138
2139 :Syntax:
2140
2141 ::
2142
2143       [<# elements> x <elementtype>]
2144
2145 The number of elements is a constant integer value; ``elementtype`` may
2146 be any type with a size.
2147
2148 :Examples:
2149
2150 +------------------+--------------------------------------+
2151 | ``[40 x i32]``   | Array of 40 32-bit integer values.   |
2152 +------------------+--------------------------------------+
2153 | ``[41 x i32]``   | Array of 41 32-bit integer values.   |
2154 +------------------+--------------------------------------+
2155 | ``[4 x i8]``     | Array of 4 8-bit integer values.     |
2156 +------------------+--------------------------------------+
2157
2158 Here are some examples of multidimensional arrays:
2159
2160 +-----------------------------+----------------------------------------------------------+
2161 | ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
2162 +-----------------------------+----------------------------------------------------------+
2163 | ``[12 x [10 x float]]``     | 12x10 array of single precision floating point values.   |
2164 +-----------------------------+----------------------------------------------------------+
2165 | ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
2166 +-----------------------------+----------------------------------------------------------+
2167
2168 There is no restriction on indexing beyond the end of the array implied
2169 by a static type (though there are restrictions on indexing beyond the
2170 bounds of an allocated object in some cases). This means that
2171 single-dimension 'variable sized array' addressing can be implemented in
2172 LLVM with a zero length array type. An implementation of 'pascal style
2173 arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2174 example.
2175
2176 .. _t_struct:
2177
2178 Structure Type
2179 """"""""""""""
2180
2181 :Overview:
2182
2183 The structure type is used to represent a collection of data members
2184 together in memory. The elements of a structure may be any type that has
2185 a size.
2186
2187 Structures in memory are accessed using '``load``' and '``store``' by
2188 getting a pointer to a field with the '``getelementptr``' instruction.
2189 Structures in registers are accessed using the '``extractvalue``' and
2190 '``insertvalue``' instructions.
2191
2192 Structures may optionally be "packed" structures, which indicate that
2193 the alignment of the struct is one byte, and that there is no padding
2194 between the elements. In non-packed structs, padding between field types
2195 is inserted as defined by the DataLayout string in the module, which is
2196 required to match what the underlying code generator expects.
2197
2198 Structures can either be "literal" or "identified". A literal structure
2199 is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2200 identified types are always defined at the top level with a name.
2201 Literal types are uniqued by their contents and can never be recursive
2202 or opaque since there is no way to write one. Identified types can be
2203 recursive, can be opaqued, and are never uniqued.
2204
2205 :Syntax:
2206
2207 ::
2208
2209       %T1 = type { <type list> }     ; Identified normal struct type
2210       %T2 = type <{ <type list> }>   ; Identified packed struct type
2211
2212 :Examples:
2213
2214 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2215 | ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
2216 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2217 | ``{ float, i32 (i32) * }``   | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``.  |
2218 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2219 | ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
2220 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2221
2222 .. _t_opaque:
2223
2224 Opaque Structure Types
2225 """"""""""""""""""""""
2226
2227 :Overview:
2228
2229 Opaque structure types are used to represent named structure types that
2230 do not have a body specified. This corresponds (for example) to the C
2231 notion of a forward declared structure.
2232
2233 :Syntax:
2234
2235 ::
2236
2237       %X = type opaque
2238       %52 = type opaque
2239
2240 :Examples:
2241
2242 +--------------+-------------------+
2243 | ``opaque``   | An opaque type.   |
2244 +--------------+-------------------+
2245
2246 .. _constants:
2247
2248 Constants
2249 =========
2250
2251 LLVM has several different basic types of constants. This section
2252 describes them all and their syntax.
2253
2254 Simple Constants
2255 ----------------
2256
2257 **Boolean constants**
2258     The two strings '``true``' and '``false``' are both valid constants
2259     of the ``i1`` type.
2260 **Integer constants**
2261     Standard integers (such as '4') are constants of the
2262     :ref:`integer <t_integer>` type. Negative numbers may be used with
2263     integer types.
2264 **Floating point constants**
2265     Floating point constants use standard decimal notation (e.g.
2266     123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2267     hexadecimal notation (see below). The assembler requires the exact
2268     decimal value of a floating-point constant. For example, the
2269     assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2270     decimal in binary. Floating point constants must have a :ref:`floating
2271     point <t_floating>` type.
2272 **Null pointer constants**
2273     The identifier '``null``' is recognized as a null pointer constant
2274     and must be of :ref:`pointer type <t_pointer>`.
2275
2276 The one non-intuitive notation for constants is the hexadecimal form of
2277 floating point constants. For example, the form
2278 '``double    0x432ff973cafa8000``' is equivalent to (but harder to read
2279 than) '``double 4.5e+15``'. The only time hexadecimal floating point
2280 constants are required (and the only time that they are generated by the
2281 disassembler) is when a floating point constant must be emitted but it
2282 cannot be represented as a decimal floating point number in a reasonable
2283 number of digits. For example, NaN's, infinities, and other special
2284 values are represented in their IEEE hexadecimal format so that assembly
2285 and disassembly do not cause any bits to change in the constants.
2286
2287 When using the hexadecimal form, constants of types half, float, and
2288 double are represented using the 16-digit form shown above (which
2289 matches the IEEE754 representation for double); half and float values
2290 must, however, be exactly representable as IEEE 754 half and single
2291 precision, respectively. Hexadecimal format is always used for long
2292 double, and there are three forms of long double. The 80-bit format used
2293 by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2294 128-bit format used by PowerPC (two adjacent doubles) is represented by
2295 ``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
2296 represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2297 will only work if they match the long double format on your target.
2298 The IEEE 16-bit format (half precision) is represented by ``0xH``
2299 followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2300 (sign bit at the left).
2301
2302 There are no constants of type x86_mmx.
2303
2304 .. _complexconstants:
2305
2306 Complex Constants
2307 -----------------
2308
2309 Complex constants are a (potentially recursive) combination of simple
2310 constants and smaller complex constants.
2311
2312 **Structure constants**
2313     Structure constants are represented with notation similar to
2314     structure type definitions (a comma separated list of elements,
2315     surrounded by braces (``{}``)). For example:
2316     "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2317     "``@G = external global i32``". Structure constants must have
2318     :ref:`structure type <t_struct>`, and the number and types of elements
2319     must match those specified by the type.
2320 **Array constants**
2321     Array constants are represented with notation similar to array type
2322     definitions (a comma separated list of elements, surrounded by
2323     square brackets (``[]``)). For example:
2324     "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2325     :ref:`array type <t_array>`, and the number and types of elements must
2326     match those specified by the type. As a special case, character array
2327     constants may also be represented as a double-quoted string using the ``c``
2328     prefix. For example: "``c"Hello World\0A\00"``".
2329 **Vector constants**
2330     Vector constants are represented with notation similar to vector
2331     type definitions (a comma separated list of elements, surrounded by
2332     less-than/greater-than's (``<>``)). For example:
2333     "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2334     must have :ref:`vector type <t_vector>`, and the number and types of
2335     elements must match those specified by the type.
2336 **Zero initialization**
2337     The string '``zeroinitializer``' can be used to zero initialize a
2338     value to zero of *any* type, including scalar and
2339     :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2340     having to print large zero initializers (e.g. for large arrays) and
2341     is always exactly equivalent to using explicit zero initializers.
2342 **Metadata node**
2343     A metadata node is a constant tuple without types.  For example:
2344     "``!{!0, !{!2, !0}, !"test"}``".  Metadata can reference constant values,
2345     for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2346     Unlike other typed constants that are meant to be interpreted as part of
2347     the instruction stream, metadata is a place to attach additional
2348     information such as debug info.
2349
2350 Global Variable and Function Addresses
2351 --------------------------------------
2352
2353 The addresses of :ref:`global variables <globalvars>` and
2354 :ref:`functions <functionstructure>` are always implicitly valid
2355 (link-time) constants. These constants are explicitly referenced when
2356 the :ref:`identifier for the global <identifiers>` is used and always have
2357 :ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2358 file:
2359
2360 .. code-block:: llvm
2361
2362     @X = global i32 17
2363     @Y = global i32 42
2364     @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2365
2366 .. _undefvalues:
2367
2368 Undefined Values
2369 ----------------
2370
2371 The string '``undef``' can be used anywhere a constant is expected, and
2372 indicates that the user of the value may receive an unspecified
2373 bit-pattern. Undefined values may be of any type (other than '``label``'
2374 or '``void``') and be used anywhere a constant is permitted.
2375
2376 Undefined values are useful because they indicate to the compiler that
2377 the program is well defined no matter what value is used. This gives the
2378 compiler more freedom to optimize. Here are some examples of
2379 (potentially surprising) transformations that are valid (in pseudo IR):
2380
2381 .. code-block:: llvm
2382
2383       %A = add %X, undef
2384       %B = sub %X, undef
2385       %C = xor %X, undef
2386     Safe:
2387       %A = undef
2388       %B = undef
2389       %C = undef
2390
2391 This is safe because all of the output bits are affected by the undef
2392 bits. Any output bit can have a zero or one depending on the input bits.
2393
2394 .. code-block:: llvm
2395
2396       %A = or %X, undef
2397       %B = and %X, undef
2398     Safe:
2399       %A = -1
2400       %B = 0
2401     Unsafe:
2402       %A = undef
2403       %B = undef
2404
2405 These logical operations have bits that are not always affected by the
2406 input. For example, if ``%X`` has a zero bit, then the output of the
2407 '``and``' operation will always be a zero for that bit, no matter what
2408 the corresponding bit from the '``undef``' is. As such, it is unsafe to
2409 optimize or assume that the result of the '``and``' is '``undef``'.
2410 However, it is safe to assume that all bits of the '``undef``' could be
2411 0, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2412 all the bits of the '``undef``' operand to the '``or``' could be set,
2413 allowing the '``or``' to be folded to -1.
2414
2415 .. code-block:: llvm
2416
2417       %A = select undef, %X, %Y
2418       %B = select undef, 42, %Y
2419       %C = select %X, %Y, undef
2420     Safe:
2421       %A = %X     (or %Y)
2422       %B = 42     (or %Y)
2423       %C = %Y
2424     Unsafe:
2425       %A = undef
2426       %B = undef
2427       %C = undef
2428
2429 This set of examples shows that undefined '``select``' (and conditional
2430 branch) conditions can go *either way*, but they have to come from one
2431 of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2432 both known to have a clear low bit, then ``%A`` would have to have a
2433 cleared low bit. However, in the ``%C`` example, the optimizer is
2434 allowed to assume that the '``undef``' operand could be the same as
2435 ``%Y``, allowing the whole '``select``' to be eliminated.
2436
2437 .. code-block:: llvm
2438
2439       %A = xor undef, undef
2440
2441       %B = undef
2442       %C = xor %B, %B
2443
2444       %D = undef
2445       %E = icmp slt %D, 4
2446       %F = icmp gte %D, 4
2447
2448     Safe:
2449       %A = undef
2450       %B = undef
2451       %C = undef
2452       %D = undef
2453       %E = undef
2454       %F = undef
2455
2456 This example points out that two '``undef``' operands are not
2457 necessarily the same. This can be surprising to people (and also matches
2458 C semantics) where they assume that "``X^X``" is always zero, even if
2459 ``X`` is undefined. This isn't true for a number of reasons, but the
2460 short answer is that an '``undef``' "variable" can arbitrarily change
2461 its value over its "live range". This is true because the variable
2462 doesn't actually *have a live range*. Instead, the value is logically
2463 read from arbitrary registers that happen to be around when needed, so
2464 the value is not necessarily consistent over time. In fact, ``%A`` and
2465 ``%C`` need to have the same semantics or the core LLVM "replace all
2466 uses with" concept would not hold.
2467
2468 .. code-block:: llvm
2469
2470       %A = fdiv undef, %X
2471       %B = fdiv %X, undef
2472     Safe:
2473       %A = undef
2474     b: unreachable
2475
2476 These examples show the crucial difference between an *undefined value*
2477 and *undefined behavior*. An undefined value (like '``undef``') is
2478 allowed to have an arbitrary bit-pattern. This means that the ``%A``
2479 operation can be constant folded to '``undef``', because the '``undef``'
2480 could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2481 However, in the second example, we can make a more aggressive
2482 assumption: because the ``undef`` is allowed to be an arbitrary value,
2483 we are allowed to assume that it could be zero. Since a divide by zero
2484 has *undefined behavior*, we are allowed to assume that the operation
2485 does not execute at all. This allows us to delete the divide and all
2486 code after it. Because the undefined operation "can't happen", the
2487 optimizer can assume that it occurs in dead code.
2488
2489 .. code-block:: llvm
2490
2491     a:  store undef -> %X
2492     b:  store %X -> undef
2493     Safe:
2494     a: <deleted>
2495     b: unreachable
2496
2497 These examples reiterate the ``fdiv`` example: a store *of* an undefined
2498 value can be assumed to not have any effect; we can assume that the
2499 value is overwritten with bits that happen to match what was already
2500 there. However, a store *to* an undefined location could clobber
2501 arbitrary memory, therefore, it has undefined behavior.
2502
2503 .. _poisonvalues:
2504
2505 Poison Values
2506 -------------
2507
2508 Poison values are similar to :ref:`undef values <undefvalues>`, however
2509 they also represent the fact that an instruction or constant expression
2510 that cannot evoke side effects has nevertheless detected a condition
2511 that results in undefined behavior.
2512
2513 There is currently no way of representing a poison value in the IR; they
2514 only exist when produced by operations such as :ref:`add <i_add>` with
2515 the ``nsw`` flag.
2516
2517 Poison value behavior is defined in terms of value *dependence*:
2518
2519 -  Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2520 -  :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2521    their dynamic predecessor basic block.
2522 -  Function arguments depend on the corresponding actual argument values
2523    in the dynamic callers of their functions.
2524 -  :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2525    instructions that dynamically transfer control back to them.
2526 -  :ref:`Invoke <i_invoke>` instructions depend on the
2527    :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2528    call instructions that dynamically transfer control back to them.
2529 -  Non-volatile loads and stores depend on the most recent stores to all
2530    of the referenced memory addresses, following the order in the IR
2531    (including loads and stores implied by intrinsics such as
2532    :ref:`@llvm.memcpy <int_memcpy>`.)
2533 -  An instruction with externally visible side effects depends on the
2534    most recent preceding instruction with externally visible side
2535    effects, following the order in the IR. (This includes :ref:`volatile
2536    operations <volatile>`.)
2537 -  An instruction *control-depends* on a :ref:`terminator
2538    instruction <terminators>` if the terminator instruction has
2539    multiple successors and the instruction is always executed when
2540    control transfers to one of the successors, and may not be executed
2541    when control is transferred to another.
2542 -  Additionally, an instruction also *control-depends* on a terminator
2543    instruction if the set of instructions it otherwise depends on would
2544    be different if the terminator had transferred control to a different
2545    successor.
2546 -  Dependence is transitive.
2547
2548 Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2549 with the additional effect that any instruction that has a *dependence*
2550 on a poison value has undefined behavior.
2551
2552 Here are some examples:
2553
2554 .. code-block:: llvm
2555
2556     entry:
2557       %poison = sub nuw i32 0, 1           ; Results in a poison value.
2558       %still_poison = and i32 %poison, 0   ; 0, but also poison.
2559       %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2560       store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
2561
2562       store i32 %poison, i32* @g           ; Poison value stored to memory.
2563       %poison2 = load i32* @g              ; Poison value loaded back from memory.
2564
2565       store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
2566
2567       %narrowaddr = bitcast i32* @g to i16*
2568       %wideaddr = bitcast i32* @g to i64*
2569       %poison3 = load i16* %narrowaddr     ; Returns a poison value.
2570       %poison4 = load i64* %wideaddr       ; Returns a poison value.
2571
2572       %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
2573       br i1 %cmp, label %true, label %end  ; Branch to either destination.
2574
2575     true:
2576       store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
2577                                            ; it has undefined behavior.
2578       br label %end
2579
2580     end:
2581       %p = phi i32 [ 0, %entry ], [ 1, %true ]
2582                                            ; Both edges into this PHI are
2583                                            ; control-dependent on %cmp, so this
2584                                            ; always results in a poison value.
2585
2586       store volatile i32 0, i32* @g        ; This would depend on the store in %true
2587                                            ; if %cmp is true, or the store in %entry
2588                                            ; otherwise, so this is undefined behavior.
2589
2590       br i1 %cmp, label %second_true, label %second_end
2591                                            ; The same branch again, but this time the
2592                                            ; true block doesn't have side effects.
2593
2594     second_true:
2595       ; No side effects!
2596       ret void
2597
2598     second_end:
2599       store volatile i32 0, i32* @g        ; This time, the instruction always depends
2600                                            ; on the store in %end. Also, it is
2601                                            ; control-equivalent to %end, so this is
2602                                            ; well-defined (ignoring earlier undefined
2603                                            ; behavior in this example).
2604
2605 .. _blockaddress:
2606
2607 Addresses of Basic Blocks
2608 -------------------------
2609
2610 ``blockaddress(@function, %block)``
2611
2612 The '``blockaddress``' constant computes the address of the specified
2613 basic block in the specified function, and always has an ``i8*`` type.
2614 Taking the address of the entry block is illegal.
2615
2616 This value only has defined behavior when used as an operand to the
2617 ':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2618 against null. Pointer equality tests between labels addresses results in
2619 undefined behavior --- though, again, comparison against null is ok, and
2620 no label is equal to the null pointer. This may be passed around as an
2621 opaque pointer sized value as long as the bits are not inspected. This
2622 allows ``ptrtoint`` and arithmetic to be performed on these values so
2623 long as the original value is reconstituted before the ``indirectbr``
2624 instruction.
2625
2626 Finally, some targets may provide defined semantics when using the value
2627 as the operand to an inline assembly, but that is target specific.
2628
2629 .. _constantexprs:
2630
2631 Constant Expressions
2632 --------------------
2633
2634 Constant expressions are used to allow expressions involving other
2635 constants to be used as constants. Constant expressions may be of any
2636 :ref:`first class <t_firstclass>` type and may involve any LLVM operation
2637 that does not have side effects (e.g. load and call are not supported).
2638 The following is the syntax for constant expressions:
2639
2640 ``trunc (CST to TYPE)``
2641     Truncate a constant to another type. The bit size of CST must be
2642     larger than the bit size of TYPE. Both types must be integers.
2643 ``zext (CST to TYPE)``
2644     Zero extend a constant to another type. The bit size of CST must be
2645     smaller than the bit size of TYPE. Both types must be integers.
2646 ``sext (CST to TYPE)``
2647     Sign extend a constant to another type. The bit size of CST must be
2648     smaller than the bit size of TYPE. Both types must be integers.
2649 ``fptrunc (CST to TYPE)``
2650     Truncate a floating point constant to another floating point type.
2651     The size of CST must be larger than the size of TYPE. Both types
2652     must be floating point.
2653 ``fpext (CST to TYPE)``
2654     Floating point extend a constant to another type. The size of CST
2655     must be smaller or equal to the size of TYPE. Both types must be
2656     floating point.
2657 ``fptoui (CST to TYPE)``
2658     Convert a floating point constant to the corresponding unsigned
2659     integer constant. TYPE must be a scalar or vector integer type. CST
2660     must be of scalar or vector floating point type. Both CST and TYPE
2661     must be scalars, or vectors of the same number of elements. If the
2662     value won't fit in the integer type, the results are undefined.
2663 ``fptosi (CST to TYPE)``
2664     Convert a floating point constant to the corresponding signed
2665     integer constant. TYPE must be a scalar or vector integer type. CST
2666     must be of scalar or vector floating point type. Both CST and TYPE
2667     must be scalars, or vectors of the same number of elements. If the
2668     value won't fit in the integer type, the results are undefined.
2669 ``uitofp (CST to TYPE)``
2670     Convert an unsigned integer constant to the corresponding floating
2671     point constant. TYPE must be a scalar or vector floating point type.
2672     CST must be of scalar or vector integer type. Both CST and TYPE must
2673     be scalars, or vectors of the same number of elements. If the value
2674     won't fit in the floating point type, the results are undefined.
2675 ``sitofp (CST to TYPE)``
2676     Convert a signed integer constant to the corresponding floating
2677     point constant. TYPE must be a scalar or vector floating point type.
2678     CST must be of scalar or vector integer type. Both CST and TYPE must
2679     be scalars, or vectors of the same number of elements. If the value
2680     won't fit in the floating point type, the results are undefined.
2681 ``ptrtoint (CST to TYPE)``
2682     Convert a pointer typed constant to the corresponding integer
2683     constant. ``TYPE`` must be an integer type. ``CST`` must be of
2684     pointer type. The ``CST`` value is zero extended, truncated, or
2685     unchanged to make it fit in ``TYPE``.
2686 ``inttoptr (CST to TYPE)``
2687     Convert an integer constant to a pointer constant. TYPE must be a
2688     pointer type. CST must be of integer type. The CST value is zero
2689     extended, truncated, or unchanged to make it fit in a pointer size.
2690     This one is *really* dangerous!
2691 ``bitcast (CST to TYPE)``
2692     Convert a constant, CST, to another TYPE. The constraints of the
2693     operands are the same as those for the :ref:`bitcast
2694     instruction <i_bitcast>`.
2695 ``addrspacecast (CST to TYPE)``
2696     Convert a constant pointer or constant vector of pointer, CST, to another
2697     TYPE in a different address space. The constraints of the operands are the
2698     same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
2699 ``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2700     Perform the :ref:`getelementptr operation <i_getelementptr>` on
2701     constants. As with the :ref:`getelementptr <i_getelementptr>`
2702     instruction, the index list may have zero or more indexes, which are
2703     required to make sense for the type of "CSTPTR".
2704 ``select (COND, VAL1, VAL2)``
2705     Perform the :ref:`select operation <i_select>` on constants.
2706 ``icmp COND (VAL1, VAL2)``
2707     Performs the :ref:`icmp operation <i_icmp>` on constants.
2708 ``fcmp COND (VAL1, VAL2)``
2709     Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2710 ``extractelement (VAL, IDX)``
2711     Perform the :ref:`extractelement operation <i_extractelement>` on
2712     constants.
2713 ``insertelement (VAL, ELT, IDX)``
2714     Perform the :ref:`insertelement operation <i_insertelement>` on
2715     constants.
2716 ``shufflevector (VEC1, VEC2, IDXMASK)``
2717     Perform the :ref:`shufflevector operation <i_shufflevector>` on
2718     constants.
2719 ``extractvalue (VAL, IDX0, IDX1, ...)``
2720     Perform the :ref:`extractvalue operation <i_extractvalue>` on
2721     constants. The index list is interpreted in a similar manner as
2722     indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2723     least one index value must be specified.
2724 ``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2725     Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2726     The index list is interpreted in a similar manner as indices in a
2727     ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2728     value must be specified.
2729 ``OPCODE (LHS, RHS)``
2730     Perform the specified operation of the LHS and RHS constants. OPCODE
2731     may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2732     binary <bitwiseops>` operations. The constraints on operands are
2733     the same as those for the corresponding instruction (e.g. no bitwise
2734     operations on floating point values are allowed).
2735
2736 Other Values
2737 ============
2738
2739 .. _inlineasmexprs:
2740
2741 Inline Assembler Expressions
2742 ----------------------------
2743
2744 LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2745 Inline Assembly <moduleasm>`) through the use of a special value. This
2746 value represents the inline assembler as a string (containing the
2747 instructions to emit), a list of operand constraints (stored as a
2748 string), a flag that indicates whether or not the inline asm expression
2749 has side effects, and a flag indicating whether the function containing
2750 the asm needs to align its stack conservatively. An example inline
2751 assembler expression is:
2752
2753 .. code-block:: llvm
2754
2755     i32 (i32) asm "bswap $0", "=r,r"
2756
2757 Inline assembler expressions may **only** be used as the callee operand
2758 of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2759 Thus, typically we have:
2760
2761 .. code-block:: llvm
2762
2763     %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2764
2765 Inline asms with side effects not visible in the constraint list must be
2766 marked as having side effects. This is done through the use of the
2767 '``sideeffect``' keyword, like so:
2768
2769 .. code-block:: llvm
2770
2771     call void asm sideeffect "eieio", ""()
2772
2773 In some cases inline asms will contain code that will not work unless
2774 the stack is aligned in some way, such as calls or SSE instructions on
2775 x86, yet will not contain code that does that alignment within the asm.
2776 The compiler should make conservative assumptions about what the asm
2777 might contain and should generate its usual stack alignment code in the
2778 prologue if the '``alignstack``' keyword is present:
2779
2780 .. code-block:: llvm
2781
2782     call void asm alignstack "eieio", ""()
2783
2784 Inline asms also support using non-standard assembly dialects. The
2785 assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2786 the inline asm is using the Intel dialect. Currently, ATT and Intel are
2787 the only supported dialects. An example is:
2788
2789 .. code-block:: llvm
2790
2791     call void asm inteldialect "eieio", ""()
2792
2793 If multiple keywords appear the '``sideeffect``' keyword must come
2794 first, the '``alignstack``' keyword second and the '``inteldialect``'
2795 keyword last.
2796
2797 Inline Asm Metadata
2798 ^^^^^^^^^^^^^^^^^^^
2799
2800 The call instructions that wrap inline asm nodes may have a
2801 "``!srcloc``" MDNode attached to it that contains a list of constant
2802 integers. If present, the code generator will use the integer as the
2803 location cookie value when report errors through the ``LLVMContext``
2804 error reporting mechanisms. This allows a front-end to correlate backend
2805 errors that occur with inline asm back to the source code that produced
2806 it. For example:
2807
2808 .. code-block:: llvm
2809
2810     call void asm sideeffect "something bad", ""(), !srcloc !42
2811     ...
2812     !42 = !{ i32 1234567 }
2813
2814 It is up to the front-end to make sense of the magic numbers it places
2815 in the IR. If the MDNode contains multiple constants, the code generator
2816 will use the one that corresponds to the line of the asm that the error
2817 occurs on.
2818
2819 .. _metadata:
2820
2821 Metadata
2822 ========
2823
2824 LLVM IR allows metadata to be attached to instructions in the program
2825 that can convey extra information about the code to the optimizers and
2826 code generator. One example application of metadata is source-level
2827 debug information. There are two metadata primitives: strings and nodes.
2828
2829 Metadata does not have a type, and is not a value.  If referenced from a
2830 ``call`` instruction, it uses the ``metadata`` type.
2831
2832 All metadata are identified in syntax by a exclamation point ('``!``').
2833
2834 Metadata Nodes and Metadata Strings
2835 -----------------------------------
2836
2837 A metadata string is a string surrounded by double quotes. It can
2838 contain any character by escaping non-printable characters with
2839 "``\xx``" where "``xx``" is the two digit hex code. For example:
2840 "``!"test\00"``".
2841
2842 Metadata nodes are represented with notation similar to structure
2843 constants (a comma separated list of elements, surrounded by braces and
2844 preceded by an exclamation point). Metadata nodes can have any values as
2845 their operand. For example:
2846
2847 .. code-block:: llvm
2848
2849     !{ !"test\00", i32 10}
2850
2851 Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2852
2853 .. code-block:: llvm
2854
2855     !0 = distinct !{!"test\00", i32 10}
2856
2857 A :ref:`named metadata <namedmetadatastructure>` is a collection of
2858 metadata nodes, which can be looked up in the module symbol table. For
2859 example:
2860
2861 .. code-block:: llvm
2862
2863     !foo = !{!4, !3}
2864
2865 Metadata can be used as function arguments. Here ``llvm.dbg.value``
2866 function is using two metadata arguments:
2867
2868 .. code-block:: llvm
2869
2870     call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2871
2872 Metadata can be attached with an instruction. Here metadata ``!21`` is
2873 attached to the ``add`` instruction using the ``!dbg`` identifier:
2874
2875 .. code-block:: llvm
2876
2877     %indvar.next = add i64 %indvar, 1, !dbg !21
2878
2879 More information about specific metadata nodes recognized by the
2880 optimizers and code generator is found below.
2881
2882 '``tbaa``' Metadata
2883 ^^^^^^^^^^^^^^^^^^^
2884
2885 In LLVM IR, memory does not have types, so LLVM's own type system is not
2886 suitable for doing TBAA. Instead, metadata is added to the IR to
2887 describe a type system of a higher level language. This can be used to
2888 implement typical C/C++ TBAA, but it can also be used to implement
2889 custom alias analysis behavior for other languages.
2890
2891 The current metadata format is very simple. TBAA metadata nodes have up
2892 to three fields, e.g.:
2893
2894 .. code-block:: llvm
2895
2896     !0 = !{ !"an example type tree" }
2897     !1 = !{ !"int", !0 }
2898     !2 = !{ !"float", !0 }
2899     !3 = !{ !"const float", !2, i64 1 }
2900
2901 The first field is an identity field. It can be any value, usually a
2902 metadata string, which uniquely identifies the type. The most important
2903 name in the tree is the name of the root node. Two trees with different
2904 root node names are entirely disjoint, even if they have leaves with
2905 common names.
2906
2907 The second field identifies the type's parent node in the tree, or is
2908 null or omitted for a root node. A type is considered to alias all of
2909 its descendants and all of its ancestors in the tree. Also, a type is
2910 considered to alias all types in other trees, so that bitcode produced
2911 from multiple front-ends is handled conservatively.
2912
2913 If the third field is present, it's an integer which if equal to 1
2914 indicates that the type is "constant" (meaning
2915 ``pointsToConstantMemory`` should return true; see `other useful
2916 AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2917
2918 '``tbaa.struct``' Metadata
2919 ^^^^^^^^^^^^^^^^^^^^^^^^^^
2920
2921 The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2922 aggregate assignment operations in C and similar languages, however it
2923 is defined to copy a contiguous region of memory, which is more than
2924 strictly necessary for aggregate types which contain holes due to
2925 padding. Also, it doesn't contain any TBAA information about the fields
2926 of the aggregate.
2927
2928 ``!tbaa.struct`` metadata can describe which memory subregions in a
2929 memcpy are padding and what the TBAA tags of the struct are.
2930
2931 The current metadata format is very simple. ``!tbaa.struct`` metadata
2932 nodes are a list of operands which are in conceptual groups of three.
2933 For each group of three, the first operand gives the byte offset of a
2934 field in bytes, the second gives its size in bytes, and the third gives
2935 its tbaa tag. e.g.:
2936
2937 .. code-block:: llvm
2938
2939     !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
2940
2941 This describes a struct with two fields. The first is at offset 0 bytes
2942 with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2943 and has size 4 bytes and has tbaa tag !2.
2944
2945 Note that the fields need not be contiguous. In this example, there is a
2946 4 byte gap between the two fields. This gap represents padding which
2947 does not carry useful data and need not be preserved.
2948
2949 '``noalias``' and '``alias.scope``' Metadata
2950 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2951
2952 ``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2953 noalias memory-access sets. This means that some collection of memory access
2954 instructions (loads, stores, memory-accessing calls, etc.) that carry
2955 ``noalias`` metadata can specifically be specified not to alias with some other
2956 collection of memory access instructions that carry ``alias.scope`` metadata.
2957 Each type of metadata specifies a list of scopes where each scope has an id and
2958 a domain. When evaluating an aliasing query, if for some some domain, the set
2959 of scopes with that domain in one instruction's ``alias.scope`` list is a
2960 subset of (or qual to) the set of scopes for that domain in another
2961 instruction's ``noalias`` list, then the two memory accesses are assumed not to
2962 alias.
2963
2964 The metadata identifying each domain is itself a list containing one or two
2965 entries. The first entry is the name of the domain. Note that if the name is a
2966 string then it can be combined accross functions and translation units. A
2967 self-reference can be used to create globally unique domain names. A
2968 descriptive string may optionally be provided as a second list entry.
2969
2970 The metadata identifying each scope is also itself a list containing two or
2971 three entries. The first entry is the name of the scope. Note that if the name
2972 is a string then it can be combined accross functions and translation units. A
2973 self-reference can be used to create globally unique scope names. A metadata
2974 reference to the scope's domain is the second entry. A descriptive string may
2975 optionally be provided as a third list entry.
2976
2977 For example,
2978
2979 .. code-block:: llvm
2980
2981     ; Two scope domains:
2982     !0 = !{!0}
2983     !1 = !{!1}
2984
2985     ; Some scopes in these domains:
2986     !2 = !{!2, !0}
2987     !3 = !{!3, !0}
2988     !4 = !{!4, !1}
2989
2990     ; Some scope lists:
2991     !5 = !{!4} ; A list containing only scope !4
2992     !6 = !{!4, !3, !2}
2993     !7 = !{!3}
2994
2995     ; These two instructions don't alias:
2996     %0 = load float* %c, align 4, !alias.scope !5
2997     store float %0, float* %arrayidx.i, align 4, !noalias !5
2998
2999     ; These two instructions also don't alias (for domain !1, the set of scopes
3000     ; in the !alias.scope equals that in the !noalias list):
3001     %2 = load float* %c, align 4, !alias.scope !5
3002     store float %2, float* %arrayidx.i2, align 4, !noalias !6
3003
3004     ; These two instructions don't alias (for domain !0, the set of scopes in
3005     ; the !noalias list is not a superset of, or equal to, the scopes in the
3006     ; !alias.scope list):
3007     %2 = load float* %c, align 4, !alias.scope !6
3008     store float %0, float* %arrayidx.i, align 4, !noalias !7
3009
3010 '``fpmath``' Metadata
3011 ^^^^^^^^^^^^^^^^^^^^^
3012
3013 ``fpmath`` metadata may be attached to any instruction of floating point
3014 type. It can be used to express the maximum acceptable error in the
3015 result of that instruction, in ULPs, thus potentially allowing the
3016 compiler to use a more efficient but less accurate method of computing
3017 it. ULP is defined as follows:
3018
3019     If ``x`` is a real number that lies between two finite consecutive
3020     floating-point numbers ``a`` and ``b``, without being equal to one
3021     of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3022     distance between the two non-equal finite floating-point numbers
3023     nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3024
3025 The metadata node shall consist of a single positive floating point
3026 number representing the maximum relative error, for example:
3027
3028 .. code-block:: llvm
3029
3030     !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
3031
3032 '``range``' Metadata
3033 ^^^^^^^^^^^^^^^^^^^^
3034
3035 ``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3036 integer types. It expresses the possible ranges the loaded value or the value
3037 returned by the called function at this call site is in. The ranges are
3038 represented with a flattened list of integers. The loaded value or the value
3039 returned is known to be in the union of the ranges defined by each consecutive
3040 pair. Each pair has the following properties:
3041
3042 -  The type must match the type loaded by the instruction.
3043 -  The pair ``a,b`` represents the range ``[a,b)``.
3044 -  Both ``a`` and ``b`` are constants.
3045 -  The range is allowed to wrap.
3046 -  The range should not represent the full or empty set. That is,
3047    ``a!=b``.
3048
3049 In addition, the pairs must be in signed order of the lower bound and
3050 they must be non-contiguous.
3051
3052 Examples:
3053
3054 .. code-block:: llvm
3055
3056       %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3057       %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
3058       %c = call i8 @foo(),       !range !2 ; Can only be 0, 1, 3, 4 or 5
3059       %d = invoke i8 @bar() to label %cont
3060              unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
3061     ...
3062     !0 = !{ i8 0, i8 2 }
3063     !1 = !{ i8 255, i8 2 }
3064     !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3065     !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
3066
3067 '``llvm.loop``'
3068 ^^^^^^^^^^^^^^^
3069
3070 It is sometimes useful to attach information to loop constructs. Currently,
3071 loop metadata is implemented as metadata attached to the branch instruction
3072 in the loop latch block. This type of metadata refer to a metadata node that is
3073 guaranteed to be separate for each loop. The loop identifier metadata is
3074 specified with the name ``llvm.loop``.
3075
3076 The loop identifier metadata is implemented using a metadata that refers to
3077 itself to avoid merging it with any other identifier metadata, e.g.,
3078 during module linkage or function inlining. That is, each loop should refer
3079 to their own identification metadata even if they reside in separate functions.
3080 The following example contains loop identifier metadata for two separate loop
3081 constructs:
3082
3083 .. code-block:: llvm
3084
3085     !0 = !{!0}
3086     !1 = !{!1}
3087
3088 The loop identifier metadata can be used to specify additional
3089 per-loop metadata. Any operands after the first operand can be treated
3090 as user-defined metadata. For example the ``llvm.loop.unroll.count``
3091 suggests an unroll factor to the loop unroller:
3092
3093 .. code-block:: llvm
3094
3095       br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3096     ...
3097     !0 = !{!0, !1}
3098     !1 = !{!"llvm.loop.unroll.count", i32 4}
3099
3100 '``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3101 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3102
3103 Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3104 used to control per-loop vectorization and interleaving parameters such as
3105 vectorization width and interleave count.  These metadata should be used in
3106 conjunction with ``llvm.loop`` loop identification metadata.  The
3107 ``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3108 optimization hints and the optimizer will only interleave and vectorize loops if
3109 it believes it is safe to do so.  The ``llvm.mem.parallel_loop_access`` metadata
3110 which contains information about loop-carried memory dependencies can be helpful
3111 in determining the safety of these transformations.
3112
3113 '``llvm.loop.interleave.count``' Metadata
3114 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3115
3116 This metadata suggests an interleave count to the loop interleaver.
3117 The first operand is the string ``llvm.loop.interleave.count`` and the
3118 second operand is an integer specifying the interleave count. For
3119 example:
3120
3121 .. code-block:: llvm
3122
3123    !0 = !{!"llvm.loop.interleave.count", i32 4}
3124
3125 Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3126 multiple iterations of the loop.  If ``llvm.loop.interleave.count`` is set to 0
3127 then the interleave count will be determined automatically.
3128
3129 '``llvm.loop.vectorize.enable``' Metadata
3130 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3131
3132 This metadata selectively enables or disables vectorization for the loop. The
3133 first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3134 is a bit.  If the bit operand value is 1 vectorization is enabled. A value of
3135 0 disables vectorization:
3136
3137 .. code-block:: llvm
3138
3139    !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3140    !1 = !{!"llvm.loop.vectorize.enable", i1 1}
3141
3142 '``llvm.loop.vectorize.width``' Metadata
3143 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3144
3145 This metadata sets the target width of the vectorizer. The first
3146 operand is the string ``llvm.loop.vectorize.width`` and the second
3147 operand is an integer specifying the width. For example:
3148
3149 .. code-block:: llvm
3150
3151    !0 = !{!"llvm.loop.vectorize.width", i32 4}
3152
3153 Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3154 vectorization of the loop.  If ``llvm.loop.vectorize.width`` is set to
3155 0 or if the loop does not have this metadata the width will be
3156 determined automatically.
3157
3158 '``llvm.loop.unroll``'
3159 ^^^^^^^^^^^^^^^^^^^^^^
3160
3161 Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3162 optimization hints such as the unroll factor. ``llvm.loop.unroll``
3163 metadata should be used in conjunction with ``llvm.loop`` loop
3164 identification metadata. The ``llvm.loop.unroll`` metadata are only
3165 optimization hints and the unrolling will only be performed if the
3166 optimizer believes it is safe to do so.
3167
3168 '``llvm.loop.unroll.count``' Metadata
3169 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3170
3171 This metadata suggests an unroll factor to the loop unroller. The
3172 first operand is the string ``llvm.loop.unroll.count`` and the second
3173 operand is a positive integer specifying the unroll factor. For
3174 example:
3175
3176 .. code-block:: llvm
3177
3178    !0 = !{!"llvm.loop.unroll.count", i32 4}
3179
3180 If the trip count of the loop is less than the unroll count the loop
3181 will be partially unrolled.
3182
3183 '``llvm.loop.unroll.disable``' Metadata
3184 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3185
3186 This metadata either disables loop unrolling. The metadata has a single operand
3187 which is the string ``llvm.loop.unroll.disable``.  For example:
3188
3189 .. code-block:: llvm
3190
3191    !0 = !{!"llvm.loop.unroll.disable"}
3192
3193 '``llvm.loop.unroll.full``' Metadata
3194 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3195
3196 This metadata either suggests that the loop should be unrolled fully. The
3197 metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3198 For example:
3199
3200 .. code-block:: llvm
3201
3202    !0 = !{!"llvm.loop.unroll.full"}
3203
3204 '``llvm.mem``'
3205 ^^^^^^^^^^^^^^^
3206
3207 Metadata types used to annotate memory accesses with information helpful
3208 for optimizations are prefixed with ``llvm.mem``.
3209
3210 '``llvm.mem.parallel_loop_access``' Metadata
3211 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3212
3213 The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier, 
3214 or metadata containing a list of loop identifiers for nested loops. 
3215 The metadata is attached to memory accessing instructions and denotes that 
3216 no loop carried memory dependence exist between it and other instructions denoted 
3217 with the same loop identifier.
3218
3219 Precisely, given two instructions ``m1`` and ``m2`` that both have the 
3220 ``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the 
3221 set of loops associated with that metadata, respectively, then there is no loop 
3222 carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and 
3223 ``L2``.
3224
3225 As a special case, if all memory accessing instructions in a loop have 
3226 ``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the 
3227 loop has no loop carried memory dependences and is considered to be a parallel 
3228 loop.  
3229
3230 Note that if not all memory access instructions have such metadata referring to 
3231 the loop, then the loop is considered not being trivially parallel. Additional 
3232 memory dependence analysis is required to make that determination.  As a fail 
3233 safe mechanism, this causes loops that were originally parallel to be considered 
3234 sequential (if optimization passes that are unaware of the parallel semantics 
3235 insert new memory instructions into the loop body).
3236
3237 Example of a loop that is considered parallel due to its correct use of
3238 both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
3239 metadata types that refer to the same loop identifier metadata.
3240
3241 .. code-block:: llvm
3242
3243    for.body:
3244      ...
3245      %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
3246      ...
3247      store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
3248      ...
3249      br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
3250
3251    for.end:
3252    ...
3253    !0 = !{!0}
3254
3255 It is also possible to have nested parallel loops. In that case the
3256 memory accesses refer to a list of loop identifier metadata nodes instead of
3257 the loop identifier metadata node directly:
3258
3259 .. code-block:: llvm
3260
3261    outer.for.body:
3262      ...
3263      %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3264      ...
3265      br label %inner.for.body
3266
3267    inner.for.body:
3268      ...
3269      %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
3270      ...
3271      store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
3272      ...
3273      br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
3274
3275    inner.for.end:
3276      ...
3277      store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
3278      ...
3279      br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
3280
3281    outer.for.end:                                          ; preds = %for.body
3282    ...
3283    !0 = !{!1, !2} ; a list of loop identifiers
3284    !1 = !{!1} ; an identifier for the inner loop
3285    !2 = !{!2} ; an identifier for the outer loop
3286
3287 Module Flags Metadata
3288 =====================
3289
3290 Information about the module as a whole is difficult to convey to LLVM's
3291 subsystems. The LLVM IR isn't sufficient to transmit this information.
3292 The ``llvm.module.flags`` named metadata exists in order to facilitate
3293 this. These flags are in the form of key / value pairs --- much like a
3294 dictionary --- making it easy for any subsystem who cares about a flag to
3295 look it up.
3296
3297 The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3298 Each triplet has the following form:
3299
3300 -  The first element is a *behavior* flag, which specifies the behavior
3301    when two (or more) modules are merged together, and it encounters two
3302    (or more) metadata with the same ID. The supported behaviors are
3303    described below.
3304 -  The second element is a metadata string that is a unique ID for the
3305    metadata. Each module may only have one flag entry for each unique ID (not
3306    including entries with the **Require** behavior).
3307 -  The third element is the value of the flag.
3308
3309 When two (or more) modules are merged together, the resulting
3310 ``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3311 each unique metadata ID string, there will be exactly one entry in the merged
3312 modules ``llvm.module.flags`` metadata table, and the value for that entry will
3313 be determined by the merge behavior flag, as described below. The only exception
3314 is that entries with the *Require* behavior are always preserved.
3315
3316 The following behaviors are supported:
3317
3318 .. list-table::
3319    :header-rows: 1
3320    :widths: 10 90
3321
3322    * - Value
3323      - Behavior
3324
3325    * - 1
3326      - **Error**
3327            Emits an error if two values disagree, otherwise the resulting value
3328            is that of the operands.
3329
3330    * - 2
3331      - **Warning**
3332            Emits a warning if two values disagree. The result value will be the
3333            operand for the flag from the first module being linked.
3334
3335    * - 3
3336      - **Require**
3337            Adds a requirement that another module flag be present and have a
3338            specified value after linking is performed. The value must be a
3339            metadata pair, where the first element of the pair is the ID of the
3340            module flag to be restricted, and the second element of the pair is
3341            the value the module flag should be restricted to. This behavior can
3342            be used to restrict the allowable results (via triggering of an
3343            error) of linking IDs with the **Override** behavior.
3344
3345    * - 4
3346      - **Override**
3347            Uses the specified value, regardless of the behavior or value of the
3348            other module. If both modules specify **Override**, but the values
3349            differ, an error will be emitted.
3350
3351    * - 5
3352      - **Append**
3353            Appends the two values, which are required to be metadata nodes.
3354
3355    * - 6
3356      - **AppendUnique**
3357            Appends the two values, which are required to be metadata
3358            nodes. However, duplicate entries in the second list are dropped
3359            during the append operation.
3360
3361 It is an error for a particular unique flag ID to have multiple behaviors,
3362 except in the case of **Require** (which adds restrictions on another metadata
3363 value) or **Override**.
3364
3365 An example of module flags:
3366
3367 .. code-block:: llvm
3368
3369     !0 = !{ i32 1, !"foo", i32 1 }
3370     !1 = !{ i32 4, !"bar", i32 37 }
3371     !2 = !{ i32 2, !"qux", i32 42 }
3372     !3 = !{ i32 3, !"qux",
3373       !{
3374         !"foo", i32 1
3375       }
3376     }
3377     !llvm.module.flags = !{ !0, !1, !2, !3 }
3378
3379 -  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3380    if two or more ``!"foo"`` flags are seen is to emit an error if their
3381    values are not equal.
3382
3383 -  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3384    behavior if two or more ``!"bar"`` flags are seen is to use the value
3385    '37'.
3386
3387 -  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3388    behavior if two or more ``!"qux"`` flags are seen is to emit a
3389    warning if their values are not equal.
3390
3391 -  Metadata ``!3`` has the ID ``!"qux"`` and the value:
3392
3393    ::
3394
3395        !{ !"foo", i32 1 }
3396
3397    The behavior is to emit an error if the ``llvm.module.flags`` does not
3398    contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3399    performed.
3400
3401 Objective-C Garbage Collection Module Flags Metadata
3402 ----------------------------------------------------
3403
3404 On the Mach-O platform, Objective-C stores metadata about garbage
3405 collection in a special section called "image info". The metadata
3406 consists of a version number and a bitmask specifying what types of
3407 garbage collection are supported (if any) by the file. If two or more
3408 modules are linked together their garbage collection metadata needs to
3409 be merged rather than appended together.
3410
3411 The Objective-C garbage collection module flags metadata consists of the
3412 following key-value pairs:
3413
3414 .. list-table::
3415    :header-rows: 1
3416    :widths: 30 70
3417
3418    * - Key
3419      - Value
3420
3421    * - ``Objective-C Version``
3422      - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
3423
3424    * - ``Objective-C Image Info Version``
3425      - **[Required]** --- The version of the image info section. Currently
3426        always 0.
3427
3428    * - ``Objective-C Image Info Section``
3429      - **[Required]** --- The section to place the metadata. Valid values are
3430        ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3431        ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3432        Objective-C ABI version 2.
3433
3434    * - ``Objective-C Garbage Collection``
3435      - **[Required]** --- Specifies whether garbage collection is supported or
3436        not. Valid values are 0, for no garbage collection, and 2, for garbage
3437        collection supported.
3438
3439    * - ``Objective-C GC Only``
3440      - **[Optional]** --- Specifies that only garbage collection is supported.
3441        If present, its value must be 6. This flag requires that the
3442        ``Objective-C Garbage Collection`` flag have the value 2.
3443
3444 Some important flag interactions:
3445
3446 -  If a module with ``Objective-C Garbage Collection`` set to 0 is
3447    merged with a module with ``Objective-C Garbage Collection`` set to
3448    2, then the resulting module has the
3449    ``Objective-C Garbage Collection`` flag set to 0.
3450 -  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3451    merged with a module with ``Objective-C GC Only`` set to 6.
3452
3453 Automatic Linker Flags Module Flags Metadata
3454 --------------------------------------------
3455
3456 Some targets support embedding flags to the linker inside individual object
3457 files. Typically this is used in conjunction with language extensions which
3458 allow source files to explicitly declare the libraries they depend on, and have
3459 these automatically be transmitted to the linker via object files.
3460
3461 These flags are encoded in the IR using metadata in the module flags section,
3462 using the ``Linker Options`` key. The merge behavior for this flag is required
3463 to be ``AppendUnique``, and the value for the key is expected to be a metadata
3464 node which should be a list of other metadata nodes, each of which should be a
3465 list of metadata strings defining linker options.
3466
3467 For example, the following metadata section specifies two separate sets of
3468 linker options, presumably to link against ``libz`` and the ``Cocoa``
3469 framework::
3470
3471     !0 = !{ i32 6, !"Linker Options",
3472        !{
3473           !{ !"-lz" },
3474           !{ !"-framework", !"Cocoa" } } }
3475     !llvm.module.flags = !{ !0 }
3476
3477 The metadata encoding as lists of lists of options, as opposed to a collapsed
3478 list of options, is chosen so that the IR encoding can use multiple option
3479 strings to specify e.g., a single library, while still having that specifier be
3480 preserved as an atomic element that can be recognized by a target specific
3481 assembly writer or object file emitter.
3482
3483 Each individual option is required to be either a valid option for the target's
3484 linker, or an option that is reserved by the target specific assembly writer or
3485 object file emitter. No other aspect of these options is defined by the IR.
3486
3487 C type width Module Flags Metadata
3488 ----------------------------------
3489
3490 The ARM backend emits a section into each generated object file describing the
3491 options that it was compiled with (in a compiler-independent way) to prevent
3492 linking incompatible objects, and to allow automatic library selection. Some
3493 of these options are not visible at the IR level, namely wchar_t width and enum
3494 width.
3495
3496 To pass this information to the backend, these options are encoded in module
3497 flags metadata, using the following key-value pairs:
3498
3499 .. list-table::
3500    :header-rows: 1
3501    :widths: 30 70
3502
3503    * - Key
3504      - Value
3505
3506    * - short_wchar
3507      - * 0 --- sizeof(wchar_t) == 4
3508        * 1 --- sizeof(wchar_t) == 2
3509
3510    * - short_enum
3511      - * 0 --- Enums are at least as large as an ``int``.
3512        * 1 --- Enums are stored in the smallest integer type which can
3513          represent all of its values.
3514
3515 For example, the following metadata section specifies that the module was
3516 compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3517 enum is the smallest type which can represent all of its values::
3518
3519     !llvm.module.flags = !{!0, !1}
3520     !0 = !{i32 1, !"short_wchar", i32 1}
3521     !1 = !{i32 1, !"short_enum", i32 0}
3522
3523 .. _intrinsicglobalvariables:
3524
3525 Intrinsic Global Variables
3526 ==========================
3527
3528 LLVM has a number of "magic" global variables that contain data that
3529 affect code generation or other IR semantics. These are documented here.
3530 All globals of this sort should have a section specified as
3531 "``llvm.metadata``". This section and all globals that start with
3532 "``llvm.``" are reserved for use by LLVM.
3533
3534 .. _gv_llvmused:
3535
3536 The '``llvm.used``' Global Variable
3537 -----------------------------------
3538
3539 The ``@llvm.used`` global is an array which has
3540 :ref:`appending linkage <linkage_appending>`. This array contains a list of
3541 pointers to named global variables, functions and aliases which may optionally
3542 have a pointer cast formed of bitcast or getelementptr. For example, a legal
3543 use of it is:
3544
3545 .. code-block:: llvm
3546
3547     @X = global i8 4
3548     @Y = global i32 123
3549
3550     @llvm.used = appending global [2 x i8*] [
3551        i8* @X,
3552        i8* bitcast (i32* @Y to i8*)
3553     ], section "llvm.metadata"
3554
3555 If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3556 and linker are required to treat the symbol as if there is a reference to the
3557 symbol that it cannot see (which is why they have to be named). For example, if
3558 a variable has internal linkage and no references other than that from the
3559 ``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3560 references from inline asms and other things the compiler cannot "see", and
3561 corresponds to "``attribute((used))``" in GNU C.
3562
3563 On some targets, the code generator must emit a directive to the
3564 assembler or object file to prevent the assembler and linker from
3565 molesting the symbol.
3566
3567 .. _gv_llvmcompilerused:
3568
3569 The '``llvm.compiler.used``' Global Variable
3570 --------------------------------------------
3571
3572 The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3573 directive, except that it only prevents the compiler from touching the
3574 symbol. On targets that support it, this allows an intelligent linker to
3575 optimize references to the symbol without being impeded as it would be
3576 by ``@llvm.used``.
3577
3578 This is a rare construct that should only be used in rare circumstances,
3579 and should not be exposed to source languages.
3580
3581 .. _gv_llvmglobalctors:
3582
3583 The '``llvm.global_ctors``' Global Variable
3584 -------------------------------------------
3585
3586 .. code-block:: llvm
3587
3588     %0 = type { i32, void ()*, i8* }
3589     @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
3590
3591 The ``@llvm.global_ctors`` array contains a list of constructor
3592 functions, priorities, and an optional associated global or function.
3593 The functions referenced by this array will be called in ascending order
3594 of priority (i.e. lowest first) when the module is loaded. The order of
3595 functions with the same priority is not defined.
3596
3597 If the third field is present, non-null, and points to a global variable
3598 or function, the initializer function will only run if the associated
3599 data from the current module is not discarded.
3600
3601 .. _llvmglobaldtors:
3602
3603 The '``llvm.global_dtors``' Global Variable
3604 -------------------------------------------
3605
3606 .. code-block:: llvm
3607
3608     %0 = type { i32, void ()*, i8* }
3609     @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
3610
3611 The ``@llvm.global_dtors`` array contains a list of destructor
3612 functions, priorities, and an optional associated global or function.
3613 The functions referenced by this array will be called in descending
3614 order of priority (i.e. highest first) when the module is unloaded. The
3615 order of functions with the same priority is not defined.
3616
3617 If the third field is present, non-null, and points to a global variable
3618 or function, the destructor function will only run if the associated
3619 data from the current module is not discarded.
3620
3621 Instruction Reference
3622 =====================
3623
3624 The LLVM instruction set consists of several different classifications
3625 of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3626 instructions <binaryops>`, :ref:`bitwise binary
3627 instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3628 :ref:`other instructions <otherops>`.
3629
3630 .. _terminators:
3631
3632 Terminator Instructions
3633 -----------------------
3634
3635 As mentioned :ref:`previously <functionstructure>`, every basic block in a
3636 program ends with a "Terminator" instruction, which indicates which
3637 block should be executed after the current block is finished. These
3638 terminator instructions typically yield a '``void``' value: they produce
3639 control flow, not values (the one exception being the
3640 ':ref:`invoke <i_invoke>`' instruction).
3641
3642 The terminator instructions are: ':ref:`ret <i_ret>`',
3643 ':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3644 ':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3645 ':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3646
3647 .. _i_ret:
3648
3649 '``ret``' Instruction
3650 ^^^^^^^^^^^^^^^^^^^^^
3651
3652 Syntax:
3653 """""""
3654
3655 ::
3656
3657       ret <type> <value>       ; Return a value from a non-void function
3658       ret void                 ; Return from void function
3659
3660 Overview:
3661 """""""""
3662
3663 The '``ret``' instruction is used to return control flow (and optionally
3664 a value) from a function back to the caller.
3665
3666 There are two forms of the '``ret``' instruction: one that returns a
3667 value and then causes control flow, and one that just causes control
3668 flow to occur.
3669
3670 Arguments:
3671 """"""""""
3672
3673 The '``ret``' instruction optionally accepts a single argument, the
3674 return value. The type of the return value must be a ':ref:`first
3675 class <t_firstclass>`' type.
3676
3677 A function is not :ref:`well formed <wellformed>` if it it has a non-void
3678 return type and contains a '``ret``' instruction with no return value or
3679 a return value with a type that does not match its type, or if it has a
3680 void return type and contains a '``ret``' instruction with a return
3681 value.
3682
3683 Semantics:
3684 """"""""""
3685
3686 When the '``ret``' instruction is executed, control flow returns back to
3687 the calling function's context. If the caller is a
3688 ":ref:`call <i_call>`" instruction, execution continues at the
3689 instruction after the call. If the caller was an
3690 ":ref:`invoke <i_invoke>`" instruction, execution continues at the
3691 beginning of the "normal" destination block. If the instruction returns
3692 a value, that value shall set the call or invoke instruction's return
3693 value.
3694
3695 Example:
3696 """"""""
3697
3698 .. code-block:: llvm
3699
3700       ret i32 5                       ; Return an integer value of 5
3701       ret void                        ; Return from a void function
3702       ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3703
3704 .. _i_br:
3705
3706 '``br``' Instruction
3707 ^^^^^^^^^^^^^^^^^^^^
3708
3709 Syntax:
3710 """""""
3711
3712 ::
3713
3714       br i1 <cond>, label <iftrue>, label <iffalse>
3715       br label <dest>          ; Unconditional branch
3716
3717 Overview:
3718 """""""""
3719
3720 The '``br``' instruction is used to cause control flow to transfer to a
3721 different basic block in the current function. There are two forms of
3722 this instruction, corresponding to a conditional branch and an
3723 unconditional branch.
3724
3725 Arguments:
3726 """"""""""
3727
3728 The conditional branch form of the '``br``' instruction takes a single
3729 '``i1``' value and two '``label``' values. The unconditional form of the
3730 '``br``' instruction takes a single '``label``' value as a target.
3731
3732 Semantics:
3733 """"""""""
3734
3735 Upon execution of a conditional '``br``' instruction, the '``i1``'
3736 argument is evaluated. If the value is ``true``, control flows to the
3737 '``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3738 to the '``iffalse``' ``label`` argument.
3739
3740 Example:
3741 """"""""
3742
3743 .. code-block:: llvm
3744
3745     Test:
3746       %cond = icmp eq i32 %a, %b
3747       br i1 %cond, label %IfEqual, label %IfUnequal
3748     IfEqual:
3749       ret i32 1
3750     IfUnequal:
3751       ret i32 0
3752
3753 .. _i_switch:
3754
3755 '``switch``' Instruction
3756 ^^^^^^^^^^^^^^^^^^^^^^^^
3757
3758 Syntax:
3759 """""""
3760
3761 ::
3762
3763       switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3764
3765 Overview:
3766 """""""""
3767
3768 The '``switch``' instruction is used to transfer control flow to one of
3769 several different places. It is a generalization of the '``br``'
3770 instruction, allowing a branch to occur to one of many possible
3771 destinations.
3772
3773 Arguments:
3774 """"""""""
3775
3776 The '``switch``' instruction uses three parameters: an integer
3777 comparison value '``value``', a default '``label``' destination, and an
3778 array of pairs of comparison value constants and '``label``'s. The table
3779 is not allowed to contain duplicate constant entries.
3780
3781 Semantics:
3782 """"""""""
3783
3784 The ``switch`` instruction specifies a table of values and destinations.
3785 When the '``switch``' instruction is executed, this table is searched
3786 for the given value. If the value is found, control flow is transferred
3787 to the corresponding destination; otherwise, control flow is transferred
3788 to the default destination.
3789
3790 Implementation:
3791 """""""""""""""
3792
3793 Depending on properties of the target machine and the particular
3794 ``switch`` instruction, this instruction may be code generated in
3795 different ways. For example, it could be generated as a series of
3796 chained conditional branches or with a lookup table.
3797
3798 Example:
3799 """"""""
3800
3801 .. code-block:: llvm
3802
3803      ; Emulate a conditional br instruction
3804      %Val = zext i1 %value to i32
3805      switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3806
3807      ; Emulate an unconditional br instruction
3808      switch i32 0, label %dest [ ]
3809
3810      ; Implement a jump table:
3811      switch i32 %val, label %otherwise [ i32 0, label %onzero
3812                                          i32 1, label %onone
3813                                          i32 2, label %ontwo ]
3814
3815 .. _i_indirectbr:
3816
3817 '``indirectbr``' Instruction
3818 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3819
3820 Syntax:
3821 """""""
3822
3823 ::
3824
3825       indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3826
3827 Overview:
3828 """""""""
3829
3830 The '``indirectbr``' instruction implements an indirect branch to a
3831 label within the current function, whose address is specified by
3832 "``address``". Address must be derived from a
3833 :ref:`blockaddress <blockaddress>` constant.
3834
3835 Arguments:
3836 """"""""""
3837
3838 The '``address``' argument is the address of the label to jump to. The
3839 rest of the arguments indicate the full set of possible destinations
3840 that the address may point to. Blocks are allowed to occur multiple
3841 times in the destination list, though this isn't particularly useful.
3842
3843 This destination list is required so that dataflow analysis has an
3844 accurate understanding of the CFG.
3845
3846 Semantics:
3847 """"""""""
3848
3849 Control transfers to the block specified in the address argument. All
3850 possible destination blocks must be listed in the label list, otherwise
3851 this instruction has undefined behavior. This implies that jumps to
3852 labels defined in other functions have undefined behavior as well.
3853
3854 Implementation:
3855 """""""""""""""
3856
3857 This is typically implemented with a jump through a register.
3858
3859 Example:
3860 """"""""
3861
3862 .. code-block:: llvm
3863
3864      indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3865
3866 .. _i_invoke:
3867
3868 '``invoke``' Instruction
3869 ^^^^^^^^^^^^^^^^^^^^^^^^
3870
3871 Syntax:
3872 """""""
3873
3874 ::
3875
3876       <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3877                     to label <normal label> unwind label <exception label>
3878
3879 Overview:
3880 """""""""
3881
3882 The '``invoke``' instruction causes control to transfer to a specified
3883 function, with the possibility of control flow transfer to either the
3884 '``normal``' label or the '``exception``' label. If the callee function
3885 returns with the "``ret``" instruction, control flow will return to the
3886 "normal" label. If the callee (or any indirect callees) returns via the
3887 ":ref:`resume <i_resume>`" instruction or other exception handling
3888 mechanism, control is interrupted and continued at the dynamically
3889 nearest "exception" label.
3890
3891 The '``exception``' label is a `landing
3892 pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3893 '``exception``' label is required to have the
3894 ":ref:`landingpad <i_landingpad>`" instruction, which contains the
3895 information about the behavior of the program after unwinding happens,
3896 as its first non-PHI instruction. The restrictions on the
3897 "``landingpad``" instruction's tightly couples it to the "``invoke``"
3898 instruction, so that the important information contained within the
3899 "``landingpad``" instruction can't be lost through normal code motion.
3900
3901 Arguments:
3902 """"""""""
3903
3904 This instruction requires several arguments:
3905
3906 #. The optional "cconv" marker indicates which :ref:`calling
3907    convention <callingconv>` the call should use. If none is
3908    specified, the call defaults to using C calling conventions.
3909 #. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3910    values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3911    are valid here.
3912 #. '``ptr to function ty``': shall be the signature of the pointer to
3913    function value being invoked. In most cases, this is a direct
3914    function invocation, but indirect ``invoke``'s are just as possible,
3915    branching off an arbitrary pointer to function value.
3916 #. '``function ptr val``': An LLVM value containing a pointer to a
3917    function to be invoked.
3918 #. '``function args``': argument list whose types match the function
3919    signature argument types and parameter attributes. All arguments must
3920    be of :ref:`first class <t_firstclass>` type. If the function signature
3921    indicates the function accepts a variable number of arguments, the
3922    extra arguments can be specified.
3923 #. '``normal label``': the label reached when the called function
3924    executes a '``ret``' instruction.
3925 #. '``exception label``': the label reached when a callee returns via
3926    the :ref:`resume <i_resume>` instruction or other exception handling
3927    mechanism.
3928 #. The optional :ref:`function attributes <fnattrs>` list. Only
3929    '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3930    attributes are valid here.
3931
3932 Semantics:
3933 """"""""""
3934
3935 This instruction is designed to operate as a standard '``call``'
3936 instruction in most regards. The primary difference is that it
3937 establishes an association with a label, which is used by the runtime
3938 library to unwind the stack.
3939
3940 This instruction is used in languages with destructors to ensure that
3941 proper cleanup is performed in the case of either a ``longjmp`` or a
3942 thrown exception. Additionally, this is important for implementation of
3943 '``catch``' clauses in high-level languages that support them.
3944
3945 For the purposes of the SSA form, the definition of the value returned
3946 by the '``invoke``' instruction is deemed to occur on the edge from the
3947 current block to the "normal" label. If the callee unwinds then no
3948 return value is available.
3949
3950 Example:
3951 """"""""
3952
3953 .. code-block:: llvm
3954
3955       %retval = invoke i32 @Test(i32 15) to label %Continue
3956                   unwind label %TestCleanup              ; i32:retval set
3957       %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3958                   unwind label %TestCleanup              ; i32:retval set
3959
3960 .. _i_resume:
3961
3962 '``resume``' Instruction
3963 ^^^^^^^^^^^^^^^^^^^^^^^^
3964
3965 Syntax:
3966 """""""
3967
3968 ::
3969
3970       resume <type> <value>
3971
3972 Overview:
3973 """""""""
3974
3975 The '``resume``' instruction is a terminator instruction that has no
3976 successors.
3977
3978 Arguments:
3979 """"""""""
3980
3981 The '``resume``' instruction requires one argument, which must have the
3982 same type as the result of any '``landingpad``' instruction in the same
3983 function.
3984
3985 Semantics:
3986 """"""""""
3987
3988 The '``resume``' instruction resumes propagation of an existing
3989 (in-flight) exception whose unwinding was interrupted with a
3990 :ref:`landingpad <i_landingpad>` instruction.
3991
3992 Example:
3993 """"""""
3994
3995 .. code-block:: llvm
3996
3997       resume { i8*, i32 } %exn
3998
3999 .. _i_unreachable:
4000
4001 '``unreachable``' Instruction
4002 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4003
4004 Syntax:
4005 """""""
4006
4007 ::
4008
4009       unreachable
4010
4011 Overview:
4012 """""""""
4013
4014 The '``unreachable``' instruction has no defined semantics. This
4015 instruction is used to inform the optimizer that a particular portion of
4016 the code is not reachable. This can be used to indicate that the code
4017 after a no-return function cannot be reached, and other facts.
4018
4019 Semantics:
4020 """"""""""
4021
4022 The '``unreachable``' instruction has no defined semantics.
4023
4024 .. _binaryops:
4025
4026 Binary Operations
4027 -----------------
4028
4029 Binary operators are used to do most of the computation in a program.
4030 They require two operands of the same type, execute an operation on
4031 them, and produce a single value. The operands might represent multiple
4032 data, as is the case with the :ref:`vector <t_vector>` data type. The
4033 result value has the same type as its operands.
4034
4035 There are several different binary operators:
4036
4037 .. _i_add:
4038
4039 '``add``' Instruction
4040 ^^^^^^^^^^^^^^^^^^^^^
4041
4042 Syntax:
4043 """""""
4044
4045 ::
4046
4047       <result> = add <ty> <op1>, <op2>          ; yields ty:result
4048       <result> = add nuw <ty> <op1>, <op2>      ; yields ty:result
4049       <result> = add nsw <ty> <op1>, <op2>      ; yields ty:result
4050       <result> = add nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4051
4052 Overview:
4053 """""""""
4054
4055 The '``add``' instruction returns the sum of its two operands.
4056
4057 Arguments:
4058 """"""""""
4059
4060 The two arguments to the '``add``' instruction must be
4061 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4062 arguments must have identical types.
4063
4064 Semantics:
4065 """"""""""
4066
4067 The value produced is the integer sum of the two operands.
4068
4069 If the sum has unsigned overflow, the result returned is the
4070 mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4071 the result.
4072
4073 Because LLVM integers use a two's complement representation, this
4074 instruction is appropriate for both signed and unsigned integers.
4075
4076 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4077 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4078 result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4079 unsigned and/or signed overflow, respectively, occurs.
4080
4081 Example:
4082 """"""""
4083
4084 .. code-block:: llvm
4085
4086       <result> = add i32 4, %var          ; yields i32:result = 4 + %var
4087
4088 .. _i_fadd:
4089
4090 '``fadd``' Instruction
4091 ^^^^^^^^^^^^^^^^^^^^^^
4092
4093 Syntax:
4094 """""""
4095
4096 ::
4097
4098       <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4099
4100 Overview:
4101 """""""""
4102
4103 The '``fadd``' instruction returns the sum of its two operands.
4104
4105 Arguments:
4106 """"""""""
4107
4108 The two arguments to the '``fadd``' instruction must be :ref:`floating
4109 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4110 Both arguments must have identical types.
4111
4112 Semantics:
4113 """"""""""
4114
4115 The value produced is the floating point sum of the two operands. This
4116 instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4117 which are optimization hints to enable otherwise unsafe floating point
4118 optimizations:
4119
4120 Example:
4121 """"""""
4122
4123 .. code-block:: llvm
4124
4125       <result> = fadd float 4.0, %var          ; yields float:result = 4.0 + %var
4126
4127 '``sub``' Instruction
4128 ^^^^^^^^^^^^^^^^^^^^^
4129
4130 Syntax:
4131 """""""
4132
4133 ::
4134
4135       <result> = sub <ty> <op1>, <op2>          ; yields ty:result
4136       <result> = sub nuw <ty> <op1>, <op2>      ; yields ty:result
4137       <result> = sub nsw <ty> <op1>, <op2>      ; yields ty:result
4138       <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4139
4140 Overview:
4141 """""""""
4142
4143 The '``sub``' instruction returns the difference of its two operands.
4144
4145 Note that the '``sub``' instruction is used to represent the '``neg``'
4146 instruction present in most other intermediate representations.
4147
4148 Arguments:
4149 """"""""""
4150
4151 The two arguments to the '``sub``' instruction must be
4152 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4153 arguments must have identical types.
4154
4155 Semantics:
4156 """"""""""
4157
4158 The value produced is the integer difference of the two operands.
4159
4160 If the difference has unsigned overflow, the result returned is the
4161 mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4162 the result.
4163
4164 Because LLVM integers use a two's complement representation, this
4165 instruction is appropriate for both signed and unsigned integers.
4166
4167 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4168 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4169 result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4170 unsigned and/or signed overflow, respectively, occurs.
4171
4172 Example:
4173 """"""""
4174
4175 .. code-block:: llvm
4176
4177       <result> = sub i32 4, %var          ; yields i32:result = 4 - %var
4178       <result> = sub i32 0, %val          ; yields i32:result = -%var
4179
4180 .. _i_fsub:
4181
4182 '``fsub``' Instruction
4183 ^^^^^^^^^^^^^^^^^^^^^^
4184
4185 Syntax:
4186 """""""
4187
4188 ::
4189
4190       <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4191
4192 Overview:
4193 """""""""
4194
4195 The '``fsub``' instruction returns the difference of its two operands.
4196
4197 Note that the '``fsub``' instruction is used to represent the '``fneg``'
4198 instruction present in most other intermediate representations.
4199
4200 Arguments:
4201 """"""""""
4202
4203 The two arguments to the '``fsub``' instruction must be :ref:`floating
4204 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4205 Both arguments must have identical types.
4206
4207 Semantics:
4208 """"""""""
4209
4210 The value produced is the floating point difference of the two operands.
4211 This instruction can also take any number of :ref:`fast-math
4212 flags <fastmath>`, which are optimization hints to enable otherwise
4213 unsafe floating point optimizations:
4214
4215 Example:
4216 """"""""
4217
4218 .. code-block:: llvm
4219
4220       <result> = fsub float 4.0, %var           ; yields float:result = 4.0 - %var
4221       <result> = fsub float -0.0, %val          ; yields float:result = -%var
4222
4223 '``mul``' Instruction
4224 ^^^^^^^^^^^^^^^^^^^^^
4225
4226 Syntax:
4227 """""""
4228
4229 ::
4230
4231       <result> = mul <ty> <op1>, <op2>          ; yields ty:result
4232       <result> = mul nuw <ty> <op1>, <op2>      ; yields ty:result
4233       <result> = mul nsw <ty> <op1>, <op2>      ; yields ty:result
4234       <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4235
4236 Overview:
4237 """""""""
4238
4239 The '``mul``' instruction returns the product of its two operands.
4240
4241 Arguments:
4242 """"""""""
4243
4244 The two arguments to the '``mul``' instruction must be
4245 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4246 arguments must have identical types.
4247
4248 Semantics:
4249 """"""""""
4250
4251 The value produced is the integer product of the two operands.
4252
4253 If the result of the multiplication has unsigned overflow, the result
4254 returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4255 bit width of the result.
4256
4257 Because LLVM integers use a two's complement representation, and the
4258 result is the same width as the operands, this instruction returns the
4259 correct result for both signed and unsigned integers. If a full product
4260 (e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4261 sign-extended or zero-extended as appropriate to the width of the full
4262 product.
4263
4264 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4265 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4266 result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4267 unsigned and/or signed overflow, respectively, occurs.
4268
4269 Example:
4270 """"""""
4271
4272 .. code-block:: llvm
4273
4274       <result> = mul i32 4, %var          ; yields i32:result = 4 * %var
4275
4276 .. _i_fmul:
4277
4278 '``fmul``' Instruction
4279 ^^^^^^^^^^^^^^^^^^^^^^
4280
4281 Syntax:
4282 """""""
4283
4284 ::
4285
4286       <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4287
4288 Overview:
4289 """""""""
4290
4291 The '``fmul``' instruction returns the product of its two operands.
4292
4293 Arguments:
4294 """"""""""
4295
4296 The two arguments to the '``fmul``' instruction must be :ref:`floating
4297 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4298 Both arguments must have identical types.
4299
4300 Semantics:
4301 """"""""""
4302
4303 The value produced is the floating point product of the two operands.
4304 This instruction can also take any number of :ref:`fast-math
4305 flags <fastmath>`, which are optimization hints to enable otherwise
4306 unsafe floating point optimizations:
4307
4308 Example:
4309 """"""""
4310
4311 .. code-block:: llvm
4312
4313       <result> = fmul float 4.0, %var          ; yields float:result = 4.0 * %var
4314
4315 '``udiv``' Instruction
4316 ^^^^^^^^^^^^^^^^^^^^^^
4317
4318 Syntax:
4319 """""""
4320
4321 ::
4322
4323       <result> = udiv <ty> <op1>, <op2>         ; yields ty:result
4324       <result> = udiv exact <ty> <op1>, <op2>   ; yields ty:result
4325
4326 Overview:
4327 """""""""
4328
4329 The '``udiv``' instruction returns the quotient of its two operands.
4330
4331 Arguments:
4332 """"""""""
4333
4334 The two arguments to the '``udiv``' instruction must be
4335 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4336 arguments must have identical types.
4337
4338 Semantics:
4339 """"""""""
4340
4341 The value produced is the unsigned integer quotient of the two operands.
4342
4343 Note that unsigned integer division and signed integer division are
4344 distinct operations; for signed integer division, use '``sdiv``'.
4345
4346 Division by zero leads to undefined behavior.
4347
4348 If the ``exact`` keyword is present, the result value of the ``udiv`` is
4349 a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4350 such, "((a udiv exact b) mul b) == a").
4351
4352 Example:
4353 """"""""
4354
4355 .. code-block:: llvm
4356
4357       <result> = udiv i32 4, %var          ; yields i32:result = 4 / %var
4358
4359 '``sdiv``' Instruction
4360 ^^^^^^^^^^^^^^^^^^^^^^
4361
4362 Syntax:
4363 """""""
4364
4365 ::
4366
4367       <result> = sdiv <ty> <op1>, <op2>         ; yields ty:result
4368       <result> = sdiv exact <ty> <op1>, <op2>   ; yields ty:result
4369
4370 Overview:
4371 """""""""
4372
4373 The '``sdiv``' instruction returns the quotient of its two operands.
4374
4375 Arguments:
4376 """"""""""
4377
4378 The two arguments to the '``sdiv``' instruction must be
4379 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4380 arguments must have identical types.
4381
4382 Semantics:
4383 """"""""""
4384
4385 The value produced is the signed integer quotient of the two operands
4386 rounded towards zero.
4387
4388 Note that signed integer division and unsigned integer division are
4389 distinct operations; for unsigned integer division, use '``udiv``'.
4390
4391 Division by zero leads to undefined behavior. Overflow also leads to
4392 undefined behavior; this is a rare case, but can occur, for example, by
4393 doing a 32-bit division of -2147483648 by -1.
4394
4395 If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4396 a :ref:`poison value <poisonvalues>` if the result would be rounded.
4397
4398 Example:
4399 """"""""
4400
4401 .. code-block:: llvm
4402
4403       <result> = sdiv i32 4, %var          ; yields i32:result = 4 / %var
4404
4405 .. _i_fdiv:
4406
4407 '``fdiv``' Instruction
4408 ^^^^^^^^^^^^^^^^^^^^^^
4409
4410 Syntax:
4411 """""""
4412
4413 ::
4414
4415       <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4416
4417 Overview:
4418 """""""""
4419
4420 The '``fdiv``' instruction returns the quotient of its two operands.
4421
4422 Arguments:
4423 """"""""""
4424
4425 The two arguments to the '``fdiv``' instruction must be :ref:`floating
4426 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4427 Both arguments must have identical types.
4428
4429 Semantics:
4430 """"""""""
4431
4432 The value produced is the floating point quotient of the two operands.
4433 This instruction can also take any number of :ref:`fast-math
4434 flags <fastmath>`, which are optimization hints to enable otherwise
4435 unsafe floating point optimizations:
4436
4437 Example:
4438 """"""""
4439
4440 .. code-block:: llvm
4441
4442       <result> = fdiv float 4.0, %var          ; yields float:result = 4.0 / %var
4443
4444 '``urem``' Instruction
4445 ^^^^^^^^^^^^^^^^^^^^^^
4446
4447 Syntax:
4448 """""""
4449
4450 ::
4451
4452       <result> = urem <ty> <op1>, <op2>   ; yields ty:result
4453
4454 Overview:
4455 """""""""
4456
4457 The '``urem``' instruction returns the remainder from the unsigned
4458 division of its two arguments.
4459
4460 Arguments:
4461 """"""""""
4462
4463 The two arguments to the '``urem``' instruction must be
4464 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4465 arguments must have identical types.
4466
4467 Semantics:
4468 """"""""""
4469
4470 This instruction returns the unsigned integer *remainder* of a division.
4471 This instruction always performs an unsigned division to get the
4472 remainder.
4473
4474 Note that unsigned integer remainder and signed integer remainder are
4475 distinct operations; for signed integer remainder, use '``srem``'.
4476
4477 Taking the remainder of a division by zero leads to undefined behavior.
4478
4479 Example:
4480 """"""""
4481
4482 .. code-block:: llvm
4483
4484       <result> = urem i32 4, %var          ; yields i32:result = 4 % %var
4485
4486 '``srem``' Instruction
4487 ^^^^^^^^^^^^^^^^^^^^^^
4488
4489 Syntax:
4490 """""""
4491
4492 ::
4493
4494       <result> = srem <ty> <op1>, <op2>   ; yields ty:result
4495
4496 Overview:
4497 """""""""
4498
4499 The '``srem``' instruction returns the remainder from the signed
4500 division of its two operands. This instruction can also take
4501 :ref:`vector <t_vector>` versions of the values in which case the elements
4502 must be integers.
4503
4504 Arguments:
4505 """"""""""
4506
4507 The two arguments to the '``srem``' instruction must be
4508 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4509 arguments must have identical types.
4510
4511 Semantics:
4512 """"""""""
4513
4514 This instruction returns the *remainder* of a division (where the result
4515 is either zero or has the same sign as the dividend, ``op1``), not the
4516 *modulo* operator (where the result is either zero or has the same sign
4517 as the divisor, ``op2``) of a value. For more information about the
4518 difference, see `The Math
4519 Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4520 table of how this is implemented in various languages, please see
4521 `Wikipedia: modulo
4522 operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4523
4524 Note that signed integer remainder and unsigned integer remainder are
4525 distinct operations; for unsigned integer remainder, use '``urem``'.
4526
4527 Taking the remainder of a division by zero leads to undefined behavior.
4528 Overflow also leads to undefined behavior; this is a rare case, but can
4529 occur, for example, by taking the remainder of a 32-bit division of
4530 -2147483648 by -1. (The remainder doesn't actually overflow, but this
4531 rule lets srem be implemented using instructions that return both the
4532 result of the division and the remainder.)
4533
4534 Example:
4535 """"""""
4536
4537 .. code-block:: llvm
4538
4539       <result> = srem i32 4, %var          ; yields i32:result = 4 % %var
4540
4541 .. _i_frem:
4542
4543 '``frem``' Instruction
4544 ^^^^^^^^^^^^^^^^^^^^^^
4545
4546 Syntax:
4547 """""""
4548
4549 ::
4550
4551       <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4552
4553 Overview:
4554 """""""""
4555
4556 The '``frem``' instruction returns the remainder from the division of
4557 its two operands.
4558
4559 Arguments:
4560 """"""""""
4561
4562 The two arguments to the '``frem``' instruction must be :ref:`floating
4563 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4564 Both arguments must have identical types.
4565
4566 Semantics:
4567 """"""""""
4568
4569 This instruction returns the *remainder* of a division. The remainder
4570 has the same sign as the dividend. This instruction can also take any
4571 number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4572 to enable otherwise unsafe floating point optimizations:
4573
4574 Example:
4575 """"""""
4576
4577 .. code-block:: llvm
4578
4579       <result> = frem float 4.0, %var          ; yields float:result = 4.0 % %var
4580
4581 .. _bitwiseops:
4582
4583 Bitwise Binary Operations
4584 -------------------------
4585
4586 Bitwise binary operators are used to do various forms of bit-twiddling
4587 in a program. They are generally very efficient instructions and can
4588 commonly be strength reduced from other instructions. They require two
4589 operands of the same type, execute an operation on them, and produce a
4590 single value. The resulting value is the same type as its operands.
4591
4592 '``shl``' Instruction
4593 ^^^^^^^^^^^^^^^^^^^^^
4594
4595 Syntax:
4596 """""""
4597
4598 ::
4599
4600       <result> = shl <ty> <op1>, <op2>           ; yields ty:result
4601       <result> = shl nuw <ty> <op1>, <op2>       ; yields ty:result
4602       <result> = shl nsw <ty> <op1>, <op2>       ; yields ty:result
4603       <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields ty:result
4604
4605 Overview:
4606 """""""""
4607
4608 The '``shl``' instruction returns the first operand shifted to the left
4609 a specified number of bits.
4610
4611 Arguments:
4612 """"""""""
4613
4614 Both arguments to the '``shl``' instruction must be the same
4615 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4616 '``op2``' is treated as an unsigned value.
4617
4618 Semantics:
4619 """"""""""
4620
4621 The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4622 where ``n`` is the width of the result. If ``op2`` is (statically or
4623 dynamically) negative or equal to or larger than the number of bits in
4624 ``op1``, the result is undefined. If the arguments are vectors, each
4625 vector element of ``op1`` is shifted by the corresponding shift amount
4626 in ``op2``.
4627
4628 If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4629 value <poisonvalues>` if it shifts out any non-zero bits. If the
4630 ``nsw`` keyword is present, then the shift produces a :ref:`poison
4631 value <poisonvalues>` if it shifts out any bits that disagree with the
4632 resultant sign bit. As such, NUW/NSW have the same semantics as they
4633 would if the shift were expressed as a mul instruction with the same
4634 nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4635
4636 Example:
4637 """"""""
4638
4639 .. code-block:: llvm
4640
4641       <result> = shl i32 4, %var   ; yields i32: 4 << %var
4642       <result> = shl i32 4, 2      ; yields i32: 16
4643       <result> = shl i32 1, 10     ; yields i32: 1024
4644       <result> = shl i32 1, 32     ; undefined
4645       <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>
4646
4647 '``lshr``' Instruction
4648 ^^^^^^^^^^^^^^^^^^^^^^
4649
4650 Syntax:
4651 """""""
4652
4653 ::
4654
4655       <result> = lshr <ty> <op1>, <op2>         ; yields ty:result
4656       <result> = lshr exact <ty> <op1>, <op2>   ; yields ty:result
4657
4658 Overview:
4659 """""""""
4660
4661 The '``lshr``' instruction (logical shift right) returns the first
4662 operand shifted to the right a specified number of bits with zero fill.
4663
4664 Arguments:
4665 """"""""""
4666
4667 Both arguments to the '``lshr``' instruction must be the same
4668 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4669 '``op2``' is treated as an unsigned value.
4670
4671 Semantics:
4672 """"""""""
4673
4674 This instruction always performs a logical shift right operation. The
4675 most significant bits of the result will be filled with zero bits after
4676 the shift. If ``op2`` is (statically or dynamically) equal to or larger
4677 than the number of bits in ``op1``, the result is undefined. If the
4678 arguments are vectors, each vector element of ``op1`` is shifted by the
4679 corresponding shift amount in ``op2``.
4680
4681 If the ``exact`` keyword is present, the result value of the ``lshr`` is
4682 a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4683 non-zero.
4684
4685 Example:
4686 """"""""
4687
4688 .. code-block:: llvm
4689
4690       <result> = lshr i32 4, 1   ; yields i32:result = 2
4691       <result> = lshr i32 4, 2   ; yields i32:result = 1
4692       <result> = lshr i8  4, 3   ; yields i8:result = 0
4693       <result> = lshr i8 -2, 1   ; yields i8:result = 0x7F
4694       <result> = lshr i32 1, 32  ; undefined
4695       <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4696
4697 '``ashr``' Instruction
4698 ^^^^^^^^^^^^^^^^^^^^^^
4699
4700 Syntax:
4701 """""""
4702
4703 ::
4704
4705       <result> = ashr <ty> <op1>, <op2>         ; yields ty:result
4706       <result> = ashr exact <ty> <op1>, <op2>   ; yields ty:result
4707
4708 Overview:
4709 """""""""
4710
4711 The '``ashr``' instruction (arithmetic shift right) returns the first
4712 operand shifted to the right a specified number of bits with sign
4713 extension.
4714
4715 Arguments:
4716 """"""""""
4717
4718 Both arguments to the '``ashr``' instruction must be the same
4719 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4720 '``op2``' is treated as an unsigned value.
4721
4722 Semantics:
4723 """"""""""
4724
4725 This instruction always performs an arithmetic shift right operation,
4726 The most significant bits of the result will be filled with the sign bit
4727 of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4728 than the number of bits in ``op1``, the result is undefined. If the
4729 arguments are vectors, each vector element of ``op1`` is shifted by the
4730 corresponding shift amount in ``op2``.
4731
4732 If the ``exact`` keyword is present, the result value of the ``ashr`` is
4733 a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4734 non-zero.
4735
4736 Example:
4737 """"""""
4738
4739 .. code-block:: llvm
4740
4741       <result> = ashr i32 4, 1   ; yields i32:result = 2
4742       <result> = ashr i32 4, 2   ; yields i32:result = 1
4743       <result> = ashr i8  4, 3   ; yields i8:result = 0
4744       <result> = ashr i8 -2, 1   ; yields i8:result = -1
4745       <result> = ashr i32 1, 32  ; undefined
4746       <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>
4747
4748 '``and``' Instruction
4749 ^^^^^^^^^^^^^^^^^^^^^
4750
4751 Syntax:
4752 """""""
4753
4754 ::
4755
4756       <result> = and <ty> <op1>, <op2>   ; yields ty:result
4757
4758 Overview:
4759 """""""""
4760
4761 The '``and``' instruction returns the bitwise logical and of its two
4762 operands.
4763
4764 Arguments:
4765 """"""""""
4766
4767 The two arguments to the '``and``' instruction must be
4768 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4769 arguments must have identical types.
4770
4771 Semantics:
4772 """"""""""
4773
4774 The truth table used for the '``and``' instruction is:
4775
4776 +-----+-----+-----+
4777 | In0 | In1 | Out |
4778 +-----+-----+-----+
4779 |   0 |   0 |   0 |
4780 +-----+-----+-----+
4781 |   0 |   1 |   0 |
4782 +-----+-----+-----+
4783 |   1 |   0 |   0 |
4784 +-----+-----+-----+
4785 |   1 |   1 |   1 |
4786 +-----+-----+-----+
4787
4788 Example:
4789 """"""""
4790
4791 .. code-block:: llvm
4792
4793       <result> = and i32 4, %var         ; yields i32:result = 4 & %var
4794       <result> = and i32 15, 40          ; yields i32:result = 8
4795       <result> = and i32 4, 8            ; yields i32:result = 0
4796
4797 '``or``' Instruction
4798 ^^^^^^^^^^^^^^^^^^^^
4799
4800 Syntax:
4801 """""""
4802
4803 ::
4804
4805       <result> = or <ty> <op1>, <op2>   ; yields ty:result
4806
4807 Overview:
4808 """""""""
4809
4810 The '``or``' instruction returns the bitwise logical inclusive or of its
4811 two operands.
4812
4813 Arguments:
4814 """"""""""
4815
4816 The two arguments to the '``or``' instruction must be
4817 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4818 arguments must have identical types.
4819
4820 Semantics:
4821 """"""""""
4822
4823 The truth table used for the '``or``' instruction is:
4824
4825 +-----+-----+-----+
4826 | In0 | In1 | Out |
4827 +-----+-----+-----+
4828 |   0 |   0 |   0 |
4829 +-----+-----+-----+
4830 |   0 |   1 |   1 |
4831 +-----+-----+-----+
4832 |   1 |   0 |   1 |
4833 +-----+-----+-----+
4834 |   1 |   1 |   1 |
4835 +-----+-----+-----+
4836
4837 Example:
4838 """"""""
4839
4840 ::
4841
4842       <result> = or i32 4, %var         ; yields i32:result = 4 | %var
4843       <result> = or i32 15, 40          ; yields i32:result = 47
4844       <result> = or i32 4, 8            ; yields i32:result = 12
4845
4846 '``xor``' Instruction
4847 ^^^^^^^^^^^^^^^^^^^^^
4848
4849 Syntax:
4850 """""""
4851
4852 ::
4853
4854       <result> = xor <ty> <op1>, <op2>   ; yields ty:result
4855
4856 Overview:
4857 """""""""
4858
4859 The '``xor``' instruction returns the bitwise logical exclusive or of
4860 its two operands. The ``xor`` is used to implement the "one's
4861 complement" operation, which is the "~" operator in C.
4862
4863 Arguments:
4864 """"""""""
4865
4866 The two arguments to the '``xor``' instruction must be
4867 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4868 arguments must have identical types.
4869
4870 Semantics:
4871 """"""""""
4872
4873 The truth table used for the '``xor``' instruction is:
4874
4875 +-----+-----+-----+
4876 | In0 | In1 | Out |
4877 +-----+-----+-----+
4878 |   0 |   0 |   0 |
4879 +-----+-----+-----+
4880 |   0 |   1 |   1 |
4881 +-----+-----+-----+
4882 |   1 |   0 |   1 |
4883 +-----+-----+-----+
4884 |   1 |   1 |   0 |
4885 +-----+-----+-----+
4886
4887 Example:
4888 """"""""
4889
4890 .. code-block:: llvm
4891
4892       <result> = xor i32 4, %var         ; yields i32:result = 4 ^ %var
4893       <result> = xor i32 15, 40          ; yields i32:result = 39
4894       <result> = xor i32 4, 8            ; yields i32:result = 12
4895       <result> = xor i32 %V, -1          ; yields i32:result = ~%V
4896
4897 Vector Operations
4898 -----------------
4899
4900 LLVM supports several instructions to represent vector operations in a
4901 target-independent manner. These instructions cover the element-access
4902 and vector-specific operations needed to process vectors effectively.
4903 While LLVM does directly support these vector operations, many
4904 sophisticated algorithms will want to use target-specific intrinsics to
4905 take full advantage of a specific target.
4906
4907 .. _i_extractelement:
4908
4909 '``extractelement``' Instruction
4910 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4911
4912 Syntax:
4913 """""""
4914
4915 ::
4916
4917       <result> = extractelement <n x <ty>> <val>, <ty2> <idx>  ; yields <ty>
4918
4919 Overview:
4920 """""""""
4921
4922 The '``extractelement``' instruction extracts a single scalar element
4923 from a vector at a specified index.
4924
4925 Arguments:
4926 """"""""""
4927
4928 The first operand of an '``extractelement``' instruction is a value of
4929 :ref:`vector <t_vector>` type. The second operand is an index indicating
4930 the position from which to extract the element. The index may be a
4931 variable of any integer type.
4932
4933 Semantics:
4934 """"""""""
4935
4936 The result is a scalar of the same type as the element type of ``val``.
4937 Its value is the value at position ``idx`` of ``val``. If ``idx``
4938 exceeds the length of ``val``, the results are undefined.
4939
4940 Example:
4941 """"""""
4942
4943 .. code-block:: llvm
4944
4945       <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32
4946
4947 .. _i_insertelement:
4948
4949 '``insertelement``' Instruction
4950 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4951
4952 Syntax:
4953 """""""
4954
4955 ::
4956
4957       <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>    ; yields <n x <ty>>
4958
4959 Overview:
4960 """""""""
4961
4962 The '``insertelement``' instruction inserts a scalar element into a
4963 vector at a specified index.
4964
4965 Arguments:
4966 """"""""""
4967
4968 The first operand of an '``insertelement``' instruction is a value of
4969 :ref:`vector <t_vector>` type. The second operand is a scalar value whose
4970 type must equal the element type of the first operand. The third operand
4971 is an index indicating the position at which to insert the value. The
4972 index may be a variable of any integer type.
4973
4974 Semantics:
4975 """"""""""
4976
4977 The result is a vector of the same type as ``val``. Its element values
4978 are those of ``val`` except at position ``idx``, where it gets the value
4979 ``elt``. If ``idx`` exceeds the length of ``val``, the results are
4980 undefined.
4981
4982 Example:
4983 """"""""
4984
4985 .. code-block:: llvm
4986
4987       <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>
4988
4989 .. _i_shufflevector:
4990
4991 '``shufflevector``' Instruction
4992 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4993
4994 Syntax:
4995 """""""
4996
4997 ::
4998
4999       <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
5000
5001 Overview:
5002 """""""""
5003
5004 The '``shufflevector``' instruction constructs a permutation of elements
5005 from two input vectors, returning a vector with the same element type as
5006 the input and length that is the same as the shuffle mask.
5007
5008 Arguments:
5009 """"""""""
5010
5011 The first two operands of a '``shufflevector``' instruction are vectors
5012 with the same type. The third argument is a shuffle mask whose element
5013 type is always 'i32'. The result of the instruction is a vector whose
5014 length is the same as the shuffle mask and whose element type is the
5015 same as the element type of the first two operands.
5016
5017 The shuffle mask operand is required to be a constant vector with either
5018 constant integer or undef values.
5019
5020 Semantics:
5021 """"""""""
5022
5023 The elements of the two input vectors are numbered from left to right
5024 across both of the vectors. The shuffle mask operand specifies, for each
5025 element of the result vector, which element of the two input vectors the
5026 result element gets. The element selector may be undef (meaning "don't
5027 care") and the second operand may be undef if performing a shuffle from
5028 only one vector.
5029
5030 Example:
5031 """"""""
5032
5033 .. code-block:: llvm
5034
5035       <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5036                               <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
5037       <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5038                               <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
5039       <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5040                               <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
5041       <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5042                               <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>
5043
5044 Aggregate Operations
5045 --------------------
5046
5047 LLVM supports several instructions for working with
5048 :ref:`aggregate <t_aggregate>` values.
5049
5050 .. _i_extractvalue:
5051
5052 '``extractvalue``' Instruction
5053 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5054
5055 Syntax:
5056 """""""
5057
5058 ::
5059
5060       <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5061
5062 Overview:
5063 """""""""
5064
5065 The '``extractvalue``' instruction extracts the value of a member field
5066 from an :ref:`aggregate <t_aggregate>` value.
5067
5068 Arguments:
5069 """"""""""
5070
5071 The first operand of an '``extractvalue``' instruction is a value of
5072 :ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5073 constant indices to specify which value to extract in a similar manner
5074 as indices in a '``getelementptr``' instruction.
5075
5076 The major differences to ``getelementptr`` indexing are:
5077
5078 -  Since the value being indexed is not a pointer, the first index is
5079    omitted and assumed to be zero.
5080 -  At least one index must be specified.
5081 -  Not only struct indices but also array indices must be in bounds.
5082
5083 Semantics:
5084 """"""""""
5085
5086 The result is the value at the position in the aggregate specified by
5087 the index operands.
5088
5089 Example:
5090 """"""""
5091
5092 .. code-block:: llvm
5093
5094       <result> = extractvalue {i32, float} %agg, 0    ; yields i32
5095
5096 .. _i_insertvalue:
5097
5098 '``insertvalue``' Instruction
5099 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5100
5101 Syntax:
5102 """""""
5103
5104 ::
5105
5106       <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>
5107
5108 Overview:
5109 """""""""
5110
5111 The '``insertvalue``' instruction inserts a value into a member field in
5112 an :ref:`aggregate <t_aggregate>` value.
5113
5114 Arguments:
5115 """"""""""
5116
5117 The first operand of an '``insertvalue``' instruction is a value of
5118 :ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5119 a first-class value to insert. The following operands are constant
5120 indices indicating the position at which to insert the value in a
5121 similar manner as indices in a '``extractvalue``' instruction. The value
5122 to insert must have the same type as the value identified by the
5123 indices.
5124
5125 Semantics:
5126 """"""""""
5127
5128 The result is an aggregate of the same type as ``val``. Its value is
5129 that of ``val`` except that the value at the position specified by the
5130 indices is that of ``elt``.
5131
5132 Example:
5133 """"""""
5134
5135 .. code-block:: llvm
5136
5137       %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
5138       %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
5139       %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0    ; yields {i32 undef, {float %val}}
5140
5141 .. _memoryops:
5142
5143 Memory Access and Addressing Operations
5144 ---------------------------------------
5145
5146 A key design point of an SSA-based representation is how it represents
5147 memory. In LLVM, no memory locations are in SSA form, which makes things
5148 very simple. This section describes how to read, write, and allocate
5149 memory in LLVM.
5150
5151 .. _i_alloca:
5152
5153 '``alloca``' Instruction
5154 ^^^^^^^^^^^^^^^^^^^^^^^^
5155
5156 Syntax:
5157 """""""
5158
5159 ::
5160
5161       <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>]     ; yields type*:result
5162
5163 Overview:
5164 """""""""
5165
5166 The '``alloca``' instruction allocates memory on the stack frame of the
5167 currently executing function, to be automatically released when this
5168 function returns to its caller. The object is always allocated in the
5169 generic address space (address space zero).
5170
5171 Arguments:
5172 """"""""""
5173
5174 The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5175 bytes of memory on the runtime stack, returning a pointer of the
5176 appropriate type to the program. If "NumElements" is specified, it is
5177 the number of elements allocated, otherwise "NumElements" is defaulted
5178 to be one. If a constant alignment is specified, the value result of the
5179 allocation is guaranteed to be aligned to at least that boundary. The
5180 alignment may not be greater than ``1 << 29``. If not specified, or if
5181 zero, the target can choose to align the allocation on any convenient
5182 boundary compatible with the type.
5183
5184 '``type``' may be any sized type.
5185
5186 Semantics:
5187 """"""""""
5188
5189 Memory is allocated; a pointer is returned. The operation is undefined
5190 if there is insufficient stack space for the allocation. '``alloca``'d
5191 memory is automatically released when the function returns. The
5192 '``alloca``' instruction is commonly used to represent automatic
5193 variables that must have an address available. When the function returns
5194 (either with the ``ret`` or ``resume`` instructions), the memory is
5195 reclaimed. Allocating zero bytes is legal, but the result is undefined.
5196 The order in which memory is allocated (ie., which way the stack grows)
5197 is not specified.
5198
5199 Example:
5200 """"""""
5201
5202 .. code-block:: llvm
5203
5204       %ptr = alloca i32                             ; yields i32*:ptr
5205       %ptr = alloca i32, i32 4                      ; yields i32*:ptr
5206       %ptr = alloca i32, i32 4, align 1024          ; yields i32*:ptr
5207       %ptr = alloca i32, align 1024                 ; yields i32*:ptr
5208
5209 .. _i_load:
5210
5211 '``load``' Instruction
5212 ^^^^^^^^^^^^^^^^^^^^^^
5213
5214 Syntax:
5215 """""""
5216
5217 ::
5218
5219       <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
5220       <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5221       !<index> = !{ i32 1 }
5222
5223 Overview:
5224 """""""""
5225
5226 The '``load``' instruction is used to read from memory.
5227
5228 Arguments:
5229 """"""""""
5230
5231 The argument to the ``load`` instruction specifies the memory address
5232 from which to load. The pointer must point to a :ref:`first
5233 class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5234 then the optimizer is not allowed to modify the number or order of
5235 execution of this ``load`` with other :ref:`volatile
5236 operations <volatile>`.
5237
5238 If the ``load`` is marked as ``atomic``, it takes an extra
5239 :ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5240 ``release`` and ``acq_rel`` orderings are not valid on ``load``
5241 instructions. Atomic loads produce :ref:`defined <memmodel>` results
5242 when they may see multiple atomic stores. The type of the pointee must
5243 be an integer type whose bit width is a power of two greater than or
5244 equal to eight and less than or equal to a target-specific size limit.
5245 ``align`` must be explicitly specified on atomic loads, and the load has
5246 undefined behavior if the alignment is not set to a value which is at
5247 least the size in bytes of the pointee. ``!nontemporal`` does not have
5248 any defined semantics for atomic loads.
5249
5250 The optional constant ``align`` argument specifies the alignment of the
5251 operation (that is, the alignment of the memory address). A value of 0
5252 or an omitted ``align`` argument means that the operation has the ABI
5253 alignment for the target. It is the responsibility of the code emitter
5254 to ensure that the alignment information is correct. Overestimating the
5255 alignment results in undefined behavior. Underestimating the alignment
5256 may produce less efficient code. An alignment of 1 is always safe. The
5257 maximum possible alignment is ``1 << 29``.
5258
5259 The optional ``!nontemporal`` metadata must reference a single
5260 metadata name ``<index>`` corresponding to a metadata node with one
5261 ``i32`` entry of value 1. The existence of the ``!nontemporal``
5262 metadata on the instruction tells the optimizer and code generator
5263 that this load is not expected to be reused in the cache. The code
5264 generator may select special instructions to save cache bandwidth, such
5265 as the ``MOVNT`` instruction on x86.
5266
5267 The optional ``!invariant.load`` metadata must reference a single
5268 metadata name ``<index>`` corresponding to a metadata node with no
5269 entries. The existence of the ``!invariant.load`` metadata on the
5270 instruction tells the optimizer and code generator that the address
5271 operand to this load points to memory which can be assumed unchanged.
5272 Being invariant does not imply that a location is dereferenceable, 
5273 but it does imply that once the location is known dereferenceable 
5274 its value is henceforth unchanging.  
5275
5276 The optional ``!nonnull`` metadata must reference a single
5277 metadata name ``<index>`` corresponding to a metadata node with no
5278 entries. The existence of the ``!nonnull`` metadata on the
5279 instruction tells the optimizer that the value loaded is known to
5280 never be null.  This is analogous to the ''nonnull'' attribute
5281 on parameters and return values.  This metadata can only be applied 
5282 to loads of a pointer type.  
5283
5284 Semantics:
5285 """"""""""
5286
5287 The location of memory pointed to is loaded. If the value being loaded
5288 is of scalar type then the number of bytes read does not exceed the
5289 minimum number of bytes needed to hold all bits of the type. For
5290 example, loading an ``i24`` reads at most three bytes. When loading a
5291 value of a type like ``i20`` with a size that is not an integral number
5292 of bytes, the result is undefined if the value was not originally
5293 written using a store of the same type.
5294
5295 Examples:
5296 """""""""
5297
5298 .. code-block:: llvm
5299
5300       %ptr = alloca i32                               ; yields i32*:ptr
5301       store i32 3, i32* %ptr                          ; yields void
5302       %val = load i32* %ptr                           ; yields i32:val = i32 3
5303
5304 .. _i_store:
5305
5306 '``store``' Instruction
5307 ^^^^^^^^^^^^^^^^^^^^^^^
5308
5309 Syntax:
5310 """""""
5311
5312 ::
5313
5314       store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        ; yields void
5315       store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  ; yields void
5316
5317 Overview:
5318 """""""""
5319
5320 The '``store``' instruction is used to write to memory.
5321
5322 Arguments:
5323 """"""""""
5324
5325 There are two arguments to the ``store`` instruction: a value to store
5326 and an address at which to store it. The type of the ``<pointer>``
5327 operand must be a pointer to the :ref:`first class <t_firstclass>` type of
5328 the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
5329 then the optimizer is not allowed to modify the number or order of
5330 execution of this ``store`` with other :ref:`volatile
5331 operations <volatile>`.
5332
5333 If the ``store`` is marked as ``atomic``, it takes an extra
5334 :ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5335 ``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5336 instructions. Atomic loads produce :ref:`defined <memmodel>` results
5337 when they may see multiple atomic stores. The type of the pointee must
5338 be an integer type whose bit width is a power of two greater than or
5339 equal to eight and less than or equal to a target-specific size limit.
5340 ``align`` must be explicitly specified on atomic stores, and the store
5341 has undefined behavior if the alignment is not set to a value which is
5342 at least the size in bytes of the pointee. ``!nontemporal`` does not
5343 have any defined semantics for atomic stores.
5344
5345 The optional constant ``align`` argument specifies the alignment of the
5346 operation (that is, the alignment of the memory address). A value of 0
5347 or an omitted ``align`` argument means that the operation has the ABI
5348 alignment for the target. It is the responsibility of the code emitter
5349 to ensure that the alignment information is correct. Overestimating the
5350 alignment results in undefined behavior. Underestimating the
5351 alignment may produce less efficient code. An alignment of 1 is always
5352 safe. The maximum possible alignment is ``1 << 29``.
5353
5354 The optional ``!nontemporal`` metadata must reference a single metadata
5355 name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
5356 value 1. The existence of the ``!nontemporal`` metadata on the instruction
5357 tells the optimizer and code generator that this load is not expected to
5358 be reused in the cache. The code generator may select special
5359 instructions to save cache bandwidth, such as the MOVNT instruction on
5360 x86.
5361
5362 Semantics:
5363 """"""""""
5364
5365 The contents of memory are updated to contain ``<value>`` at the
5366 location specified by the ``<pointer>`` operand. If ``<value>`` is
5367 of scalar type then the number of bytes written does not exceed the
5368 minimum number of bytes needed to hold all bits of the type. For
5369 example, storing an ``i24`` writes at most three bytes. When writing a
5370 value of a type like ``i20`` with a size that is not an integral number
5371 of bytes, it is unspecified what happens to the extra bits that do not
5372 belong to the type, but they will typically be overwritten.
5373
5374 Example:
5375 """"""""
5376
5377 .. code-block:: llvm
5378
5379       %ptr = alloca i32                               ; yields i32*:ptr
5380       store i32 3, i32* %ptr                          ; yields void
5381       %val = load i32* %ptr                           ; yields i32:val = i32 3
5382
5383 .. _i_fence:
5384
5385 '``fence``' Instruction
5386 ^^^^^^^^^^^^^^^^^^^^^^^
5387
5388 Syntax:
5389 """""""
5390
5391 ::
5392
5393       fence [singlethread] <ordering>                   ; yields void
5394
5395 Overview:
5396 """""""""
5397
5398 The '``fence``' instruction is used to introduce happens-before edges
5399 between operations.
5400
5401 Arguments:
5402 """"""""""
5403
5404 '``fence``' instructions take an :ref:`ordering <ordering>` argument which
5405 defines what *synchronizes-with* edges they add. They can only be given
5406 ``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5407
5408 Semantics:
5409 """"""""""
5410
5411 A fence A which has (at least) ``release`` ordering semantics
5412 *synchronizes with* a fence B with (at least) ``acquire`` ordering
5413 semantics if and only if there exist atomic operations X and Y, both
5414 operating on some atomic object M, such that A is sequenced before X, X
5415 modifies M (either directly or through some side effect of a sequence
5416 headed by X), Y is sequenced before B, and Y observes M. This provides a
5417 *happens-before* dependency between A and B. Rather than an explicit
5418 ``fence``, one (but not both) of the atomic operations X or Y might
5419 provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5420 still *synchronize-with* the explicit ``fence`` and establish the
5421 *happens-before* edge.
5422
5423 A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5424 ``acquire`` and ``release`` semantics specified above, participates in
5425 the global program order of other ``seq_cst`` operations and/or fences.
5426
5427 The optional ":ref:`singlethread <singlethread>`" argument specifies
5428 that the fence only synchronizes with other fences in the same thread.
5429 (This is useful for interacting with signal handlers.)
5430
5431 Example:
5432 """"""""
5433
5434 .. code-block:: llvm
5435
5436       fence acquire                          ; yields void
5437       fence singlethread seq_cst             ; yields void
5438
5439 .. _i_cmpxchg:
5440
5441 '``cmpxchg``' Instruction
5442 ^^^^^^^^^^^^^^^^^^^^^^^^^
5443
5444 Syntax:
5445 """""""
5446
5447 ::
5448
5449       cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields  { ty, i1 }
5450
5451 Overview:
5452 """""""""
5453
5454 The '``cmpxchg``' instruction is used to atomically modify memory. It
5455 loads a value in memory and compares it to a given value. If they are
5456 equal, it tries to store a new value into the memory.
5457
5458 Arguments:
5459 """"""""""
5460
5461 There are three arguments to the '``cmpxchg``' instruction: an address
5462 to operate on, a value to compare to the value currently be at that
5463 address, and a new value to place at that address if the compared values
5464 are equal. The type of '<cmp>' must be an integer type whose bit width
5465 is a power of two greater than or equal to eight and less than or equal
5466 to a target-specific size limit. '<cmp>' and '<new>' must have the same
5467 type, and the type of '<pointer>' must be a pointer to that type. If the
5468 ``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5469 to modify the number or order of execution of this ``cmpxchg`` with
5470 other :ref:`volatile operations <volatile>`.
5471
5472 The success and failure :ref:`ordering <ordering>` arguments specify how this
5473 ``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5474 must be at least ``monotonic``, the ordering constraint on failure must be no
5475 stronger than that on success, and the failure ordering cannot be either
5476 ``release`` or ``acq_rel``.
5477
5478 The optional "``singlethread``" argument declares that the ``cmpxchg``
5479 is only atomic with respect to code (usually signal handlers) running in
5480 the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5481 respect to all other code in the system.
5482
5483 The pointer passed into cmpxchg must have alignment greater than or
5484 equal to the size in memory of the operand.
5485
5486 Semantics:
5487 """"""""""
5488
5489 The contents of memory at the location specified by the '``<pointer>``' operand
5490 is read and compared to '``<cmp>``'; if the read value is the equal, the
5491 '``<new>``' is written. The original value at the location is returned, together
5492 with a flag indicating success (true) or failure (false).
5493
5494 If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5495 permitted: the operation may not write ``<new>`` even if the comparison
5496 matched.
5497
5498 If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5499 if the value loaded equals ``cmp``.
5500
5501 A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5502 identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5503 load with an ordering parameter determined the second ordering parameter.
5504
5505 Example:
5506 """"""""
5507
5508 .. code-block:: llvm
5509
5510     entry:
5511       %orig = atomic load i32* %ptr unordered                   ; yields i32
5512       br label %loop
5513
5514     loop:
5515       %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5516       %squared = mul i32 %cmp, %cmp
5517       %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields  { i32, i1 }
5518       %value_loaded = extractvalue { i32, i1 } %val_success, 0
5519       %success = extractvalue { i32, i1 } %val_success, 1
5520       br i1 %success, label %done, label %loop
5521
5522     done:
5523       ...
5524
5525 .. _i_atomicrmw:
5526
5527 '``atomicrmw``' Instruction
5528 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
5529
5530 Syntax:
5531 """""""
5532
5533 ::
5534
5535       atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   ; yields ty
5536
5537 Overview:
5538 """""""""
5539
5540 The '``atomicrmw``' instruction is used to atomically modify memory.
5541
5542 Arguments:
5543 """"""""""
5544
5545 There are three arguments to the '``atomicrmw``' instruction: an
5546 operation to apply, an address whose value to modify, an argument to the
5547 operation. The operation must be one of the following keywords:
5548
5549 -  xchg
5550 -  add
5551 -  sub
5552 -  and
5553 -  nand
5554 -  or
5555 -  xor
5556 -  max
5557 -  min
5558 -  umax
5559 -  umin
5560
5561 The type of '<value>' must be an integer type whose bit width is a power
5562 of two greater than or equal to eight and less than or equal to a
5563 target-specific size limit. The type of the '``<pointer>``' operand must
5564 be a pointer to that type. If the ``atomicrmw`` is marked as
5565 ``volatile``, then the optimizer is not allowed to modify the number or
5566 order of execution of this ``atomicrmw`` with other :ref:`volatile
5567 operations <volatile>`.
5568
5569 Semantics:
5570 """"""""""
5571
5572 The contents of memory at the location specified by the '``<pointer>``'
5573 operand are atomically read, modified, and written back. The original
5574 value at the location is returned. The modification is specified by the
5575 operation argument:
5576
5577 -  xchg: ``*ptr = val``
5578 -  add: ``*ptr = *ptr + val``
5579 -  sub: ``*ptr = *ptr - val``
5580 -  and: ``*ptr = *ptr & val``
5581 -  nand: ``*ptr = ~(*ptr & val)``
5582 -  or: ``*ptr = *ptr | val``
5583 -  xor: ``*ptr = *ptr ^ val``
5584 -  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5585 -  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5586 -  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5587    comparison)
5588 -  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5589    comparison)
5590
5591 Example:
5592 """"""""
5593
5594 .. code-block:: llvm
5595
5596       %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields i32
5597
5598 .. _i_getelementptr:
5599
5600 '``getelementptr``' Instruction
5601 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5602
5603 Syntax:
5604 """""""
5605
5606 ::
5607
5608       <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5609       <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5610       <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5611
5612 Overview:
5613 """""""""
5614
5615 The '``getelementptr``' instruction is used to get the address of a
5616 subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5617 address calculation only and does not access memory.
5618
5619 Arguments:
5620 """"""""""
5621
5622 The first argument is always a pointer or a vector of pointers, and
5623 forms the basis of the calculation. The remaining arguments are indices
5624 that indicate which of the elements of the aggregate object are indexed.
5625 The interpretation of each index is dependent on the type being indexed
5626 into. The first index always indexes the pointer value given as the
5627 first argument, the second index indexes a value of the type pointed to
5628 (not necessarily the value directly pointed to, since the first index
5629 can be non-zero), etc. The first type indexed into must be a pointer
5630 value, subsequent types can be arrays, vectors, and structs. Note that
5631 subsequent types being indexed into can never be pointers, since that
5632 would require loading the pointer before continuing calculation.
5633
5634 The type of each index argument depends on the type it is indexing into.
5635 When indexing into a (optionally packed) structure, only ``i32`` integer
5636 **constants** are allowed (when using a vector of indices they must all
5637 be the **same** ``i32`` integer constant). When indexing into an array,
5638 pointer or vector, integers of any width are allowed, and they are not
5639 required to be constant. These integers are treated as signed values
5640 where relevant.
5641
5642 For example, let's consider a C code fragment and how it gets compiled
5643 to LLVM:
5644
5645 .. code-block:: c
5646
5647     struct RT {
5648       char A;
5649       int B[10][20];
5650       char C;
5651     };
5652     struct ST {
5653       int X;
5654       double Y;
5655       struct RT Z;
5656     };
5657
5658     int *foo(struct ST *s) {
5659       return &s[1].Z.B[5][13];
5660     }
5661
5662 The LLVM code generated by Clang is:
5663
5664 .. code-block:: llvm
5665
5666     %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5667     %struct.ST = type { i32, double, %struct.RT }
5668
5669     define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5670     entry:
5671       %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5672       ret i32* %arrayidx
5673     }
5674
5675 Semantics:
5676 """"""""""
5677
5678 In the example above, the first index is indexing into the
5679 '``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5680 = '``{ i32, double, %struct.RT }``' type, a structure. The second index
5681 indexes into the third element of the structure, yielding a
5682 '``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5683 structure. The third index indexes into the second element of the
5684 structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5685 dimensions of the array are subscripted into, yielding an '``i32``'
5686 type. The '``getelementptr``' instruction returns a pointer to this
5687 element, thus computing a value of '``i32*``' type.
5688
5689 Note that it is perfectly legal to index partially through a structure,
5690 returning a pointer to an inner element. Because of this, the LLVM code
5691 for the given testcase is equivalent to:
5692
5693 .. code-block:: llvm
5694
5695     define i32* @foo(%struct.ST* %s) {
5696       %t1 = getelementptr %struct.ST* %s, i32 1                 ; yields %struct.ST*:%t1
5697       %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         ; yields %struct.RT*:%t2
5698       %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         ; yields [10 x [20 x i32]]*:%t3
5699       %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
5700       %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        ; yields i32*:%t5
5701       ret i32* %t5
5702     }
5703
5704 If the ``inbounds`` keyword is present, the result value of the
5705 ``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5706 pointer is not an *in bounds* address of an allocated object, or if any
5707 of the addresses that would be formed by successive addition of the
5708 offsets implied by the indices to the base address with infinitely
5709 precise signed arithmetic are not an *in bounds* address of that
5710 allocated object. The *in bounds* addresses for an allocated object are
5711 all the addresses that point into the object, plus the address one byte
5712 past the end. In cases where the base is a vector of pointers the
5713 ``inbounds`` keyword applies to each of the computations element-wise.
5714
5715 If the ``inbounds`` keyword is not present, the offsets are added to the
5716 base address with silently-wrapping two's complement arithmetic. If the
5717 offsets have a different width from the pointer, they are sign-extended
5718 or truncated to the width of the pointer. The result value of the
5719 ``getelementptr`` may be outside the object pointed to by the base
5720 pointer. The result value may not necessarily be used to access memory
5721 though, even if it happens to point into allocated storage. See the
5722 :ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5723 information.
5724
5725 The getelementptr instruction is often confusing. For some more insight
5726 into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5727
5728 Example:
5729 """"""""
5730
5731 .. code-block:: llvm
5732
5733         ; yields [12 x i8]*:aptr
5734         %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5735         ; yields i8*:vptr
5736         %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5737         ; yields i8*:eptr
5738         %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5739         ; yields i32*:iptr
5740         %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5741
5742 In cases where the pointer argument is a vector of pointers, each index
5743 must be a vector with the same number of elements. For example:
5744
5745 .. code-block:: llvm
5746
5747      %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5748
5749 Conversion Operations
5750 ---------------------
5751
5752 The instructions in this category are the conversion instructions
5753 (casting) which all take a single operand and a type. They perform
5754 various bit conversions on the operand.
5755
5756 '``trunc .. to``' Instruction
5757 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5758
5759 Syntax:
5760 """""""
5761
5762 ::
5763
5764       <result> = trunc <ty> <value> to <ty2>             ; yields ty2
5765
5766 Overview:
5767 """""""""
5768
5769 The '``trunc``' instruction truncates its operand to the type ``ty2``.
5770
5771 Arguments:
5772 """"""""""
5773
5774 The '``trunc``' instruction takes a value to trunc, and a type to trunc
5775 it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5776 of the same number of integers. The bit size of the ``value`` must be
5777 larger than the bit size of the destination type, ``ty2``. Equal sized
5778 types are not allowed.
5779
5780 Semantics:
5781 """"""""""
5782
5783 The '``trunc``' instruction truncates the high order bits in ``value``
5784 and converts the remaining bits to ``ty2``. Since the source size must
5785 be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5786 It will always truncate bits.
5787
5788 Example:
5789 """"""""
5790
5791 .. code-block:: llvm
5792
5793       %X = trunc i32 257 to i8                        ; yields i8:1
5794       %Y = trunc i32 123 to i1                        ; yields i1:true
5795       %Z = trunc i32 122 to i1                        ; yields i1:false
5796       %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5797
5798 '``zext .. to``' Instruction
5799 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5800
5801 Syntax:
5802 """""""
5803
5804 ::
5805
5806       <result> = zext <ty> <value> to <ty2>             ; yields ty2
5807
5808 Overview:
5809 """""""""
5810
5811 The '``zext``' instruction zero extends its operand to type ``ty2``.
5812
5813 Arguments:
5814 """"""""""
5815
5816 The '``zext``' instruction takes a value to cast, and a type to cast it
5817 to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5818 the same number of integers. The bit size of the ``value`` must be
5819 smaller than the bit size of the destination type, ``ty2``.
5820
5821 Semantics:
5822 """"""""""
5823
5824 The ``zext`` fills the high order bits of the ``value`` with zero bits
5825 until it reaches the size of the destination type, ``ty2``.
5826
5827 When zero extending from i1, the result will always be either 0 or 1.
5828
5829 Example:
5830 """"""""
5831
5832 .. code-block:: llvm
5833
5834       %X = zext i32 257 to i64              ; yields i64:257
5835       %Y = zext i1 true to i32              ; yields i32:1
5836       %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5837
5838 '``sext .. to``' Instruction
5839 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5840
5841 Syntax:
5842 """""""
5843
5844 ::
5845
5846       <result> = sext <ty> <value> to <ty2>             ; yields ty2
5847
5848 Overview:
5849 """""""""
5850
5851 The '``sext``' sign extends ``value`` to the type ``ty2``.
5852
5853 Arguments:
5854 """"""""""
5855
5856 The '``sext``' instruction takes a value to cast, and a type to cast it
5857 to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5858 the same number of integers. The bit size of the ``value`` must be
5859 smaller than the bit size of the destination type, ``ty2``.
5860
5861 Semantics:
5862 """"""""""
5863
5864 The '``sext``' instruction performs a sign extension by copying the sign
5865 bit (highest order bit) of the ``value`` until it reaches the bit size
5866 of the type ``ty2``.
5867
5868 When sign extending from i1, the extension always results in -1 or 0.
5869
5870 Example:
5871 """"""""
5872
5873 .. code-block:: llvm
5874
5875       %X = sext i8  -1 to i16              ; yields i16   :65535
5876       %Y = sext i1 true to i32             ; yields i32:-1
5877       %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5878
5879 '``fptrunc .. to``' Instruction
5880 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5881
5882 Syntax:
5883 """""""
5884
5885 ::
5886
5887       <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2
5888
5889 Overview:
5890 """""""""
5891
5892 The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5893
5894 Arguments:
5895 """"""""""
5896
5897 The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5898 value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5899 The size of ``value`` must be larger than the size of ``ty2``. This
5900 implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5901
5902 Semantics:
5903 """"""""""
5904
5905 The '``fptrunc``' instruction truncates a ``value`` from a larger
5906 :ref:`floating point <t_floating>` type to a smaller :ref:`floating
5907 point <t_floating>` type. If the value cannot fit within the
5908 destination type, ``ty2``, then the results are undefined.
5909
5910 Example:
5911 """"""""
5912
5913 .. code-block:: llvm
5914
5915       %X = fptrunc double 123.0 to float         ; yields float:123.0
5916       %Y = fptrunc double 1.0E+300 to float      ; yields undefined
5917
5918 '``fpext .. to``' Instruction
5919 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5920
5921 Syntax:
5922 """""""
5923
5924 ::
5925
5926       <result> = fpext <ty> <value> to <ty2>             ; yields ty2
5927
5928 Overview:
5929 """""""""
5930
5931 The '``fpext``' extends a floating point ``value`` to a larger floating
5932 point value.
5933
5934 Arguments:
5935 """"""""""
5936
5937 The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5938 ``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5939 to. The source type must be smaller than the destination type.
5940
5941 Semantics:
5942 """"""""""
5943
5944 The '``fpext``' instruction extends the ``value`` from a smaller
5945 :ref:`floating point <t_floating>` type to a larger :ref:`floating
5946 point <t_floating>` type. The ``fpext`` cannot be used to make a
5947 *no-op cast* because it always changes bits. Use ``bitcast`` to make a
5948 *no-op cast* for a floating point cast.
5949
5950 Example:
5951 """"""""
5952
5953 .. code-block:: llvm
5954
5955       %X = fpext float 3.125 to double         ; yields double:3.125000e+00
5956       %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000
5957
5958 '``fptoui .. to``' Instruction
5959 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5960
5961 Syntax:
5962 """""""
5963
5964 ::
5965
5966       <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
5967
5968 Overview:
5969 """""""""
5970
5971 The '``fptoui``' converts a floating point ``value`` to its unsigned
5972 integer equivalent of type ``ty2``.
5973
5974 Arguments:
5975 """"""""""
5976
5977 The '``fptoui``' instruction takes a value to cast, which must be a
5978 scalar or vector :ref:`floating point <t_floating>` value, and a type to
5979 cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5980 ``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5981 type with the same number of elements as ``ty``
5982
5983 Semantics:
5984 """"""""""
5985
5986 The '``fptoui``' instruction converts its :ref:`floating
5987 point <t_floating>` operand into the nearest (rounding towards zero)
5988 unsigned integer value. If the value cannot fit in ``ty2``, the results
5989 are undefined.
5990
5991 Example:
5992 """"""""
5993
5994 .. code-block:: llvm
5995
5996       %X = fptoui double 123.0 to i32      ; yields i32:123
5997       %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
5998       %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1
5999
6000 '``fptosi .. to``' Instruction
6001 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6002
6003 Syntax:
6004 """""""
6005
6006 ::
6007
6008       <result> = fptosi <ty> <value> to <ty2>             ; yields ty2
6009
6010 Overview:
6011 """""""""
6012
6013 The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6014 ``value`` to type ``ty2``.
6015
6016 Arguments:
6017 """"""""""
6018
6019 The '``fptosi``' instruction takes a value to cast, which must be a
6020 scalar or vector :ref:`floating point <t_floating>` value, and a type to
6021 cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6022 ``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6023 type with the same number of elements as ``ty``
6024
6025 Semantics:
6026 """"""""""
6027
6028 The '``fptosi``' instruction converts its :ref:`floating
6029 point <t_floating>` operand into the nearest (rounding towards zero)
6030 signed integer value. If the value cannot fit in ``ty2``, the results
6031 are undefined.
6032
6033 Example:
6034 """"""""
6035
6036 .. code-block:: llvm
6037
6038       %X = fptosi double -123.0 to i32      ; yields i32:-123
6039       %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
6040       %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1
6041
6042 '``uitofp .. to``' Instruction
6043 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6044
6045 Syntax:
6046 """""""
6047
6048 ::
6049
6050       <result> = uitofp <ty> <value> to <ty2>             ; yields ty2
6051
6052 Overview:
6053 """""""""
6054
6055 The '``uitofp``' instruction regards ``value`` as an unsigned integer
6056 and converts that value to the ``ty2`` type.
6057
6058 Arguments:
6059 """"""""""
6060
6061 The '``uitofp``' instruction takes a value to cast, which must be a
6062 scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6063 ``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6064 ``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6065 type with the same number of elements as ``ty``
6066
6067 Semantics:
6068 """"""""""
6069
6070 The '``uitofp``' instruction interprets its operand as an unsigned
6071 integer quantity and converts it to the corresponding floating point
6072 value. If the value cannot fit in the floating point value, the results
6073 are undefined.
6074
6075 Example:
6076 """"""""
6077
6078 .. code-block:: llvm
6079
6080       %X = uitofp i32 257 to float         ; yields float:257.0
6081       %Y = uitofp i8 -1 to double          ; yields double:255.0
6082
6083 '``sitofp .. to``' Instruction
6084 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6085
6086 Syntax:
6087 """""""
6088
6089 ::
6090
6091       <result> = sitofp <ty> <value> to <ty2>             ; yields ty2
6092
6093 Overview:
6094 """""""""
6095
6096 The '``sitofp``' instruction regards ``value`` as a signed integer and
6097 converts that value to the ``ty2`` type.
6098
6099 Arguments:
6100 """"""""""
6101
6102 The '``sitofp``' instruction takes a value to cast, which must be a
6103 scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6104 ``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6105 ``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6106 type with the same number of elements as ``ty``
6107
6108 Semantics:
6109 """"""""""
6110
6111 The '``sitofp``' instruction interprets its operand as a signed integer
6112 quantity and converts it to the corresponding floating point value. If
6113 the value cannot fit in the floating point value, the results are
6114 undefined.
6115
6116 Example:
6117 """"""""
6118
6119 .. code-block:: llvm
6120
6121       %X = sitofp i32 257 to float         ; yields float:257.0
6122       %Y = sitofp i8 -1 to double          ; yields double:-1.0
6123
6124 .. _i_ptrtoint:
6125
6126 '``ptrtoint .. to``' Instruction
6127 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6128
6129 Syntax:
6130 """""""
6131
6132 ::
6133
6134       <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2
6135
6136 Overview:
6137 """""""""
6138
6139 The '``ptrtoint``' instruction converts the pointer or a vector of
6140 pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6141
6142 Arguments:
6143 """"""""""
6144
6145 The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6146 a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6147 type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6148 a vector of integers type.
6149
6150 Semantics:
6151 """"""""""
6152
6153 The '``ptrtoint``' instruction converts ``value`` to integer type
6154 ``ty2`` by interpreting the pointer value as an integer and either
6155 truncating or zero extending that value to the size of the integer type.
6156 If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6157 ``value`` is larger than ``ty2`` then a truncation is done. If they are
6158 the same size, then nothing is done (*no-op cast*) other than a type
6159 change.
6160
6161 Example:
6162 """"""""
6163
6164 .. code-block:: llvm
6165
6166       %X = ptrtoint i32* %P to i8                         ; yields truncation on 32-bit architecture
6167       %Y = ptrtoint i32* %P to i64                        ; yields zero extension on 32-bit architecture
6168       %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6169
6170 .. _i_inttoptr:
6171
6172 '``inttoptr .. to``' Instruction
6173 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6174
6175 Syntax:
6176 """""""
6177
6178 ::
6179
6180       <result> = inttoptr <ty> <value> to <ty2>             ; yields ty2
6181
6182 Overview:
6183 """""""""
6184
6185 The '``inttoptr``' instruction converts an integer ``value`` to a
6186 pointer type, ``ty2``.
6187
6188 Arguments:
6189 """"""""""
6190
6191 The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6192 cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6193 type.
6194
6195 Semantics:
6196 """"""""""
6197
6198 The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6199 applying either a zero extension or a truncation depending on the size
6200 of the integer ``value``. If ``value`` is larger than the size of a
6201 pointer then a truncation is done. If ``value`` is smaller than the size
6202 of a pointer then a zero extension is done. If they are the same size,
6203 nothing is done (*no-op cast*).
6204
6205 Example:
6206 """"""""
6207
6208 .. code-block:: llvm
6209
6210       %X = inttoptr i32 255 to i32*          ; yields zero extension on 64-bit architecture
6211       %Y = inttoptr i32 255 to i32*          ; yields no-op on 32-bit architecture
6212       %Z = inttoptr i64 0 to i32*            ; yields truncation on 32-bit architecture
6213       %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6214
6215 .. _i_bitcast:
6216
6217 '``bitcast .. to``' Instruction
6218 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6219
6220 Syntax:
6221 """""""
6222
6223 ::
6224
6225       <result> = bitcast <ty> <value> to <ty2>             ; yields ty2
6226
6227 Overview:
6228 """""""""
6229
6230 The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6231 changing any bits.
6232
6233 Arguments:
6234 """"""""""
6235
6236 The '``bitcast``' instruction takes a value to cast, which must be a
6237 non-aggregate first class value, and a type to cast it to, which must
6238 also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6239 bit sizes of ``value`` and the destination type, ``ty2``, must be
6240 identical.  If the source type is a pointer, the destination type must
6241 also be a pointer of the same size. This instruction supports bitwise
6242 conversion of vectors to integers and to vectors of other types (as
6243 long as they have the same size).
6244
6245 Semantics:
6246 """"""""""
6247
6248 The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6249 is always a *no-op cast* because no bits change with this
6250 conversion. The conversion is done as if the ``value`` had been stored
6251 to memory and read back as type ``ty2``. Pointer (or vector of
6252 pointers) types may only be converted to other pointer (or vector of
6253 pointers) types with the same address space through this instruction.
6254 To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6255 or :ref:`ptrtoint <i_ptrtoint>` instructions first.
6256
6257 Example:
6258 """"""""
6259
6260 .. code-block:: llvm
6261
6262       %X = bitcast i8 255 to i8              ; yields i8 :-1
6263       %Y = bitcast i32* %x to sint*          ; yields sint*:%x
6264       %Z = bitcast <2 x int> %V to i64;        ; yields i64: %V
6265       %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6266
6267 .. _i_addrspacecast:
6268
6269 '``addrspacecast .. to``' Instruction
6270 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6271
6272 Syntax:
6273 """""""
6274
6275 ::
6276
6277       <result> = addrspacecast <pty> <ptrval> to <pty2>       ; yields pty2
6278
6279 Overview:
6280 """""""""
6281
6282 The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6283 address space ``n`` to type ``pty2`` in address space ``m``.
6284
6285 Arguments:
6286 """"""""""
6287
6288 The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6289 to cast and a pointer type to cast it to, which must have a different
6290 address space.
6291
6292 Semantics:
6293 """"""""""
6294
6295 The '``addrspacecast``' instruction converts the pointer value
6296 ``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
6297 value modification, depending on the target and the address space
6298 pair. Pointer conversions within the same address space must be
6299 performed with the ``bitcast`` instruction. Note that if the address space
6300 conversion is legal then both result and operand refer to the same memory
6301 location.
6302
6303 Example:
6304 """"""""
6305
6306 .. code-block:: llvm
6307
6308       %X = addrspacecast i32* %x to i32 addrspace(1)*    ; yields i32 addrspace(1)*:%x
6309       %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)*    ; yields i64 addrspace(2)*:%y
6310       %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*>   ; yields <4 x float addrspace(3)*>:%z
6311
6312 .. _otherops:
6313
6314 Other Operations
6315 ----------------
6316
6317 The instructions in this category are the "miscellaneous" instructions,
6318 which defy better classification.
6319
6320 .. _i_icmp:
6321
6322 '``icmp``' Instruction
6323 ^^^^^^^^^^^^^^^^^^^^^^
6324
6325 Syntax:
6326 """""""
6327
6328 ::
6329
6330       <result> = icmp <cond> <ty> <op1>, <op2>   ; yields i1 or <N x i1>:result
6331
6332 Overview:
6333 """""""""
6334
6335 The '``icmp``' instruction returns a boolean value or a vector of
6336 boolean values based on comparison of its two integer, integer vector,
6337 pointer, or pointer vector operands.
6338
6339 Arguments:
6340 """"""""""
6341
6342 The '``icmp``' instruction takes three operands. The first operand is
6343 the condition code indicating the kind of comparison to perform. It is
6344 not a value, just a keyword. The possible condition code are:
6345
6346 #. ``eq``: equal
6347 #. ``ne``: not equal
6348 #. ``ugt``: unsigned greater than
6349 #. ``uge``: unsigned greater or equal
6350 #. ``ult``: unsigned less than
6351 #. ``ule``: unsigned less or equal
6352 #. ``sgt``: signed greater than
6353 #. ``sge``: signed greater or equal
6354 #. ``slt``: signed less than
6355 #. ``sle``: signed less or equal
6356
6357 The remaining two arguments must be :ref:`integer <t_integer>` or
6358 :ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6359 must also be identical types.
6360
6361 Semantics:
6362 """"""""""
6363
6364 The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6365 code given as ``cond``. The comparison performed always yields either an
6366 :ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6367
6368 #. ``eq``: yields ``true`` if the operands are equal, ``false``
6369    otherwise. No sign interpretation is necessary or performed.
6370 #. ``ne``: yields ``true`` if the operands are unequal, ``false``
6371    otherwise. No sign interpretation is necessary or performed.
6372 #. ``ugt``: interprets the operands as unsigned values and yields
6373    ``true`` if ``op1`` is greater than ``op2``.
6374 #. ``uge``: interprets the operands as unsigned values and yields
6375    ``true`` if ``op1`` is greater than or equal to ``op2``.
6376 #. ``ult``: interprets the operands as unsigned values and yields
6377    ``true`` if ``op1`` is less than ``op2``.
6378 #. ``ule``: interprets the operands as unsigned values and yields
6379    ``true`` if ``op1`` is less than or equal to ``op2``.
6380 #. ``sgt``: interprets the operands as signed values and yields ``true``
6381    if ``op1`` is greater than ``op2``.
6382 #. ``sge``: interprets the operands as signed values and yields ``true``
6383    if ``op1`` is greater than or equal to ``op2``.
6384 #. ``slt``: interprets the operands as signed values and yields ``true``
6385    if ``op1`` is less than ``op2``.
6386 #. ``sle``: interprets the operands as signed values and yields ``true``
6387    if ``op1`` is less than or equal to ``op2``.
6388
6389 If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6390 are compared as if they were integers.
6391
6392 If the operands are integer vectors, then they are compared element by
6393 element. The result is an ``i1`` vector with the same number of elements
6394 as the values being compared. Otherwise, the result is an ``i1``.
6395
6396 Example:
6397 """"""""
6398
6399 .. code-block:: llvm
6400
6401       <result> = icmp eq i32 4, 5          ; yields: result=false
6402       <result> = icmp ne float* %X, %X     ; yields: result=false
6403       <result> = icmp ult i16  4, 5        ; yields: result=true
6404       <result> = icmp sgt i16  4, 5        ; yields: result=false
6405       <result> = icmp ule i16 -4, 5        ; yields: result=false
6406       <result> = icmp sge i16  4, 5        ; yields: result=false
6407
6408 Note that the code generator does not yet support vector types with the
6409 ``icmp`` instruction.
6410
6411 .. _i_fcmp:
6412
6413 '``fcmp``' Instruction
6414 ^^^^^^^^^^^^^^^^^^^^^^
6415
6416 Syntax:
6417 """""""
6418
6419 ::
6420
6421       <result> = fcmp <cond> <ty> <op1>, <op2>     ; yields i1 or <N x i1>:result
6422
6423 Overview:
6424 """""""""
6425
6426 The '``fcmp``' instruction returns a boolean value or vector of boolean
6427 values based on comparison of its operands.
6428
6429 If the operands are floating point scalars, then the result type is a
6430 boolean (:ref:`i1 <t_integer>`).
6431
6432 If the operands are floating point vectors, then the result type is a
6433 vector of boolean with the same number of elements as the operands being
6434 compared.
6435
6436 Arguments:
6437 """"""""""
6438
6439 The '``fcmp``' instruction takes three operands. The first operand is
6440 the condition code indicating the kind of comparison to perform. It is
6441 not a value, just a keyword. The possible condition code are:
6442
6443 #. ``false``: no comparison, always returns false
6444 #. ``oeq``: ordered and equal
6445 #. ``ogt``: ordered and greater than
6446 #. ``oge``: ordered and greater than or equal
6447 #. ``olt``: ordered and less than
6448 #. ``ole``: ordered and less than or equal
6449 #. ``one``: ordered and not equal
6450 #. ``ord``: ordered (no nans)
6451 #. ``ueq``: unordered or equal
6452 #. ``ugt``: unordered or greater than
6453 #. ``uge``: unordered or greater than or equal
6454 #. ``ult``: unordered or less than
6455 #. ``ule``: unordered or less than or equal
6456 #. ``une``: unordered or not equal
6457 #. ``uno``: unordered (either nans)
6458 #. ``true``: no comparison, always returns true
6459
6460 *Ordered* means that neither operand is a QNAN while *unordered* means
6461 that either operand may be a QNAN.
6462
6463 Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6464 point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6465 type. They must have identical types.
6466
6467 Semantics:
6468 """"""""""
6469
6470 The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6471 condition code given as ``cond``. If the operands are vectors, then the
6472 vectors are compared element by element. Each comparison performed
6473 always yields an :ref:`i1 <t_integer>` result, as follows:
6474
6475 #. ``false``: always yields ``false``, regardless of operands.
6476 #. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6477    is equal to ``op2``.
6478 #. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6479    is greater than ``op2``.
6480 #. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6481    is greater than or equal to ``op2``.
6482 #. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6483    is less than ``op2``.
6484 #. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6485    is less than or equal to ``op2``.
6486 #. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6487    is not equal to ``op2``.
6488 #. ``ord``: yields ``true`` if both operands are not a QNAN.
6489 #. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6490    equal to ``op2``.
6491 #. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6492    greater than ``op2``.
6493 #. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6494    greater than or equal to ``op2``.
6495 #. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6496    less than ``op2``.
6497 #. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6498    less than or equal to ``op2``.
6499 #. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6500    not equal to ``op2``.
6501 #. ``uno``: yields ``true`` if either operand is a QNAN.
6502 #. ``true``: always yields ``true``, regardless of operands.
6503
6504 Example:
6505 """"""""
6506
6507 .. code-block:: llvm
6508
6509       <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
6510       <result> = fcmp one float 4.0, 5.0    ; yields: result=true
6511       <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
6512       <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false
6513
6514 Note that the code generator does not yet support vector types with the
6515 ``fcmp`` instruction.
6516
6517 .. _i_phi:
6518
6519 '``phi``' Instruction
6520 ^^^^^^^^^^^^^^^^^^^^^
6521
6522 Syntax:
6523 """""""
6524
6525 ::
6526
6527       <result> = phi <ty> [ <val0>, <label0>], ...
6528
6529 Overview:
6530 """""""""
6531
6532 The '``phi``' instruction is used to implement the Ï† node in the SSA
6533 graph representing the function.
6534
6535 Arguments:
6536 """"""""""
6537
6538 The type of the incoming values is specified with the first type field.
6539 After this, the '``phi``' instruction takes a list of pairs as
6540 arguments, with one pair for each predecessor basic block of the current
6541 block. Only values of :ref:`first class <t_firstclass>` type may be used as
6542 the value arguments to the PHI node. Only labels may be used as the
6543 label arguments.
6544
6545 There must be no non-phi instructions between the start of a basic block
6546 and the PHI instructions: i.e. PHI instructions must be first in a basic
6547 block.
6548
6549 For the purposes of the SSA form, the use of each incoming value is
6550 deemed to occur on the edge from the corresponding predecessor block to
6551 the current block (but after any definition of an '``invoke``'
6552 instruction's return value on the same edge).
6553
6554 Semantics:
6555 """"""""""
6556
6557 At runtime, the '``phi``' instruction logically takes on the value
6558 specified by the pair corresponding to the predecessor basic block that
6559 executed just prior to the current block.
6560
6561 Example:
6562 """"""""
6563
6564 .. code-block:: llvm
6565
6566     Loop:       ; Infinite loop that counts from 0 on up...
6567       %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6568       %nextindvar = add i32 %indvar, 1
6569       br label %Loop
6570
6571 .. _i_select:
6572
6573 '``select``' Instruction
6574 ^^^^^^^^^^^^^^^^^^^^^^^^
6575
6576 Syntax:
6577 """""""
6578
6579 ::
6580
6581       <result> = select selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty
6582
6583       selty is either i1 or {<N x i1>}
6584
6585 Overview:
6586 """""""""
6587
6588 The '``select``' instruction is used to choose one value based on a
6589 condition, without IR-level branching.
6590
6591 Arguments:
6592 """"""""""
6593
6594 The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6595 values indicating the condition, and two values of the same :ref:`first
6596 class <t_firstclass>` type. If the val1/val2 are vectors and the
6597 condition is a scalar, then entire vectors are selected, not individual
6598 elements.
6599
6600 Semantics:
6601 """"""""""
6602
6603 If the condition is an i1 and it evaluates to 1, the instruction returns
6604 the first value argument; otherwise, it returns the second value
6605 argument.
6606
6607 If the condition is a vector of i1, then the value arguments must be
6608 vectors of the same size, and the selection is done element by element.
6609
6610 Example:
6611 """"""""
6612
6613 .. code-block:: llvm
6614
6615       %X = select i1 true, i8 17, i8 42          ; yields i8:17
6616
6617 .. _i_call:
6618
6619 '``call``' Instruction
6620 ^^^^^^^^^^^^^^^^^^^^^^
6621
6622 Syntax:
6623 """""""
6624
6625 ::
6626
6627       <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6628
6629 Overview:
6630 """""""""
6631
6632 The '``call``' instruction represents a simple function call.
6633
6634 Arguments:
6635 """"""""""
6636
6637 This instruction requires several arguments:
6638
6639 #. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6640    should perform tail call optimization.  The ``tail`` marker is a hint that
6641    `can be ignored <CodeGenerator.html#sibcallopt>`_.  The ``musttail`` marker
6642    means that the call must be tail call optimized in order for the program to
6643    be correct.  The ``musttail`` marker provides these guarantees:
6644
6645    #. The call will not cause unbounded stack growth if it is part of a
6646       recursive cycle in the call graph.
6647    #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6648       forwarded in place.
6649
6650    Both markers imply that the callee does not access allocas or varargs from
6651    the caller.  Calls marked ``musttail`` must obey the following additional
6652    rules:
6653
6654    - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6655      or a pointer bitcast followed by a ret instruction.
6656    - The ret instruction must return the (possibly bitcasted) value
6657      produced by the call or void.
6658    - The caller and callee prototypes must match.  Pointer types of
6659      parameters or return types may differ in pointee type, but not
6660      in address space.
6661    - The calling conventions of the caller and callee must match.
6662    - All ABI-impacting function attributes, such as sret, byval, inreg,
6663      returned, and inalloca, must match.
6664    - The callee must be varargs iff the caller is varargs. Bitcasting a
6665      non-varargs function to the appropriate varargs type is legal so
6666      long as the non-varargs prefixes obey the other rules.
6667
6668    Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6669    the following conditions are met:
6670
6671    -  Caller and callee both have the calling convention ``fastcc``.
6672    -  The call is in tail position (ret immediately follows call and ret
6673       uses value of call or is void).
6674    -  Option ``-tailcallopt`` is enabled, or
6675       ``llvm::GuaranteedTailCallOpt`` is ``true``.
6676    -  `Platform-specific constraints are
6677       met. <CodeGenerator.html#tailcallopt>`_
6678
6679 #. The optional "cconv" marker indicates which :ref:`calling
6680    convention <callingconv>` the call should use. If none is
6681    specified, the call defaults to using C calling conventions. The
6682    calling convention of the call must match the calling convention of
6683    the target function, or else the behavior is undefined.
6684 #. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6685    values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6686    are valid here.
6687 #. '``ty``': the type of the call instruction itself which is also the
6688    type of the return value. Functions that return no value are marked
6689    ``void``.
6690 #. '``fnty``': shall be the signature of the pointer to function value
6691    being invoked. The argument types must match the types implied by
6692    this signature. This type can be omitted if the function is not
6693    varargs and if the function type does not return a pointer to a
6694    function.
6695 #. '``fnptrval``': An LLVM value containing a pointer to a function to
6696    be invoked. In most cases, this is a direct function invocation, but
6697    indirect ``call``'s are just as possible, calling an arbitrary pointer
6698    to function value.
6699 #. '``function args``': argument list whose types match the function
6700    signature argument types and parameter attributes. All arguments must
6701    be of :ref:`first class <t_firstclass>` type. If the function signature
6702    indicates the function accepts a variable number of arguments, the
6703    extra arguments can be specified.
6704 #. The optional :ref:`function attributes <fnattrs>` list. Only
6705    '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6706    attributes are valid here.
6707
6708 Semantics:
6709 """"""""""
6710
6711 The '``call``' instruction is used to cause control flow to transfer to
6712 a specified function, with its incoming arguments bound to the specified
6713 values. Upon a '``ret``' instruction in the called function, control
6714 flow continues with the instruction after the function call, and the
6715 return value of the function is bound to the result argument.
6716
6717 Example:
6718 """"""""
6719
6720 .. code-block:: llvm
6721
6722       %retval = call i32 @test(i32 %argc)
6723       call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        ; yields i32
6724       %X = tail call i32 @foo()                                    ; yields i32
6725       %Y = tail call fastcc i32 @foo()  ; yields i32
6726       call void %foo(i8 97 signext)
6727
6728       %struct.A = type { i32, i8 }
6729       %r = call %struct.A @foo()                        ; yields { i32, i8 }
6730       %gr = extractvalue %struct.A %r, 0                ; yields i32
6731       %gr1 = extractvalue %struct.A %r, 1               ; yields i8
6732       %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
6733       %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended
6734
6735 llvm treats calls to some functions with names and arguments that match
6736 the standard C99 library as being the C99 library functions, and may
6737 perform optimizations or generate code for them under that assumption.
6738 This is something we'd like to change in the future to provide better
6739 support for freestanding environments and non-C-based languages.
6740
6741 .. _i_va_arg:
6742
6743 '``va_arg``' Instruction
6744 ^^^^^^^^^^^^^^^^^^^^^^^^
6745
6746 Syntax:
6747 """""""
6748
6749 ::
6750
6751       <resultval> = va_arg <va_list*> <arglist>, <argty>
6752
6753 Overview:
6754 """""""""
6755
6756 The '``va_arg``' instruction is used to access arguments passed through
6757 the "variable argument" area of a function call. It is used to implement
6758 the ``va_arg`` macro in C.
6759
6760 Arguments:
6761 """"""""""
6762
6763 This instruction takes a ``va_list*`` value and the type of the
6764 argument. It returns a value of the specified argument type and
6765 increments the ``va_list`` to point to the next argument. The actual
6766 type of ``va_list`` is target specific.
6767
6768 Semantics:
6769 """"""""""
6770
6771 The '``va_arg``' instruction loads an argument of the specified type
6772 from the specified ``va_list`` and causes the ``va_list`` to point to
6773 the next argument. For more information, see the variable argument
6774 handling :ref:`Intrinsic Functions <int_varargs>`.
6775
6776 It is legal for this instruction to be called in a function which does
6777 not take a variable number of arguments, for example, the ``vfprintf``
6778 function.
6779
6780 ``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6781 function <intrinsics>` because it takes a type as an argument.
6782
6783 Example:
6784 """"""""
6785
6786 See the :ref:`variable argument processing <int_varargs>` section.
6787
6788 Note that the code generator does not yet fully support va\_arg on many
6789 targets. Also, it does not currently support va\_arg with aggregate
6790 types on any target.
6791
6792 .. _i_landingpad:
6793
6794 '``landingpad``' Instruction
6795 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6796
6797 Syntax:
6798 """""""
6799
6800 ::
6801
6802       <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6803       <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6804
6805       <clause> := catch <type> <value>
6806       <clause> := filter <array constant type> <array constant>
6807
6808 Overview:
6809 """""""""
6810
6811 The '``landingpad``' instruction is used by `LLVM's exception handling
6812 system <ExceptionHandling.html#overview>`_ to specify that a basic block
6813 is a landing pad --- one where the exception lands, and corresponds to the
6814 code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6815 defines values supplied by the personality function (``pers_fn``) upon
6816 re-entry to the function. The ``resultval`` has the type ``resultty``.
6817
6818 Arguments:
6819 """"""""""
6820
6821 This instruction takes a ``pers_fn`` value. This is the personality
6822 function associated with the unwinding mechanism. The optional
6823 ``cleanup`` flag indicates that the landing pad block is a cleanup.
6824
6825 A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
6826 contains the global variable representing the "type" that may be caught
6827 or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6828 clause takes an array constant as its argument. Use
6829 "``[0 x i8**] undef``" for a filter which cannot throw. The
6830 '``landingpad``' instruction must contain *at least* one ``clause`` or
6831 the ``cleanup`` flag.
6832
6833 Semantics:
6834 """"""""""
6835
6836 The '``landingpad``' instruction defines the values which are set by the
6837 personality function (``pers_fn``) upon re-entry to the function, and
6838 therefore the "result type" of the ``landingpad`` instruction. As with
6839 calling conventions, how the personality function results are
6840 represented in LLVM IR is target specific.
6841
6842 The clauses are applied in order from top to bottom. If two
6843 ``landingpad`` instructions are merged together through inlining, the
6844 clauses from the calling function are appended to the list of clauses.
6845 When the call stack is being unwound due to an exception being thrown,
6846 the exception is compared against each ``clause`` in turn. If it doesn't
6847 match any of the clauses, and the ``cleanup`` flag is not set, then
6848 unwinding continues further up the call stack.
6849
6850 The ``landingpad`` instruction has several restrictions:
6851
6852 -  A landing pad block is a basic block which is the unwind destination
6853    of an '``invoke``' instruction.
6854 -  A landing pad block must have a '``landingpad``' instruction as its
6855    first non-PHI instruction.
6856 -  There can be only one '``landingpad``' instruction within the landing
6857    pad block.
6858 -  A basic block that is not a landing pad block may not include a
6859    '``landingpad``' instruction.
6860 -  All '``landingpad``' instructions in a function must have the same
6861    personality function.
6862
6863 Example:
6864 """"""""
6865
6866 .. code-block:: llvm
6867
6868       ;; A landing pad which can catch an integer.
6869       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6870                catch i8** @_ZTIi
6871       ;; A landing pad that is a cleanup.
6872       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6873                cleanup
6874       ;; A landing pad which can catch an integer and can only throw a double.
6875       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6876                catch i8** @_ZTIi
6877                filter [1 x i8**] [@_ZTId]
6878
6879 .. _intrinsics:
6880
6881 Intrinsic Functions
6882 ===================
6883
6884 LLVM supports the notion of an "intrinsic function". These functions
6885 have well known names and semantics and are required to follow certain
6886 restrictions. Overall, these intrinsics represent an extension mechanism
6887 for the LLVM language that does not require changing all of the
6888 transformations in LLVM when adding to the language (or the bitcode
6889 reader/writer, the parser, etc...).
6890
6891 Intrinsic function names must all start with an "``llvm.``" prefix. This
6892 prefix is reserved in LLVM for intrinsic names; thus, function names may
6893 not begin with this prefix. Intrinsic functions must always be external
6894 functions: you cannot define the body of intrinsic functions. Intrinsic
6895 functions may only be used in call or invoke instructions: it is illegal
6896 to take the address of an intrinsic function. Additionally, because
6897 intrinsic functions are part of the LLVM language, it is required if any
6898 are added that they be documented here.
6899
6900 Some intrinsic functions can be overloaded, i.e., the intrinsic
6901 represents a family of functions that perform the same operation but on
6902 different data types. Because LLVM can represent over 8 million
6903 different integer types, overloading is used commonly to allow an
6904 intrinsic function to operate on any integer type. One or more of the
6905 argument types or the result type can be overloaded to accept any
6906 integer type. Argument types may also be defined as exactly matching a
6907 previous argument's type or the result type. This allows an intrinsic
6908 function which accepts multiple arguments, but needs all of them to be
6909 of the same type, to only be overloaded with respect to a single
6910 argument or the result.
6911
6912 Overloaded intrinsics will have the names of its overloaded argument
6913 types encoded into its function name, each preceded by a period. Only
6914 those types which are overloaded result in a name suffix. Arguments
6915 whose type is matched against another type do not. For example, the
6916 ``llvm.ctpop`` function can take an integer of any width and returns an
6917 integer of exactly the same integer width. This leads to a family of
6918 functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6919 ``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6920 overloaded, and only one type suffix is required. Because the argument's
6921 type is matched against the return type, it does not require its own
6922 name suffix.
6923
6924 To learn how to add an intrinsic function, please see the `Extending
6925 LLVM Guide <ExtendingLLVM.html>`_.
6926
6927 .. _int_varargs:
6928
6929 Variable Argument Handling Intrinsics
6930 -------------------------------------
6931
6932 Variable argument support is defined in LLVM with the
6933 :ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6934 functions. These functions are related to the similarly named macros
6935 defined in the ``<stdarg.h>`` header file.
6936
6937 All of these functions operate on arguments that use a target-specific
6938 value type "``va_list``". The LLVM assembly language reference manual
6939 does not define what this type is, so all transformations should be
6940 prepared to handle these functions regardless of the type used.
6941
6942 This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6943 variable argument handling intrinsic functions are used.
6944
6945 .. code-block:: llvm
6946
6947     ; This struct is different for every platform. For most platforms,
6948     ; it is merely an i8*.
6949     %struct.va_list = type { i8* }
6950
6951     ; For Unix x86_64 platforms, va_list is the following struct:
6952     ; %struct.va_list = type { i32, i32, i8*, i8* }
6953
6954     define i32 @test(i32 %X, ...) {
6955       ; Initialize variable argument processing
6956       %ap = alloca %struct.va_list
6957       %ap2 = bitcast %struct.va_list* %ap to i8*
6958       call void @llvm.va_start(i8* %ap2)
6959
6960       ; Read a single integer argument
6961       %tmp = va_arg i8* %ap2, i32
6962
6963       ; Demonstrate usage of llvm.va_copy and llvm.va_end
6964       %aq = alloca i8*
6965       %aq2 = bitcast i8** %aq to i8*
6966       call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6967       call void @llvm.va_end(i8* %aq2)
6968
6969       ; Stop processing of arguments.
6970       call void @llvm.va_end(i8* %ap2)
6971       ret i32 %tmp
6972     }
6973
6974     declare void @llvm.va_start(i8*)
6975     declare void @llvm.va_copy(i8*, i8*)
6976     declare void @llvm.va_end(i8*)
6977
6978 .. _int_va_start:
6979
6980 '``llvm.va_start``' Intrinsic
6981 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6982
6983 Syntax:
6984 """""""
6985
6986 ::
6987
6988       declare void @llvm.va_start(i8* <arglist>)
6989
6990 Overview:
6991 """""""""
6992
6993 The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6994 subsequent use by ``va_arg``.
6995
6996 Arguments:
6997 """"""""""
6998
6999 The argument is a pointer to a ``va_list`` element to initialize.
7000
7001 Semantics:
7002 """"""""""
7003
7004 The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7005 available in C. In a target-dependent way, it initializes the
7006 ``va_list`` element to which the argument points, so that the next call
7007 to ``va_arg`` will produce the first variable argument passed to the
7008 function. Unlike the C ``va_start`` macro, this intrinsic does not need
7009 to know the last argument of the function as the compiler can figure
7010 that out.
7011
7012 '``llvm.va_end``' Intrinsic
7013 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
7014
7015 Syntax:
7016 """""""
7017
7018 ::
7019
7020       declare void @llvm.va_end(i8* <arglist>)
7021
7022 Overview:
7023 """""""""
7024
7025 The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7026 initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7027
7028 Arguments:
7029 """"""""""
7030
7031 The argument is a pointer to a ``va_list`` to destroy.
7032
7033 Semantics:
7034 """"""""""
7035
7036 The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7037 available in C. In a target-dependent way, it destroys the ``va_list``
7038 element to which the argument points. Calls to
7039 :ref:`llvm.va_start <int_va_start>` and
7040 :ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7041 ``llvm.va_end``.
7042
7043 .. _int_va_copy:
7044
7045 '``llvm.va_copy``' Intrinsic
7046 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7047
7048 Syntax:
7049 """""""
7050
7051 ::
7052
7053       declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7054
7055 Overview:
7056 """""""""
7057
7058 The '``llvm.va_copy``' intrinsic copies the current argument position
7059 from the source argument list to the destination argument list.
7060
7061 Arguments:
7062 """"""""""
7063
7064 The first argument is a pointer to a ``va_list`` element to initialize.
7065 The second argument is a pointer to a ``va_list`` element to copy from.
7066
7067 Semantics:
7068 """"""""""
7069
7070 The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7071 available in C. In a target-dependent way, it copies the source
7072 ``va_list`` element into the destination ``va_list`` element. This
7073 intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7074 arbitrarily complex and require, for example, memory allocation.
7075
7076 Accurate Garbage Collection Intrinsics
7077 --------------------------------------
7078
7079 LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7080 (GC) requires the implementation and generation of these intrinsics.
7081 These intrinsics allow identification of :ref:`GC roots on the
7082 stack <int_gcroot>`, as well as garbage collector implementations that
7083 require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7084 Front-ends for type-safe garbage collected languages should generate
7085 these intrinsics to make use of the LLVM garbage collectors. For more
7086 details, see `Accurate Garbage Collection with
7087 LLVM <GarbageCollection.html>`_.
7088
7089 The garbage collection intrinsics only operate on objects in the generic
7090 address space (address space zero).
7091
7092 .. _int_gcroot:
7093
7094 '``llvm.gcroot``' Intrinsic
7095 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
7096
7097 Syntax:
7098 """""""
7099
7100 ::
7101
7102       declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7103
7104 Overview:
7105 """""""""
7106
7107 The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7108 the code generator, and allows some metadata to be associated with it.
7109
7110 Arguments:
7111 """"""""""
7112
7113 The first argument specifies the address of a stack object that contains
7114 the root pointer. The second pointer (which must be either a constant or
7115 a global value address) contains the meta-data to be associated with the
7116 root.
7117
7118 Semantics:
7119 """"""""""
7120
7121 At runtime, a call to this intrinsic stores a null pointer into the
7122 "ptrloc" location. At compile-time, the code generator generates
7123 information to allow the runtime to find the pointer at GC safe points.
7124 The '``llvm.gcroot``' intrinsic may only be used in a function which
7125 :ref:`specifies a GC algorithm <gc>`.
7126
7127 .. _int_gcread:
7128
7129 '``llvm.gcread``' Intrinsic
7130 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
7131
7132 Syntax:
7133 """""""
7134
7135 ::
7136
7137       declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7138
7139 Overview:
7140 """""""""
7141
7142 The '``llvm.gcread``' intrinsic identifies reads of references from heap
7143 locations, allowing garbage collector implementations that require read
7144 barriers.
7145
7146 Arguments:
7147 """"""""""
7148
7149 The second argument is the address to read from, which should be an
7150 address allocated from the garbage collector. The first object is a
7151 pointer to the start of the referenced object, if needed by the language
7152 runtime (otherwise null).
7153
7154 Semantics:
7155 """"""""""
7156
7157 The '``llvm.gcread``' intrinsic has the same semantics as a load
7158 instruction, but may be replaced with substantially more complex code by
7159 the garbage collector runtime, as needed. The '``llvm.gcread``'
7160 intrinsic may only be used in a function which :ref:`specifies a GC
7161 algorithm <gc>`.
7162
7163 .. _int_gcwrite:
7164
7165 '``llvm.gcwrite``' Intrinsic
7166 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7167
7168 Syntax:
7169 """""""
7170
7171 ::
7172
7173       declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7174
7175 Overview:
7176 """""""""
7177
7178 The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7179 locations, allowing garbage collector implementations that require write
7180 barriers (such as generational or reference counting collectors).
7181
7182 Arguments:
7183 """"""""""
7184
7185 The first argument is the reference to store, the second is the start of
7186 the object to store it to, and the third is the address of the field of
7187 Obj to store to. If the runtime does not require a pointer to the
7188 object, Obj may be null.
7189
7190 Semantics:
7191 """"""""""
7192
7193 The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7194 instruction, but may be replaced with substantially more complex code by
7195 the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7196 intrinsic may only be used in a function which :ref:`specifies a GC
7197 algorithm <gc>`.
7198
7199 Code Generator Intrinsics
7200 -------------------------
7201
7202 These intrinsics are provided by LLVM to expose special features that
7203 may only be implemented with code generator support.
7204
7205 '``llvm.returnaddress``' Intrinsic
7206 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7207
7208 Syntax:
7209 """""""
7210
7211 ::
7212
7213       declare i8  *@llvm.returnaddress(i32 <level>)
7214
7215 Overview:
7216 """""""""
7217
7218 The '``llvm.returnaddress``' intrinsic attempts to compute a
7219 target-specific value indicating the return address of the current
7220 function or one of its callers.
7221
7222 Arguments:
7223 """"""""""
7224
7225 The argument to this intrinsic indicates which function to return the
7226 address for. Zero indicates the calling function, one indicates its
7227 caller, etc. The argument is **required** to be a constant integer
7228 value.
7229
7230 Semantics:
7231 """"""""""
7232
7233 The '``llvm.returnaddress``' intrinsic either returns a pointer
7234 indicating the return address of the specified call frame, or zero if it
7235 cannot be identified. The value returned by this intrinsic is likely to
7236 be incorrect or 0 for arguments other than zero, so it should only be
7237 used for debugging purposes.
7238
7239 Note that calling this intrinsic does not prevent function inlining or
7240 other aggressive transformations, so the value returned may not be that
7241 of the obvious source-language caller.
7242
7243 '``llvm.frameaddress``' Intrinsic
7244 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7245
7246 Syntax:
7247 """""""
7248
7249 ::
7250
7251       declare i8* @llvm.frameaddress(i32 <level>)
7252
7253 Overview:
7254 """""""""
7255
7256 The '``llvm.frameaddress``' intrinsic attempts to return the
7257 target-specific frame pointer value for the specified stack frame.
7258
7259 Arguments:
7260 """"""""""
7261
7262 The argument to this intrinsic indicates which function to return the
7263 frame pointer for. Zero indicates the calling function, one indicates
7264 its caller, etc. The argument is **required** to be a constant integer
7265 value.
7266
7267 Semantics:
7268 """"""""""
7269
7270 The '``llvm.frameaddress``' intrinsic either returns a pointer
7271 indicating the frame address of the specified call frame, or zero if it
7272 cannot be identified. The value returned by this intrinsic is likely to
7273 be incorrect or 0 for arguments other than zero, so it should only be
7274 used for debugging purposes.
7275
7276 Note that calling this intrinsic does not prevent function inlining or
7277 other aggressive transformations, so the value returned may not be that
7278 of the obvious source-language caller.
7279
7280 .. _int_read_register:
7281 .. _int_write_register:
7282
7283 '``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7284 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7285
7286 Syntax:
7287 """""""
7288
7289 ::
7290
7291       declare i32 @llvm.read_register.i32(metadata)
7292       declare i64 @llvm.read_register.i64(metadata)
7293       declare void @llvm.write_register.i32(metadata, i32 @value)
7294       declare void @llvm.write_register.i64(metadata, i64 @value)
7295       !0 = !{!"sp\00"}
7296
7297 Overview:
7298 """""""""
7299
7300 The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7301 provides access to the named register. The register must be valid on
7302 the architecture being compiled to. The type needs to be compatible
7303 with the register being read.
7304
7305 Semantics:
7306 """"""""""
7307
7308 The '``llvm.read_register``' intrinsic returns the current value of the
7309 register, where possible. The '``llvm.write_register``' intrinsic sets
7310 the current value of the register, where possible.
7311
7312 This is useful to implement named register global variables that need
7313 to always be mapped to a specific register, as is common practice on
7314 bare-metal programs including OS kernels.
7315
7316 The compiler doesn't check for register availability or use of the used
7317 register in surrounding code, including inline assembly. Because of that,
7318 allocatable registers are not supported.
7319
7320 Warning: So far it only works with the stack pointer on selected
7321 architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
7322 work is needed to support other registers and even more so, allocatable
7323 registers.
7324
7325 .. _int_stacksave:
7326
7327 '``llvm.stacksave``' Intrinsic
7328 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7329
7330 Syntax:
7331 """""""
7332
7333 ::
7334
7335       declare i8* @llvm.stacksave()
7336
7337 Overview:
7338 """""""""
7339
7340 The '``llvm.stacksave``' intrinsic is used to remember the current state
7341 of the function stack, for use with
7342 :ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7343 implementing language features like scoped automatic variable sized
7344 arrays in C99.
7345
7346 Semantics:
7347 """"""""""
7348
7349 This intrinsic returns a opaque pointer value that can be passed to
7350 :ref:`llvm.stackrestore <int_stackrestore>`. When an
7351 ``llvm.stackrestore`` intrinsic is executed with a value saved from
7352 ``llvm.stacksave``, it effectively restores the state of the stack to
7353 the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7354 practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7355 were allocated after the ``llvm.stacksave`` was executed.
7356
7357 .. _int_stackrestore:
7358
7359 '``llvm.stackrestore``' Intrinsic
7360 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7361
7362 Syntax:
7363 """""""
7364
7365 ::
7366
7367       declare void @llvm.stackrestore(i8* %ptr)
7368
7369 Overview:
7370 """""""""
7371
7372 The '``llvm.stackrestore``' intrinsic is used to restore the state of
7373 the function stack to the state it was in when the corresponding
7374 :ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7375 useful for implementing language features like scoped automatic variable
7376 sized arrays in C99.
7377
7378 Semantics:
7379 """"""""""
7380
7381 See the description for :ref:`llvm.stacksave <int_stacksave>`.
7382
7383 '``llvm.prefetch``' Intrinsic
7384 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386 Syntax:
7387 """""""
7388
7389 ::
7390
7391       declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7392
7393 Overview:
7394 """""""""
7395
7396 The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7397 insert a prefetch instruction if supported; otherwise, it is a noop.
7398 Prefetches have no effect on the behavior of the program but can change
7399 its performance characteristics.
7400
7401 Arguments:
7402 """"""""""
7403
7404 ``address`` is the address to be prefetched, ``rw`` is the specifier
7405 determining if the fetch should be for a read (0) or write (1), and
7406 ``locality`` is a temporal locality specifier ranging from (0) - no
7407 locality, to (3) - extremely local keep in cache. The ``cache type``
7408 specifies whether the prefetch is performed on the data (1) or
7409 instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7410 arguments must be constant integers.
7411
7412 Semantics:
7413 """"""""""
7414
7415 This intrinsic does not modify the behavior of the program. In
7416 particular, prefetches cannot trap and do not produce a value. On
7417 targets that support this intrinsic, the prefetch can provide hints to
7418 the processor cache for better performance.
7419
7420 '``llvm.pcmarker``' Intrinsic
7421 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7422
7423 Syntax:
7424 """""""
7425
7426 ::
7427
7428       declare void @llvm.pcmarker(i32 <id>)
7429
7430 Overview:
7431 """""""""
7432
7433 The '``llvm.pcmarker``' intrinsic is a method to export a Program
7434 Counter (PC) in a region of code to simulators and other tools. The
7435 method is target specific, but it is expected that the marker will use
7436 exported symbols to transmit the PC of the marker. The marker makes no
7437 guarantees that it will remain with any specific instruction after
7438 optimizations. It is possible that the presence of a marker will inhibit
7439 optimizations. The intended use is to be inserted after optimizations to
7440 allow correlations of simulation runs.
7441
7442 Arguments:
7443 """"""""""
7444
7445 ``id`` is a numerical id identifying the marker.
7446
7447 Semantics:
7448 """"""""""
7449
7450 This intrinsic does not modify the behavior of the program. Backends
7451 that do not support this intrinsic may ignore it.
7452
7453 '``llvm.readcyclecounter``' Intrinsic
7454 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7455
7456 Syntax:
7457 """""""
7458
7459 ::
7460
7461       declare i64 @llvm.readcyclecounter()
7462
7463 Overview:
7464 """""""""
7465
7466 The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7467 counter register (or similar low latency, high accuracy clocks) on those
7468 targets that support it. On X86, it should map to RDTSC. On Alpha, it
7469 should map to RPCC. As the backing counters overflow quickly (on the
7470 order of 9 seconds on alpha), this should only be used for small
7471 timings.
7472
7473 Semantics:
7474 """"""""""
7475
7476 When directly supported, reading the cycle counter should not modify any
7477 memory. Implementations are allowed to either return a application
7478 specific value or a system wide value. On backends without support, this
7479 is lowered to a constant 0.
7480
7481 Note that runtime support may be conditional on the privilege-level code is
7482 running at and the host platform.
7483
7484 '``llvm.clear_cache``' Intrinsic
7485 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7486
7487 Syntax:
7488 """""""
7489
7490 ::
7491
7492       declare void @llvm.clear_cache(i8*, i8*)
7493
7494 Overview:
7495 """""""""
7496
7497 The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7498 in the specified range to the execution unit of the processor. On
7499 targets with non-unified instruction and data cache, the implementation
7500 flushes the instruction cache.
7501
7502 Semantics:
7503 """"""""""
7504
7505 On platforms with coherent instruction and data caches (e.g. x86), this
7506 intrinsic is a nop. On platforms with non-coherent instruction and data
7507 cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
7508 instructions or a system call, if cache flushing requires special
7509 privileges.
7510
7511 The default behavior is to emit a call to ``__clear_cache`` from the run
7512 time library.
7513
7514 This instrinsic does *not* empty the instruction pipeline. Modifications
7515 of the current function are outside the scope of the intrinsic.
7516
7517 '``llvm.instrprof_increment``' Intrinsic
7518 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7519
7520 Syntax:
7521 """""""
7522
7523 ::
7524
7525       declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7526                                              i32 <num-counters>, i32 <index>)
7527
7528 Overview:
7529 """""""""
7530
7531 The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7532 frontend for use with instrumentation based profiling. These will be
7533 lowered by the ``-instrprof`` pass to generate execution counts of a
7534 program at runtime.
7535
7536 Arguments:
7537 """"""""""
7538
7539 The first argument is a pointer to a global variable containing the
7540 name of the entity being instrumented. This should generally be the
7541 (mangled) function name for a set of counters.
7542
7543 The second argument is a hash value that can be used by the consumer
7544 of the profile data to detect changes to the instrumented source, and
7545 the third is the number of counters associated with ``name``. It is an
7546 error if ``hash`` or ``num-counters`` differ between two instances of
7547 ``instrprof_increment`` that refer to the same name.
7548
7549 The last argument refers to which of the counters for ``name`` should
7550 be incremented. It should be a value between 0 and ``num-counters``.
7551
7552 Semantics:
7553 """"""""""
7554
7555 This intrinsic represents an increment of a profiling counter. It will
7556 cause the ``-instrprof`` pass to generate the appropriate data
7557 structures and the code to increment the appropriate value, in a
7558 format that can be written out by a compiler runtime and consumed via
7559 the ``llvm-profdata`` tool.
7560
7561 Standard C Library Intrinsics
7562 -----------------------------
7563
7564 LLVM provides intrinsics for a few important standard C library
7565 functions. These intrinsics allow source-language front-ends to pass
7566 information about the alignment of the pointer arguments to the code
7567 generator, providing opportunity for more efficient code generation.
7568
7569 .. _int_memcpy:
7570
7571 '``llvm.memcpy``' Intrinsic
7572 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
7573
7574 Syntax:
7575 """""""
7576
7577 This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7578 integer bit width and for different address spaces. Not all targets
7579 support all bit widths however.
7580
7581 ::
7582
7583       declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7584                                               i32 <len>, i32 <align>, i1 <isvolatile>)
7585       declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7586                                               i64 <len>, i32 <align>, i1 <isvolatile>)
7587
7588 Overview:
7589 """""""""
7590
7591 The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7592 source location to the destination location.
7593
7594 Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7595 intrinsics do not return a value, takes extra alignment/isvolatile
7596 arguments and the pointers can be in specified address spaces.
7597
7598 Arguments:
7599 """"""""""
7600
7601 The first argument is a pointer to the destination, the second is a
7602 pointer to the source. The third argument is an integer argument
7603 specifying the number of bytes to copy, the fourth argument is the
7604 alignment of the source and destination locations, and the fifth is a
7605 boolean indicating a volatile access.
7606
7607 If the call to this intrinsic has an alignment value that is not 0 or 1,
7608 then the caller guarantees that both the source and destination pointers
7609 are aligned to that boundary.
7610
7611 If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7612 a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7613 very cleanly specified and it is unwise to depend on it.
7614
7615 Semantics:
7616 """"""""""
7617
7618 The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7619 source location to the destination location, which are not allowed to
7620 overlap. It copies "len" bytes of memory over. If the argument is known
7621 to be aligned to some boundary, this can be specified as the fourth
7622 argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
7623
7624 '``llvm.memmove``' Intrinsic
7625 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7626
7627 Syntax:
7628 """""""
7629
7630 This is an overloaded intrinsic. You can use llvm.memmove on any integer
7631 bit width and for different address space. Not all targets support all
7632 bit widths however.
7633
7634 ::
7635
7636       declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7637                                                i32 <len>, i32 <align>, i1 <isvolatile>)
7638       declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7639                                                i64 <len>, i32 <align>, i1 <isvolatile>)
7640
7641 Overview:
7642 """""""""
7643
7644 The '``llvm.memmove.*``' intrinsics move a block of memory from the
7645 source location to the destination location. It is similar to the
7646 '``llvm.memcpy``' intrinsic but allows the two memory locations to
7647 overlap.
7648
7649 Note that, unlike the standard libc function, the ``llvm.memmove.*``
7650 intrinsics do not return a value, takes extra alignment/isvolatile
7651 arguments and the pointers can be in specified address spaces.
7652
7653 Arguments:
7654 """"""""""
7655
7656 The first argument is a pointer to the destination, the second is a
7657 pointer to the source. The third argument is an integer argument
7658 specifying the number of bytes to copy, the fourth argument is the
7659 alignment of the source and destination locations, and the fifth is a
7660 boolean indicating a volatile access.
7661
7662 If the call to this intrinsic has an alignment value that is not 0 or 1,
7663 then the caller guarantees that the source and destination pointers are
7664 aligned to that boundary.
7665
7666 If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7667 is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7668 not very cleanly specified and it is unwise to depend on it.
7669
7670 Semantics:
7671 """"""""""
7672
7673 The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7674 source location to the destination location, which may overlap. It
7675 copies "len" bytes of memory over. If the argument is known to be
7676 aligned to some boundary, this can be specified as the fourth argument,
7677 otherwise it should be set to 0 or 1 (both meaning no alignment).
7678
7679 '``llvm.memset.*``' Intrinsics
7680 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7681
7682 Syntax:
7683 """""""
7684
7685 This is an overloaded intrinsic. You can use llvm.memset on any integer
7686 bit width and for different address spaces. However, not all targets
7687 support all bit widths.
7688
7689 ::
7690
7691       declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7692                                          i32 <len>, i32 <align>, i1 <isvolatile>)
7693       declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7694                                          i64 <len>, i32 <align>, i1 <isvolatile>)
7695
7696 Overview:
7697 """""""""
7698
7699 The '``llvm.memset.*``' intrinsics fill a block of memory with a
7700 particular byte value.
7701
7702 Note that, unlike the standard libc function, the ``llvm.memset``
7703 intrinsic does not return a value and takes extra alignment/volatile
7704 arguments. Also, the destination can be in an arbitrary address space.
7705
7706 Arguments:
7707 """"""""""
7708
7709 The first argument is a pointer to the destination to fill, the second
7710 is the byte value with which to fill it, the third argument is an
7711 integer argument specifying the number of bytes to fill, and the fourth
7712 argument is the known alignment of the destination location.
7713
7714 If the call to this intrinsic has an alignment value that is not 0 or 1,
7715 then the caller guarantees that the destination pointer is aligned to
7716 that boundary.
7717
7718 If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7719 a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7720 very cleanly specified and it is unwise to depend on it.
7721
7722 Semantics:
7723 """"""""""
7724
7725 The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7726 at the destination location. If the argument is known to be aligned to
7727 some boundary, this can be specified as the fourth argument, otherwise
7728 it should be set to 0 or 1 (both meaning no alignment).
7729
7730 '``llvm.sqrt.*``' Intrinsic
7731 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
7732
7733 Syntax:
7734 """""""
7735
7736 This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7737 floating point or vector of floating point type. Not all targets support
7738 all types however.
7739
7740 ::
7741
7742       declare float     @llvm.sqrt.f32(float %Val)
7743       declare double    @llvm.sqrt.f64(double %Val)
7744       declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
7745       declare fp128     @llvm.sqrt.f128(fp128 %Val)
7746       declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7747
7748 Overview:
7749 """""""""
7750
7751 The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7752 returning the same value as the libm '``sqrt``' functions would. Unlike
7753 ``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7754 negative numbers other than -0.0 (which allows for better optimization,
7755 because there is no need to worry about errno being set).
7756 ``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7757
7758 Arguments:
7759 """"""""""
7760
7761 The argument and return value are floating point numbers of the same
7762 type.
7763
7764 Semantics:
7765 """"""""""
7766
7767 This function returns the sqrt of the specified operand if it is a
7768 nonnegative floating point number.
7769
7770 '``llvm.powi.*``' Intrinsic
7771 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
7772
7773 Syntax:
7774 """""""
7775
7776 This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7777 floating point or vector of floating point type. Not all targets support
7778 all types however.
7779
7780 ::
7781
7782       declare float     @llvm.powi.f32(float  %Val, i32 %power)
7783       declare double    @llvm.powi.f64(double %Val, i32 %power)
7784       declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
7785       declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
7786       declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
7787
7788 Overview:
7789 """""""""
7790
7791 The '``llvm.powi.*``' intrinsics return the first operand raised to the
7792 specified (positive or negative) power. The order of evaluation of
7793 multiplications is not defined. When a vector of floating point type is
7794 used, the second argument remains a scalar integer value.
7795
7796 Arguments:
7797 """"""""""
7798
7799 The second argument is an integer power, and the first is a value to
7800 raise to that power.
7801
7802 Semantics:
7803 """"""""""
7804
7805 This function returns the first value raised to the second power with an
7806 unspecified sequence of rounding operations.
7807
7808 '``llvm.sin.*``' Intrinsic
7809 ^^^^^^^^^^^^^^^^^^^^^^^^^^
7810
7811 Syntax:
7812 """""""
7813
7814 This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7815 floating point or vector of floating point type. Not all targets support
7816 all types however.
7817
7818 ::
7819
7820       declare float     @llvm.sin.f32(float  %Val)
7821       declare double    @llvm.sin.f64(double %Val)
7822       declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
7823       declare fp128     @llvm.sin.f128(fp128 %Val)
7824       declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
7825
7826 Overview:
7827 """""""""
7828
7829 The '``llvm.sin.*``' intrinsics return the sine of the operand.
7830
7831 Arguments:
7832 """"""""""
7833
7834 The argument and return value are floating point numbers of the same
7835 type.
7836
7837 Semantics:
7838 """"""""""
7839
7840 This function returns the sine of the specified operand, returning the
7841 same values as the libm ``sin`` functions would, and handles error
7842 conditions in the same way.
7843
7844 '``llvm.cos.*``' Intrinsic
7845 ^^^^^^^^^^^^^^^^^^^^^^^^^^
7846
7847 Syntax:
7848 """""""
7849
7850 This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7851 floating point or vector of floating point type. Not all targets support
7852 all types however.
7853
7854 ::
7855
7856       declare float     @llvm.cos.f32(float  %Val)
7857       declare double    @llvm.cos.f64(double %Val)
7858       declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
7859       declare fp128     @llvm.cos.f128(fp128 %Val)
7860       declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
7861
7862 Overview:
7863 """""""""
7864
7865 The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7866
7867 Arguments:
7868 """"""""""
7869
7870 The argument and return value are floating point numbers of the same
7871 type.
7872
7873 Semantics:
7874 """"""""""
7875
7876 This function returns the cosine of the specified operand, returning the
7877 same values as the libm ``cos`` functions would, and handles error
7878 conditions in the same way.
7879
7880 '``llvm.pow.*``' Intrinsic
7881 ^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883 Syntax:
7884 """""""
7885
7886 This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7887 floating point or vector of floating point type. Not all targets support
7888 all types however.
7889
7890 ::
7891
7892       declare float     @llvm.pow.f32(float  %Val, float %Power)
7893       declare double    @llvm.pow.f64(double %Val, double %Power)
7894       declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
7895       declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
7896       declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
7897
7898 Overview:
7899 """""""""
7900
7901 The '``llvm.pow.*``' intrinsics return the first operand raised to the
7902 specified (positive or negative) power.
7903
7904 Arguments:
7905 """"""""""
7906
7907 The second argument is a floating point power, and the first is a value
7908 to raise to that power.
7909
7910 Semantics:
7911 """"""""""
7912
7913 This function returns the first value raised to the second power,
7914 returning the same values as the libm ``pow`` functions would, and
7915 handles error conditions in the same way.
7916
7917 '``llvm.exp.*``' Intrinsic
7918 ^^^^^^^^^^^^^^^^^^^^^^^^^^
7919
7920 Syntax:
7921 """""""
7922
7923 This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7924 floating point or vector of floating point type. Not all targets support
7925 all types however.
7926
7927 ::
7928
7929       declare float     @llvm.exp.f32(float  %Val)
7930       declare double    @llvm.exp.f64(double %Val)
7931       declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
7932       declare fp128     @llvm.exp.f128(fp128 %Val)
7933       declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
7934
7935 Overview:
7936 """""""""
7937
7938 The '``llvm.exp.*``' intrinsics perform the exp function.
7939
7940 Arguments:
7941 """"""""""
7942
7943 The argument and return value are floating point numbers of the same
7944 type.
7945
7946 Semantics:
7947 """"""""""
7948
7949 This function returns the same values as the libm ``exp`` functions
7950 would, and handles error conditions in the same way.
7951
7952 '``llvm.exp2.*``' Intrinsic
7953 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
7954
7955 Syntax:
7956 """""""
7957
7958 This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7959 floating point or vector of floating point type. Not all targets support
7960 all types however.
7961
7962 ::
7963
7964       declare float     @llvm.exp2.f32(float  %Val)
7965       declare double    @llvm.exp2.f64(double %Val)
7966       declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
7967       declare fp128     @llvm.exp2.f128(fp128 %Val)
7968       declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)
7969
7970 Overview:
7971 """""""""
7972
7973 The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7974
7975 Arguments:
7976 """"""""""
7977
7978 The argument and return value are floating point numbers of the same
7979 type.
7980
7981 Semantics:
7982 """"""""""
7983
7984 This function returns the same values as the libm ``exp2`` functions
7985 would, and handles error conditions in the same way.
7986
7987 '``llvm.log.*``' Intrinsic
7988 ^^^^^^^^^^^^^^^^^^^^^^^^^^
7989
7990 Syntax:
7991 """""""
7992
7993 This is an overloaded intrinsic. You can use ``llvm.log`` on any
7994 floating point or vector of floating point type. Not all targets support
7995 all types however.
7996
7997 ::
7998
7999       declare float     @llvm.log.f32(float  %Val)
8000       declare double    @llvm.log.f64(double %Val)
8001       declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
8002       declare fp128     @llvm.log.f128(fp128 %Val)
8003       declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
8004
8005 Overview:
8006 """""""""
8007
8008 The '``llvm.log.*``' intrinsics perform the log function.
8009
8010 Arguments:
8011 """"""""""
8012
8013 The argument and return value are floating point numbers of the same
8014 type.
8015
8016 Semantics:
8017 """"""""""
8018
8019 This function returns the same values as the libm ``log`` functions
8020 would, and handles error conditions in the same way.
8021
8022 '``llvm.log10.*``' Intrinsic
8023 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8024
8025 Syntax:
8026 """""""
8027
8028 This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8029 floating point or vector of floating point type. Not all targets support
8030 all types however.
8031
8032 ::
8033
8034       declare float     @llvm.log10.f32(float  %Val)
8035       declare double    @llvm.log10.f64(double %Val)
8036       declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
8037       declare fp128     @llvm.log10.f128(fp128 %Val)
8038       declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)
8039
8040 Overview:
8041 """""""""
8042
8043 The '``llvm.log10.*``' intrinsics perform the log10 function.
8044
8045 Arguments:
8046 """"""""""
8047
8048 The argument and return value are floating point numbers of the same
8049 type.
8050
8051 Semantics:
8052 """"""""""
8053
8054 This function returns the same values as the libm ``log10`` functions
8055 would, and handles error conditions in the same way.
8056
8057 '``llvm.log2.*``' Intrinsic
8058 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
8059
8060 Syntax:
8061 """""""
8062
8063 This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8064 floating point or vector of floating point type. Not all targets support
8065 all types however.
8066
8067 ::
8068
8069       declare float     @llvm.log2.f32(float  %Val)
8070       declare double    @llvm.log2.f64(double %Val)
8071       declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
8072       declare fp128     @llvm.log2.f128(fp128 %Val)
8073       declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)
8074
8075 Overview:
8076 """""""""
8077
8078 The '``llvm.log2.*``' intrinsics perform the log2 function.
8079
8080 Arguments:
8081 """"""""""
8082
8083 The argument and return value are floating point numbers of the same
8084 type.
8085
8086 Semantics:
8087 """"""""""
8088
8089 This function returns the same values as the libm ``log2`` functions
8090 would, and handles error conditions in the same way.
8091
8092 '``llvm.fma.*``' Intrinsic
8093 ^^^^^^^^^^^^^^^^^^^^^^^^^^
8094
8095 Syntax:
8096 """""""
8097
8098 This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8099 floating point or vector of floating point type. Not all targets support
8100 all types however.
8101
8102 ::
8103
8104       declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
8105       declare double    @llvm.fma.f64(double %a, double %b, double %c)
8106       declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8107       declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8108       declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8109
8110 Overview:
8111 """""""""
8112
8113 The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8114 operation.
8115
8116 Arguments:
8117 """"""""""
8118
8119 The argument and return value are floating point numbers of the same
8120 type.
8121
8122 Semantics:
8123 """"""""""
8124
8125 This function returns the same values as the libm ``fma`` functions
8126 would, and does not set errno.
8127
8128 '``llvm.fabs.*``' Intrinsic
8129 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
8130
8131 Syntax:
8132 """""""
8133
8134 This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8135 floating point or vector of floating point type. Not all targets support
8136 all types however.
8137
8138 ::
8139
8140       declare float     @llvm.fabs.f32(float  %Val)
8141       declare double    @llvm.fabs.f64(double %Val)
8142       declare x86_fp80  @llvm.fabs.f80(x86_fp80 %Val)
8143       declare fp128     @llvm.fabs.f128(fp128 %Val)
8144       declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
8145
8146 Overview:
8147 """""""""
8148
8149 The '``llvm.fabs.*``' intrinsics return the absolute value of the
8150 operand.
8151
8152 Arguments:
8153 """"""""""
8154
8155 The argument and return value are floating point numbers of the same
8156 type.
8157
8158 Semantics:
8159 """"""""""
8160
8161 This function returns the same values as the libm ``fabs`` functions
8162 would, and handles error conditions in the same way.
8163
8164 '``llvm.minnum.*``' Intrinsic
8165 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8166
8167 Syntax:
8168 """""""
8169
8170 This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8171 floating point or vector of floating point type. Not all targets support
8172 all types however.
8173
8174 ::
8175
8176       declare float     @llvm.minnum.f32(float %Val0, float %Val1)
8177       declare double    @llvm.minnum.f64(double %Val0, double %Val1)
8178       declare x86_fp80  @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8179       declare fp128     @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8180       declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
8181
8182 Overview:
8183 """""""""
8184
8185 The '``llvm.minnum.*``' intrinsics return the minimum of the two
8186 arguments.
8187
8188
8189 Arguments:
8190 """"""""""
8191
8192 The arguments and return value are floating point numbers of the same
8193 type.
8194
8195 Semantics:
8196 """"""""""
8197
8198 Follows the IEEE-754 semantics for minNum, which also match for libm's
8199 fmin.
8200
8201 If either operand is a NaN, returns the other non-NaN operand. Returns
8202 NaN only if both operands are NaN. If the operands compare equal,
8203 returns a value that compares equal to both operands. This means that
8204 fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8205
8206 '``llvm.maxnum.*``' Intrinsic
8207 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8208
8209 Syntax:
8210 """""""
8211
8212 This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8213 floating point or vector of floating point type. Not all targets support
8214 all types however.
8215
8216 ::
8217
8218       declare float     @llvm.maxnum.f32(float  %Val0, float  %Val1l)
8219       declare double    @llvm.maxnum.f64(double %Val0, double %Val1)
8220       declare x86_fp80  @llvm.maxnum.f80(x86_fp80  %Val0, x86_fp80  %Val1)
8221       declare fp128     @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8222       declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128  %Val0, ppc_fp128  %Val1)
8223
8224 Overview:
8225 """""""""
8226
8227 The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8228 arguments.
8229
8230
8231 Arguments:
8232 """"""""""
8233
8234 The arguments and return value are floating point numbers of the same
8235 type.
8236
8237 Semantics:
8238 """"""""""
8239 Follows the IEEE-754 semantics for maxNum, which also match for libm's
8240 fmax.
8241
8242 If either operand is a NaN, returns the other non-NaN operand. Returns
8243 NaN only if both operands are NaN. If the operands compare equal,
8244 returns a value that compares equal to both operands. This means that
8245 fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8246
8247 '``llvm.copysign.*``' Intrinsic
8248 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8249
8250 Syntax:
8251 """""""
8252
8253 This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8254 floating point or vector of floating point type. Not all targets support
8255 all types however.
8256
8257 ::
8258
8259       declare float     @llvm.copysign.f32(float  %Mag, float  %Sgn)
8260       declare double    @llvm.copysign.f64(double %Mag, double %Sgn)
8261       declare x86_fp80  @llvm.copysign.f80(x86_fp80  %Mag, x86_fp80  %Sgn)
8262       declare fp128     @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8263       declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128  %Mag, ppc_fp128  %Sgn)
8264
8265 Overview:
8266 """""""""
8267
8268 The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8269 first operand and the sign of the second operand.
8270
8271 Arguments:
8272 """"""""""
8273
8274 The arguments and return value are floating point numbers of the same
8275 type.
8276
8277 Semantics:
8278 """"""""""
8279
8280 This function returns the same values as the libm ``copysign``
8281 functions would, and handles error conditions in the same way.
8282
8283 '``llvm.floor.*``' Intrinsic
8284 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8285
8286 Syntax:
8287 """""""
8288
8289 This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8290 floating point or vector of floating point type. Not all targets support
8291 all types however.
8292
8293 ::
8294
8295       declare float     @llvm.floor.f32(float  %Val)
8296       declare double    @llvm.floor.f64(double %Val)
8297       declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
8298       declare fp128     @llvm.floor.f128(fp128 %Val)
8299       declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
8300
8301 Overview:
8302 """""""""
8303
8304 The '``llvm.floor.*``' intrinsics return the floor of the operand.
8305
8306 Arguments:
8307 """"""""""
8308
8309 The argument and return value are floating point numbers of the same
8310 type.
8311
8312 Semantics:
8313 """"""""""
8314
8315 This function returns the same values as the libm ``floor`` functions
8316 would, and handles error conditions in the same way.
8317
8318 '``llvm.ceil.*``' Intrinsic
8319 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
8320
8321 Syntax:
8322 """""""
8323
8324 This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8325 floating point or vector of floating point type. Not all targets support
8326 all types however.
8327
8328 ::
8329
8330       declare float     @llvm.ceil.f32(float  %Val)
8331       declare double    @llvm.ceil.f64(double %Val)
8332       declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
8333       declare fp128     @llvm.ceil.f128(fp128 %Val)
8334       declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)
8335
8336 Overview:
8337 """""""""
8338
8339 The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8340
8341 Arguments:
8342 """"""""""
8343
8344 The argument and return value are floating point numbers of the same
8345 type.
8346
8347 Semantics:
8348 """"""""""
8349
8350 This function returns the same values as the libm ``ceil`` functions
8351 would, and handles error conditions in the same way.
8352
8353 '``llvm.trunc.*``' Intrinsic
8354 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8355
8356 Syntax:
8357 """""""
8358
8359 This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8360 floating point or vector of floating point type. Not all targets support
8361 all types however.
8362
8363 ::
8364
8365       declare float     @llvm.trunc.f32(float  %Val)
8366       declare double    @llvm.trunc.f64(double %Val)
8367       declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
8368       declare fp128     @llvm.trunc.f128(fp128 %Val)
8369       declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)
8370
8371 Overview:
8372 """""""""
8373
8374 The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8375 nearest integer not larger in magnitude than the operand.
8376
8377 Arguments:
8378 """"""""""
8379
8380 The argument and return value are floating point numbers of the same
8381 type.
8382
8383 Semantics:
8384 """"""""""
8385
8386 This function returns the same values as the libm ``trunc`` functions
8387 would, and handles error conditions in the same way.
8388
8389 '``llvm.rint.*``' Intrinsic
8390 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392 Syntax:
8393 """""""
8394
8395 This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8396 floating point or vector of floating point type. Not all targets support
8397 all types however.
8398
8399 ::
8400
8401       declare float     @llvm.rint.f32(float  %Val)
8402       declare double    @llvm.rint.f64(double %Val)
8403       declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
8404       declare fp128     @llvm.rint.f128(fp128 %Val)
8405       declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)
8406
8407 Overview:
8408 """""""""
8409
8410 The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8411 nearest integer. It may raise an inexact floating-point exception if the
8412 operand isn't an integer.
8413
8414 Arguments:
8415 """"""""""
8416
8417 The argument and return value are floating point numbers of the same
8418 type.
8419
8420 Semantics:
8421 """"""""""
8422
8423 This function returns the same values as the libm ``rint`` functions
8424 would, and handles error conditions in the same way.
8425
8426 '``llvm.nearbyint.*``' Intrinsic
8427 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8428
8429 Syntax:
8430 """""""
8431
8432 This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8433 floating point or vector of floating point type. Not all targets support
8434 all types however.
8435
8436 ::
8437
8438       declare float     @llvm.nearbyint.f32(float  %Val)
8439       declare double    @llvm.nearbyint.f64(double %Val)
8440       declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
8441       declare fp128     @llvm.nearbyint.f128(fp128 %Val)
8442       declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)
8443
8444 Overview:
8445 """""""""
8446
8447 The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8448 nearest integer.
8449
8450 Arguments:
8451 """"""""""
8452
8453 The argument and return value are floating point numbers of the same
8454 type.
8455
8456 Semantics:
8457 """"""""""
8458
8459 This function returns the same values as the libm ``nearbyint``
8460 functions would, and handles error conditions in the same way.
8461
8462 '``llvm.round.*``' Intrinsic
8463 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8464
8465 Syntax:
8466 """""""
8467
8468 This is an overloaded intrinsic. You can use ``llvm.round`` on any
8469 floating point or vector of floating point type. Not all targets support
8470 all types however.
8471
8472 ::
8473
8474       declare float     @llvm.round.f32(float  %Val)
8475       declare double    @llvm.round.f64(double %Val)
8476       declare x86_fp80  @llvm.round.f80(x86_fp80  %Val)
8477       declare fp128     @llvm.round.f128(fp128 %Val)
8478       declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128  %Val)
8479
8480 Overview:
8481 """""""""
8482
8483 The '``llvm.round.*``' intrinsics returns the operand rounded to the
8484 nearest integer.
8485
8486 Arguments:
8487 """"""""""
8488
8489 The argument and return value are floating point numbers of the same
8490 type.
8491
8492 Semantics:
8493 """"""""""
8494
8495 This function returns the same values as the libm ``round``
8496 functions would, and handles error conditions in the same way.
8497
8498 Bit Manipulation Intrinsics
8499 ---------------------------
8500
8501 LLVM provides intrinsics for a few important bit manipulation
8502 operations. These allow efficient code generation for some algorithms.
8503
8504 '``llvm.bswap.*``' Intrinsics
8505 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8506
8507 Syntax:
8508 """""""
8509
8510 This is an overloaded intrinsic function. You can use bswap on any
8511 integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8512
8513 ::
8514
8515       declare i16 @llvm.bswap.i16(i16 <id>)
8516       declare i32 @llvm.bswap.i32(i32 <id>)
8517       declare i64 @llvm.bswap.i64(i64 <id>)
8518
8519 Overview:
8520 """""""""
8521
8522 The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8523 values with an even number of bytes (positive multiple of 16 bits).
8524 These are useful for performing operations on data that is not in the
8525 target's native byte order.
8526
8527 Semantics:
8528 """"""""""
8529
8530 The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8531 and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8532 intrinsic returns an i32 value that has the four bytes of the input i32
8533 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8534 returned i32 will have its bytes in 3, 2, 1, 0 order. The
8535 ``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8536 concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8537 respectively).
8538
8539 '``llvm.ctpop.*``' Intrinsic
8540 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8541
8542 Syntax:
8543 """""""
8544
8545 This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8546 bit width, or on any vector with integer elements. Not all targets
8547 support all bit widths or vector types, however.
8548
8549 ::
8550
8551       declare i8 @llvm.ctpop.i8(i8  <src>)
8552       declare i16 @llvm.ctpop.i16(i16 <src>)
8553       declare i32 @llvm.ctpop.i32(i32 <src>)
8554       declare i64 @llvm.ctpop.i64(i64 <src>)
8555       declare i256 @llvm.ctpop.i256(i256 <src>)
8556       declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8557
8558 Overview:
8559 """""""""
8560
8561 The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8562 in a value.
8563
8564 Arguments:
8565 """"""""""
8566
8567 The only argument is the value to be counted. The argument may be of any
8568 integer type, or a vector with integer elements. The return type must
8569 match the argument type.
8570
8571 Semantics:
8572 """"""""""
8573
8574 The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8575 each element of a vector.
8576
8577 '``llvm.ctlz.*``' Intrinsic
8578 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
8579
8580 Syntax:
8581 """""""
8582
8583 This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8584 integer bit width, or any vector whose elements are integers. Not all
8585 targets support all bit widths or vector types, however.
8586
8587 ::
8588
8589       declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
8590       declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
8591       declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
8592       declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
8593       declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8594       declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8595
8596 Overview:
8597 """""""""
8598
8599 The '``llvm.ctlz``' family of intrinsic functions counts the number of
8600 leading zeros in a variable.
8601
8602 Arguments:
8603 """"""""""
8604
8605 The first argument is the value to be counted. This argument may be of
8606 any integer type, or a vector with integer element type. The return
8607 type must match the first argument type.
8608
8609 The second argument must be a constant and is a flag to indicate whether
8610 the intrinsic should ensure that a zero as the first argument produces a
8611 defined result. Historically some architectures did not provide a
8612 defined result for zero values as efficiently, and many algorithms are
8613 now predicated on avoiding zero-value inputs.
8614
8615 Semantics:
8616 """"""""""
8617
8618 The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8619 zeros in a variable, or within each element of the vector. If
8620 ``src == 0`` then the result is the size in bits of the type of ``src``
8621 if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8622 ``llvm.ctlz(i32 2) = 30``.
8623
8624 '``llvm.cttz.*``' Intrinsic
8625 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
8626
8627 Syntax:
8628 """""""
8629
8630 This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8631 integer bit width, or any vector of integer elements. Not all targets
8632 support all bit widths or vector types, however.
8633
8634 ::
8635
8636       declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
8637       declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
8638       declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
8639       declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
8640       declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8641       declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8642
8643 Overview:
8644 """""""""
8645
8646 The '``llvm.cttz``' family of intrinsic functions counts the number of
8647 trailing zeros.
8648
8649 Arguments:
8650 """"""""""
8651
8652 The first argument is the value to be counted. This argument may be of
8653 any integer type, or a vector with integer element type. The return
8654 type must match the first argument type.
8655
8656 The second argument must be a constant and is a flag to indicate whether
8657 the intrinsic should ensure that a zero as the first argument produces a
8658 defined result. Historically some architectures did not provide a
8659 defined result for zero values as efficiently, and many algorithms are
8660 now predicated on avoiding zero-value inputs.
8661
8662 Semantics:
8663 """"""""""
8664
8665 The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8666 zeros in a variable, or within each element of a vector. If ``src == 0``
8667 then the result is the size in bits of the type of ``src`` if
8668 ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8669 ``llvm.cttz(2) = 1``.
8670
8671 Arithmetic with Overflow Intrinsics
8672 -----------------------------------
8673
8674 LLVM provides intrinsics for some arithmetic with overflow operations.
8675
8676 '``llvm.sadd.with.overflow.*``' Intrinsics
8677 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8678
8679 Syntax:
8680 """""""
8681
8682 This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8683 on any integer bit width.
8684
8685 ::
8686
8687       declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8688       declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8689       declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8690
8691 Overview:
8692 """""""""
8693
8694 The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8695 a signed addition of the two arguments, and indicate whether an overflow
8696 occurred during the signed summation.
8697
8698 Arguments:
8699 """"""""""
8700
8701 The arguments (%a and %b) and the first element of the result structure
8702 may be of integer types of any bit width, but they must have the same
8703 bit width. The second element of the result structure must be of type
8704 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8705 addition.
8706
8707 Semantics:
8708 """"""""""
8709
8710 The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8711 a signed addition of the two variables. They return a structure --- the
8712 first element of which is the signed summation, and the second element
8713 of which is a bit specifying if the signed summation resulted in an
8714 overflow.
8715
8716 Examples:
8717 """""""""
8718
8719 .. code-block:: llvm
8720
8721       %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8722       %sum = extractvalue {i32, i1} %res, 0
8723       %obit = extractvalue {i32, i1} %res, 1
8724       br i1 %obit, label %overflow, label %normal
8725
8726 '``llvm.uadd.with.overflow.*``' Intrinsics
8727 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8728
8729 Syntax:
8730 """""""
8731
8732 This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8733 on any integer bit width.
8734
8735 ::
8736
8737       declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8738       declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8739       declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8740
8741 Overview:
8742 """""""""
8743
8744 The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8745 an unsigned addition of the two arguments, and indicate whether a carry
8746 occurred during the unsigned summation.
8747
8748 Arguments:
8749 """"""""""
8750
8751 The arguments (%a and %b) and the first element of the result structure
8752 may be of integer types of any bit width, but they must have the same
8753 bit width. The second element of the result structure must be of type
8754 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8755 addition.
8756
8757 Semantics:
8758 """"""""""
8759
8760 The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8761 an unsigned addition of the two arguments. They return a structure --- the
8762 first element of which is the sum, and the second element of which is a
8763 bit specifying if the unsigned summation resulted in a carry.
8764
8765 Examples:
8766 """""""""
8767
8768 .. code-block:: llvm
8769
8770       %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8771       %sum = extractvalue {i32, i1} %res, 0
8772       %obit = extractvalue {i32, i1} %res, 1
8773       br i1 %obit, label %carry, label %normal
8774
8775 '``llvm.ssub.with.overflow.*``' Intrinsics
8776 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8777
8778 Syntax:
8779 """""""
8780
8781 This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8782 on any integer bit width.
8783
8784 ::
8785
8786       declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8787       declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8788       declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8789
8790 Overview:
8791 """""""""
8792
8793 The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8794 a signed subtraction of the two arguments, and indicate whether an
8795 overflow occurred during the signed subtraction.
8796
8797 Arguments:
8798 """"""""""
8799
8800 The arguments (%a and %b) and the first element of the result structure
8801 may be of integer types of any bit width, but they must have the same
8802 bit width. The second element of the result structure must be of type
8803 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8804 subtraction.
8805
8806 Semantics:
8807 """"""""""
8808
8809 The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8810 a signed subtraction of the two arguments. They return a structure --- the
8811 first element of which is the subtraction, and the second element of
8812 which is a bit specifying if the signed subtraction resulted in an
8813 overflow.
8814
8815 Examples:
8816 """""""""
8817
8818 .. code-block:: llvm
8819
8820       %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8821       %sum = extractvalue {i32, i1} %res, 0
8822       %obit = extractvalue {i32, i1} %res, 1
8823       br i1 %obit, label %overflow, label %normal
8824
8825 '``llvm.usub.with.overflow.*``' Intrinsics
8826 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8827
8828 Syntax:
8829 """""""
8830
8831 This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8832 on any integer bit width.
8833
8834 ::
8835
8836       declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8837       declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8838       declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8839
8840 Overview:
8841 """""""""
8842
8843 The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8844 an unsigned subtraction of the two arguments, and indicate whether an
8845 overflow occurred during the unsigned subtraction.
8846
8847 Arguments:
8848 """"""""""
8849
8850 The arguments (%a and %b) and the first element of the result structure
8851 may be of integer types of any bit width, but they must have the same
8852 bit width. The second element of the result structure must be of type
8853 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8854 subtraction.
8855
8856 Semantics:
8857 """"""""""
8858
8859 The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8860 an unsigned subtraction of the two arguments. They return a structure ---
8861 the first element of which is the subtraction, and the second element of
8862 which is a bit specifying if the unsigned subtraction resulted in an
8863 overflow.
8864
8865 Examples:
8866 """""""""
8867
8868 .. code-block:: llvm
8869
8870       %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8871       %sum = extractvalue {i32, i1} %res, 0
8872       %obit = extractvalue {i32, i1} %res, 1
8873       br i1 %obit, label %overflow, label %normal
8874
8875 '``llvm.smul.with.overflow.*``' Intrinsics
8876 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8877
8878 Syntax:
8879 """""""
8880
8881 This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8882 on any integer bit width.
8883
8884 ::
8885
8886       declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8887       declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8888       declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8889
8890 Overview:
8891 """""""""
8892
8893 The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8894 a signed multiplication of the two arguments, and indicate whether an
8895 overflow occurred during the signed multiplication.
8896
8897 Arguments:
8898 """"""""""
8899
8900 The arguments (%a and %b) and the first element of the result structure
8901 may be of integer types of any bit width, but they must have the same
8902 bit width. The second element of the result structure must be of type
8903 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8904 multiplication.
8905
8906 Semantics:
8907 """"""""""
8908
8909 The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8910 a signed multiplication of the two arguments. They return a structure ---
8911 the first element of which is the multiplication, and the second element
8912 of which is a bit specifying if the signed multiplication resulted in an
8913 overflow.
8914
8915 Examples:
8916 """""""""
8917
8918 .. code-block:: llvm
8919
8920       %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8921       %sum = extractvalue {i32, i1} %res, 0
8922       %obit = extractvalue {i32, i1} %res, 1
8923       br i1 %obit, label %overflow, label %normal
8924
8925 '``llvm.umul.with.overflow.*``' Intrinsics
8926 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8927
8928 Syntax:
8929 """""""
8930
8931 This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8932 on any integer bit width.
8933
8934 ::
8935
8936       declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8937       declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8938       declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8939
8940 Overview:
8941 """""""""
8942
8943 The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8944 a unsigned multiplication of the two arguments, and indicate whether an
8945 overflow occurred during the unsigned multiplication.
8946
8947 Arguments:
8948 """"""""""
8949
8950 The arguments (%a and %b) and the first element of the result structure
8951 may be of integer types of any bit width, but they must have the same
8952 bit width. The second element of the result structure must be of type
8953 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8954 multiplication.
8955
8956 Semantics:
8957 """"""""""
8958
8959 The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8960 an unsigned multiplication of the two arguments. They return a structure ---
8961 the first element of which is the multiplication, and the second
8962 element of which is a bit specifying if the unsigned multiplication
8963 resulted in an overflow.
8964
8965 Examples:
8966 """""""""
8967
8968 .. code-block:: llvm
8969
8970       %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8971       %sum = extractvalue {i32, i1} %res, 0
8972       %obit = extractvalue {i32, i1} %res, 1
8973       br i1 %obit, label %overflow, label %normal
8974
8975 Specialised Arithmetic Intrinsics
8976 ---------------------------------
8977
8978 '``llvm.fmuladd.*``' Intrinsic
8979 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8980
8981 Syntax:
8982 """""""
8983
8984 ::
8985
8986       declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8987       declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8988
8989 Overview:
8990 """""""""
8991
8992 The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
8993 expressions that can be fused if the code generator determines that (a) the
8994 target instruction set has support for a fused operation, and (b) that the
8995 fused operation is more efficient than the equivalent, separate pair of mul
8996 and add instructions.
8997
8998 Arguments:
8999 """"""""""
9000
9001 The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9002 multiplicands, a and b, and an addend c.
9003
9004 Semantics:
9005 """"""""""
9006
9007 The expression:
9008
9009 ::
9010
9011       %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9012
9013 is equivalent to the expression a \* b + c, except that rounding will
9014 not be performed between the multiplication and addition steps if the
9015 code generator fuses the operations. Fusion is not guaranteed, even if
9016 the target platform supports it. If a fused multiply-add is required the
9017 corresponding llvm.fma.\* intrinsic function should be used
9018 instead. This never sets errno, just as '``llvm.fma.*``'.
9019
9020 Examples:
9021 """""""""
9022
9023 .. code-block:: llvm
9024
9025       %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
9026
9027 Half Precision Floating Point Intrinsics
9028 ----------------------------------------
9029
9030 For most target platforms, half precision floating point is a
9031 storage-only format. This means that it is a dense encoding (in memory)
9032 but does not support computation in the format.
9033
9034 This means that code must first load the half-precision floating point
9035 value as an i16, then convert it to float with
9036 :ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9037 then be performed on the float value (including extending to double
9038 etc). To store the value back to memory, it is first converted to float
9039 if needed, then converted to i16 with
9040 :ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9041 i16 value.
9042
9043 .. _int_convert_to_fp16:
9044
9045 '``llvm.convert.to.fp16``' Intrinsic
9046 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9047
9048 Syntax:
9049 """""""
9050
9051 ::
9052
9053       declare i16 @llvm.convert.to.fp16.f32(float %a)
9054       declare i16 @llvm.convert.to.fp16.f64(double %a)
9055
9056 Overview:
9057 """""""""
9058
9059 The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9060 conventional floating point type to half precision floating point format.
9061
9062 Arguments:
9063 """"""""""
9064
9065 The intrinsic function contains single argument - the value to be
9066 converted.
9067
9068 Semantics:
9069 """"""""""
9070
9071 The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9072 conventional floating point format to half precision floating point format. The
9073 return value is an ``i16`` which contains the converted number.
9074
9075 Examples:
9076 """""""""
9077
9078 .. code-block:: llvm
9079
9080       %res = call i16 @llvm.convert.to.fp16.f32(float %a)
9081       store i16 %res, i16* @x, align 2
9082
9083 .. _int_convert_from_fp16:
9084
9085 '``llvm.convert.from.fp16``' Intrinsic
9086 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9087
9088 Syntax:
9089 """""""
9090
9091 ::
9092
9093       declare float @llvm.convert.from.fp16.f32(i16 %a)
9094       declare double @llvm.convert.from.fp16.f64(i16 %a)
9095
9096 Overview:
9097 """""""""
9098
9099 The '``llvm.convert.from.fp16``' intrinsic function performs a
9100 conversion from half precision floating point format to single precision
9101 floating point format.
9102
9103 Arguments:
9104 """"""""""
9105
9106 The intrinsic function contains single argument - the value to be
9107 converted.
9108
9109 Semantics:
9110 """"""""""
9111
9112 The '``llvm.convert.from.fp16``' intrinsic function performs a
9113 conversion from half single precision floating point format to single
9114 precision floating point format. The input half-float value is
9115 represented by an ``i16`` value.
9116
9117 Examples:
9118 """""""""
9119
9120 .. code-block:: llvm
9121
9122       %a = load i16* @x, align 2
9123       %res = call float @llvm.convert.from.fp16(i16 %a)
9124
9125 Debugger Intrinsics
9126 -------------------
9127
9128 The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9129 prefix), are described in the `LLVM Source Level
9130 Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9131 document.
9132
9133 Exception Handling Intrinsics
9134 -----------------------------
9135
9136 The LLVM exception handling intrinsics (which all start with
9137 ``llvm.eh.`` prefix), are described in the `LLVM Exception
9138 Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9139
9140 .. _int_trampoline:
9141
9142 Trampoline Intrinsics
9143 ---------------------
9144
9145 These intrinsics make it possible to excise one parameter, marked with
9146 the :ref:`nest <nest>` attribute, from a function. The result is a
9147 callable function pointer lacking the nest parameter - the caller does
9148 not need to provide a value for it. Instead, the value to use is stored
9149 in advance in a "trampoline", a block of memory usually allocated on the
9150 stack, which also contains code to splice the nest value into the
9151 argument list. This is used to implement the GCC nested function address
9152 extension.
9153
9154 For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9155 then the resulting function pointer has signature ``i32 (i32, i32)*``.
9156 It can be created as follows:
9157
9158 .. code-block:: llvm
9159
9160       %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9161       %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9162       call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9163       %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9164       %fp = bitcast i8* %p to i32 (i32, i32)*
9165
9166 The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9167 ``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9168
9169 .. _int_it:
9170
9171 '``llvm.init.trampoline``' Intrinsic
9172 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9173
9174 Syntax:
9175 """""""
9176
9177 ::
9178
9179       declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9180
9181 Overview:
9182 """""""""
9183
9184 This fills the memory pointed to by ``tramp`` with executable code,
9185 turning it into a trampoline.
9186
9187 Arguments:
9188 """"""""""
9189
9190 The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9191 pointers. The ``tramp`` argument must point to a sufficiently large and
9192 sufficiently aligned block of memory; this memory is written to by the
9193 intrinsic. Note that the size and the alignment are target-specific -
9194 LLVM currently provides no portable way of determining them, so a
9195 front-end that generates this intrinsic needs to have some
9196 target-specific knowledge. The ``func`` argument must hold a function
9197 bitcast to an ``i8*``.
9198
9199 Semantics:
9200 """"""""""
9201
9202 The block of memory pointed to by ``tramp`` is filled with target
9203 dependent code, turning it into a function. Then ``tramp`` needs to be
9204 passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9205 be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9206 function's signature is the same as that of ``func`` with any arguments
9207 marked with the ``nest`` attribute removed. At most one such ``nest``
9208 argument is allowed, and it must be of pointer type. Calling the new
9209 function is equivalent to calling ``func`` with the same argument list,
9210 but with ``nval`` used for the missing ``nest`` argument. If, after
9211 calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9212 modified, then the effect of any later call to the returned function
9213 pointer is undefined.
9214
9215 .. _int_at:
9216
9217 '``llvm.adjust.trampoline``' Intrinsic
9218 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9219
9220 Syntax:
9221 """""""
9222
9223 ::
9224
9225       declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9226
9227 Overview:
9228 """""""""
9229
9230 This performs any required machine-specific adjustment to the address of
9231 a trampoline (passed as ``tramp``).
9232
9233 Arguments:
9234 """"""""""
9235
9236 ``tramp`` must point to a block of memory which already has trampoline
9237 code filled in by a previous call to
9238 :ref:`llvm.init.trampoline <int_it>`.
9239
9240 Semantics:
9241 """"""""""
9242
9243 On some architectures the address of the code to be executed needs to be
9244 different than the address where the trampoline is actually stored. This
9245 intrinsic returns the executable address corresponding to ``tramp``
9246 after performing the required machine specific adjustments. The pointer
9247 returned can then be :ref:`bitcast and executed <int_trampoline>`.
9248
9249 Masked Vector Load and Store Intrinsics
9250 ---------------------------------------
9251
9252 LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9253
9254 .. _int_mload:
9255
9256 '``llvm.masked.load.*``' Intrinsics
9257 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9258
9259 Syntax:
9260 """""""
9261 This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9262
9263 ::
9264
9265       declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9266       declare <2 x double> @llvm.masked.load.v2f64  (<2 x double>* <ptr>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
9267
9268 Overview:
9269 """""""""
9270
9271 Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9272
9273
9274 Arguments:
9275 """"""""""
9276
9277 The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9278
9279
9280 Semantics:
9281 """"""""""
9282
9283 The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9284 The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9285
9286
9287 ::
9288
9289        %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9290        
9291        ;; The result of the two following instructions is identical aside from potential memory access exception
9292        %loadlal = load <16 x float>* %ptr, align 4
9293        %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
9294
9295 .. _int_mstore:
9296
9297 '``llvm.masked.store.*``' Intrinsics
9298 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9299
9300 Syntax:
9301 """""""
9302 This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9303
9304 ::
9305
9306        declare void @llvm.masked.store.v8i32 (<8 x i32>  <value>, <8 x i32> * <ptr>, i32 <alignment>,  <8 x i1>  <mask>)
9307        declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>,  <16 x i1> <mask>)
9308
9309 Overview:
9310 """""""""
9311
9312 Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9313
9314 Arguments:
9315 """"""""""
9316
9317 The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9318
9319
9320 Semantics:
9321 """"""""""
9322
9323 The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9324 The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9325
9326 ::
9327
9328        call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4,  <16 x i1> %mask)
9329        
9330        ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
9331        %oldval = load <16 x float>* %ptr, align 4
9332        %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9333        store <16 x float> %res, <16 x float>* %ptr, align 4
9334
9335
9336 Memory Use Markers
9337 ------------------
9338
9339 This class of intrinsics provides information about the lifetime of
9340 memory objects and ranges where variables are immutable.
9341
9342 .. _int_lifestart:
9343
9344 '``llvm.lifetime.start``' Intrinsic
9345 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9346
9347 Syntax:
9348 """""""
9349
9350 ::
9351
9352       declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9353
9354 Overview:
9355 """""""""
9356
9357 The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9358 object's lifetime.
9359
9360 Arguments:
9361 """"""""""
9362
9363 The first argument is a constant integer representing the size of the
9364 object, or -1 if it is variable sized. The second argument is a pointer
9365 to the object.
9366
9367 Semantics:
9368 """"""""""
9369
9370 This intrinsic indicates that before this point in the code, the value
9371 of the memory pointed to by ``ptr`` is dead. This means that it is known
9372 to never be used and has an undefined value. A load from the pointer
9373 that precedes this intrinsic can be replaced with ``'undef'``.
9374
9375 .. _int_lifeend:
9376
9377 '``llvm.lifetime.end``' Intrinsic
9378 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9379
9380 Syntax:
9381 """""""
9382
9383 ::
9384
9385       declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9386
9387 Overview:
9388 """""""""
9389
9390 The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9391 object's lifetime.
9392
9393 Arguments:
9394 """"""""""
9395
9396 The first argument is a constant integer representing the size of the
9397 object, or -1 if it is variable sized. The second argument is a pointer
9398 to the object.
9399
9400 Semantics:
9401 """"""""""
9402
9403 This intrinsic indicates that after this point in the code, the value of
9404 the memory pointed to by ``ptr`` is dead. This means that it is known to
9405 never be used and has an undefined value. Any stores into the memory
9406 object following this intrinsic may be removed as dead.
9407
9408 '``llvm.invariant.start``' Intrinsic
9409 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9410
9411 Syntax:
9412 """""""
9413
9414 ::
9415
9416       declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9417
9418 Overview:
9419 """""""""
9420
9421 The '``llvm.invariant.start``' intrinsic specifies that the contents of
9422 a memory object will not change.
9423
9424 Arguments:
9425 """"""""""
9426
9427 The first argument is a constant integer representing the size of the
9428 object, or -1 if it is variable sized. The second argument is a pointer
9429 to the object.
9430
9431 Semantics:
9432 """"""""""
9433
9434 This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9435 the return value, the referenced memory location is constant and
9436 unchanging.
9437
9438 '``llvm.invariant.end``' Intrinsic
9439 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9440
9441 Syntax:
9442 """""""
9443
9444 ::
9445
9446       declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9447
9448 Overview:
9449 """""""""
9450
9451 The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9452 memory object are mutable.
9453
9454 Arguments:
9455 """"""""""
9456
9457 The first argument is the matching ``llvm.invariant.start`` intrinsic.
9458 The second argument is a constant integer representing the size of the
9459 object, or -1 if it is variable sized and the third argument is a
9460 pointer to the object.
9461
9462 Semantics:
9463 """"""""""
9464
9465 This intrinsic indicates that the memory is mutable again.
9466
9467 General Intrinsics
9468 ------------------
9469
9470 This class of intrinsics is designed to be generic and has no specific
9471 purpose.
9472
9473 '``llvm.var.annotation``' Intrinsic
9474 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9475
9476 Syntax:
9477 """""""
9478
9479 ::
9480
9481       declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
9482
9483 Overview:
9484 """""""""
9485
9486 The '``llvm.var.annotation``' intrinsic.
9487
9488 Arguments:
9489 """"""""""
9490
9491 The first argument is a pointer to a value, the second is a pointer to a
9492 global string, the third is a pointer to a global string which is the
9493 source file name, and the last argument is the line number.
9494
9495 Semantics:
9496 """"""""""
9497
9498 This intrinsic allows annotation of local variables with arbitrary
9499 strings. This can be useful for special purpose optimizations that want
9500 to look for these annotations. These have no other defined use; they are
9501 ignored by code generation and optimization.
9502
9503 '``llvm.ptr.annotation.*``' Intrinsic
9504 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9505
9506 Syntax:
9507 """""""
9508
9509 This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9510 pointer to an integer of any width. *NOTE* you must specify an address space for
9511 the pointer. The identifier for the default address space is the integer
9512 '``0``'.
9513
9514 ::
9515
9516       declare i8*   @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
9517       declare i16*  @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32  <int>)
9518       declare i32*  @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32  <int>)
9519       declare i64*  @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32  <int>)
9520       declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32  <int>)
9521
9522 Overview:
9523 """""""""
9524
9525 The '``llvm.ptr.annotation``' intrinsic.
9526
9527 Arguments:
9528 """"""""""
9529
9530 The first argument is a pointer to an integer value of arbitrary bitwidth
9531 (result of some expression), the second is a pointer to a global string, the
9532 third is a pointer to a global string which is the source file name, and the
9533 last argument is the line number. It returns the value of the first argument.
9534
9535 Semantics:
9536 """"""""""
9537
9538 This intrinsic allows annotation of a pointer to an integer with arbitrary
9539 strings. This can be useful for special purpose optimizations that want to look
9540 for these annotations. These have no other defined use; they are ignored by code
9541 generation and optimization.
9542
9543 '``llvm.annotation.*``' Intrinsic
9544 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9545
9546 Syntax:
9547 """""""
9548
9549 This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9550 any integer bit width.
9551
9552 ::
9553
9554       declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
9555       declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
9556       declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
9557       declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
9558       declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)
9559
9560 Overview:
9561 """""""""
9562
9563 The '``llvm.annotation``' intrinsic.
9564
9565 Arguments:
9566 """"""""""
9567
9568 The first argument is an integer value (result of some expression), the
9569 second is a pointer to a global string, the third is a pointer to a
9570 global string which is the source file name, and the last argument is
9571 the line number. It returns the value of the first argument.
9572
9573 Semantics:
9574 """"""""""
9575
9576 This intrinsic allows annotations to be put on arbitrary expressions
9577 with arbitrary strings. This can be useful for special purpose
9578 optimizations that want to look for these annotations. These have no
9579 other defined use; they are ignored by code generation and optimization.
9580
9581 '``llvm.trap``' Intrinsic
9582 ^^^^^^^^^^^^^^^^^^^^^^^^^
9583
9584 Syntax:
9585 """""""
9586
9587 ::
9588
9589       declare void @llvm.trap() noreturn nounwind
9590
9591 Overview:
9592 """""""""
9593
9594 The '``llvm.trap``' intrinsic.
9595
9596 Arguments:
9597 """"""""""
9598
9599 None.
9600
9601 Semantics:
9602 """"""""""
9603
9604 This intrinsic is lowered to the target dependent trap instruction. If
9605 the target does not have a trap instruction, this intrinsic will be
9606 lowered to a call of the ``abort()`` function.
9607
9608 '``llvm.debugtrap``' Intrinsic
9609 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9610
9611 Syntax:
9612 """""""
9613
9614 ::
9615
9616       declare void @llvm.debugtrap() nounwind
9617
9618 Overview:
9619 """""""""
9620
9621 The '``llvm.debugtrap``' intrinsic.
9622
9623 Arguments:
9624 """"""""""
9625
9626 None.
9627
9628 Semantics:
9629 """"""""""
9630
9631 This intrinsic is lowered to code which is intended to cause an
9632 execution trap with the intention of requesting the attention of a
9633 debugger.
9634
9635 '``llvm.stackprotector``' Intrinsic
9636 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9637
9638 Syntax:
9639 """""""
9640
9641 ::
9642
9643       declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9644
9645 Overview:
9646 """""""""
9647
9648 The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9649 onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9650 is placed on the stack before local variables.
9651
9652 Arguments:
9653 """"""""""
9654
9655 The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9656 The first argument is the value loaded from the stack guard
9657 ``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9658 enough space to hold the value of the guard.
9659
9660 Semantics:
9661 """"""""""
9662
9663 This intrinsic causes the prologue/epilogue inserter to force the position of
9664 the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9665 to ensure that if a local variable on the stack is overwritten, it will destroy
9666 the value of the guard. When the function exits, the guard on the stack is
9667 checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9668 different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9669 calling the ``__stack_chk_fail()`` function.
9670
9671 '``llvm.stackprotectorcheck``' Intrinsic
9672 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9673
9674 Syntax:
9675 """""""
9676
9677 ::
9678
9679       declare void @llvm.stackprotectorcheck(i8** <guard>)
9680
9681 Overview:
9682 """""""""
9683
9684 The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
9685 created stack protector and if they are not equal calls the
9686 ``__stack_chk_fail()`` function.
9687
9688 Arguments:
9689 """"""""""
9690
9691 The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9692 the variable ``@__stack_chk_guard``.
9693
9694 Semantics:
9695 """"""""""
9696
9697 This intrinsic is provided to perform the stack protector check by comparing
9698 ``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9699 values do not match call the ``__stack_chk_fail()`` function.
9700
9701 The reason to provide this as an IR level intrinsic instead of implementing it
9702 via other IR operations is that in order to perform this operation at the IR
9703 level without an intrinsic, one would need to create additional basic blocks to
9704 handle the success/failure cases. This makes it difficult to stop the stack
9705 protector check from disrupting sibling tail calls in Codegen. With this
9706 intrinsic, we are able to generate the stack protector basic blocks late in
9707 codegen after the tail call decision has occurred.
9708
9709 '``llvm.objectsize``' Intrinsic
9710 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9711
9712 Syntax:
9713 """""""
9714
9715 ::
9716
9717       declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9718       declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9719
9720 Overview:
9721 """""""""
9722
9723 The ``llvm.objectsize`` intrinsic is designed to provide information to
9724 the optimizers to determine at compile time whether a) an operation
9725 (like memcpy) will overflow a buffer that corresponds to an object, or
9726 b) that a runtime check for overflow isn't necessary. An object in this
9727 context means an allocation of a specific class, structure, array, or
9728 other object.
9729
9730 Arguments:
9731 """"""""""
9732
9733 The ``llvm.objectsize`` intrinsic takes two arguments. The first
9734 argument is a pointer to or into the ``object``. The second argument is
9735 a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9736 or -1 (if false) when the object size is unknown. The second argument
9737 only accepts constants.
9738
9739 Semantics:
9740 """"""""""
9741
9742 The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9743 the size of the object concerned. If the size cannot be determined at
9744 compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9745 on the ``min`` argument).
9746
9747 '``llvm.expect``' Intrinsic
9748 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
9749
9750 Syntax:
9751 """""""
9752
9753 This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9754 integer bit width.
9755
9756 ::
9757
9758       declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
9759       declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9760       declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9761
9762 Overview:
9763 """""""""
9764
9765 The ``llvm.expect`` intrinsic provides information about expected (the
9766 most probable) value of ``val``, which can be used by optimizers.
9767
9768 Arguments:
9769 """"""""""
9770
9771 The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9772 a value. The second argument is an expected value, this needs to be a
9773 constant value, variables are not allowed.
9774
9775 Semantics:
9776 """"""""""
9777
9778 This intrinsic is lowered to the ``val``.
9779
9780 '``llvm.assume``' Intrinsic
9781 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9782
9783 Syntax:
9784 """""""
9785
9786 ::
9787
9788       declare void @llvm.assume(i1 %cond)
9789
9790 Overview:
9791 """""""""
9792
9793 The ``llvm.assume`` allows the optimizer to assume that the provided
9794 condition is true. This information can then be used in simplifying other parts
9795 of the code.
9796
9797 Arguments:
9798 """"""""""
9799
9800 The condition which the optimizer may assume is always true.
9801
9802 Semantics:
9803 """"""""""
9804
9805 The intrinsic allows the optimizer to assume that the provided condition is
9806 always true whenever the control flow reaches the intrinsic call. No code is
9807 generated for this intrinsic, and instructions that contribute only to the
9808 provided condition are not used for code generation. If the condition is
9809 violated during execution, the behavior is undefined.
9810
9811 Please note that optimizer might limit the transformations performed on values
9812 used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9813 only used to form the intrinsic's input argument. This might prove undesirable
9814 if the extra information provided by the ``llvm.assume`` intrinsic does cause
9815 sufficient overall improvement in code quality. For this reason,
9816 ``llvm.assume`` should not be used to document basic mathematical invariants
9817 that the optimizer can otherwise deduce or facts that are of little use to the
9818 optimizer.
9819
9820 '``llvm.donothing``' Intrinsic
9821 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9822
9823 Syntax:
9824 """""""
9825
9826 ::
9827
9828       declare void @llvm.donothing() nounwind readnone
9829
9830 Overview:
9831 """""""""
9832
9833 The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9834 two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9835 with an invoke instruction.
9836
9837 Arguments:
9838 """"""""""
9839
9840 None.
9841
9842 Semantics:
9843 """"""""""
9844
9845 This intrinsic does nothing, and it's removed by optimizers and ignored
9846 by codegen.
9847
9848 Stack Map Intrinsics
9849 --------------------
9850
9851 LLVM provides experimental intrinsics to support runtime patching
9852 mechanisms commonly desired in dynamic language JITs. These intrinsics
9853 are described in :doc:`StackMaps`.