Add a natural stack alignment field to TargetData, and prevent InstCombine from
[oota-llvm.git] / docs / GarbageCollection.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <meta http-equiv="Content-Type" Content="text/html; charset=UTF-8" >
6   <title>Accurate Garbage Collection with LLVM</title>
7   <link rel="stylesheet" href="llvm.css" type="text/css">
8   <style type="text/css">
9     .rowhead { text-align: left; background: inherit; }
10     .indent { padding-left: 1em; }
11     .optl { color: #BFBFBF; }
12   </style>
13 </head>
14 <body>
15
16 <h1>
17   Accurate Garbage Collection with LLVM
18 </h1>
19
20 <ol>
21   <li><a href="#introduction">Introduction</a>
22     <ul>
23     <li><a href="#feature">Goals and non-goals</a></li>
24     </ul>
25   </li>
26
27   <li><a href="#quickstart">Getting started</a>
28     <ul>
29     <li><a href="#quickstart-compiler">In your compiler</a></li>
30     <li><a href="#quickstart-runtime">In your runtime library</a></li>
31     <li><a href="#shadow-stack">About the shadow stack</a></li>
32     </ul>
33   </li>
34
35   <li><a href="#core">Core support</a>
36     <ul>
37     <li><a href="#gcattr">Specifying GC code generation:
38       <tt>gc "..."</tt></a></li>
39     <li><a href="#gcroot">Identifying GC roots on the stack:
40       <tt>llvm.gcroot</tt></a></li>
41     <li><a href="#barriers">Reading and writing references in the heap</a>
42       <ul>
43       <li><a href="#gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a></li>
44       <li><a href="#gcread">Read barrier: <tt>llvm.gcread</tt></a></li>
45       </ul>
46     </li>
47     </ul>
48   </li>
49   
50   <li><a href="#plugin">Compiler plugin interface</a>
51     <ul>
52     <li><a href="#collector-algos">Overview of available features</a></li>
53     <li><a href="#stack-map">Computing stack maps</a></li>
54     <li><a href="#init-roots">Initializing roots to null:
55       <tt>InitRoots</tt></a></li>
56     <li><a href="#custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>, 
57       <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a></li>
58     <li><a href="#safe-points">Generating safe points:
59       <tt>NeededSafePoints</tt></a></li>
60     <li><a href="#assembly">Emitting assembly code:
61       <tt>GCMetadataPrinter</tt></a></li>
62     </ul>
63   </li>
64
65   <li><a href="#runtime-impl">Implementing a collector runtime</a>
66     <ul>
67       <li><a href="#gcdescriptors">Tracing GC pointers from heap
68       objects</a></li>
69     </ul>
70   </li>
71   
72   <li><a href="#references">References</a></li>
73   
74 </ol>
75
76 <div class="doc_author">
77   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
78      Gordon Henriksen</p>
79 </div>
80
81 <!-- *********************************************************************** -->
82 <h2>
83   <a name="introduction">Introduction</a>
84 </h2>
85 <!-- *********************************************************************** -->
86
87 <div>
88
89 <p>Garbage collection is a widely used technique that frees the programmer from
90 having to know the lifetimes of heap objects, making software easier to produce
91 and maintain. Many programming languages rely on garbage collection for
92 automatic memory management. There are two primary forms of garbage collection:
93 conservative and accurate.</p>
94
95 <p>Conservative garbage collection often does not require any special support
96 from either the language or the compiler: it can handle non-type-safe
97 programming languages (such as C/C++) and does not require any special
98 information from the compiler. The
99 <a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">Boehm collector</a> is
100 an example of a state-of-the-art conservative collector.</p>
101
102 <p>Accurate garbage collection requires the ability to identify all pointers in
103 the program at run-time (which requires that the source-language be type-safe in
104 most cases). Identifying pointers at run-time requires compiler support to
105 locate all places that hold live pointer variables at run-time, including the
106 <a href="#gcroot">processor stack and registers</a>.</p>
107
108 <p>Conservative garbage collection is attractive because it does not require any
109 special compiler support, but it does have problems. In particular, because the
110 conservative garbage collector cannot <i>know</i> that a particular word in the
111 machine is a pointer, it cannot move live objects in the heap (preventing the
112 use of compacting and generational GC algorithms) and it can occasionally suffer
113 from memory leaks due to integer values that happen to point to objects in the
114 program. In addition, some aggressive compiler transformations can break
115 conservative garbage collectors (though these seem rare in practice).</p>
116
117 <p>Accurate garbage collectors do not suffer from any of these problems, but
118 they can suffer from degraded scalar optimization of the program. In particular,
119 because the runtime must be able to identify and update all pointers active in
120 the program, some optimizations are less effective. In practice, however, the
121 locality and performance benefits of using aggressive garbage collection
122 techniques dominates any low-level losses.</p>
123
124 <p>This document describes the mechanisms and interfaces provided by LLVM to
125 support accurate garbage collection.</p>
126
127 <!-- ======================================================================= -->
128 <h3>
129   <a name="feature">Goals and non-goals</a>
130 </h3>
131
132 <div>
133
134 <p>LLVM's intermediate representation provides <a href="#intrinsics">garbage
135 collection intrinsics</a> that offer support for a broad class of
136 collector models. For instance, the intrinsics permit:</p>
137
138 <ul>
139   <li>semi-space collectors</li>
140   <li>mark-sweep collectors</li>
141   <li>generational collectors</li>
142   <li>reference counting</li>
143   <li>incremental collectors</li>
144   <li>concurrent collectors</li>
145   <li>cooperative collectors</li>
146 </ul>
147
148 <p>We hope that the primitive support built into the LLVM IR is sufficient to
149 support a broad class of garbage collected languages including Scheme, ML, Java,
150 C#, Perl, Python, Lua, Ruby, other scripting languages, and more.</p>
151
152 <p>However, LLVM does not itself provide a garbage collector&mdash;this should
153 be part of your language's runtime library. LLVM provides a framework for
154 compile time <a href="#plugin">code generation plugins</a>. The role of these
155 plugins is to generate code and data structures which conforms to the <em>binary
156 interface</em> specified by the <em>runtime library</em>. This is similar to the
157 relationship between LLVM and DWARF debugging info, for example. The
158 difference primarily lies in the lack of an established standard in the domain
159 of garbage collection&mdash;thus the plugins.</p>
160
161 <p>The aspects of the binary interface with which LLVM's GC support is
162 concerned are:</p>
163
164 <ul>
165   <li>Creation of GC-safe points within code where collection is allowed to
166       execute safely.</li>
167   <li>Computation of the stack map. For each safe point in the code, object
168       references within the stack frame must be identified so that the
169       collector may traverse and perhaps update them.</li>
170   <li>Write barriers when storing object references to the heap. These are
171       commonly used to optimize incremental scans in generational
172       collectors.</li>
173   <li>Emission of read barriers when loading object references. These are
174       useful for interoperating with concurrent collectors.</li>
175 </ul>
176
177 <p>There are additional areas that LLVM does not directly address:</p>
178
179 <ul>
180   <li>Registration of global roots with the runtime.</li>
181   <li>Registration of stack map entries with the runtime.</li>
182   <li>The functions used by the program to allocate memory, trigger a
183       collection, etc.</li>
184   <li>Computation or compilation of type maps, or registration of them with
185       the runtime. These are used to crawl the heap for object
186       references.</li>
187 </ul>
188
189 <p>In general, LLVM's support for GC does not include features which can be
190 adequately addressed with other features of the IR and does not specify a
191 particular binary interface. On the plus side, this means that you should be
192 able to integrate LLVM with an existing runtime. On the other hand, it leaves
193 a lot of work for the developer of a novel language. However, it's easy to get
194 started quickly and scale up to a more sophisticated implementation as your
195 compiler matures.</p>
196
197 </div>
198
199 </div>
200
201 <!-- *********************************************************************** -->
202 <h2>
203   <a name="quickstart">Getting started</a>
204 </h2>
205 <!-- *********************************************************************** -->
206
207 <div>
208
209 <p>Using a GC with LLVM implies many things, for example:</p>
210
211 <ul>
212   <li>Write a runtime library or find an existing one which implements a GC
213       heap.<ol>
214     <li>Implement a memory allocator.</li>
215     <li>Design a binary interface for the stack map, used to identify
216         references within a stack frame on the machine stack.*</li>
217     <li>Implement a stack crawler to discover functions on the call stack.*</li>
218     <li>Implement a registry for global roots.</li>
219     <li>Design a binary interface for type maps, used to identify references
220         within heap objects.</li>
221     <li>Implement a collection routine bringing together all of the above.</li>
222   </ol></li>
223   <li>Emit compatible code from your compiler.<ul>
224     <li>Initialization in the main function.</li>
225     <li>Use the <tt>gc "..."</tt> attribute to enable GC code generation
226         (or <tt>F.setGC("...")</tt>).</li>
227     <li>Use <tt>@llvm.gcroot</tt> to mark stack roots.</li>
228     <li>Use <tt>@llvm.gcread</tt> and/or <tt>@llvm.gcwrite</tt> to
229         manipulate GC references, if necessary.</li>
230     <li>Allocate memory using the GC allocation routine provided by the
231         runtime library.</li>
232     <li>Generate type maps according to your runtime's binary interface.</li>
233   </ul></li>
234   <li>Write a compiler plugin to interface LLVM with the runtime library.*<ul>
235     <li>Lower <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> to appropriate
236         code sequences.*</li>
237     <li>Compile LLVM's stack map to the binary form expected by the
238         runtime.</li>
239   </ul></li>
240   <li>Load the plugin into the compiler. Use <tt>llc -load</tt> or link the
241       plugin statically with your language's compiler.*</li>
242   <li>Link program executables with the runtime.</li>
243 </ul>
244
245 <p>To help with several of these tasks (those indicated with a *), LLVM
246 includes a highly portable, built-in ShadowStack code generator. It is compiled
247 into <tt>llc</tt> and works even with the interpreter and C backends.</p>
248
249 <!-- ======================================================================= -->
250 <h3>
251   <a name="quickstart-compiler">In your compiler</a>
252 </h3>
253
254 <div>
255
256 <p>To turn the shadow stack on for your functions, first call:</p>
257
258 <div class="doc_code"><pre
259 >F.setGC("shadow-stack");</pre></div>
260
261 <p>for each function your compiler emits. Since the shadow stack is built into
262 LLVM, you do not need to load a plugin.</p>
263
264 <p>Your compiler must also use <tt>@llvm.gcroot</tt> as documented.
265 Don't forget to create a root for each intermediate value that is generated
266 when evaluating an expression. In <tt>h(f(), g())</tt>, the result of
267 <tt>f()</tt> could easily be collected if evaluating <tt>g()</tt> triggers a
268 collection.</p>
269
270 <p>There's no need to use <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> over
271 plain <tt>load</tt> and <tt>store</tt> for now. You will need them when
272 switching to a more advanced GC.</p>
273
274 </div>
275
276 <!-- ======================================================================= -->
277 <h3>
278   <a name="quickstart-runtime">In your runtime</a>
279 </h3>
280
281 <div>
282
283 <p>The shadow stack doesn't imply a memory allocation algorithm. A semispace
284 collector or building atop <tt>malloc</tt> are great places to start, and can
285 be implemented with very little code.</p>
286
287 <p>When it comes time to collect, however, your runtime needs to traverse the
288 stack roots, and for this it needs to integrate with the shadow stack. Luckily,
289 doing so is very simple. (This code is heavily commented to help you
290 understand the data structure, but there are only 20 lines of meaningful
291 code.)</p>
292
293 <pre class="doc_code">
294 /// @brief The map for a single function's stack frame. One of these is
295 ///        compiled as constant data into the executable for each function.
296 /// 
297 /// Storage of metadata values is elided if the %metadata parameter to
298 /// @llvm.gcroot is null.
299 struct FrameMap {
300   int32_t NumRoots;    //&lt; Number of roots in stack frame.
301   int32_t NumMeta;     //&lt; Number of metadata entries. May be &lt; NumRoots.
302   const void *Meta[0]; //&lt; Metadata for each root.
303 };
304
305 /// @brief A link in the dynamic shadow stack. One of these is embedded in the
306 ///        stack frame of each function on the call stack.
307 struct StackEntry {
308   StackEntry *Next;    //&lt; Link to next stack entry (the caller's).
309   const FrameMap *Map; //&lt; Pointer to constant FrameMap.
310   void *Roots[0];      //&lt; Stack roots (in-place array).
311 };
312
313 /// @brief The head of the singly-linked list of StackEntries. Functions push
314 ///        and pop onto this in their prologue and epilogue.
315 /// 
316 /// Since there is only a global list, this technique is not threadsafe.
317 StackEntry *llvm_gc_root_chain;
318
319 /// @brief Calls Visitor(root, meta) for each GC root on the stack.
320 ///        root and meta are exactly the values passed to
321 ///        <tt>@llvm.gcroot</tt>.
322 /// 
323 /// Visitor could be a function to recursively mark live objects. Or it
324 /// might copy them to another heap or generation.
325 /// 
326 /// @param Visitor A function to invoke for every GC root on the stack.
327 void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
328   for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
329     unsigned i = 0;
330     
331     // For roots [0, NumMeta), the metadata pointer is in the FrameMap.
332     for (unsigned e = R->Map->NumMeta; i != e; ++i)
333       Visitor(&amp;R->Roots[i], R->Map->Meta[i]);
334     
335     // For roots [NumMeta, NumRoots), the metadata pointer is null.
336     for (unsigned e = R->Map->NumRoots; i != e; ++i)
337       Visitor(&amp;R->Roots[i], NULL);
338   }
339 }</pre>
340
341 </div>
342
343 <!-- ======================================================================= -->
344 <h3>
345   <a name="shadow-stack">About the shadow stack</a>
346 </h3>
347
348 <div>
349
350 <p>Unlike many GC algorithms which rely on a cooperative code generator to
351 compile stack maps, this algorithm carefully maintains a linked list of stack
352 roots [<a href="#henderson02">Henderson2002</a>]. This so-called "shadow stack"
353 mirrors the machine stack. Maintaining this data structure is slower than using
354 a stack map compiled into the executable as constant data, but has a significant
355 portability advantage because it requires no special support from the target
356 code generator, and does not require tricky platform-specific code to crawl
357 the machine stack.</p>
358
359 <p>The tradeoff for this simplicity and portability is:</p>
360
361 <ul>
362   <li>High overhead per function call.</li>
363   <li>Not thread-safe.</li>
364 </ul>
365
366 <p>Still, it's an easy way to get started. After your compiler and runtime are
367 up and running, writing a <a href="#plugin">plugin</a> will allow you to take
368 advantage of <a href="#collector-algos">more advanced GC features</a> of LLVM
369 in order to improve performance.</p>
370
371 </div>
372
373 </div>
374
375 <!-- *********************************************************************** -->
376 <h2>
377   <a name="core">IR features</a><a name="intrinsics"></a>
378 </h2>
379 <!-- *********************************************************************** -->
380
381 <div>
382
383 <p>This section describes the garbage collection facilities provided by the
384 <a href="LangRef.html">LLVM intermediate representation</a>. The exact behavior
385 of these IR features is specified by the binary interface implemented by a
386 <a href="#plugin">code generation plugin</a>, not by this document.</p>
387
388 <p>These facilities are limited to those strictly necessary; they are not
389 intended to be a complete interface to any garbage collector. A program will
390 need to interface with the GC library using the facilities provided by that
391 program.</p>
392
393 <!-- ======================================================================= -->
394 <h3>
395   <a name="gcattr">Specifying GC code generation: <tt>gc "..."</tt></a>
396 </h3>
397
398 <div>
399
400 <div class="doc_code"><tt>
401   define <i>ty</i> @<i>name</i>(...) <span style="text-decoration: underline">gc "<i>name</i>"</span> { ...
402 </tt></div>
403
404 <p>The <tt>gc</tt> function attribute is used to specify the desired GC style
405 to the compiler. Its programmatic equivalent is the <tt>setGC</tt> method of
406 <tt>Function</tt>.</p>
407
408 <p>Setting <tt>gc "<i>name</i>"</tt> on a function triggers a search for a
409 matching code generation plugin "<i>name</i>"; it is that plugin which defines
410 the exact nature of the code generated to support GC. If none is found, the
411 compiler will raise an error.</p>
412
413 <p>Specifying the GC style on a per-function basis allows LLVM to link together
414 programs that use different garbage collection algorithms (or none at all).</p>
415
416 </div>
417
418 <!-- ======================================================================= -->
419 <h3>
420   <a name="gcroot">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a>
421 </h3>
422
423 <div>
424
425 <div class="doc_code"><tt>
426   void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
427 </tt></div>
428
429 <p>The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM that a stack
430 variable references an object on the heap and is to be tracked for garbage
431 collection. The exact impact on generated code is specified by a <a
432 href="#plugin">compiler plugin</a>.</p>
433
434 <p>A compiler which uses mem2reg to raise imperative code using <tt>alloca</tt>
435 into SSA form need only add a call to <tt>@llvm.gcroot</tt> for those variables
436 which a pointers into the GC heap.</p>
437
438 <p>It is also important to mark intermediate values with <tt>llvm.gcroot</tt>.
439 For example, consider <tt>h(f(), g())</tt>. Beware leaking the result of
440 <tt>f()</tt> in the case that <tt>g()</tt> triggers a collection.</p>
441
442 <p>The first argument <b>must</b> be a value referring to an alloca instruction
443 or a bitcast of an alloca. The second contains a pointer to metadata that
444 should be associated with the pointer, and <b>must</b> be a constant or global
445 value address. If your target collector uses tags, use a null pointer for
446 metadata.</p>
447
448 <p>The <tt>%metadata</tt> argument can be used to avoid requiring heap objects
449 to have 'isa' pointers or tag bits. [<a href="#appel89">Appel89</a>, <a
450 href="#goldberg91">Goldberg91</a>, <a href="#tolmach94">Tolmach94</a>] If
451 specified, its value will be tracked along with the location of the pointer in
452 the stack frame.</p>
453
454 <p>Consider the following fragment of Java code:</p>
455
456 <pre class="doc_code">
457        {
458          Object X;   // A null-initialized reference to an object
459          ...
460        }
461 </pre>
462
463 <p>This block (which may be located in the middle of a function or in a loop
464 nest), could be compiled to this LLVM code:</p>
465
466 <pre class="doc_code">
467 Entry:
468    ;; In the entry block for the function, allocate the
469    ;; stack space for X, which is an LLVM pointer.
470    %X = alloca %Object*
471    
472    ;; Tell LLVM that the stack space is a stack root.
473    ;; Java has type-tags on objects, so we pass null as metadata.
474    %tmp = bitcast %Object** %X to i8**
475    call void @llvm.gcroot(i8** %X, i8* null)
476    ...
477
478    ;; "CodeBlock" is the block corresponding to the start
479    ;;  of the scope above.
480 CodeBlock:
481    ;; Java null-initializes pointers.
482    store %Object* null, %Object** %X
483
484    ...
485
486    ;; As the pointer goes out of scope, store a null value into
487    ;; it, to indicate that the value is no longer live.
488    store %Object* null, %Object** %X
489    ...
490 </pre>
491
492 </div>
493
494 <!-- ======================================================================= -->
495 <h3>
496   <a name="barriers">Reading and writing references in the heap</a>
497 </h3>
498
499 <div>
500
501 <p>Some collectors need to be informed when the mutator (the program that needs
502 garbage collection) either reads a pointer from or writes a pointer to a field
503 of a heap object. The code fragments inserted at these points are called
504 <em>read barriers</em> and <em>write barriers</em>, respectively. The amount of
505 code that needs to be executed is usually quite small and not on the critical
506 path of any computation, so the overall performance impact of the barrier is
507 tolerable.</p>
508
509 <p>Barriers often require access to the <em>object pointer</em> rather than the
510 <em>derived pointer</em> (which is a pointer to the field within the
511 object). Accordingly, these intrinsics take both pointers as separate arguments
512 for completeness. In this snippet, <tt>%object</tt> is the object pointer, and 
513 <tt>%derived</tt> is the derived pointer:</p>
514
515 <blockquote><pre>
516     ;; An array type.
517     %class.Array = type { %class.Object, i32, [0 x %class.Object*] }
518     ...
519
520     ;; Load the object pointer from a gcroot.
521     %object = load %class.Array** %object_addr
522
523     ;; Compute the derived pointer.
524     %derived = getelementptr %object, i32 0, i32 2, i32 %n</pre></blockquote>
525
526 <p>LLVM does not enforce this relationship between the object and derived
527 pointer (although a <a href="#plugin">plugin</a> might). However, it would be
528 an unusual collector that violated it.</p>
529
530 <p>The use of these intrinsics is naturally optional if the target GC does
531 require the corresponding barrier. Such a GC plugin will replace the intrinsic
532 calls with the corresponding <tt>load</tt> or <tt>store</tt> instruction if they
533 are used.</p>
534
535 <!-- ======================================================================= -->
536 <h4>
537   <a name="gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a>
538 </h4>
539
540 <div>
541
542 <div class="doc_code"><tt>
543 void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)
544 </tt></div>
545
546 <p>For write barriers, LLVM provides the <tt>llvm.gcwrite</tt> intrinsic
547 function. It has exactly the same semantics as a non-volatile <tt>store</tt> to
548 the derived pointer (the third argument). The exact code generated is specified
549 by a <a href="#plugin">compiler plugin</a>.</p>
550
551 <p>Many important algorithms require write barriers, including generational
552 and concurrent collectors. Additionally, write barriers could be used to
553 implement reference counting.</p>
554
555 </div>
556
557 <!-- ======================================================================= -->
558 <h4>
559   <a name="gcread">Read barrier: <tt>llvm.gcread</tt></a>
560 </h4>
561
562 <div>
563
564 <div class="doc_code"><tt>
565 i8* @llvm.gcread(i8* %object, i8** %derived)<br>
566 </tt></div>
567
568 <p>For read barriers, LLVM provides the <tt>llvm.gcread</tt> intrinsic function.
569 It has exactly the same semantics as a non-volatile <tt>load</tt> from the
570 derived pointer (the second argument). The exact code generated is specified by
571 a <a href="#plugin">compiler plugin</a>.</p>
572
573 <p>Read barriers are needed by fewer algorithms than write barriers, and may
574 have a greater performance impact since pointer reads are more frequent than
575 writes.</p>
576
577 </div>
578
579 </div>
580
581 </div>
582
583 <!-- *********************************************************************** -->
584 <h2>
585   <a name="plugin">Implementing a collector plugin</a>
586 </h2>
587 <!-- *********************************************************************** -->
588
589 <div>
590
591 <p>User code specifies which GC code generation to use with the <tt>gc</tt>
592 function attribute or, equivalently, with the <tt>setGC</tt> method of
593 <tt>Function</tt>.</p>
594
595 <p>To implement a GC plugin, it is necessary to subclass
596 <tt>llvm::GCStrategy</tt>, which can be accomplished in a few lines of
597 boilerplate code. LLVM's infrastructure provides access to several important
598 algorithms. For an uncontroversial collector, all that remains may be to
599 compile LLVM's computed stack map to assembly code (using the binary
600 representation expected by the runtime library). This can be accomplished in
601 about 100 lines of code.</p>
602
603 <p>This is not the appropriate place to implement a garbage collected heap or a
604 garbage collector itself. That code should exist in the language's runtime
605 library. The compiler plugin is responsible for generating code which
606 conforms to the binary interface defined by library, most essentially the
607 <a href="#stack-map">stack map</a>.</p>
608
609 <p>To subclass <tt>llvm::GCStrategy</tt> and register it with the compiler:</p>
610
611 <blockquote><pre>// lib/MyGC/MyGC.cpp - Example LLVM GC plugin
612
613 #include "llvm/CodeGen/GCStrategy.h"
614 #include "llvm/CodeGen/GCMetadata.h"
615 #include "llvm/Support/Compiler.h"
616
617 using namespace llvm;
618
619 namespace {
620   class LLVM_LIBRARY_VISIBILITY MyGC : public GCStrategy {
621   public:
622     MyGC() {}
623   };
624   
625   GCRegistry::Add&lt;MyGC&gt;
626   X("mygc", "My bespoke garbage collector.");
627 }</pre></blockquote>
628
629 <p>This boilerplate collector does nothing. More specifically:</p>
630
631 <ul>
632   <li><tt>llvm.gcread</tt> calls are replaced with the corresponding
633       <tt>load</tt> instruction.</li>
634   <li><tt>llvm.gcwrite</tt> calls are replaced with the corresponding
635       <tt>store</tt> instruction.</li>
636   <li>No safe points are added to the code.</li>
637   <li>The stack map is not compiled into the executable.</li>
638 </ul>
639
640 <p>Using the LLVM makefiles (like the <a
641 href="http://llvm.org/viewvc/llvm-project/llvm/trunk/projects/sample/">sample
642 project</a>), this code can be compiled as a plugin using a simple
643 makefile:</p>
644
645 <blockquote><pre
646 ># lib/MyGC/Makefile
647
648 LEVEL := ../..
649 LIBRARYNAME = <var>MyGC</var>
650 LOADABLE_MODULE = 1
651
652 include $(LEVEL)/Makefile.common</pre></blockquote>
653
654 <p>Once the plugin is compiled, code using it may be compiled using <tt>llc
655 -load=<var>MyGC.so</var></tt> (though <var>MyGC.so</var> may have some other
656 platform-specific extension):</p>
657
658 <blockquote><pre
659 >$ cat sample.ll
660 define void @f() gc "mygc" {
661 entry:
662         ret void
663 }
664 $ llvm-as &lt; sample.ll | llc -load=MyGC.so</pre></blockquote>
665
666 <p>It is also possible to statically link the collector plugin into tools, such
667 as a language-specific compiler front-end.</p>
668
669 <!-- ======================================================================= -->
670 <h3>
671   <a name="collector-algos">Overview of available features</a>
672 </h3>
673
674 <div>
675
676 <p><tt>GCStrategy</tt> provides a range of features through which a plugin
677 may do useful work. Some of these are callbacks, some are algorithms that can
678 be enabled, disabled, or customized. This matrix summarizes the supported (and
679 planned) features and correlates them with the collection techniques which
680 typically require them.</p>
681
682 <table>
683   <tr>
684     <th>Algorithm</th>
685     <th>Done</th>
686     <th>shadow stack</th>
687     <th>refcount</th>
688     <th>mark-sweep</th>
689     <th>copying</th>
690     <th>incremental</th>
691     <th>threaded</th>
692     <th>concurrent</th>
693   </tr>
694   <tr>
695     <th class="rowhead"><a href="#stack-map">stack map</a></th>
696     <td>&#10004;</td>
697     <td></td>
698     <td></td>
699     <td>&#10008;</td>
700     <td>&#10008;</td>
701     <td>&#10008;</td>
702     <td>&#10008;</td>
703     <td>&#10008;</td>
704   </tr>
705   <tr>
706     <th class="rowhead"><a href="#init-roots">initialize roots</a></th>
707     <td>&#10004;</td>
708     <td>&#10008;</td>
709     <td>&#10008;</td>
710     <td>&#10008;</td>
711     <td>&#10008;</td>
712     <td>&#10008;</td>
713     <td>&#10008;</td>
714     <td>&#10008;</td>
715   </tr>
716   <tr class="doc_warning">
717     <th class="rowhead">derived pointers</th>
718     <td>NO</td>
719     <td></td>
720     <td></td>
721     <td></td>
722     <td></td>
723     <td></td>
724     <td>&#10008;*</td>
725     <td>&#10008;*</td>
726   </tr>
727   <tr>
728     <th class="rowhead"><em><a href="#custom">custom lowering</a></em></th>
729     <td>&#10004;</td>
730     <th></th>
731     <th></th>
732     <th></th>
733     <th></th>
734     <th></th>
735     <th></th>
736     <th></th>
737   </tr>
738   <tr>
739     <th class="rowhead indent">gcroot</th>
740     <td>&#10004;</td>
741     <td>&#10008;</td>
742     <td>&#10008;</td>
743     <td></td>
744     <td></td>
745     <td></td>
746     <td></td>
747     <td></td>
748   </tr>
749   <tr>
750     <th class="rowhead indent">gcwrite</th>
751     <td>&#10004;</td>
752     <td></td>
753     <td>&#10008;</td>
754     <td></td>
755     <td></td>
756     <td>&#10008;</td>
757     <td></td>
758     <td>&#10008;</td>
759   </tr>
760   <tr>
761     <th class="rowhead indent">gcread</th>
762     <td>&#10004;</td>
763     <td></td>
764     <td></td>
765     <td></td>
766     <td></td>
767     <td></td>
768     <td></td>
769     <td>&#10008;</td>
770   </tr>
771   <tr>
772     <th class="rowhead"><em><a href="#safe-points">safe points</a></em></th>
773     <td></td>
774     <th></th>
775     <th></th>
776     <th></th>
777     <th></th>
778     <th></th>
779     <th></th>
780     <th></th>
781   </tr>
782   <tr>
783     <th class="rowhead indent">in calls</th>
784     <td>&#10004;</td>
785     <td></td>
786     <td></td>
787     <td>&#10008;</td>
788     <td>&#10008;</td>
789     <td>&#10008;</td>
790     <td>&#10008;</td>
791     <td>&#10008;</td>
792   </tr>
793   <tr>
794     <th class="rowhead indent">before calls</th>
795     <td>&#10004;</td>
796     <td></td>
797     <td></td>
798     <td></td>
799     <td></td>
800     <td></td>
801     <td>&#10008;</td>
802     <td>&#10008;</td>
803   </tr>
804   <tr class="doc_warning">
805     <th class="rowhead indent">for loops</th>
806     <td>NO</td>
807     <td></td>
808     <td></td>
809     <td></td>
810     <td></td>
811     <td></td>
812     <td>&#10008;</td>
813     <td>&#10008;</td>
814   </tr>
815   <tr>
816     <th class="rowhead indent">before escape</th>
817     <td>&#10004;</td>
818     <td></td>
819     <td></td>
820     <td></td>
821     <td></td>
822     <td></td>
823     <td>&#10008;</td>
824     <td>&#10008;</td>
825   </tr>
826   <tr class="doc_warning">
827     <th class="rowhead">emit code at safe points</th>
828     <td>NO</td>
829     <td></td>
830     <td></td>
831     <td></td>
832     <td></td>
833     <td></td>
834     <td>&#10008;</td>
835     <td>&#10008;</td>
836   </tr>
837   <tr>
838     <th class="rowhead"><em>output</em></th>
839     <td></td>
840     <th></th>
841     <th></th>
842     <th></th>
843     <th></th>
844     <th></th>
845     <th></th>
846     <th></th>
847   </tr>
848   <tr>
849     <th class="rowhead indent"><a href="#assembly">assembly</a></th>
850     <td>&#10004;</td>
851     <td></td>
852     <td></td>
853     <td>&#10008;</td>
854     <td>&#10008;</td>
855     <td>&#10008;</td>
856     <td>&#10008;</td>
857     <td>&#10008;</td>
858   </tr>
859   <tr class="doc_warning">
860     <th class="rowhead indent">JIT</th>
861     <td>NO</td>
862     <td></td>
863     <td></td>
864     <td class="optl">&#10008;</td>
865     <td class="optl">&#10008;</td>
866     <td class="optl">&#10008;</td>
867     <td class="optl">&#10008;</td>
868     <td class="optl">&#10008;</td>
869   </tr>
870   <tr class="doc_warning">
871     <th class="rowhead indent">obj</th>
872     <td>NO</td>
873     <td></td>
874     <td></td>
875     <td class="optl">&#10008;</td>
876     <td class="optl">&#10008;</td>
877     <td class="optl">&#10008;</td>
878     <td class="optl">&#10008;</td>
879     <td class="optl">&#10008;</td>
880   </tr>
881   <tr class="doc_warning">
882     <th class="rowhead">live analysis</th>
883     <td>NO</td>
884     <td></td>
885     <td></td>
886     <td class="optl">&#10008;</td>
887     <td class="optl">&#10008;</td>
888     <td class="optl">&#10008;</td>
889     <td class="optl">&#10008;</td>
890     <td class="optl">&#10008;</td>
891   </tr>
892   <tr class="doc_warning">
893     <th class="rowhead">register map</th>
894     <td>NO</td>
895     <td></td>
896     <td></td>
897     <td class="optl">&#10008;</td>
898     <td class="optl">&#10008;</td>
899     <td class="optl">&#10008;</td>
900     <td class="optl">&#10008;</td>
901     <td class="optl">&#10008;</td>
902   </tr>
903   <tr>
904     <td colspan="10">
905       <div><span class="doc_warning">*</span> Derived pointers only pose a
906            hazard to copying collectors.</div>
907       <div><span class="optl">&#10008;</span> in gray denotes a feature which
908            could be utilized if available.</div>
909     </td>
910   </tr>
911 </table>
912
913 <p>To be clear, the collection techniques above are defined as:</p>
914
915 <dl>
916   <dt>Shadow Stack</dt>
917   <dd>The mutator carefully maintains a linked list of stack roots.</dd>
918   <dt>Reference Counting</dt>
919   <dd>The mutator maintains a reference count for each object and frees an
920       object when its count falls to zero.</dd>
921   <dt>Mark-Sweep</dt>
922   <dd>When the heap is exhausted, the collector marks reachable objects starting
923       from the roots, then deallocates unreachable objects in a sweep
924       phase.</dd>
925   <dt>Copying</dt>
926   <dd>As reachability analysis proceeds, the collector copies objects from one
927       heap area to another, compacting them in the process. Copying collectors
928       enable highly efficient "bump pointer" allocation and can improve locality
929       of reference.</dd>
930   <dt>Incremental</dt>
931   <dd>(Including generational collectors.) Incremental collectors generally have
932       all the properties of a copying collector (regardless of whether the
933       mature heap is compacting), but bring the added complexity of requiring
934       write barriers.</dd>
935   <dt>Threaded</dt>
936   <dd>Denotes a multithreaded mutator; the collector must still stop the mutator
937       ("stop the world") before beginning reachability analysis. Stopping a
938       multithreaded mutator is a complicated problem. It generally requires
939       highly platform specific code in the runtime, and the production of
940       carefully designed machine code at safe points.</dd>
941   <dt>Concurrent</dt>
942   <dd>In this technique, the mutator and the collector run concurrently, with
943       the goal of eliminating pause times. In a <em>cooperative</em> collector,
944       the mutator further aids with collection should a pause occur, allowing
945       collection to take advantage of multiprocessor hosts. The "stop the world"
946       problem of threaded collectors is generally still present to a limited
947       extent. Sophisticated marking algorithms are necessary. Read barriers may
948       be necessary.</dd>
949 </dl>
950
951 <p>As the matrix indicates, LLVM's garbage collection infrastructure is already
952 suitable for a wide variety of collectors, but does not currently extend to
953 multithreaded programs. This will be added in the future as there is
954 interest.</p>
955
956 </div>
957
958 <!-- ======================================================================= -->
959 <h3>
960   <a name="stack-map">Computing stack maps</a>
961 </h3>
962
963 <div>
964
965 <p>LLVM automatically computes a stack map. One of the most important features
966 of a <tt>GCStrategy</tt> is to compile this information into the executable in
967 the binary representation expected by the runtime library.</p>
968
969 <p>The stack map consists of the location and identity of each GC root in the
970 each function in the module. For each root:</p>
971
972 <ul>
973   <li><tt>RootNum</tt>: The index of the root.</li>
974   <li><tt>StackOffset</tt>: The offset of the object relative to the frame
975       pointer.</li>
976   <li><tt>RootMetadata</tt>: The value passed as the <tt>%metadata</tt>
977       parameter to the <a href="#gcroot"><tt>@llvm.gcroot</tt></a> intrinsic.</li>
978 </ul>
979
980 <p>Also, for the function as a whole:</p>
981
982 <ul>
983   <li><tt>getFrameSize()</tt>: The overall size of the function's initial
984       stack frame, not accounting for any dynamic allocation.</li>
985   <li><tt>roots_size()</tt>: The count of roots in the function.</li>
986 </ul>
987
988 <p>To access the stack map, use <tt>GCFunctionMetadata::roots_begin()</tt> and
989 -<tt>end()</tt> from the <tt><a
990 href="#assembly">GCMetadataPrinter</a></tt>:</p>
991
992 <blockquote><pre
993 >for (iterator I = begin(), E = end(); I != E; ++I) {
994   GCFunctionInfo *FI = *I;
995   unsigned FrameSize = FI-&gt;getFrameSize();
996   size_t RootCount = FI-&gt;roots_size();
997
998   for (GCFunctionInfo::roots_iterator RI = FI-&gt;roots_begin(),
999                                       RE = FI-&gt;roots_end();
1000                                       RI != RE; ++RI) {
1001     int RootNum = RI->Num;
1002     int RootStackOffset = RI->StackOffset;
1003     Constant *RootMetadata = RI->Metadata;
1004   }
1005 }</pre></blockquote>
1006
1007 <p>If the <tt>llvm.gcroot</tt> intrinsic is eliminated before code generation by
1008 a custom lowering pass, LLVM will compute an empty stack map. This may be useful
1009 for collector plugins which implement reference counting or a shadow stack.</p>
1010
1011 </div>
1012
1013
1014 <!-- ======================================================================= -->
1015 <h3>
1016   <a name="init-roots">Initializing roots to null: <tt>InitRoots</tt></a>
1017 </h3>
1018
1019 <div>
1020
1021 <blockquote><pre
1022 >MyGC::MyGC() {
1023   InitRoots = true;
1024 }</pre></blockquote>
1025
1026 <p>When set, LLVM will automatically initialize each root to <tt>null</tt> upon
1027 entry to the function. This prevents the GC's sweep phase from visiting
1028 uninitialized pointers, which will almost certainly cause it to crash. This
1029 initialization occurs before custom lowering, so the two may be used
1030 together.</p>
1031
1032 <p>Since LLVM does not yet compute liveness information, there is no means of
1033 distinguishing an uninitialized stack root from an initialized one. Therefore,
1034 this feature should be used by all GC plugins. It is enabled by default.</p>
1035
1036 </div>
1037
1038
1039 <!-- ======================================================================= -->
1040 <h3>
1041   <a name="custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>, 
1042     <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a>
1043 </h3>
1044
1045 <div>
1046
1047 <p>For GCs which use barriers or unusual treatment of stack roots, these
1048 flags allow the collector to perform arbitrary transformations of the LLVM
1049 IR:</p>
1050
1051 <blockquote><pre
1052 >class MyGC : public GCStrategy {
1053 public:
1054   MyGC() {
1055     CustomRoots = true;
1056     CustomReadBarriers = true;
1057     CustomWriteBarriers = true;
1058   }
1059   
1060   virtual bool initializeCustomLowering(Module &amp;M);
1061   virtual bool performCustomLowering(Function &amp;F);
1062 };</pre></blockquote>
1063
1064 <p>If any of these flags are set, then LLVM suppresses its default lowering for
1065 the corresponding intrinsics and instead calls
1066 <tt>performCustomLowering</tt>.</p>
1067
1068 <p>LLVM's default action for each intrinsic is as follows:</p>
1069
1070 <ul>
1071   <li><tt>llvm.gcroot</tt>: Leave it alone. The code generator must see it
1072                             or the stack map will not be computed.</li>
1073   <li><tt>llvm.gcread</tt>: Substitute a <tt>load</tt> instruction.</li>
1074   <li><tt>llvm.gcwrite</tt>: Substitute a <tt>store</tt> instruction.</li>
1075 </ul>
1076
1077 <p>If <tt>CustomReadBarriers</tt> or <tt>CustomWriteBarriers</tt> are specified,
1078 then <tt>performCustomLowering</tt> <strong>must</strong> eliminate the
1079 corresponding barriers.</p>
1080
1081 <p><tt>performCustomLowering</tt> must comply with the same restrictions as <a
1082 href="WritingAnLLVMPass.html#runOnFunction"><tt
1083 >FunctionPass::runOnFunction</tt></a>.
1084 Likewise, <tt>initializeCustomLowering</tt> has the same semantics as <a
1085 href="WritingAnLLVMPass.html#doInitialization_mod"><tt
1086 >Pass::doInitialization(Module&amp;)</tt></a>.</p>
1087
1088 <p>The following can be used as a template:</p>
1089
1090 <blockquote><pre
1091 >#include "llvm/Module.h"
1092 #include "llvm/IntrinsicInst.h"
1093
1094 bool MyGC::initializeCustomLowering(Module &amp;M) {
1095   return false;
1096 }
1097
1098 bool MyGC::performCustomLowering(Function &amp;F) {
1099   bool MadeChange = false;
1100   
1101   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1102     for (BasicBlock::iterator II = BB-&gt;begin(), E = BB-&gt;end(); II != E; )
1103       if (IntrinsicInst *CI = dyn_cast&lt;IntrinsicInst&gt;(II++))
1104         if (Function *F = CI-&gt;getCalledFunction())
1105           switch (F-&gt;getIntrinsicID()) {
1106           case Intrinsic::gcwrite:
1107             // Handle llvm.gcwrite.
1108             CI-&gt;eraseFromParent();
1109             MadeChange = true;
1110             break;
1111           case Intrinsic::gcread:
1112             // Handle llvm.gcread.
1113             CI-&gt;eraseFromParent();
1114             MadeChange = true;
1115             break;
1116           case Intrinsic::gcroot:
1117             // Handle llvm.gcroot.
1118             CI-&gt;eraseFromParent();
1119             MadeChange = true;
1120             break;
1121           }
1122   
1123   return MadeChange;
1124 }</pre></blockquote>
1125
1126 </div>
1127
1128
1129 <!-- ======================================================================= -->
1130 <h3>
1131   <a name="safe-points">Generating safe points: <tt>NeededSafePoints</tt></a>
1132 </h3>
1133
1134 <div>
1135
1136 <p>LLVM can compute four kinds of safe points:</p>
1137
1138 <blockquote><pre
1139 >namespace GC {
1140   /// PointKind - The type of a collector-safe point.
1141   /// 
1142   enum PointKind {
1143     Loop,    //&lt; Instr is a loop (backwards branch).
1144     Return,  //&lt; Instr is a return instruction.
1145     PreCall, //&lt; Instr is a call instruction.
1146     PostCall //&lt; Instr is the return address of a call.
1147   };
1148 }</pre></blockquote>
1149
1150 <p>A collector can request any combination of the four by setting the 
1151 <tt>NeededSafePoints</tt> mask:</p>
1152
1153 <blockquote><pre
1154 >MyGC::MyGC() {
1155   NeededSafePoints = 1 &lt;&lt; GC::Loop
1156                    | 1 &lt;&lt; GC::Return
1157                    | 1 &lt;&lt; GC::PreCall
1158                    | 1 &lt;&lt; GC::PostCall;
1159 }</pre></blockquote>
1160
1161 <p>It can then use the following routines to access safe points.</p>
1162
1163 <blockquote><pre
1164 >for (iterator I = begin(), E = end(); I != E; ++I) {
1165   GCFunctionInfo *MD = *I;
1166   size_t PointCount = MD-&gt;size();
1167
1168   for (GCFunctionInfo::iterator PI = MD-&gt;begin(),
1169                                 PE = MD-&gt;end(); PI != PE; ++PI) {
1170     GC::PointKind PointKind = PI-&gt;Kind;
1171     unsigned PointNum = PI-&gt;Num;
1172   }
1173 }
1174 </pre></blockquote>
1175
1176 <p>Almost every collector requires <tt>PostCall</tt> safe points, since these
1177 correspond to the moments when the function is suspended during a call to a
1178 subroutine.</p>
1179
1180 <p>Threaded programs generally require <tt>Loop</tt> safe points to guarantee
1181 that the application will reach a safe point within a bounded amount of time,
1182 even if it is executing a long-running loop which contains no function
1183 calls.</p>
1184
1185 <p>Threaded collectors may also require <tt>Return</tt> and <tt>PreCall</tt>
1186 safe points to implement "stop the world" techniques using self-modifying code,
1187 where it is important that the program not exit the function without reaching a
1188 safe point (because only the topmost function has been patched).</p>
1189
1190 </div>
1191
1192
1193 <!-- ======================================================================= -->
1194 <h3>
1195   <a name="assembly">Emitting assembly code: <tt>GCMetadataPrinter</tt></a>
1196 </h3>
1197
1198 <div>
1199
1200 <p>LLVM allows a plugin to print arbitrary assembly code before and after the
1201 rest of a module's assembly code. At the end of the module, the GC can compile
1202 the LLVM stack map into assembly code. (At the beginning, this information is not
1203 yet computed.)</p>
1204
1205 <p>Since AsmWriter and CodeGen are separate components of LLVM, a separate
1206 abstract base class and registry is provided for printing assembly code, the
1207 <tt>GCMetadaPrinter</tt> and <tt>GCMetadataPrinterRegistry</tt>. The AsmWriter
1208 will look for such a subclass if the <tt>GCStrategy</tt> sets
1209 <tt>UsesMetadata</tt>:</p>
1210
1211 <blockquote><pre
1212 >MyGC::MyGC() {
1213   UsesMetadata = true;
1214 }</pre></blockquote>
1215
1216 <p>This separation allows JIT-only clients to be smaller.</p>
1217
1218 <p>Note that LLVM does not currently have analogous APIs to support code
1219 generation in the JIT, nor using the object writers.</p>
1220
1221 <blockquote><pre
1222 >// lib/MyGC/MyGCPrinter.cpp - Example LLVM GC printer
1223
1224 #include "llvm/CodeGen/GCMetadataPrinter.h"
1225 #include "llvm/Support/Compiler.h"
1226
1227 using namespace llvm;
1228
1229 namespace {
1230   class LLVM_LIBRARY_VISIBILITY MyGCPrinter : public GCMetadataPrinter {
1231   public:
1232     virtual void beginAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
1233                                const TargetAsmInfo &amp;TAI);
1234   
1235     virtual void finishAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
1236                                 const TargetAsmInfo &amp;TAI);
1237   };
1238   
1239   GCMetadataPrinterRegistry::Add&lt;MyGCPrinter&gt;
1240   X("mygc", "My bespoke garbage collector.");
1241 }</pre></blockquote>
1242
1243 <p>The collector should use <tt>AsmPrinter</tt> and <tt>TargetAsmInfo</tt> to
1244 print portable assembly code to the <tt>std::ostream</tt>. The collector itself
1245 contains the stack map for the entire module, and may access the
1246 <tt>GCFunctionInfo</tt> using its own <tt>begin()</tt> and <tt>end()</tt>
1247 methods. Here's a realistic example:</p>
1248
1249 <blockquote><pre
1250 >#include "llvm/CodeGen/AsmPrinter.h"
1251 #include "llvm/Function.h"
1252 #include "llvm/Target/TargetMachine.h"
1253 #include "llvm/Target/TargetData.h"
1254 #include "llvm/Target/TargetAsmInfo.h"
1255
1256 void MyGCPrinter::beginAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
1257                                 const TargetAsmInfo &amp;TAI) {
1258   // Nothing to do.
1259 }
1260
1261 void MyGCPrinter::finishAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
1262                                  const TargetAsmInfo &amp;TAI) {
1263   // Set up for emitting addresses.
1264   const char *AddressDirective;
1265   int AddressAlignLog;
1266   if (AP.TM.getTargetData()->getPointerSize() == sizeof(int32_t)) {
1267     AddressDirective = TAI.getData32bitsDirective();
1268     AddressAlignLog = 2;
1269   } else {
1270     AddressDirective = TAI.getData64bitsDirective();
1271     AddressAlignLog = 3;
1272   }
1273   
1274   // Put this in the data section.
1275   AP.SwitchToDataSection(TAI.getDataSection());
1276   
1277   // For each function...
1278   for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
1279     GCFunctionInfo &amp;MD = **FI;
1280     
1281     // Emit this data structure:
1282     // 
1283     // struct {
1284     //   int32_t PointCount;
1285     //   struct {
1286     //     void *SafePointAddress;
1287     //     int32_t LiveCount;
1288     //     int32_t LiveOffsets[LiveCount];
1289     //   } Points[PointCount];
1290     // } __gcmap_&lt;FUNCTIONNAME&gt;;
1291     
1292     // Align to address width.
1293     AP.EmitAlignment(AddressAlignLog);
1294     
1295     // Emit the symbol by which the stack map entry can be found.
1296     std::string Symbol;
1297     Symbol += TAI.getGlobalPrefix();
1298     Symbol += "__gcmap_";
1299     Symbol += MD.getFunction().getName();
1300     if (const char *GlobalDirective = TAI.getGlobalDirective())
1301       OS &lt;&lt; GlobalDirective &lt;&lt; Symbol &lt;&lt; "\n";
1302     OS &lt;&lt; TAI.getGlobalPrefix() &lt;&lt; Symbol &lt;&lt; ":\n";
1303     
1304     // Emit PointCount.
1305     AP.EmitInt32(MD.size());
1306     AP.EOL("safe point count");
1307     
1308     // And each safe point...
1309     for (GCFunctionInfo::iterator PI = MD.begin(),
1310                                      PE = MD.end(); PI != PE; ++PI) {
1311       // Align to address width.
1312       AP.EmitAlignment(AddressAlignLog);
1313       
1314       // Emit the address of the safe point.
1315       OS &lt;&lt; AddressDirective
1316          &lt;&lt; TAI.getPrivateGlobalPrefix() &lt;&lt; "label" &lt;&lt; PI-&gt;Num;
1317       AP.EOL("safe point address");
1318       
1319       // Emit the stack frame size.
1320       AP.EmitInt32(MD.getFrameSize());
1321       AP.EOL("stack frame size");
1322       
1323       // Emit the number of live roots in the function.
1324       AP.EmitInt32(MD.live_size(PI));
1325       AP.EOL("live root count");
1326       
1327       // And for each live root...
1328       for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
1329                                             LE = MD.live_end(PI);
1330                                             LI != LE; ++LI) {
1331         // Print its offset within the stack frame.
1332         AP.EmitInt32(LI-&gt;StackOffset);
1333         AP.EOL("stack offset");
1334       }
1335     }
1336   }
1337 }
1338 </pre></blockquote>
1339
1340 </div>
1341
1342 </div>
1343
1344 <!-- *********************************************************************** -->
1345 <h2>
1346   <a name="references">References</a>
1347 </h2>
1348 <!-- *********************************************************************** -->
1349
1350 <div>
1351
1352 <p><a name="appel89">[Appel89]</a> Runtime Tags Aren't Necessary. Andrew
1353 W. Appel. Lisp and Symbolic Computation 19(7):703-705, July 1989.</p>
1354
1355 <p><a name="goldberg91">[Goldberg91]</a> Tag-free garbage collection for
1356 strongly typed programming languages. Benjamin Goldberg. ACM SIGPLAN
1357 PLDI'91.</p>
1358
1359 <p><a name="tolmach94">[Tolmach94]</a> Tag-free garbage collection using
1360 explicit type parameters. Andrew Tolmach. Proceedings of the 1994 ACM
1361 conference on LISP and functional programming.</p>
1362
1363 <p><a name="henderson02">[Henderson2002]</a> <a
1364 href="http://citeseer.ist.psu.edu/henderson02accurate.html">
1365 Accurate Garbage Collection in an Uncooperative Environment</a>.
1366 Fergus Henderson. International Symposium on Memory Management 2002.</p>
1367
1368 </div>
1369
1370
1371 <!-- *********************************************************************** -->
1372
1373 <hr>
1374 <address>
1375   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1376   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1377   <a href="http://validator.w3.org/check/referer"><img
1378   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1379
1380   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1381   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
1382   Last modified: $Date$
1383 </address>
1384
1385 </body>
1386 </html>