Add a paragraph about MCTargetStreamer.
[oota-llvm.git] / docs / CodeGenerator.rst
1 ==========================================
2 The LLVM Target-Independent Code Generator
3 ==========================================
4
5 .. role:: raw-html(raw)
6    :format: html
7
8 .. raw:: html
9
10   <style>
11     .unknown { background-color: #C0C0C0; text-align: center; }
12     .unknown:before { content: "?" }
13     .no { background-color: #C11B17 }
14     .no:before { content: "N" }
15     .partial { background-color: #F88017 }
16     .yes { background-color: #0F0; }
17     .yes:before { content: "Y" }
18     .na { background-color: #6666FF; }
19     .na:before { content: "N/A" }
20   </style>
21
22 .. contents::
23    :local:
24
25 .. warning::
26   This is a work in progress.
27
28 Introduction
29 ============
30
31 The LLVM target-independent code generator is a framework that provides a suite
32 of reusable components for translating the LLVM internal representation to the
33 machine code for a specified target---either in assembly form (suitable for a
34 static compiler) or in binary machine code format (usable for a JIT
35 compiler). The LLVM target-independent code generator consists of six main
36 components:
37
38 1. `Abstract target description`_ interfaces which capture important properties
39    about various aspects of the machine, independently of how they will be used.
40    These interfaces are defined in ``include/llvm/Target/``.
41
42 2. Classes used to represent the `code being generated`_ for a target.  These
43    classes are intended to be abstract enough to represent the machine code for
44    *any* target machine.  These classes are defined in
45    ``include/llvm/CodeGen/``. At this level, concepts like "constant pool
46    entries" and "jump tables" are explicitly exposed.
47
48 3. Classes and algorithms used to represent code as the object file level, the
49    `MC Layer`_.  These classes represent assembly level constructs like labels,
50    sections, and instructions.  At this level, concepts like "constant pool
51    entries" and "jump tables" don't exist.
52
53 4. `Target-independent algorithms`_ used to implement various phases of native
54    code generation (register allocation, scheduling, stack frame representation,
55    etc).  This code lives in ``lib/CodeGen/``.
56
57 5. `Implementations of the abstract target description interfaces`_ for
58    particular targets.  These machine descriptions make use of the components
59    provided by LLVM, and can optionally provide custom target-specific passes,
60    to build complete code generators for a specific target.  Target descriptions
61    live in ``lib/Target/``.
62
63 6. The target-independent JIT components.  The LLVM JIT is completely target
64    independent (it uses the ``TargetJITInfo`` structure to interface for
65    target-specific issues.  The code for the target-independent JIT lives in
66    ``lib/ExecutionEngine/JIT``.
67
68 Depending on which part of the code generator you are interested in working on,
69 different pieces of this will be useful to you.  In any case, you should be
70 familiar with the `target description`_ and `machine code representation`_
71 classes.  If you want to add a backend for a new target, you will need to
72 `implement the target description`_ classes for your new target and understand
73 the `LLVM code representation <LangRef.html>`_.  If you are interested in
74 implementing a new `code generation algorithm`_, it should only depend on the
75 target-description and machine code representation classes, ensuring that it is
76 portable.
77
78 Required components in the code generator
79 -----------------------------------------
80
81 The two pieces of the LLVM code generator are the high-level interface to the
82 code generator and the set of reusable components that can be used to build
83 target-specific backends.  The two most important interfaces (:raw-html:`<tt>`
84 `TargetMachine`_ :raw-html:`</tt>` and :raw-html:`<tt>` `DataLayout`_
85 :raw-html:`</tt>`) are the only ones that are required to be defined for a
86 backend to fit into the LLVM system, but the others must be defined if the
87 reusable code generator components are going to be used.
88
89 This design has two important implications.  The first is that LLVM can support
90 completely non-traditional code generation targets.  For example, the C backend
91 does not require register allocation, instruction selection, or any of the other
92 standard components provided by the system.  As such, it only implements these
93 two interfaces, and does its own thing. Note that C backend was removed from the
94 trunk since LLVM 3.1 release. Another example of a code generator like this is a
95 (purely hypothetical) backend that converts LLVM to the GCC RTL form and uses
96 GCC to emit machine code for a target.
97
98 This design also implies that it is possible to design and implement radically
99 different code generators in the LLVM system that do not make use of any of the
100 built-in components.  Doing so is not recommended at all, but could be required
101 for radically different targets that do not fit into the LLVM machine
102 description model: FPGAs for example.
103
104 .. _high-level design of the code generator:
105
106 The high-level design of the code generator
107 -------------------------------------------
108
109 The LLVM target-independent code generator is designed to support efficient and
110 quality code generation for standard register-based microprocessors.  Code
111 generation in this model is divided into the following stages:
112
113 1. `Instruction Selection`_ --- This phase determines an efficient way to
114    express the input LLVM code in the target instruction set.  This stage
115    produces the initial code for the program in the target instruction set, then
116    makes use of virtual registers in SSA form and physical registers that
117    represent any required register assignments due to target constraints or
118    calling conventions.  This step turns the LLVM code into a DAG of target
119    instructions.
120
121 2. `Scheduling and Formation`_ --- This phase takes the DAG of target
122    instructions produced by the instruction selection phase, determines an
123    ordering of the instructions, then emits the instructions as :raw-html:`<tt>`
124    `MachineInstr`_\s :raw-html:`</tt>` with that ordering.  Note that we
125    describe this in the `instruction selection section`_ because it operates on
126    a `SelectionDAG`_.
127
128 3. `SSA-based Machine Code Optimizations`_ --- This optional stage consists of a
129    series of machine-code optimizations that operate on the SSA-form produced by
130    the instruction selector.  Optimizations like modulo-scheduling or peephole
131    optimization work here.
132
133 4. `Register Allocation`_ --- The target code is transformed from an infinite
134    virtual register file in SSA form to the concrete register file used by the
135    target.  This phase introduces spill code and eliminates all virtual register
136    references from the program.
137
138 5. `Prolog/Epilog Code Insertion`_ --- Once the machine code has been generated
139    for the function and the amount of stack space required is known (used for
140    LLVM alloca's and spill slots), the prolog and epilog code for the function
141    can be inserted and "abstract stack location references" can be eliminated.
142    This stage is responsible for implementing optimizations like frame-pointer
143    elimination and stack packing.
144
145 6. `Late Machine Code Optimizations`_ --- Optimizations that operate on "final"
146    machine code can go here, such as spill code scheduling and peephole
147    optimizations.
148
149 7. `Code Emission`_ --- The final stage actually puts out the code for the
150    current function, either in the target assembler format or in machine
151    code.
152
153 The code generator is based on the assumption that the instruction selector will
154 use an optimal pattern matching selector to create high-quality sequences of
155 native instructions.  Alternative code generator designs based on pattern
156 expansion and aggressive iterative peephole optimization are much slower.  This
157 design permits efficient compilation (important for JIT environments) and
158 aggressive optimization (used when generating code offline) by allowing
159 components of varying levels of sophistication to be used for any step of
160 compilation.
161
162 In addition to these stages, target implementations can insert arbitrary
163 target-specific passes into the flow.  For example, the X86 target uses a
164 special pass to handle the 80x87 floating point stack architecture.  Other
165 targets with unusual requirements can be supported with custom passes as needed.
166
167 Using TableGen for target description
168 -------------------------------------
169
170 The target description classes require a detailed description of the target
171 architecture.  These target descriptions often have a large amount of common
172 information (e.g., an ``add`` instruction is almost identical to a ``sub``
173 instruction).  In order to allow the maximum amount of commonality to be
174 factored out, the LLVM code generator uses the
175 :doc:`TableGen <TableGenFundamentals>` tool to describe big chunks of the
176 target machine, which allows the use of domain-specific and target-specific
177 abstractions to reduce the amount of repetition.
178
179 As LLVM continues to be developed and refined, we plan to move more and more of
180 the target description to the ``.td`` form.  Doing so gives us a number of
181 advantages.  The most important is that it makes it easier to port LLVM because
182 it reduces the amount of C++ code that has to be written, and the surface area
183 of the code generator that needs to be understood before someone can get
184 something working.  Second, it makes it easier to change things. In particular,
185 if tables and other things are all emitted by ``tblgen``, we only need a change
186 in one place (``tblgen``) to update all of the targets to a new interface.
187
188 .. _Abstract target description:
189 .. _target description:
190
191 Target description classes
192 ==========================
193
194 The LLVM target description classes (located in the ``include/llvm/Target``
195 directory) provide an abstract description of the target machine independent of
196 any particular client.  These classes are designed to capture the *abstract*
197 properties of the target (such as the instructions and registers it has), and do
198 not incorporate any particular pieces of code generation algorithms.
199
200 All of the target description classes (except the :raw-html:`<tt>` `DataLayout`_
201 :raw-html:`</tt>` class) are designed to be subclassed by the concrete target
202 implementation, and have virtual methods implemented.  To get to these
203 implementations, the :raw-html:`<tt>` `TargetMachine`_ :raw-html:`</tt>` class
204 provides accessors that should be implemented by the target.
205
206 .. _TargetMachine:
207
208 The ``TargetMachine`` class
209 ---------------------------
210
211 The ``TargetMachine`` class provides virtual methods that are used to access the
212 target-specific implementations of the various target description classes via
213 the ``get*Info`` methods (``getInstrInfo``, ``getRegisterInfo``,
214 ``getFrameInfo``, etc.).  This class is designed to be specialized by a concrete
215 target implementation (e.g., ``X86TargetMachine``) which implements the various
216 virtual methods.  The only required target description class is the
217 :raw-html:`<tt>` `DataLayout`_ :raw-html:`</tt>` class, but if the code
218 generator components are to be used, the other interfaces should be implemented
219 as well.
220
221 .. _DataLayout:
222
223 The ``DataLayout`` class
224 ------------------------
225
226 The ``DataLayout`` class is the only required target description class, and it
227 is the only class that is not extensible (you cannot derive a new class from
228 it).  ``DataLayout`` specifies information about how the target lays out memory
229 for structures, the alignment requirements for various data types, the size of
230 pointers in the target, and whether the target is little-endian or
231 big-endian.
232
233 .. _TargetLowering:
234
235 The ``TargetLowering`` class
236 ----------------------------
237
238 The ``TargetLowering`` class is used by SelectionDAG based instruction selectors
239 primarily to describe how LLVM code should be lowered to SelectionDAG
240 operations.  Among other things, this class indicates:
241
242 * an initial register class to use for various ``ValueType``\s,
243
244 * which operations are natively supported by the target machine,
245
246 * the return type of ``setcc`` operations,
247
248 * the type to use for shift amounts, and
249
250 * various high-level characteristics, like whether it is profitable to turn
251   division by a constant into a multiplication sequence.
252
253 .. _TargetRegisterInfo:
254
255 The ``TargetRegisterInfo`` class
256 --------------------------------
257
258 The ``TargetRegisterInfo`` class is used to describe the register file of the
259 target and any interactions between the registers.
260
261 Registers are represented in the code generator by unsigned integers.  Physical
262 registers (those that actually exist in the target description) are unique
263 small numbers, and virtual registers are generally large.  Note that
264 register ``#0`` is reserved as a flag value.
265
266 Each register in the processor description has an associated
267 ``TargetRegisterDesc`` entry, which provides a textual name for the register
268 (used for assembly output and debugging dumps) and a set of aliases (used to
269 indicate whether one register overlaps with another).
270
271 In addition to the per-register description, the ``TargetRegisterInfo`` class
272 exposes a set of processor specific register classes (instances of the
273 ``TargetRegisterClass`` class).  Each register class contains sets of registers
274 that have the same properties (for example, they are all 32-bit integer
275 registers).  Each SSA virtual register created by the instruction selector has
276 an associated register class.  When the register allocator runs, it replaces
277 virtual registers with a physical register in the set.
278
279 The target-specific implementations of these classes is auto-generated from a
280 `TableGen <TableGenFundamentals.html>`_ description of the register file.
281
282 .. _TargetInstrInfo:
283
284 The ``TargetInstrInfo`` class
285 -----------------------------
286
287 The ``TargetInstrInfo`` class is used to describe the machine instructions
288 supported by the target.  Descriptions define things like the mnemonic for
289 the opcode, the number of operands, the list of implicit register uses and defs,
290 whether the instruction has certain target-independent properties (accesses
291 memory, is commutable, etc), and holds any target-specific flags.
292
293 The ``TargetFrameInfo`` class
294 -----------------------------
295
296 The ``TargetFrameInfo`` class is used to provide information about the stack
297 frame layout of the target. It holds the direction of stack growth, the known
298 stack alignment on entry to each function, and the offset to the local area.
299 The offset to the local area is the offset from the stack pointer on function
300 entry to the first location where function data (local variables, spill
301 locations) can be stored.
302
303 The ``TargetSubtarget`` class
304 -----------------------------
305
306 The ``TargetSubtarget`` class is used to provide information about the specific
307 chip set being targeted.  A sub-target informs code generation of which
308 instructions are supported, instruction latencies and instruction execution
309 itinerary; i.e., which processing units are used, in what order, and for how
310 long.
311
312 The ``TargetJITInfo`` class
313 ---------------------------
314
315 The ``TargetJITInfo`` class exposes an abstract interface used by the
316 Just-In-Time code generator to perform target-specific activities, such as
317 emitting stubs.  If a ``TargetMachine`` supports JIT code generation, it should
318 provide one of these objects through the ``getJITInfo`` method.
319
320 .. _code being generated:
321 .. _machine code representation:
322
323 Machine code description classes
324 ================================
325
326 At the high-level, LLVM code is translated to a machine specific representation
327 formed out of :raw-html:`<tt>` `MachineFunction`_ :raw-html:`</tt>`,
328 :raw-html:`<tt>` `MachineBasicBlock`_ :raw-html:`</tt>`, and :raw-html:`<tt>`
329 `MachineInstr`_ :raw-html:`</tt>` instances (defined in
330 ``include/llvm/CodeGen``).  This representation is completely target agnostic,
331 representing instructions in their most abstract form: an opcode and a series of
332 operands.  This representation is designed to support both an SSA representation
333 for machine code, as well as a register allocated, non-SSA form.
334
335 .. _MachineInstr:
336
337 The ``MachineInstr`` class
338 --------------------------
339
340 Target machine instructions are represented as instances of the ``MachineInstr``
341 class.  This class is an extremely abstract way of representing machine
342 instructions.  In particular, it only keeps track of an opcode number and a set
343 of operands.
344
345 The opcode number is a simple unsigned integer that only has meaning to a
346 specific backend.  All of the instructions for a target should be defined in the
347 ``*InstrInfo.td`` file for the target. The opcode enum values are auto-generated
348 from this description.  The ``MachineInstr`` class does not have any information
349 about how to interpret the instruction (i.e., what the semantics of the
350 instruction are); for that you must refer to the :raw-html:`<tt>`
351 `TargetInstrInfo`_ :raw-html:`</tt>` class.
352
353 The operands of a machine instruction can be of several different types: a
354 register reference, a constant integer, a basic block reference, etc.  In
355 addition, a machine operand should be marked as a def or a use of the value
356 (though only registers are allowed to be defs).
357
358 By convention, the LLVM code generator orders instruction operands so that all
359 register definitions come before the register uses, even on architectures that
360 are normally printed in other orders.  For example, the SPARC add instruction:
361 "``add %i1, %i2, %i3``" adds the "%i1", and "%i2" registers and stores the
362 result into the "%i3" register.  In the LLVM code generator, the operands should
363 be stored as "``%i3, %i1, %i2``": with the destination first.
364
365 Keeping destination (definition) operands at the beginning of the operand list
366 has several advantages.  In particular, the debugging printer will print the
367 instruction like this:
368
369 .. code-block:: llvm
370
371   %r3 = add %i1, %i2
372
373 Also if the first operand is a def, it is easier to `create instructions`_ whose
374 only def is the first operand.
375
376 .. _create instructions:
377
378 Using the ``MachineInstrBuilder.h`` functions
379 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
380
381 Machine instructions are created by using the ``BuildMI`` functions, located in
382 the ``include/llvm/CodeGen/MachineInstrBuilder.h`` file.  The ``BuildMI``
383 functions make it easy to build arbitrary machine instructions.  Usage of the
384 ``BuildMI`` functions look like this:
385
386 .. code-block:: c++
387
388   // Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
389   // instruction.  The '1' specifies how many operands will be added.
390   MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
391
392   // Create the same instr, but insert it at the end of a basic block.
393   MachineBasicBlock &MBB = ...
394   BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
395
396   // Create the same instr, but insert it before a specified iterator point.
397   MachineBasicBlock::iterator MBBI = ...
398   BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
399
400   // Create a 'cmp Reg, 0' instruction, no destination reg.
401   MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
402
403   // Create an 'sahf' instruction which takes no operands and stores nothing.
404   MI = BuildMI(X86::SAHF, 0);
405
406   // Create a self looping branch instruction.
407   BuildMI(MBB, X86::JNE, 1).addMBB(&MBB);
408
409 The key thing to remember with the ``BuildMI`` functions is that you have to
410 specify the number of operands that the machine instruction will take.  This
411 allows for efficient memory allocation.  You also need to specify if operands
412 default to be uses of values, not definitions.  If you need to add a definition
413 operand (other than the optional destination register), you must explicitly mark
414 it as such:
415
416 .. code-block:: c++
417
418   MI.addReg(Reg, RegState::Define);
419
420 Fixed (preassigned) registers
421 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
422
423 One important issue that the code generator needs to be aware of is the presence
424 of fixed registers.  In particular, there are often places in the instruction
425 stream where the register allocator *must* arrange for a particular value to be
426 in a particular register.  This can occur due to limitations of the instruction
427 set (e.g., the X86 can only do a 32-bit divide with the ``EAX``/``EDX``
428 registers), or external factors like calling conventions.  In any case, the
429 instruction selector should emit code that copies a virtual register into or out
430 of a physical register when needed.
431
432 For example, consider this simple LLVM example:
433
434 .. code-block:: llvm
435
436   define i32 @test(i32 %X, i32 %Y) {
437     %Z = udiv i32 %X, %Y
438     ret i32 %Z
439   }
440
441 The X86 instruction selector produces this machine code for the ``div`` and
442 ``ret`` (use "``llc X.bc -march=x86 -print-machineinstrs``" to get this):
443
444 .. code-block:: llvm
445
446   ;; Start of div
447   %EAX = mov %reg1024           ;; Copy X (in reg1024) into EAX
448   %reg1027 = sar %reg1024, 31
449   %EDX = mov %reg1027           ;; Sign extend X into EDX
450   idiv %reg1025                 ;; Divide by Y (in reg1025)
451   %reg1026 = mov %EAX           ;; Read the result (Z) out of EAX
452
453   ;; Start of ret
454   %EAX = mov %reg1026           ;; 32-bit return value goes in EAX
455   ret
456
457 By the end of code generation, the register allocator has coalesced the
458 registers and deleted the resultant identity moves producing the following
459 code:
460
461 .. code-block:: llvm
462
463   ;; X is in EAX, Y is in ECX
464   mov %EAX, %EDX
465   sar %EDX, 31
466   idiv %ECX
467   ret 
468
469 This approach is extremely general (if it can handle the X86 architecture, it
470 can handle anything!) and allows all of the target specific knowledge about the
471 instruction stream to be isolated in the instruction selector.  Note that
472 physical registers should have a short lifetime for good code generation, and
473 all physical registers are assumed dead on entry to and exit from basic blocks
474 (before register allocation).  Thus, if you need a value to be live across basic
475 block boundaries, it *must* live in a virtual register.
476
477 Call-clobbered registers
478 ^^^^^^^^^^^^^^^^^^^^^^^^
479
480 Some machine instructions, like calls, clobber a large number of physical
481 registers.  Rather than adding ``<def,dead>`` operands for all of them, it is
482 possible to use an ``MO_RegisterMask`` operand instead.  The register mask
483 operand holds a bit mask of preserved registers, and everything else is
484 considered to be clobbered by the instruction.
485
486 Machine code in SSA form
487 ^^^^^^^^^^^^^^^^^^^^^^^^
488
489 ``MachineInstr``'s are initially selected in SSA-form, and are maintained in
490 SSA-form until register allocation happens.  For the most part, this is
491 trivially simple since LLVM is already in SSA form; LLVM PHI nodes become
492 machine code PHI nodes, and virtual registers are only allowed to have a single
493 definition.
494
495 After register allocation, machine code is no longer in SSA-form because there
496 are no virtual registers left in the code.
497
498 .. _MachineBasicBlock:
499
500 The ``MachineBasicBlock`` class
501 -------------------------------
502
503 The ``MachineBasicBlock`` class contains a list of machine instructions
504 (:raw-html:`<tt>` `MachineInstr`_ :raw-html:`</tt>` instances).  It roughly
505 corresponds to the LLVM code input to the instruction selector, but there can be
506 a one-to-many mapping (i.e. one LLVM basic block can map to multiple machine
507 basic blocks). The ``MachineBasicBlock`` class has a "``getBasicBlock``" method,
508 which returns the LLVM basic block that it comes from.
509
510 .. _MachineFunction:
511
512 The ``MachineFunction`` class
513 -----------------------------
514
515 The ``MachineFunction`` class contains a list of machine basic blocks
516 (:raw-html:`<tt>` `MachineBasicBlock`_ :raw-html:`</tt>` instances).  It
517 corresponds one-to-one with the LLVM function input to the instruction selector.
518 In addition to a list of basic blocks, the ``MachineFunction`` contains a a
519 ``MachineConstantPool``, a ``MachineFrameInfo``, a ``MachineFunctionInfo``, and
520 a ``MachineRegisterInfo``.  See ``include/llvm/CodeGen/MachineFunction.h`` for
521 more information.
522
523 ``MachineInstr Bundles``
524 ------------------------
525
526 LLVM code generator can model sequences of instructions as MachineInstr
527 bundles. A MI bundle can model a VLIW group / pack which contains an arbitrary
528 number of parallel instructions. It can also be used to model a sequential list
529 of instructions (potentially with data dependencies) that cannot be legally
530 separated (e.g. ARM Thumb2 IT blocks).
531
532 Conceptually a MI bundle is a MI with a number of other MIs nested within:
533
534 ::
535
536   --------------
537   |   Bundle   | ---------
538   --------------          \
539          |           ----------------
540          |           |      MI      |
541          |           ----------------
542          |                   |
543          |           ----------------
544          |           |      MI      |
545          |           ----------------
546          |                   |
547          |           ----------------
548          |           |      MI      |
549          |           ----------------
550          |
551   --------------
552   |   Bundle   | --------
553   --------------         \
554          |           ----------------
555          |           |      MI      |
556          |           ----------------
557          |                   |
558          |           ----------------
559          |           |      MI      |
560          |           ----------------
561          |                   |
562          |                  ...
563          |
564   --------------
565   |   Bundle   | --------
566   --------------         \
567          |
568         ...
569
570 MI bundle support does not change the physical representations of
571 MachineBasicBlock and MachineInstr. All the MIs (including top level and nested
572 ones) are stored as sequential list of MIs. The "bundled" MIs are marked with
573 the 'InsideBundle' flag. A top level MI with the special BUNDLE opcode is used
574 to represent the start of a bundle. It's legal to mix BUNDLE MIs with indiviual
575 MIs that are not inside bundles nor represent bundles.
576
577 MachineInstr passes should operate on a MI bundle as a single unit. Member
578 methods have been taught to correctly handle bundles and MIs inside bundles.
579 The MachineBasicBlock iterator has been modified to skip over bundled MIs to
580 enforce the bundle-as-a-single-unit concept. An alternative iterator
581 instr_iterator has been added to MachineBasicBlock to allow passes to iterate
582 over all of the MIs in a MachineBasicBlock, including those which are nested
583 inside bundles. The top level BUNDLE instruction must have the correct set of
584 register MachineOperand's that represent the cumulative inputs and outputs of
585 the bundled MIs.
586
587 Packing / bundling of MachineInstr's should be done as part of the register
588 allocation super-pass. More specifically, the pass which determines what MIs
589 should be bundled together must be done after code generator exits SSA form
590 (i.e. after two-address pass, PHI elimination, and copy coalescing).  Bundles
591 should only be finalized (i.e. adding BUNDLE MIs and input and output register
592 MachineOperands) after virtual registers have been rewritten into physical
593 registers. This requirement eliminates the need to add virtual register operands
594 to BUNDLE instructions which would effectively double the virtual register def
595 and use lists.
596
597 .. _MC Layer:
598
599 The "MC" Layer
600 ==============
601
602 The MC Layer is used to represent and process code at the raw machine code
603 level, devoid of "high level" information like "constant pools", "jump tables",
604 "global variables" or anything like that.  At this level, LLVM handles things
605 like label names, machine instructions, and sections in the object file.  The
606 code in this layer is used for a number of important purposes: the tail end of
607 the code generator uses it to write a .s or .o file, and it is also used by the
608 llvm-mc tool to implement standalone machine code assemblers and disassemblers.
609
610 This section describes some of the important classes.  There are also a number
611 of important subsystems that interact at this layer, they are described later in
612 this manual.
613
614 .. _MCStreamer:
615
616 The ``MCStreamer`` API
617 ----------------------
618
619 MCStreamer is best thought of as an assembler API.  It is an abstract API which
620 is *implemented* in different ways (e.g. to output a .s file, output an ELF .o
621 file, etc) but whose API correspond directly to what you see in a .s file.
622 MCStreamer has one method per directive, such as EmitLabel, EmitSymbolAttribute,
623 SwitchSection, EmitValue (for .byte, .word), etc, which directly correspond to
624 assembly level directives.  It also has an EmitInstruction method, which is used
625 to output an MCInst to the streamer.
626
627 This API is most important for two clients: the llvm-mc stand-alone assembler is
628 effectively a parser that parses a line, then invokes a method on MCStreamer. In
629 the code generator, the `Code Emission`_ phase of the code generator lowers
630 higher level LLVM IR and Machine* constructs down to the MC layer, emitting
631 directives through MCStreamer.
632
633 On the implementation side of MCStreamer, there are two major implementations:
634 one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
635 file (MCObjectStreamer).  MCAsmStreamer is a straight-forward implementation
636 that prints out a directive for each method (e.g. ``EmitValue -> .byte``), but
637 MCObjectStreamer implements a full assembler.
638
639 For target specific directives, the MCStreamer has a MCTargetStreamer instance.
640 Each target that needs it defines a class that inherits from it and is a lot
641 like MCStreamer itself: It has one method per directive and two classes that
642 inherit from it, a target object streamer and a target asm streamer. The target
643 asm streamer just prints it (``emitFnStart -> .fnstrart``), and the object
644 streamer implement the assembler logic for it.
645
646 The ``MCContext`` class
647 -----------------------
648
649 The MCContext class is the owner of a variety of uniqued data structures at the
650 MC layer, including symbols, sections, etc.  As such, this is the class that you
651 interact with to create symbols and sections.  This class can not be subclassed.
652
653 The ``MCSymbol`` class
654 ----------------------
655
656 The MCSymbol class represents a symbol (aka label) in the assembly file.  There
657 are two interesting kinds of symbols: assembler temporary symbols, and normal
658 symbols.  Assembler temporary symbols are used and processed by the assembler
659 but are discarded when the object file is produced.  The distinction is usually
660 represented by adding a prefix to the label, for example "L" labels are
661 assembler temporary labels in MachO.
662
663 MCSymbols are created by MCContext and uniqued there.  This means that MCSymbols
664 can be compared for pointer equivalence to find out if they are the same symbol.
665 Note that pointer inequality does not guarantee the labels will end up at
666 different addresses though.  It's perfectly legal to output something like this
667 to the .s file:
668
669 ::
670
671   foo:
672   bar:
673     .byte 4
674
675 In this case, both the foo and bar symbols will have the same address.
676
677 The ``MCSection`` class
678 -----------------------
679
680 The ``MCSection`` class represents an object-file specific section. It is
681 subclassed by object file specific implementations (e.g. ``MCSectionMachO``,
682 ``MCSectionCOFF``, ``MCSectionELF``) and these are created and uniqued by
683 MCContext.  The MCStreamer has a notion of the current section, which can be
684 changed with the SwitchToSection method (which corresponds to a ".section"
685 directive in a .s file).
686
687 .. _MCInst:
688
689 The ``MCInst`` class
690 --------------------
691
692 The ``MCInst`` class is a target-independent representation of an instruction.
693 It is a simple class (much more so than `MachineInstr`_) that holds a
694 target-specific opcode and a vector of MCOperands.  MCOperand, in turn, is a
695 simple discriminated union of three cases: 1) a simple immediate, 2) a target
696 register ID, 3) a symbolic expression (e.g. "``Lfoo-Lbar+42``") as an MCExpr.
697
698 MCInst is the common currency used to represent machine instructions at the MC
699 layer.  It is the type used by the instruction encoder, the instruction printer,
700 and the type generated by the assembly parser and disassembler.
701
702 .. _Target-independent algorithms:
703 .. _code generation algorithm:
704
705 Target-independent code generation algorithms
706 =============================================
707
708 This section documents the phases described in the `high-level design of the
709 code generator`_.  It explains how they work and some of the rationale behind
710 their design.
711
712 .. _Instruction Selection:
713 .. _instruction selection section:
714
715 Instruction Selection
716 ---------------------
717
718 Instruction Selection is the process of translating LLVM code presented to the
719 code generator into target-specific machine instructions.  There are several
720 well-known ways to do this in the literature.  LLVM uses a SelectionDAG based
721 instruction selector.
722
723 Portions of the DAG instruction selector are generated from the target
724 description (``*.td``) files.  Our goal is for the entire instruction selector
725 to be generated from these ``.td`` files, though currently there are still
726 things that require custom C++ code.
727
728 .. _SelectionDAG:
729
730 Introduction to SelectionDAGs
731 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
732
733 The SelectionDAG provides an abstraction for code representation in a way that
734 is amenable to instruction selection using automatic techniques
735 (e.g. dynamic-programming based optimal pattern matching selectors). It is also
736 well-suited to other phases of code generation; in particular, instruction
737 scheduling (SelectionDAG's are very close to scheduling DAGs post-selection).
738 Additionally, the SelectionDAG provides a host representation where a large
739 variety of very-low-level (but target-independent) `optimizations`_ may be
740 performed; ones which require extensive information about the instructions
741 efficiently supported by the target.
742
743 The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
744 ``SDNode`` class.  The primary payload of the ``SDNode`` is its operation code
745 (Opcode) that indicates what operation the node performs and the operands to the
746 operation.  The various operation node types are described at the top of the
747 ``include/llvm/CodeGen/SelectionDAGNodes.h`` file.
748
749 Although most operations define a single value, each node in the graph may
750 define multiple values.  For example, a combined div/rem operation will define
751 both the dividend and the remainder. Many other situations require multiple
752 values as well.  Each node also has some number of operands, which are edges to
753 the node defining the used value.  Because nodes may define multiple values,
754 edges are represented by instances of the ``SDValue`` class, which is a
755 ``<SDNode, unsigned>`` pair, indicating the node and result value being used,
756 respectively.  Each value produced by an ``SDNode`` has an associated ``MVT``
757 (Machine Value Type) indicating what the type of the value is.
758
759 SelectionDAGs contain two different kinds of values: those that represent data
760 flow and those that represent control flow dependencies.  Data values are simple
761 edges with an integer or floating point value type.  Control edges are
762 represented as "chain" edges which are of type ``MVT::Other``.  These edges
763 provide an ordering between nodes that have side effects (such as loads, stores,
764 calls, returns, etc).  All nodes that have side effects should take a token
765 chain as input and produce a new one as output.  By convention, token chain
766 inputs are always operand #0, and chain results are always the last value
767 produced by an operation.
768
769 A SelectionDAG has designated "Entry" and "Root" nodes.  The Entry node is
770 always a marker node with an Opcode of ``ISD::EntryToken``.  The Root node is
771 the final side-effecting node in the token chain. For example, in a single basic
772 block function it would be the return node.
773
774 One important concept for SelectionDAGs is the notion of a "legal" vs.
775 "illegal" DAG.  A legal DAG for a target is one that only uses supported
776 operations and supported types.  On a 32-bit PowerPC, for example, a DAG with a
777 value of type i1, i8, i16, or i64 would be illegal, as would a DAG that uses a
778 SREM or UREM operation.  The `legalize types`_ and `legalize operations`_ phases
779 are responsible for turning an illegal DAG into a legal DAG.
780
781 .. _SelectionDAG-Process:
782
783 SelectionDAG Instruction Selection Process
784 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
785
786 SelectionDAG-based instruction selection consists of the following steps:
787
788 #. `Build initial DAG`_ --- This stage performs a simple translation from the
789    input LLVM code to an illegal SelectionDAG.
790
791 #. `Optimize SelectionDAG`_ --- This stage performs simple optimizations on the
792    SelectionDAG to simplify it, and recognize meta instructions (like rotates
793    and ``div``/``rem`` pairs) for targets that support these meta operations.
794    This makes the resultant code more efficient and the `select instructions
795    from DAG`_ phase (below) simpler.
796
797 #. `Legalize SelectionDAG Types`_ --- This stage transforms SelectionDAG nodes
798    to eliminate any types that are unsupported on the target.
799
800 #. `Optimize SelectionDAG`_ --- The SelectionDAG optimizer is run to clean up
801    redundancies exposed by type legalization.
802
803 #. `Legalize SelectionDAG Ops`_ --- This stage transforms SelectionDAG nodes to
804    eliminate any operations that are unsupported on the target.
805
806 #. `Optimize SelectionDAG`_ --- The SelectionDAG optimizer is run to eliminate
807    inefficiencies introduced by operation legalization.
808
809 #. `Select instructions from DAG`_ --- Finally, the target instruction selector
810    matches the DAG operations to target instructions.  This process translates
811    the target-independent input DAG into another DAG of target instructions.
812
813 #. `SelectionDAG Scheduling and Formation`_ --- The last phase assigns a linear
814    order to the instructions in the target-instruction DAG and emits them into
815    the MachineFunction being compiled.  This step uses traditional prepass
816    scheduling techniques.
817
818 After all of these steps are complete, the SelectionDAG is destroyed and the
819 rest of the code generation passes are run.
820
821 One great way to visualize what is going on here is to take advantage of a few
822 LLC command line options.  The following options pop up a window displaying the
823 SelectionDAG at specific times (if you only get errors printed to the console
824 while using this, you probably `need to configure your
825 system <ProgrammersManual.html#ViewGraph>`_ to add support for it).
826
827 * ``-view-dag-combine1-dags`` displays the DAG after being built, before the
828   first optimization pass.
829
830 * ``-view-legalize-dags`` displays the DAG before Legalization.
831
832 * ``-view-dag-combine2-dags`` displays the DAG before the second optimization
833   pass.
834
835 * ``-view-isel-dags`` displays the DAG before the Select phase.
836
837 * ``-view-sched-dags`` displays the DAG before Scheduling.
838
839 The ``-view-sunit-dags`` displays the Scheduler's dependency graph.  This graph
840 is based on the final SelectionDAG, with nodes that must be scheduled together
841 bundled into a single scheduling-unit node, and with immediate operands and
842 other nodes that aren't relevant for scheduling omitted.
843
844 .. _Build initial DAG:
845
846 Initial SelectionDAG Construction
847 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
848
849 The initial SelectionDAG is na\ :raw-html:`&iuml;`\ vely peephole expanded from
850 the LLVM input by the ``SelectionDAGBuilder`` class.  The intent of this pass
851 is to expose as much low-level, target-specific details to the SelectionDAG as
852 possible.  This pass is mostly hard-coded (e.g. an LLVM ``add`` turns into an
853 ``SDNode add`` while a ``getelementptr`` is expanded into the obvious
854 arithmetic). This pass requires target-specific hooks to lower calls, returns,
855 varargs, etc.  For these features, the :raw-html:`<tt>` `TargetLowering`_
856 :raw-html:`</tt>` interface is used.
857
858 .. _legalize types:
859 .. _Legalize SelectionDAG Types:
860 .. _Legalize SelectionDAG Ops:
861
862 SelectionDAG LegalizeTypes Phase
863 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
864
865 The Legalize phase is in charge of converting a DAG to only use the types that
866 are natively supported by the target.
867
868 There are two main ways of converting values of unsupported scalar types to
869 values of supported types: converting small types to larger types ("promoting"),
870 and breaking up large integer types into smaller ones ("expanding").  For
871 example, a target might require that all f32 values are promoted to f64 and that
872 all i1/i8/i16 values are promoted to i32.  The same target might require that
873 all i64 values be expanded into pairs of i32 values.  These changes can insert
874 sign and zero extensions as needed to make sure that the final code has the same
875 behavior as the input.
876
877 There are two main ways of converting values of unsupported vector types to
878 value of supported types: splitting vector types, multiple times if necessary,
879 until a legal type is found, and extending vector types by adding elements to
880 the end to round them out to legal types ("widening").  If a vector gets split
881 all the way down to single-element parts with no supported vector type being
882 found, the elements are converted to scalars ("scalarizing").
883
884 A target implementation tells the legalizer which types are supported (and which
885 register class to use for them) by calling the ``addRegisterClass`` method in
886 its ``TargetLowering`` constructor.
887
888 .. _legalize operations:
889 .. _Legalizer:
890
891 SelectionDAG Legalize Phase
892 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
893
894 The Legalize phase is in charge of converting a DAG to only use the operations
895 that are natively supported by the target.
896
897 Targets often have weird constraints, such as not supporting every operation on
898 every supported datatype (e.g. X86 does not support byte conditional moves and
899 PowerPC does not support sign-extending loads from a 16-bit memory location).
900 Legalize takes care of this by open-coding another sequence of operations to
901 emulate the operation ("expansion"), by promoting one type to a larger type that
902 supports the operation ("promotion"), or by using a target-specific hook to
903 implement the legalization ("custom").
904
905 A target implementation tells the legalizer which operations are not supported
906 (and which of the above three actions to take) by calling the
907 ``setOperationAction`` method in its ``TargetLowering`` constructor.
908
909 Prior to the existence of the Legalize passes, we required that every target
910 `selector`_ supported and handled every operator and type even if they are not
911 natively supported.  The introduction of the Legalize phases allows all of the
912 canonicalization patterns to be shared across targets, and makes it very easy to
913 optimize the canonicalized code because it is still in the form of a DAG.
914
915 .. _optimizations:
916 .. _Optimize SelectionDAG:
917 .. _selector:
918
919 SelectionDAG Optimization Phase: the DAG Combiner
920 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
921
922 The SelectionDAG optimization phase is run multiple times for code generation,
923 immediately after the DAG is built and once after each legalization.  The first
924 run of the pass allows the initial code to be cleaned up (e.g. performing
925 optimizations that depend on knowing that the operators have restricted type
926 inputs).  Subsequent runs of the pass clean up the messy code generated by the
927 Legalize passes, which allows Legalize to be very simple (it can focus on making
928 code legal instead of focusing on generating *good* and legal code).
929
930 One important class of optimizations performed is optimizing inserted sign and
931 zero extension instructions.  We currently use ad-hoc techniques, but could move
932 to more rigorous techniques in the future.  Here are some good papers on the
933 subject:
934
935 "`Widening integer arithmetic <http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html>`_" :raw-html:`<br>`
936 Kevin Redwine and Norman Ramsey :raw-html:`<br>`
937 International Conference on Compiler Construction (CC) 2004
938
939 "`Effective sign extension elimination <http://portal.acm.org/citation.cfm?doid=512529.512552>`_"  :raw-html:`<br>`
940 Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani :raw-html:`<br>`
941 Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
942 and Implementation.
943
944 .. _Select instructions from DAG:
945
946 SelectionDAG Select Phase
947 ^^^^^^^^^^^^^^^^^^^^^^^^^
948
949 The Select phase is the bulk of the target-specific code for instruction
950 selection.  This phase takes a legal SelectionDAG as input, pattern matches the
951 instructions supported by the target to this DAG, and produces a new DAG of
952 target code.  For example, consider the following LLVM fragment:
953
954 .. code-block:: llvm
955
956   %t1 = fadd float %W, %X
957   %t2 = fmul float %t1, %Y
958   %t3 = fadd float %t2, %Z
959
960 This LLVM code corresponds to a SelectionDAG that looks basically like this:
961
962 .. code-block:: llvm
963
964   (fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
965
966 If a target supports floating point multiply-and-add (FMA) operations, one of
967 the adds can be merged with the multiply.  On the PowerPC, for example, the
968 output of the instruction selector might look like this DAG:
969
970 ::
971
972   (FMADDS (FADDS W, X), Y, Z)
973
974 The ``FMADDS`` instruction is a ternary instruction that multiplies its first
975 two operands and adds the third (as single-precision floating-point numbers).
976 The ``FADDS`` instruction is a simple binary single-precision add instruction.
977 To perform this pattern match, the PowerPC backend includes the following
978 instruction definitions:
979
980 .. code-block:: text
981   :emphasize-lines: 4-5,9
982
983   def FMADDS : AForm_1<59, 29,
984                       (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
985                       "fmadds $FRT, $FRA, $FRC, $FRB",
986                       [(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
987                                              F4RC:$FRB))]>;
988   def FADDS : AForm_2<59, 21,
989                       (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
990                       "fadds $FRT, $FRA, $FRB",
991                       [(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))]>;
992
993 The highlighted portion of the instruction definitions indicates the pattern
994 used to match the instructions. The DAG operators (like ``fmul``/``fadd``)
995 are defined in the ``include/llvm/Target/TargetSelectionDAG.td`` file.
996 "``F4RC``" is the register class of the input and result values.
997
998 The TableGen DAG instruction selector generator reads the instruction patterns
999 in the ``.td`` file and automatically builds parts of the pattern matching code
1000 for your target.  It has the following strengths:
1001
1002 * At compiler-compiler time, it analyzes your instruction patterns and tells you
1003   if your patterns make sense or not.
1004
1005 * It can handle arbitrary constraints on operands for the pattern match.  In
1006   particular, it is straight-forward to say things like "match any immediate
1007   that is a 13-bit sign-extended value".  For examples, see the ``immSExt16``
1008   and related ``tblgen`` classes in the PowerPC backend.
1009
1010 * It knows several important identities for the patterns defined.  For example,
1011   it knows that addition is commutative, so it allows the ``FMADDS`` pattern
1012   above to match "``(fadd X, (fmul Y, Z))``" as well as "``(fadd (fmul X, Y),
1013   Z)``", without the target author having to specially handle this case.
1014
1015 * It has a full-featured type-inferencing system.  In particular, you should
1016   rarely have to explicitly tell the system what type parts of your patterns
1017   are.  In the ``FMADDS`` case above, we didn't have to tell ``tblgen`` that all
1018   of the nodes in the pattern are of type 'f32'.  It was able to infer and
1019   propagate this knowledge from the fact that ``F4RC`` has type 'f32'.
1020
1021 * Targets can define their own (and rely on built-in) "pattern fragments".
1022   Pattern fragments are chunks of reusable patterns that get inlined into your
1023   patterns during compiler-compiler time.  For example, the integer "``(not
1024   x)``" operation is actually defined as a pattern fragment that expands as
1025   "``(xor x, -1)``", since the SelectionDAG does not have a native '``not``'
1026   operation.  Targets can define their own short-hand fragments as they see fit.
1027   See the definition of '``not``' and '``ineg``' for examples.
1028
1029 * In addition to instructions, targets can specify arbitrary patterns that map
1030   to one or more instructions using the 'Pat' class.  For example, the PowerPC
1031   has no way to load an arbitrary integer immediate into a register in one
1032   instruction. To tell tblgen how to do this, it defines:
1033
1034   ::
1035
1036     // Arbitrary immediate support.  Implement in terms of LIS/ORI.
1037     def : Pat<(i32 imm:$imm),
1038               (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>;
1039
1040   If none of the single-instruction patterns for loading an immediate into a
1041   register match, this will be used.  This rule says "match an arbitrary i32
1042   immediate, turning it into an ``ORI`` ('or a 16-bit immediate') and an ``LIS``
1043   ('load 16-bit immediate, where the immediate is shifted to the left 16 bits')
1044   instruction".  To make this work, the ``LO16``/``HI16`` node transformations
1045   are used to manipulate the input immediate (in this case, take the high or low
1046   16-bits of the immediate).
1047
1048 * When using the 'Pat' class to map a pattern to an instruction that has one
1049   or more complex operands (like e.g. `X86 addressing mode`_), the pattern may
1050   either specify the operand as a whole using a ``ComplexPattern``, or else it
1051   may specify the components of the complex operand separately.  The latter is
1052   done e.g. for pre-increment instructions by the PowerPC back end:
1053
1054   ::
1055
1056     def STWU  : DForm_1<37, (outs ptr_rc:$ea_res), (ins GPRC:$rS, memri:$dst),
1057                     "stwu $rS, $dst", LdStStoreUpd, []>,
1058                     RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
1059
1060     def : Pat<(pre_store GPRC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff),
1061               (STWU GPRC:$rS, iaddroff:$ptroff, ptr_rc:$ptrreg)>;
1062
1063   Here, the pair of ``ptroff`` and ``ptrreg`` operands is matched onto the
1064   complex operand ``dst`` of class ``memri`` in the ``STWU`` instruction.
1065
1066 * While the system does automate a lot, it still allows you to write custom C++
1067   code to match special cases if there is something that is hard to
1068   express.
1069
1070 While it has many strengths, the system currently has some limitations,
1071 primarily because it is a work in progress and is not yet finished:
1072
1073 * Overall, there is no way to define or match SelectionDAG nodes that define
1074   multiple values (e.g. ``SMUL_LOHI``, ``LOAD``, ``CALL``, etc).  This is the
1075   biggest reason that you currently still *have to* write custom C++ code
1076   for your instruction selector.
1077
1078 * There is no great way to support matching complex addressing modes yet.  In
1079   the future, we will extend pattern fragments to allow them to define multiple
1080   values (e.g. the four operands of the `X86 addressing mode`_, which are
1081   currently matched with custom C++ code).  In addition, we'll extend fragments
1082   so that a fragment can match multiple different patterns.
1083
1084 * We don't automatically infer flags like ``isStore``/``isLoad`` yet.
1085
1086 * We don't automatically generate the set of supported registers and operations
1087   for the `Legalizer`_ yet.
1088
1089 * We don't have a way of tying in custom legalized nodes yet.
1090
1091 Despite these limitations, the instruction selector generator is still quite
1092 useful for most of the binary and logical operations in typical instruction
1093 sets.  If you run into any problems or can't figure out how to do something,
1094 please let Chris know!
1095
1096 .. _Scheduling and Formation:
1097 .. _SelectionDAG Scheduling and Formation:
1098
1099 SelectionDAG Scheduling and Formation Phase
1100 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1101
1102 The scheduling phase takes the DAG of target instructions from the selection
1103 phase and assigns an order.  The scheduler can pick an order depending on
1104 various constraints of the machines (i.e. order for minimal register pressure or
1105 try to cover instruction latencies).  Once an order is established, the DAG is
1106 converted to a list of :raw-html:`<tt>` `MachineInstr`_\s :raw-html:`</tt>` and
1107 the SelectionDAG is destroyed.
1108
1109 Note that this phase is logically separate from the instruction selection phase,
1110 but is tied to it closely in the code because it operates on SelectionDAGs.
1111
1112 Future directions for the SelectionDAG
1113 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1114
1115 #. Optional function-at-a-time selection.
1116
1117 #. Auto-generate entire selector from ``.td`` file.
1118
1119 .. _SSA-based Machine Code Optimizations:
1120
1121 SSA-based Machine Code Optimizations
1122 ------------------------------------
1123
1124 To Be Written
1125
1126 Live Intervals
1127 --------------
1128
1129 Live Intervals are the ranges (intervals) where a variable is *live*.  They are
1130 used by some `register allocator`_ passes to determine if two or more virtual
1131 registers which require the same physical register are live at the same point in
1132 the program (i.e., they conflict).  When this situation occurs, one virtual
1133 register must be *spilled*.
1134
1135 Live Variable Analysis
1136 ^^^^^^^^^^^^^^^^^^^^^^
1137
1138 The first step in determining the live intervals of variables is to calculate
1139 the set of registers that are immediately dead after the instruction (i.e., the
1140 instruction calculates the value, but it is never used) and the set of registers
1141 that are used by the instruction, but are never used after the instruction
1142 (i.e., they are killed). Live variable information is computed for
1143 each *virtual* register and *register allocatable* physical register
1144 in the function.  This is done in a very efficient manner because it uses SSA to
1145 sparsely compute lifetime information for virtual registers (which are in SSA
1146 form) and only has to track physical registers within a block.  Before register
1147 allocation, LLVM can assume that physical registers are only live within a
1148 single basic block.  This allows it to do a single, local analysis to resolve
1149 physical register lifetimes within each basic block. If a physical register is
1150 not register allocatable (e.g., a stack pointer or condition codes), it is not
1151 tracked.
1152
1153 Physical registers may be live in to or out of a function. Live in values are
1154 typically arguments in registers. Live out values are typically return values in
1155 registers. Live in values are marked as such, and are given a dummy "defining"
1156 instruction during live intervals analysis. If the last basic block of a
1157 function is a ``return``, then it's marked as using all live out values in the
1158 function.
1159
1160 ``PHI`` nodes need to be handled specially, because the calculation of the live
1161 variable information from a depth first traversal of the CFG of the function
1162 won't guarantee that a virtual register used by the ``PHI`` node is defined
1163 before it's used. When a ``PHI`` node is encountered, only the definition is
1164 handled, because the uses will be handled in other basic blocks.
1165
1166 For each ``PHI`` node of the current basic block, we simulate an assignment at
1167 the end of the current basic block and traverse the successor basic blocks. If a
1168 successor basic block has a ``PHI`` node and one of the ``PHI`` node's operands
1169 is coming from the current basic block, then the variable is marked as *alive*
1170 within the current basic block and all of its predecessor basic blocks, until
1171 the basic block with the defining instruction is encountered.
1172
1173 Live Intervals Analysis
1174 ^^^^^^^^^^^^^^^^^^^^^^^
1175
1176 We now have the information available to perform the live intervals analysis and
1177 build the live intervals themselves.  We start off by numbering the basic blocks
1178 and machine instructions.  We then handle the "live-in" values.  These are in
1179 physical registers, so the physical register is assumed to be killed by the end
1180 of the basic block.  Live intervals for virtual registers are computed for some
1181 ordering of the machine instructions ``[1, N]``.  A live interval is an interval
1182 ``[i, j)``, where ``1 >= i >= j > N``, for which a variable is live.
1183
1184 .. note::
1185   More to come...
1186
1187 .. _Register Allocation:
1188 .. _register allocator:
1189
1190 Register Allocation
1191 -------------------
1192
1193 The *Register Allocation problem* consists in mapping a program
1194 :raw-html:`<b><tt>` P\ :sub:`v`\ :raw-html:`</tt></b>`, that can use an unbounded
1195 number of virtual registers, to a program :raw-html:`<b><tt>` P\ :sub:`p`\
1196 :raw-html:`</tt></b>` that contains a finite (possibly small) number of physical
1197 registers. Each target architecture has a different number of physical
1198 registers. If the number of physical registers is not enough to accommodate all
1199 the virtual registers, some of them will have to be mapped into memory. These
1200 virtuals are called *spilled virtuals*.
1201
1202 How registers are represented in LLVM
1203 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1204
1205 In LLVM, physical registers are denoted by integer numbers that normally range
1206 from 1 to 1023. To see how this numbering is defined for a particular
1207 architecture, you can read the ``GenRegisterNames.inc`` file for that
1208 architecture. For instance, by inspecting
1209 ``lib/Target/X86/X86GenRegisterInfo.inc`` we see that the 32-bit register
1210 ``EAX`` is denoted by 43, and the MMX register ``MM0`` is mapped to 65.
1211
1212 Some architectures contain registers that share the same physical location. A
1213 notable example is the X86 platform. For instance, in the X86 architecture, the
1214 registers ``EAX``, ``AX`` and ``AL`` share the first eight bits. These physical
1215 registers are marked as *aliased* in LLVM. Given a particular architecture, you
1216 can check which registers are aliased by inspecting its ``RegisterInfo.td``
1217 file. Moreover, the class ``MCRegAliasIterator`` enumerates all the physical
1218 registers aliased to a register.
1219
1220 Physical registers, in LLVM, are grouped in *Register Classes*.  Elements in the
1221 same register class are functionally equivalent, and can be interchangeably
1222 used. Each virtual register can only be mapped to physical registers of a
1223 particular class. For instance, in the X86 architecture, some virtuals can only
1224 be allocated to 8 bit registers.  A register class is described by
1225 ``TargetRegisterClass`` objects.  To discover if a virtual register is
1226 compatible with a given physical, this code can be used:</p>
1227
1228 .. code-block:: c++
1229
1230   bool RegMapping_Fer::compatible_class(MachineFunction &mf,
1231                                         unsigned v_reg,
1232                                         unsigned p_reg) {
1233     assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &&
1234            "Target register must be physical");
1235     const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
1236     return trc->contains(p_reg);
1237   }
1238
1239 Sometimes, mostly for debugging purposes, it is useful to change the number of
1240 physical registers available in the target architecture. This must be done
1241 statically, inside the ``TargetRegsterInfo.td`` file. Just ``grep`` for
1242 ``RegisterClass``, the last parameter of which is a list of registers. Just
1243 commenting some out is one simple way to avoid them being used. A more polite
1244 way is to explicitly exclude some registers from the *allocation order*. See the
1245 definition of the ``GR8`` register class in
1246 ``lib/Target/X86/X86RegisterInfo.td`` for an example of this.
1247
1248 Virtual registers are also denoted by integer numbers. Contrary to physical
1249 registers, different virtual registers never share the same number. Whereas
1250 physical registers are statically defined in a ``TargetRegisterInfo.td`` file
1251 and cannot be created by the application developer, that is not the case with
1252 virtual registers. In order to create new virtual registers, use the method
1253 ``MachineRegisterInfo::createVirtualRegister()``. This method will return a new
1254 virtual register. Use an ``IndexedMap<Foo, VirtReg2IndexFunctor>`` to hold
1255 information per virtual register. If you need to enumerate all virtual
1256 registers, use the function ``TargetRegisterInfo::index2VirtReg()`` to find the
1257 virtual register numbers:
1258
1259 .. code-block:: c++
1260
1261     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1262       unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
1263       stuff(VirtReg);
1264     }
1265
1266 Before register allocation, the operands of an instruction are mostly virtual
1267 registers, although physical registers may also be used. In order to check if a
1268 given machine operand is a register, use the boolean function
1269 ``MachineOperand::isRegister()``. To obtain the integer code of a register, use
1270 ``MachineOperand::getReg()``. An instruction may define or use a register. For
1271 instance, ``ADD reg:1026 := reg:1025 reg:1024`` defines the registers 1024, and
1272 uses registers 1025 and 1026. Given a register operand, the method
1273 ``MachineOperand::isUse()`` informs if that register is being used by the
1274 instruction. The method ``MachineOperand::isDef()`` informs if that registers is
1275 being defined.
1276
1277 We will call physical registers present in the LLVM bitcode before register
1278 allocation *pre-colored registers*. Pre-colored registers are used in many
1279 different situations, for instance, to pass parameters of functions calls, and
1280 to store results of particular instructions. There are two types of pre-colored
1281 registers: the ones *implicitly* defined, and those *explicitly*
1282 defined. Explicitly defined registers are normal operands, and can be accessed
1283 with ``MachineInstr::getOperand(int)::getReg()``.  In order to check which
1284 registers are implicitly defined by an instruction, use the
1285 ``TargetInstrInfo::get(opcode)::ImplicitDefs``, where ``opcode`` is the opcode
1286 of the target instruction. One important difference between explicit and
1287 implicit physical registers is that the latter are defined statically for each
1288 instruction, whereas the former may vary depending on the program being
1289 compiled. For example, an instruction that represents a function call will
1290 always implicitly define or use the same set of physical registers. To read the
1291 registers implicitly used by an instruction, use
1292 ``TargetInstrInfo::get(opcode)::ImplicitUses``. Pre-colored registers impose
1293 constraints on any register allocation algorithm. The register allocator must
1294 make sure that none of them are overwritten by the values of virtual registers
1295 while still alive.
1296
1297 Mapping virtual registers to physical registers
1298 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1299
1300 There are two ways to map virtual registers to physical registers (or to memory
1301 slots). The first way, that we will call *direct mapping*, is based on the use
1302 of methods of the classes ``TargetRegisterInfo``, and ``MachineOperand``. The
1303 second way, that we will call *indirect mapping*, relies on the ``VirtRegMap``
1304 class in order to insert loads and stores sending and getting values to and from
1305 memory.
1306
1307 The direct mapping provides more flexibility to the developer of the register
1308 allocator; however, it is more error prone, and demands more implementation
1309 work.  Basically, the programmer will have to specify where load and store
1310 instructions should be inserted in the target function being compiled in order
1311 to get and store values in memory. To assign a physical register to a virtual
1312 register present in a given operand, use ``MachineOperand::setReg(p_reg)``. To
1313 insert a store instruction, use ``TargetInstrInfo::storeRegToStackSlot(...)``,
1314 and to insert a load instruction, use ``TargetInstrInfo::loadRegFromStackSlot``.
1315
1316 The indirect mapping shields the application developer from the complexities of
1317 inserting load and store instructions. In order to map a virtual register to a
1318 physical one, use ``VirtRegMap::assignVirt2Phys(vreg, preg)``.  In order to map
1319 a certain virtual register to memory, use
1320 ``VirtRegMap::assignVirt2StackSlot(vreg)``. This method will return the stack
1321 slot where ``vreg``'s value will be located.  If it is necessary to map another
1322 virtual register to the same stack slot, use
1323 ``VirtRegMap::assignVirt2StackSlot(vreg, stack_location)``. One important point
1324 to consider when using the indirect mapping, is that even if a virtual register
1325 is mapped to memory, it still needs to be mapped to a physical register. This
1326 physical register is the location where the virtual register is supposed to be
1327 found before being stored or after being reloaded.
1328
1329 If the indirect strategy is used, after all the virtual registers have been
1330 mapped to physical registers or stack slots, it is necessary to use a spiller
1331 object to place load and store instructions in the code. Every virtual that has
1332 been mapped to a stack slot will be stored to memory after been defined and will
1333 be loaded before being used. The implementation of the spiller tries to recycle
1334 load/store instructions, avoiding unnecessary instructions. For an example of
1335 how to invoke the spiller, see ``RegAllocLinearScan::runOnMachineFunction`` in
1336 ``lib/CodeGen/RegAllocLinearScan.cpp``.
1337
1338 Handling two address instructions
1339 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1340
1341 With very rare exceptions (e.g., function calls), the LLVM machine code
1342 instructions are three address instructions. That is, each instruction is
1343 expected to define at most one register, and to use at most two registers.
1344 However, some architectures use two address instructions. In this case, the
1345 defined register is also one of the used register. For instance, an instruction
1346 such as ``ADD %EAX, %EBX``, in X86 is actually equivalent to ``%EAX = %EAX +
1347 %EBX``.
1348
1349 In order to produce correct code, LLVM must convert three address instructions
1350 that represent two address instructions into true two address instructions. LLVM
1351 provides the pass ``TwoAddressInstructionPass`` for this specific purpose. It
1352 must be run before register allocation takes place. After its execution, the
1353 resulting code may no longer be in SSA form. This happens, for instance, in
1354 situations where an instruction such as ``%a = ADD %b %c`` is converted to two
1355 instructions such as:
1356
1357 ::
1358
1359   %a = MOVE %b
1360   %a = ADD %a %c
1361
1362 Notice that, internally, the second instruction is represented as ``ADD
1363 %a[def/use] %c``. I.e., the register operand ``%a`` is both used and defined by
1364 the instruction.
1365
1366 The SSA deconstruction phase
1367 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1368
1369 An important transformation that happens during register allocation is called
1370 the *SSA Deconstruction Phase*. The SSA form simplifies many analyses that are
1371 performed on the control flow graph of programs. However, traditional
1372 instruction sets do not implement PHI instructions. Thus, in order to generate
1373 executable code, compilers must replace PHI instructions with other instructions
1374 that preserve their semantics.
1375
1376 There are many ways in which PHI instructions can safely be removed from the
1377 target code. The most traditional PHI deconstruction algorithm replaces PHI
1378 instructions with copy instructions. That is the strategy adopted by LLVM. The
1379 SSA deconstruction algorithm is implemented in
1380 ``lib/CodeGen/PHIElimination.cpp``. In order to invoke this pass, the identifier
1381 ``PHIEliminationID`` must be marked as required in the code of the register
1382 allocator.
1383
1384 Instruction folding
1385 ^^^^^^^^^^^^^^^^^^^
1386
1387 *Instruction folding* is an optimization performed during register allocation
1388 that removes unnecessary copy instructions. For instance, a sequence of
1389 instructions such as:
1390
1391 ::
1392
1393   %EBX = LOAD %mem_address
1394   %EAX = COPY %EBX
1395
1396 can be safely substituted by the single instruction:
1397
1398 ::
1399
1400   %EAX = LOAD %mem_address
1401
1402 Instructions can be folded with the
1403 ``TargetRegisterInfo::foldMemoryOperand(...)`` method. Care must be taken when
1404 folding instructions; a folded instruction can be quite different from the
1405 original instruction. See ``LiveIntervals::addIntervalsForSpills`` in
1406 ``lib/CodeGen/LiveIntervalAnalysis.cpp`` for an example of its use.
1407
1408 Built in register allocators
1409 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1410
1411 The LLVM infrastructure provides the application developer with three different
1412 register allocators:
1413
1414 * *Fast* --- This register allocator is the default for debug builds. It
1415   allocates registers on a basic block level, attempting to keep values in
1416   registers and reusing registers as appropriate.
1417
1418 * *Basic* --- This is an incremental approach to register allocation. Live
1419   ranges are assigned to registers one at a time in an order that is driven by
1420   heuristics. Since code can be rewritten on-the-fly during allocation, this
1421   framework allows interesting allocators to be developed as extensions. It is
1422   not itself a production register allocator but is a potentially useful
1423   stand-alone mode for triaging bugs and as a performance baseline.
1424
1425 * *Greedy* --- *The default allocator*. This is a highly tuned implementation of
1426   the *Basic* allocator that incorporates global live range splitting. This
1427   allocator works hard to minimize the cost of spill code.
1428
1429 * *PBQP* --- A Partitioned Boolean Quadratic Programming (PBQP) based register
1430   allocator. This allocator works by constructing a PBQP problem representing
1431   the register allocation problem under consideration, solving this using a PBQP
1432   solver, and mapping the solution back to a register assignment.
1433
1434 The type of register allocator used in ``llc`` can be chosen with the command
1435 line option ``-regalloc=...``:
1436
1437 .. code-block:: bash
1438
1439   $ llc -regalloc=linearscan file.bc -o ln.s
1440   $ llc -regalloc=fast file.bc -o fa.s
1441   $ llc -regalloc=pbqp file.bc -o pbqp.s
1442
1443 .. _Prolog/Epilog Code Insertion:
1444
1445 Prolog/Epilog Code Insertion
1446 ----------------------------
1447
1448 Compact Unwind
1449
1450 Throwing an exception requires *unwinding* out of a function. The information on
1451 how to unwind a given function is traditionally expressed in DWARF unwind
1452 (a.k.a. frame) info. But that format was originally developed for debuggers to
1453 backtrace, and each Frame Description Entry (FDE) requires ~20-30 bytes per
1454 function. There is also the cost of mapping from an address in a function to the
1455 corresponding FDE at runtime. An alternative unwind encoding is called *compact
1456 unwind* and requires just 4-bytes per function.
1457
1458 The compact unwind encoding is a 32-bit value, which is encoded in an
1459 architecture-specific way. It specifies which registers to restore and from
1460 where, and how to unwind out of the function. When the linker creates a final
1461 linked image, it will create a ``__TEXT,__unwind_info`` section. This section is
1462 a small and fast way for the runtime to access unwind info for any given
1463 function. If we emit compact unwind info for the function, that compact unwind
1464 info will be encoded in the ``__TEXT,__unwind_info`` section. If we emit DWARF
1465 unwind info, the ``__TEXT,__unwind_info`` section will contain the offset of the
1466 FDE in the ``__TEXT,__eh_frame`` section in the final linked image.
1467
1468 For X86, there are three modes for the compact unwind encoding:
1469
1470 *Function with a Frame Pointer (``EBP`` or ``RBP``)*
1471   ``EBP/RBP``-based frame, where ``EBP/RBP`` is pushed onto the stack
1472   immediately after the return address, then ``ESP/RSP`` is moved to
1473   ``EBP/RBP``. Thus to unwind, ``ESP/RSP`` is restored with the current
1474   ``EBP/RBP`` value, then ``EBP/RBP`` is restored by popping the stack, and the
1475   return is done by popping the stack once more into the PC. All non-volatile
1476   registers that need to be restored must have been saved in a small range on
1477   the stack that starts ``EBP-4`` to ``EBP-1020`` (``RBP-8`` to
1478   ``RBP-1020``). The offset (divided by 4 in 32-bit mode and 8 in 64-bit mode)
1479   is encoded in bits 16-23 (mask: ``0x00FF0000``).  The registers saved are
1480   encoded in bits 0-14 (mask: ``0x00007FFF``) as five 3-bit entries from the
1481   following table:
1482
1483     ==============  =============  ===============
1484     Compact Number  i386 Register  x86-64 Register
1485     ==============  =============  ===============
1486     1               ``EBX``        ``RBX``
1487     2               ``ECX``        ``R12``
1488     3               ``EDX``        ``R13``
1489     4               ``EDI``        ``R14``
1490     5               ``ESI``        ``R15``
1491     6               ``EBP``        ``RBP``
1492     ==============  =============  ===============
1493
1494 *Frameless with a Small Constant Stack Size (``EBP`` or ``RBP`` is not used as a frame pointer)*
1495   To return, a constant (encoded in the compact unwind encoding) is added to the
1496   ``ESP/RSP``.  Then the return is done by popping the stack into the PC. All
1497   non-volatile registers that need to be restored must have been saved on the
1498   stack immediately after the return address. The stack size (divided by 4 in
1499   32-bit mode and 8 in 64-bit mode) is encoded in bits 16-23 (mask:
1500   ``0x00FF0000``). There is a maximum stack size of 1024 bytes in 32-bit mode
1501   and 2048 in 64-bit mode. The number of registers saved is encoded in bits 9-12
1502   (mask: ``0x00001C00``). Bits 0-9 (mask: ``0x000003FF``) contain which
1503   registers were saved and their order. (See the
1504   ``encodeCompactUnwindRegistersWithoutFrame()`` function in
1505   ``lib/Target/X86FrameLowering.cpp`` for the encoding algorithm.)
1506
1507 *Frameless with a Large Constant Stack Size (``EBP`` or ``RBP`` is not used as a frame pointer)*
1508   This case is like the "Frameless with a Small Constant Stack Size" case, but
1509   the stack size is too large to encode in the compact unwind encoding. Instead
1510   it requires that the function contains "``subl $nnnnnn, %esp``" in its
1511   prolog. The compact encoding contains the offset to the ``$nnnnnn`` value in
1512   the function in bits 9-12 (mask: ``0x00001C00``).
1513
1514 .. _Late Machine Code Optimizations:
1515
1516 Late Machine Code Optimizations
1517 -------------------------------
1518
1519 .. note::
1520
1521   To Be Written
1522
1523 .. _Code Emission:
1524
1525 Code Emission
1526 -------------
1527
1528 The code emission step of code generation is responsible for lowering from the
1529 code generator abstractions (like `MachineFunction`_, `MachineInstr`_, etc) down
1530 to the abstractions used by the MC layer (`MCInst`_, `MCStreamer`_, etc).  This
1531 is done with a combination of several different classes: the (misnamed)
1532 target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
1533 (such as SparcAsmPrinter), and the TargetLoweringObjectFile class.
1534
1535 Since the MC layer works at the level of abstraction of object files, it doesn't
1536 have a notion of functions, global variables etc.  Instead, it thinks about
1537 labels, directives, and instructions.  A key class used at this time is the
1538 MCStreamer class.  This is an abstract API that is implemented in different ways
1539 (e.g. to output a .s file, output an ELF .o file, etc) that is effectively an
1540 "assembler API".  MCStreamer has one method per directive, such as EmitLabel,
1541 EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
1542 level directives.
1543
1544 If you are interested in implementing a code generator for a target, there are
1545 three important things that you have to implement for your target:
1546
1547 #. First, you need a subclass of AsmPrinter for your target.  This class
1548    implements the general lowering process converting MachineFunction's into MC
1549    label constructs.  The AsmPrinter base class provides a number of useful
1550    methods and routines, and also allows you to override the lowering process in
1551    some important ways.  You should get much of the lowering for free if you are
1552    implementing an ELF, COFF, or MachO target, because the
1553    TargetLoweringObjectFile class implements much of the common logic.
1554
1555 #. Second, you need to implement an instruction printer for your target.  The
1556    instruction printer takes an `MCInst`_ and renders it to a raw_ostream as
1557    text.  Most of this is automatically generated from the .td file (when you
1558    specify something like "``add $dst, $src1, $src2``" in the instructions), but
1559    you need to implement routines to print operands.
1560
1561 #. Third, you need to implement code that lowers a `MachineInstr`_ to an MCInst,
1562    usually implemented in "<target>MCInstLower.cpp".  This lowering process is
1563    often target specific, and is responsible for turning jump table entries,
1564    constant pool indices, global variable addresses, etc into MCLabels as
1565    appropriate.  This translation layer is also responsible for expanding pseudo
1566    ops used by the code generator into the actual machine instructions they
1567    correspond to. The MCInsts that are generated by this are fed into the
1568    instruction printer or the encoder.
1569
1570 Finally, at your choosing, you can also implement an subclass of MCCodeEmitter
1571 which lowers MCInst's into machine code bytes and relocations.  This is
1572 important if you want to support direct .o file emission, or would like to
1573 implement an assembler for your target.
1574
1575 VLIW Packetizer
1576 ---------------
1577
1578 In a Very Long Instruction Word (VLIW) architecture, the compiler is responsible
1579 for mapping instructions to functional-units available on the architecture. To
1580 that end, the compiler creates groups of instructions called *packets* or
1581 *bundles*. The VLIW packetizer in LLVM is a target-independent mechanism to
1582 enable the packetization of machine instructions.
1583
1584 Mapping from instructions to functional units
1585 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1586
1587 Instructions in a VLIW target can typically be mapped to multiple functional
1588 units. During the process of packetizing, the compiler must be able to reason
1589 about whether an instruction can be added to a packet. This decision can be
1590 complex since the compiler has to examine all possible mappings of instructions
1591 to functional units. Therefore to alleviate compilation-time complexity, the
1592 VLIW packetizer parses the instruction classes of a target and generates tables
1593 at compiler build time. These tables can then be queried by the provided
1594 machine-independent API to determine if an instruction can be accommodated in a
1595 packet.
1596
1597 How the packetization tables are generated and used
1598 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1599
1600 The packetizer reads instruction classes from a target's itineraries and creates
1601 a deterministic finite automaton (DFA) to represent the state of a packet. A DFA
1602 consists of three major elements: inputs, states, and transitions. The set of
1603 inputs for the generated DFA represents the instruction being added to a
1604 packet. The states represent the possible consumption of functional units by
1605 instructions in a packet. In the DFA, transitions from one state to another
1606 occur on the addition of an instruction to an existing packet. If there is a
1607 legal mapping of functional units to instructions, then the DFA contains a
1608 corresponding transition. The absence of a transition indicates that a legal
1609 mapping does not exist and that the instruction cannot be added to the packet.
1610
1611 To generate tables for a VLIW target, add *Target*\ GenDFAPacketizer.inc as a
1612 target to the Makefile in the target directory. The exported API provides three
1613 functions: ``DFAPacketizer::clearResources()``,
1614 ``DFAPacketizer::reserveResources(MachineInstr *MI)``, and
1615 ``DFAPacketizer::canReserveResources(MachineInstr *MI)``. These functions allow
1616 a target packetizer to add an instruction to an existing packet and to check
1617 whether an instruction can be added to a packet. See
1618 ``llvm/CodeGen/DFAPacketizer.h`` for more information.
1619
1620 Implementing a Native Assembler
1621 ===============================
1622
1623 Though you're probably reading this because you want to write or maintain a
1624 compiler backend, LLVM also fully supports building a native assembler.
1625 We've tried hard to automate the generation of the assembler from the .td files
1626 (in particular the instruction syntax and encodings), which means that a large
1627 part of the manual and repetitive data entry can be factored and shared with the
1628 compiler.
1629
1630 Instruction Parsing
1631 -------------------
1632
1633 .. note::
1634
1635   To Be Written
1636
1637
1638 Instruction Alias Processing
1639 ----------------------------
1640
1641 Once the instruction is parsed, it enters the MatchInstructionImpl function.
1642 The MatchInstructionImpl function performs alias processing and then does actual
1643 matching.
1644
1645 Alias processing is the phase that canonicalizes different lexical forms of the
1646 same instructions down to one representation.  There are several different kinds
1647 of alias that are possible to implement and they are listed below in the order
1648 that they are processed (which is in order from simplest/weakest to most
1649 complex/powerful).  Generally you want to use the first alias mechanism that
1650 meets the needs of your instruction, because it will allow a more concise
1651 description.
1652
1653 Mnemonic Aliases
1654 ^^^^^^^^^^^^^^^^
1655
1656 The first phase of alias processing is simple instruction mnemonic remapping for
1657 classes of instructions which are allowed with two different mnemonics.  This
1658 phase is a simple and unconditionally remapping from one input mnemonic to one
1659 output mnemonic.  It isn't possible for this form of alias to look at the
1660 operands at all, so the remapping must apply for all forms of a given mnemonic.
1661 Mnemonic aliases are defined simply, for example X86 has:
1662
1663 ::
1664
1665   def : MnemonicAlias<"cbw",     "cbtw">;
1666   def : MnemonicAlias<"smovq",   "movsq">;
1667   def : MnemonicAlias<"fldcww",  "fldcw">;
1668   def : MnemonicAlias<"fucompi", "fucomip">;
1669   def : MnemonicAlias<"ud2a",    "ud2">;
1670
1671 ... and many others.  With a MnemonicAlias definition, the mnemonic is remapped
1672 simply and directly.  Though MnemonicAlias's can't look at any aspect of the
1673 instruction (such as the operands) they can depend on global modes (the same
1674 ones supported by the matcher), through a Requires clause:
1675
1676 ::
1677
1678   def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1679   def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1680
1681 In this example, the mnemonic gets mapped into different a new one depending on
1682 the current instruction set.
1683
1684 Instruction Aliases
1685 ^^^^^^^^^^^^^^^^^^^
1686
1687 The most general phase of alias processing occurs while matching is happening:
1688 it provides new forms for the matcher to match along with a specific instruction
1689 to generate.  An instruction alias has two parts: the string to match and the
1690 instruction to generate.  For example:
1691
1692 ::
1693
1694   def : InstAlias<"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8  :$src)>;
1695   def : InstAlias<"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)>;
1696   def : InstAlias<"movsx $src, $dst", (MOVSX32rr8  GR32:$dst, GR8  :$src)>;
1697   def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)>;
1698   def : InstAlias<"movsx $src, $dst", (MOVSX64rr8  GR64:$dst, GR8  :$src)>;
1699   def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)>;
1700   def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)>;
1701
1702 This shows a powerful example of the instruction aliases, matching the same
1703 mnemonic in multiple different ways depending on what operands are present in
1704 the assembly.  The result of instruction aliases can include operands in a
1705 different order than the destination instruction, and can use an input multiple
1706 times, for example:
1707
1708 ::
1709
1710   def : InstAlias<"clrb $reg", (XOR8rr  GR8 :$reg, GR8 :$reg)>;
1711   def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)>;
1712   def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)>;
1713   def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)>;
1714
1715 This example also shows that tied operands are only listed once.  In the X86
1716 backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied
1717 to the output).  InstAliases take a flattened operand list without duplicates
1718 for tied operands.  The result of an instruction alias can also use immediates
1719 and fixed physical registers which are added as simple immediate operands in the
1720 result, for example:
1721
1722 ::
1723
1724   // Fixed Immediate operand.
1725   def : InstAlias<"aad", (AAD8i8 10)>;
1726
1727   // Fixed register operand.
1728   def : InstAlias<"fcomi", (COM_FIr ST1)>;
1729
1730   // Simple alias.
1731   def : InstAlias<"fcomi $reg", (COM_FIr RST:$reg)>;
1732
1733 Instruction aliases can also have a Requires clause to make them subtarget
1734 specific.
1735
1736 If the back-end supports it, the instruction printer can automatically emit the
1737 alias rather than what's being aliased. It typically leads to better, more
1738 readable code. If it's better to print out what's being aliased, then pass a '0'
1739 as the third parameter to the InstAlias definition.
1740
1741 Instruction Matching
1742 --------------------
1743
1744 .. note::
1745
1746   To Be Written
1747
1748 .. _Implementations of the abstract target description interfaces:
1749 .. _implement the target description:
1750
1751 Target-specific Implementation Notes
1752 ====================================
1753
1754 This section of the document explains features or design decisions that are
1755 specific to the code generator for a particular target.  First we start with a
1756 table that summarizes what features are supported by each target.
1757
1758 .. _target-feature-matrix:
1759
1760 Target Feature Matrix
1761 ---------------------
1762
1763 Note that this table does not include the C backend or Cpp backends, since they
1764 do not use the target independent code generator infrastructure.  It also
1765 doesn't list features that are not supported fully by any target yet.  It
1766 considers a feature to be supported if at least one subtarget supports it.  A
1767 feature being supported means that it is useful and works for most cases, it
1768 does not indicate that there are zero known bugs in the implementation.  Here is
1769 the key:
1770
1771 :raw-html:`<table border="1" cellspacing="0">`
1772 :raw-html:`<tr>`
1773 :raw-html:`<th>Unknown</th>`
1774 :raw-html:`<th>Not Applicable</th>`
1775 :raw-html:`<th>No support</th>`
1776 :raw-html:`<th>Partial Support</th>`
1777 :raw-html:`<th>Complete Support</th>`
1778 :raw-html:`</tr>`
1779 :raw-html:`<tr>`
1780 :raw-html:`<td class="unknown"></td>`
1781 :raw-html:`<td class="na"></td>`
1782 :raw-html:`<td class="no"></td>`
1783 :raw-html:`<td class="partial"></td>`
1784 :raw-html:`<td class="yes"></td>`
1785 :raw-html:`</tr>`
1786 :raw-html:`</table>`
1787
1788 Here is the table:
1789
1790 :raw-html:`<table width="689" border="1" cellspacing="0">`
1791 :raw-html:`<tr><td></td>`
1792 :raw-html:`<td colspan="13" align="center" style="background-color:#ffc">Target</td>`
1793 :raw-html:`</tr>`
1794 :raw-html:`<tr>`
1795 :raw-html:`<th>Feature</th>`
1796 :raw-html:`<th>ARM</th>`
1797 :raw-html:`<th>Hexagon</th>`
1798 :raw-html:`<th>MSP430</th>`
1799 :raw-html:`<th>Mips</th>`
1800 :raw-html:`<th>NVPTX</th>`
1801 :raw-html:`<th>PowerPC</th>`
1802 :raw-html:`<th>Sparc</th>`
1803 :raw-html:`<th>SystemZ</th>`
1804 :raw-html:`<th>X86</th>`
1805 :raw-html:`<th>XCore</th>`
1806 :raw-html:`</tr>`
1807
1808 :raw-html:`<tr>`
1809 :raw-html:`<td><a href="#feat_reliable">is generally reliable</a></td>`
1810 :raw-html:`<td class="yes"></td> <!-- ARM -->`
1811 :raw-html:`<td class="yes"></td> <!-- Hexagon -->`
1812 :raw-html:`<td class="unknown"></td> <!-- MSP430 -->`
1813 :raw-html:`<td class="yes"></td> <!-- Mips -->`
1814 :raw-html:`<td class="yes"></td> <!-- NVPTX -->`
1815 :raw-html:`<td class="yes"></td> <!-- PowerPC -->`
1816 :raw-html:`<td class="yes"></td> <!-- Sparc -->`
1817 :raw-html:`<td class="yes"></td> <!-- SystemZ -->`
1818 :raw-html:`<td class="yes"></td> <!-- X86 -->`
1819 :raw-html:`<td class="yes"></td> <!-- XCore -->`
1820 :raw-html:`</tr>`
1821
1822 :raw-html:`<tr>`
1823 :raw-html:`<td><a href="#feat_asmparser">assembly parser</a></td>`
1824 :raw-html:`<td class="no"></td> <!-- ARM -->`
1825 :raw-html:`<td class="no"></td> <!-- Hexagon -->`
1826 :raw-html:`<td class="no"></td> <!-- MSP430 -->`
1827 :raw-html:`<td class="no"></td> <!-- Mips -->`
1828 :raw-html:`<td class="no"></td> <!-- NVPTX -->`
1829 :raw-html:`<td class="no"></td> <!-- PowerPC -->`
1830 :raw-html:`<td class="no"></td> <!-- Sparc -->`
1831 :raw-html:`<td class="yes"></td> <!-- SystemZ -->`
1832 :raw-html:`<td class="yes"></td> <!-- X86 -->`
1833 :raw-html:`<td class="no"></td> <!-- XCore -->`
1834 :raw-html:`</tr>`
1835
1836 :raw-html:`<tr>`
1837 :raw-html:`<td><a href="#feat_disassembler">disassembler</a></td>`
1838 :raw-html:`<td class="yes"></td> <!-- ARM -->`
1839 :raw-html:`<td class="no"></td> <!-- Hexagon -->`
1840 :raw-html:`<td class="no"></td> <!-- MSP430 -->`
1841 :raw-html:`<td class="no"></td> <!-- Mips -->`
1842 :raw-html:`<td class="na"></td> <!-- NVPTX -->`
1843 :raw-html:`<td class="no"></td> <!-- PowerPC -->`
1844 :raw-html:`<td class="yes"></td> <!-- SystemZ -->`
1845 :raw-html:`<td class="no"></td> <!-- Sparc -->`
1846 :raw-html:`<td class="yes"></td> <!-- X86 -->`
1847 :raw-html:`<td class="yes"></td> <!-- XCore -->`
1848 :raw-html:`</tr>`
1849
1850 :raw-html:`<tr>`
1851 :raw-html:`<td><a href="#feat_inlineasm">inline asm</a></td>`
1852 :raw-html:`<td class="yes"></td> <!-- ARM -->`
1853 :raw-html:`<td class="yes"></td> <!-- Hexagon -->`
1854 :raw-html:`<td class="unknown"></td> <!-- MSP430 -->`
1855 :raw-html:`<td class="no"></td> <!-- Mips -->`
1856 :raw-html:`<td class="yes"></td> <!-- NVPTX -->`
1857 :raw-html:`<td class="yes"></td> <!-- PowerPC -->`
1858 :raw-html:`<td class="unknown"></td> <!-- Sparc -->`
1859 :raw-html:`<td class="yes"></td> <!-- SystemZ -->`
1860 :raw-html:`<td class="yes"></td> <!-- X86 -->`
1861 :raw-html:`<td class="yes"></td> <!-- XCore -->`
1862 :raw-html:`</tr>`
1863
1864 :raw-html:`<tr>`
1865 :raw-html:`<td><a href="#feat_jit">jit</a></td>`
1866 :raw-html:`<td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->`
1867 :raw-html:`<td class="no"></td> <!-- Hexagon -->`
1868 :raw-html:`<td class="unknown"></td> <!-- MSP430 -->`
1869 :raw-html:`<td class="yes"></td> <!-- Mips -->`
1870 :raw-html:`<td class="na"></td> <!-- NVPTX -->`
1871 :raw-html:`<td class="yes"></td> <!-- PowerPC -->`
1872 :raw-html:`<td class="unknown"></td> <!-- Sparc -->`
1873 :raw-html:`<td class="yes"></td> <!-- SystemZ -->`
1874 :raw-html:`<td class="yes"></td> <!-- X86 -->`
1875 :raw-html:`<td class="no"></td> <!-- XCore -->`
1876 :raw-html:`</tr>`
1877
1878 :raw-html:`<tr>`
1879 :raw-html:`<td><a href="#feat_objectwrite">.o&nbsp;file writing</a></td>`
1880 :raw-html:`<td class="no"></td> <!-- ARM -->`
1881 :raw-html:`<td class="no"></td> <!-- Hexagon -->`
1882 :raw-html:`<td class="no"></td> <!-- MSP430 -->`
1883 :raw-html:`<td class="no"></td> <!-- Mips -->`
1884 :raw-html:`<td class="na"></td> <!-- NVPTX -->`
1885 :raw-html:`<td class="no"></td> <!-- PowerPC -->`
1886 :raw-html:`<td class="no"></td> <!-- Sparc -->`
1887 :raw-html:`<td class="yes"></td> <!-- SystemZ -->`
1888 :raw-html:`<td class="yes"></td> <!-- X86 -->`
1889 :raw-html:`<td class="no"></td> <!-- XCore -->`
1890 :raw-html:`</tr>`
1891
1892 :raw-html:`<tr>`
1893 :raw-html:`<td><a hr:raw-html:`ef="#feat_tailcall">tail calls</a></td>`
1894 :raw-html:`<td class="yes"></td> <!-- ARM -->`
1895 :raw-html:`<td class="yes"></td> <!-- Hexagon -->`
1896 :raw-html:`<td class="unknown"></td> <!-- MSP430 -->`
1897 :raw-html:`<td class="no"></td> <!-- Mips -->`
1898 :raw-html:`<td class="no"></td> <!-- NVPTX -->`
1899 :raw-html:`<td class="yes"></td> <!-- PowerPC -->`
1900 :raw-html:`<td class="unknown"></td> <!-- Sparc -->`
1901 :raw-html:`<td class="no"></td> <!-- SystemZ -->`
1902 :raw-html:`<td class="yes"></td> <!-- X86 -->`
1903 :raw-html:`<td class="no"></td> <!-- XCore -->`
1904 :raw-html:`</tr>`
1905
1906 :raw-html:`<tr>`
1907 :raw-html:`<td><a href="#feat_segstacks">segmented stacks</a></td>`
1908 :raw-html:`<td class="no"></td> <!-- ARM -->`
1909 :raw-html:`<td class="no"></td> <!-- Hexagon -->`
1910 :raw-html:`<td class="no"></td> <!-- MSP430 -->`
1911 :raw-html:`<td class="no"></td> <!-- Mips -->`
1912 :raw-html:`<td class="no"></td> <!-- NVPTX -->`
1913 :raw-html:`<td class="no"></td> <!-- PowerPC -->`
1914 :raw-html:`<td class="no"></td> <!-- Sparc -->`
1915 :raw-html:`<td class="no"></td> <!-- SystemZ -->`
1916 :raw-html:`<td class="partial"><a href="#feat_segstacks_x86">*</a></td> <!-- X86 -->`
1917 :raw-html:`<td class="no"></td> <!-- XCore -->`
1918 :raw-html:`</tr>`
1919
1920 :raw-html:`</table>`
1921
1922 .. _feat_reliable:
1923
1924 Is Generally Reliable
1925 ^^^^^^^^^^^^^^^^^^^^^
1926
1927 This box indicates whether the target is considered to be production quality.
1928 This indicates that the target has been used as a static compiler to compile
1929 large amounts of code by a variety of different people and is in continuous use.
1930
1931 .. _feat_asmparser:
1932
1933 Assembly Parser
1934 ^^^^^^^^^^^^^^^
1935
1936 This box indicates whether the target supports parsing target specific .s files
1937 by implementing the MCAsmParser interface.  This is required for llvm-mc to be
1938 able to act as a native assembler and is required for inline assembly support in
1939 the native .o file writer.
1940
1941 .. _feat_disassembler:
1942
1943 Disassembler
1944 ^^^^^^^^^^^^
1945
1946 This box indicates whether the target supports the MCDisassembler API for
1947 disassembling machine opcode bytes into MCInst's.
1948
1949 .. _feat_inlineasm:
1950
1951 Inline Asm
1952 ^^^^^^^^^^
1953
1954 This box indicates whether the target supports most popular inline assembly
1955 constraints and modifiers.
1956
1957 .. _feat_jit:
1958
1959 JIT Support
1960 ^^^^^^^^^^^
1961
1962 This box indicates whether the target supports the JIT compiler through the
1963 ExecutionEngine interface.
1964
1965 .. _feat_jit_arm:
1966
1967 The ARM backend has basic support for integer code in ARM codegen mode, but
1968 lacks NEON and full Thumb support.
1969
1970 .. _feat_objectwrite:
1971
1972 .o File Writing
1973 ^^^^^^^^^^^^^^^
1974
1975 This box indicates whether the target supports writing .o files (e.g. MachO,
1976 ELF, and/or COFF) files directly from the target.  Note that the target also
1977 must include an assembly parser and general inline assembly support for full
1978 inline assembly support in the .o writer.
1979
1980 Targets that don't support this feature can obviously still write out .o files,
1981 they just rely on having an external assembler to translate from a .s file to a
1982 .o file (as is the case for many C compilers).
1983
1984 .. _feat_tailcall:
1985
1986 Tail Calls
1987 ^^^^^^^^^^
1988
1989 This box indicates whether the target supports guaranteed tail calls.  These are
1990 calls marked "`tail <LangRef.html#i_call>`_" and use the fastcc calling
1991 convention.  Please see the `tail call section more more details`_.
1992
1993 .. _feat_segstacks:
1994
1995 Segmented Stacks
1996 ^^^^^^^^^^^^^^^^
1997
1998 This box indicates whether the target supports segmented stacks. This replaces
1999 the traditional large C stack with many linked segments. It is compatible with
2000 the `gcc implementation <http://gcc.gnu.org/wiki/SplitStacks>`_ used by the Go
2001 front end.
2002
2003 .. _feat_segstacks_x86:
2004
2005 Basic support exists on the X86 backend. Currently vararg doesn't work and the
2006 object files are not marked the way the gold linker expects, but simple Go
2007 programs can be built by dragonegg.
2008
2009 .. _tail call section more more details:
2010
2011 Tail call optimization
2012 ----------------------
2013
2014 Tail call optimization, callee reusing the stack of the caller, is currently
2015 supported on x86/x86-64 and PowerPC. It is performed if:
2016
2017 * Caller and callee have the calling convention ``fastcc``, ``cc 10`` (GHC
2018   calling convention) or ``cc 11`` (HiPE calling convention).
2019
2020 * The call is a tail call - in tail position (ret immediately follows call and
2021   ret uses value of call or is void).
2022
2023 * Option ``-tailcallopt`` is enabled.
2024
2025 * Platform specific constraints are met.
2026
2027 x86/x86-64 constraints:
2028
2029 * No variable argument lists are used.
2030
2031 * On x86-64 when generating GOT/PIC code only module-local calls (visibility =
2032   hidden or protected) are supported.
2033
2034 PowerPC constraints:
2035
2036 * No variable argument lists are used.
2037
2038 * No byval parameters are used.
2039
2040 * On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected)
2041   are supported.
2042
2043 Example:
2044
2045 Call as ``llc -tailcallopt test.ll``.
2046
2047 .. code-block:: llvm
2048
2049   declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
2050
2051   define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
2052     %l1 = add i32 %in1, %in2
2053     %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
2054     ret i32 %tmp
2055   }
2056
2057 Implications of ``-tailcallopt``:
2058
2059 To support tail call optimization in situations where the callee has more
2060 arguments than the caller a 'callee pops arguments' convention is used. This
2061 currently causes each ``fastcc`` call that is not tail call optimized (because
2062 one or more of above constraints are not met) to be followed by a readjustment
2063 of the stack. So performance might be worse in such cases.
2064
2065 Sibling call optimization
2066 -------------------------
2067
2068 Sibling call optimization is a restricted form of tail call optimization.
2069 Unlike tail call optimization described in the previous section, it can be
2070 performed automatically on any tail calls when ``-tailcallopt`` option is not
2071 specified.
2072
2073 Sibling call optimization is currently performed on x86/x86-64 when the
2074 following constraints are met:
2075
2076 * Caller and callee have the same calling convention. It can be either ``c`` or
2077   ``fastcc``.
2078
2079 * The call is a tail call - in tail position (ret immediately follows call and
2080   ret uses value of call or is void).
2081
2082 * Caller and callee have matching return type or the callee result is not used.
2083
2084 * If any of the callee arguments are being passed in stack, they must be
2085   available in caller's own incoming argument stack and the frame offsets must
2086   be the same.
2087
2088 Example:
2089
2090 .. code-block:: llvm
2091
2092   declare i32 @bar(i32, i32)
2093
2094   define i32 @foo(i32 %a, i32 %b, i32 %c) {
2095   entry:
2096     %0 = tail call i32 @bar(i32 %a, i32 %b)
2097     ret i32 %0
2098   }
2099
2100 The X86 backend
2101 ---------------
2102
2103 The X86 code generator lives in the ``lib/Target/X86`` directory.  This code
2104 generator is capable of targeting a variety of x86-32 and x86-64 processors, and
2105 includes support for ISA extensions such as MMX and SSE.
2106
2107 X86 Target Triples supported
2108 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2109
2110 The following are the known target triples that are supported by the X86
2111 backend.  This is not an exhaustive list, and it would be useful to add those
2112 that people test.
2113
2114 * **i686-pc-linux-gnu** --- Linux
2115
2116 * **i386-unknown-freebsd5.3** --- FreeBSD 5.3
2117
2118 * **i686-pc-cygwin** --- Cygwin on Win32
2119
2120 * **i686-pc-mingw32** --- MingW on Win32
2121
2122 * **i386-pc-mingw32msvc** --- MingW crosscompiler on Linux
2123
2124 * **i686-apple-darwin*** --- Apple Darwin on X86
2125
2126 * **x86_64-unknown-linux-gnu** --- Linux
2127
2128 X86 Calling Conventions supported
2129 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2130
2131 The following target-specific calling conventions are known to backend:
2132
2133 * **x86_StdCall** --- stdcall calling convention seen on Microsoft Windows
2134   platform (CC ID = 64).
2135
2136 * **x86_FastCall** --- fastcall calling convention seen on Microsoft Windows
2137   platform (CC ID = 65).
2138
2139 * **x86_ThisCall** --- Similar to X86_StdCall. Passes first argument in ECX,
2140   others via stack. Callee is responsible for stack cleaning. This convention is
2141   used by MSVC by default for methods in its ABI (CC ID = 70).
2142
2143 .. _X86 addressing mode:
2144
2145 Representing X86 addressing modes in MachineInstrs
2146 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2147
2148 The x86 has a very flexible way of accessing memory.  It is capable of forming
2149 memory addresses of the following expression directly in integer instructions
2150 (which use ModR/M addressing):
2151
2152 ::
2153
2154   SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
2155
2156 In order to represent this, LLVM tracks no less than 5 operands for each memory
2157 operand of this form.  This means that the "load" form of '``mov``' has the
2158 following ``MachineOperand``\s in this order:
2159
2160 ::
2161
2162   Index:        0     |    1        2       3           4          5
2163   Meaning:   DestReg, | BaseReg,  Scale, IndexReg, Displacement Segment
2164   OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg,   SignExtImm  PhysReg
2165
2166 Stores, and all other instructions, treat the four memory operands in the same
2167 way and in the same order.  If the segment register is unspecified (regno = 0),
2168 then no segment override is generated.  "Lea" operations do not have a segment
2169 register specified, so they only have 4 operands for their memory reference.
2170
2171 X86 address spaces supported
2172 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2173
2174 x86 has a feature which provides the ability to perform loads and stores to
2175 different address spaces via the x86 segment registers.  A segment override
2176 prefix byte on an instruction causes the instruction's memory access to go to
2177 the specified segment.  LLVM address space 0 is the default address space, which
2178 includes the stack, and any unqualified memory accesses in a program.  Address
2179 spaces 1-255 are currently reserved for user-defined code.  The GS-segment is
2180 represented by address space 256, while the FS-segment is represented by address
2181 space 257. Other x86 segments have yet to be allocated address space
2182 numbers.
2183
2184 While these address spaces may seem similar to TLS via the ``thread_local``
2185 keyword, and often use the same underlying hardware, there are some fundamental
2186 differences.
2187
2188 The ``thread_local`` keyword applies to global variables and specifies that they
2189 are to be allocated in thread-local memory. There are no type qualifiers
2190 involved, and these variables can be pointed to with normal pointers and
2191 accessed with normal loads and stores.  The ``thread_local`` keyword is
2192 target-independent at the LLVM IR level (though LLVM doesn't yet have
2193 implementations of it for some configurations)
2194
2195 Special address spaces, in contrast, apply to static types. Every load and store
2196 has a particular address space in its address operand type, and this is what
2197 determines which address space is accessed.  LLVM ignores these special address
2198 space qualifiers on global variables, and does not provide a way to directly
2199 allocate storage in them.  At the LLVM IR level, the behavior of these special
2200 address spaces depends in part on the underlying OS or runtime environment, and
2201 they are specific to x86 (and LLVM doesn't yet handle them correctly in some
2202 cases).
2203
2204 Some operating systems and runtime environments use (or may in the future use)
2205 the FS/GS-segment registers for various low-level purposes, so care should be
2206 taken when considering them.
2207
2208 Instruction naming
2209 ^^^^^^^^^^^^^^^^^^
2210
2211 An instruction name consists of the base name, a default operand size, and a a
2212 character per operand with an optional special size. For example:
2213
2214 ::
2215
2216   ADD8rr      -> add, 8-bit register, 8-bit register
2217   IMUL16rmi   -> imul, 16-bit register, 16-bit memory, 16-bit immediate
2218   IMUL16rmi8  -> imul, 16-bit register, 16-bit memory, 8-bit immediate
2219   MOVSX32rm16 -> movsx, 32-bit register, 16-bit memory
2220
2221 The PowerPC backend
2222 -------------------
2223
2224 The PowerPC code generator lives in the lib/Target/PowerPC directory.  The code
2225 generation is retargetable to several variations or *subtargets* of the PowerPC
2226 ISA; including ppc32, ppc64 and altivec.
2227
2228 LLVM PowerPC ABI
2229 ^^^^^^^^^^^^^^^^
2230
2231 LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC relative
2232 (PIC) or static addressing for accessing global values, so no TOC (r2) is
2233 used. Second, r31 is used as a frame pointer to allow dynamic growth of a stack
2234 frame.  LLVM takes advantage of having no TOC to provide space to save the frame
2235 pointer in the PowerPC linkage area of the caller frame.  Other details of
2236 PowerPC ABI can be found at `PowerPC ABI
2237 <http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html>`_\
2238 . Note: This link describes the 32 bit ABI.  The 64 bit ABI is similar except
2239 space for GPRs are 8 bytes wide (not 4) and r13 is reserved for system use.
2240
2241 Frame Layout
2242 ^^^^^^^^^^^^
2243
2244 The size of a PowerPC frame is usually fixed for the duration of a function's
2245 invocation.  Since the frame is fixed size, all references into the frame can be
2246 accessed via fixed offsets from the stack pointer.  The exception to this is
2247 when dynamic alloca or variable sized arrays are present, then a base pointer
2248 (r31) is used as a proxy for the stack pointer and stack pointer is free to grow
2249 or shrink.  A base pointer is also used if llvm-gcc is not passed the
2250 -fomit-frame-pointer flag. The stack pointer is always aligned to 16 bytes, so
2251 that space allocated for altivec vectors will be properly aligned.
2252
2253 An invocation frame is laid out as follows (low memory at top):
2254
2255 :raw-html:`<table border="1" cellspacing="0">`
2256 :raw-html:`<tr>`
2257 :raw-html:`<td>Linkage<br><br></td>`
2258 :raw-html:`</tr>`
2259 :raw-html:`<tr>`
2260 :raw-html:`<td>Parameter area<br><br></td>`
2261 :raw-html:`</tr>`
2262 :raw-html:`<tr>`
2263 :raw-html:`<td>Dynamic area<br><br></td>`
2264 :raw-html:`</tr>`
2265 :raw-html:`<tr>`
2266 :raw-html:`<td>Locals area<br><br></td>`
2267 :raw-html:`</tr>`
2268 :raw-html:`<tr>`
2269 :raw-html:`<td>Saved registers area<br><br></td>`
2270 :raw-html:`</tr>`
2271 :raw-html:`<tr style="border-style: none hidden none hidden;">`
2272 :raw-html:`<td><br></td>`
2273 :raw-html:`</tr>`
2274 :raw-html:`<tr>`
2275 :raw-html:`<td>Previous Frame<br><br></td>`
2276 :raw-html:`</tr>`
2277 :raw-html:`</table>`
2278
2279 The *linkage* area is used by a callee to save special registers prior to
2280 allocating its own frame.  Only three entries are relevant to LLVM. The first
2281 entry is the previous stack pointer (sp), aka link.  This allows probing tools
2282 like gdb or exception handlers to quickly scan the frames in the stack.  A
2283 function epilog can also use the link to pop the frame from the stack.  The
2284 third entry in the linkage area is used to save the return address from the lr
2285 register. Finally, as mentioned above, the last entry is used to save the
2286 previous frame pointer (r31.)  The entries in the linkage area are the size of a
2287 GPR, thus the linkage area is 24 bytes long in 32 bit mode and 48 bytes in 64
2288 bit mode.
2289
2290 32 bit linkage area:
2291
2292 :raw-html:`<table  border="1" cellspacing="0">`
2293 :raw-html:`<tr>`
2294 :raw-html:`<td>0</td>`
2295 :raw-html:`<td>Saved SP (r1)</td>`
2296 :raw-html:`</tr>`
2297 :raw-html:`<tr>`
2298 :raw-html:`<td>4</td>`
2299 :raw-html:`<td>Saved CR</td>`
2300 :raw-html:`</tr>`
2301 :raw-html:`<tr>`
2302 :raw-html:`<td>8</td>`
2303 :raw-html:`<td>Saved LR</td>`
2304 :raw-html:`</tr>`
2305 :raw-html:`<tr>`
2306 :raw-html:`<td>12</td>`
2307 :raw-html:`<td>Reserved</td>`
2308 :raw-html:`</tr>`
2309 :raw-html:`<tr>`
2310 :raw-html:`<td>16</td>`
2311 :raw-html:`<td>Reserved</td>`
2312 :raw-html:`</tr>`
2313 :raw-html:`<tr>`
2314 :raw-html:`<td>20</td>`
2315 :raw-html:`<td>Saved FP (r31)</td>`
2316 :raw-html:`</tr>`
2317 :raw-html:`</table>`
2318
2319 64 bit linkage area:
2320
2321 :raw-html:`<table border="1" cellspacing="0">`
2322 :raw-html:`<tr>`
2323 :raw-html:`<td>0</td>`
2324 :raw-html:`<td>Saved SP (r1)</td>`
2325 :raw-html:`</tr>`
2326 :raw-html:`<tr>`
2327 :raw-html:`<td>8</td>`
2328 :raw-html:`<td>Saved CR</td>`
2329 :raw-html:`</tr>`
2330 :raw-html:`<tr>`
2331 :raw-html:`<td>16</td>`
2332 :raw-html:`<td>Saved LR</td>`
2333 :raw-html:`</tr>`
2334 :raw-html:`<tr>`
2335 :raw-html:`<td>24</td>`
2336 :raw-html:`<td>Reserved</td>`
2337 :raw-html:`</tr>`
2338 :raw-html:`<tr>`
2339 :raw-html:`<td>32</td>`
2340 :raw-html:`<td>Reserved</td>`
2341 :raw-html:`</tr>`
2342 :raw-html:`<tr>`
2343 :raw-html:`<td>40</td>`
2344 :raw-html:`<td>Saved FP (r31)</td>`
2345 :raw-html:`</tr>`
2346 :raw-html:`</table>`
2347
2348 The *parameter area* is used to store arguments being passed to a callee
2349 function.  Following the PowerPC ABI, the first few arguments are actually
2350 passed in registers, with the space in the parameter area unused.  However, if
2351 there are not enough registers or the callee is a thunk or vararg function,
2352 these register arguments can be spilled into the parameter area.  Thus, the
2353 parameter area must be large enough to store all the parameters for the largest
2354 call sequence made by the caller.  The size must also be minimally large enough
2355 to spill registers r3-r10.  This allows callees blind to the call signature,
2356 such as thunks and vararg functions, enough space to cache the argument
2357 registers.  Therefore, the parameter area is minimally 32 bytes (64 bytes in 64
2358 bit mode.)  Also note that since the parameter area is a fixed offset from the
2359 top of the frame, that a callee can access its spilt arguments using fixed
2360 offsets from the stack pointer (or base pointer.)
2361
2362 Combining the information about the linkage, parameter areas and alignment. A
2363 stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit mode.
2364
2365 The *dynamic area* starts out as size zero.  If a function uses dynamic alloca
2366 then space is added to the stack, the linkage and parameter areas are shifted to
2367 top of stack, and the new space is available immediately below the linkage and
2368 parameter areas.  The cost of shifting the linkage and parameter areas is minor
2369 since only the link value needs to be copied.  The link value can be easily
2370 fetched by adding the original frame size to the base pointer.  Note that
2371 allocations in the dynamic space need to observe 16 byte alignment.
2372
2373 The *locals area* is where the llvm compiler reserves space for local variables.
2374
2375 The *saved registers area* is where the llvm compiler spills callee saved
2376 registers on entry to the callee.
2377
2378 Prolog/Epilog
2379 ^^^^^^^^^^^^^
2380
2381 The llvm prolog and epilog are the same as described in the PowerPC ABI, with
2382 the following exceptions.  Callee saved registers are spilled after the frame is
2383 created.  This allows the llvm epilog/prolog support to be common with other
2384 targets.  The base pointer callee saved register r31 is saved in the TOC slot of
2385 linkage area.  This simplifies allocation of space for the base pointer and
2386 makes it convenient to locate programatically and during debugging.
2387
2388 Dynamic Allocation
2389 ^^^^^^^^^^^^^^^^^^
2390
2391 .. note::
2392
2393   TODO - More to come.
2394
2395 The NVPTX backend
2396 -----------------
2397
2398 The NVPTX code generator under lib/Target/NVPTX is an open-source version of
2399 the NVIDIA NVPTX code generator for LLVM.  It is contributed by NVIDIA and is
2400 a port of the code generator used in the CUDA compiler (nvcc).  It targets the
2401 PTX 3.0/3.1 ISA and can target any compute capability greater than or equal to
2402 2.0 (Fermi).
2403
2404 This target is of production quality and should be completely compatible with
2405 the official NVIDIA toolchain.
2406
2407 Code Generator Options:
2408
2409 :raw-html:`<table border="1" cellspacing="0">`
2410 :raw-html:`<tr>`
2411 :raw-html:`<th>Option</th>`
2412 :raw-html:`<th>Description</th>`
2413 :raw-html:`</tr>`
2414 :raw-html:`<tr>`
2415 :raw-html:`<td>sm_20</td>`
2416 :raw-html:`<td align="left">Set shader model/compute capability to 2.0</td>`
2417 :raw-html:`</tr>`
2418 :raw-html:`<tr>`
2419 :raw-html:`<td>sm_21</td>`
2420 :raw-html:`<td align="left">Set shader model/compute capability to 2.1</td>`
2421 :raw-html:`</tr>`
2422 :raw-html:`<tr>`
2423 :raw-html:`<td>sm_30</td>`
2424 :raw-html:`<td align="left">Set shader model/compute capability to 3.0</td>`
2425 :raw-html:`</tr>`
2426 :raw-html:`<tr>`
2427 :raw-html:`<td>sm_35</td>`
2428 :raw-html:`<td align="left">Set shader model/compute capability to 3.5</td>`
2429 :raw-html:`</tr>`
2430 :raw-html:`<tr>`
2431 :raw-html:`<td>ptx30</td>`
2432 :raw-html:`<td align="left">Target PTX 3.0</td>`
2433 :raw-html:`</tr>`
2434 :raw-html:`<tr>`
2435 :raw-html:`<td>ptx31</td>`
2436 :raw-html:`<td align="left">Target PTX 3.1</td>`
2437 :raw-html:`</tr>`
2438 :raw-html:`</table>`
2439