arm64: rockchip_defconfig: enable CC_STACKPROTECTOR_STRONG
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg) {
376                         kfree(nrg);
377                         return -ENOMEM;
378                 }
379
380                 spin_lock(&resv->lock);
381                 list_add(&trg->link, &resv->region_cache);
382                 resv->region_cache_count++;
383                 goto retry_locked;
384         }
385
386         /* Locate the region we are before or in. */
387         list_for_each_entry(rg, head, link)
388                 if (f <= rg->to)
389                         break;
390
391         /* If we are below the current region then a new region is required.
392          * Subtle, allocate a new region at the position but make it zero
393          * size such that we can guarantee to record the reservation. */
394         if (&rg->link == head || t < rg->from) {
395                 if (!nrg) {
396                         resv->adds_in_progress--;
397                         spin_unlock(&resv->lock);
398                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
399                         if (!nrg)
400                                 return -ENOMEM;
401
402                         nrg->from = f;
403                         nrg->to   = f;
404                         INIT_LIST_HEAD(&nrg->link);
405                         goto retry;
406                 }
407
408                 list_add(&nrg->link, rg->link.prev);
409                 chg = t - f;
410                 goto out_nrg;
411         }
412
413         /* Round our left edge to the current segment if it encloses us. */
414         if (f > rg->from)
415                 f = rg->from;
416         chg = t - f;
417
418         /* Check for and consume any regions we now overlap with. */
419         list_for_each_entry(rg, rg->link.prev, link) {
420                 if (&rg->link == head)
421                         break;
422                 if (rg->from > t)
423                         goto out;
424
425                 /* We overlap with this area, if it extends further than
426                  * us then we must extend ourselves.  Account for its
427                  * existing reservation. */
428                 if (rg->to > t) {
429                         chg += rg->to - t;
430                         t = rg->to;
431                 }
432                 chg -= rg->to - rg->from;
433         }
434
435 out:
436         spin_unlock(&resv->lock);
437         /*  We already know we raced and no longer need the new region */
438         kfree(nrg);
439         return chg;
440 out_nrg:
441         spin_unlock(&resv->lock);
442         return chg;
443 }
444
445 /*
446  * Abort the in progress add operation.  The adds_in_progress field
447  * of the resv_map keeps track of the operations in progress between
448  * calls to region_chg and region_add.  Operations are sometimes
449  * aborted after the call to region_chg.  In such cases, region_abort
450  * is called to decrement the adds_in_progress counter.
451  *
452  * NOTE: The range arguments [f, t) are not needed or used in this
453  * routine.  They are kept to make reading the calling code easier as
454  * arguments will match the associated region_chg call.
455  */
456 static void region_abort(struct resv_map *resv, long f, long t)
457 {
458         spin_lock(&resv->lock);
459         VM_BUG_ON(!resv->region_cache_count);
460         resv->adds_in_progress--;
461         spin_unlock(&resv->lock);
462 }
463
464 /*
465  * Delete the specified range [f, t) from the reserve map.  If the
466  * t parameter is LONG_MAX, this indicates that ALL regions after f
467  * should be deleted.  Locate the regions which intersect [f, t)
468  * and either trim, delete or split the existing regions.
469  *
470  * Returns the number of huge pages deleted from the reserve map.
471  * In the normal case, the return value is zero or more.  In the
472  * case where a region must be split, a new region descriptor must
473  * be allocated.  If the allocation fails, -ENOMEM will be returned.
474  * NOTE: If the parameter t == LONG_MAX, then we will never split
475  * a region and possibly return -ENOMEM.  Callers specifying
476  * t == LONG_MAX do not need to check for -ENOMEM error.
477  */
478 static long region_del(struct resv_map *resv, long f, long t)
479 {
480         struct list_head *head = &resv->regions;
481         struct file_region *rg, *trg;
482         struct file_region *nrg = NULL;
483         long del = 0;
484
485 retry:
486         spin_lock(&resv->lock);
487         list_for_each_entry_safe(rg, trg, head, link) {
488                 /*
489                  * Skip regions before the range to be deleted.  file_region
490                  * ranges are normally of the form [from, to).  However, there
491                  * may be a "placeholder" entry in the map which is of the form
492                  * (from, to) with from == to.  Check for placeholder entries
493                  * at the beginning of the range to be deleted.
494                  */
495                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
496                         continue;
497
498                 if (rg->from >= t)
499                         break;
500
501                 if (f > rg->from && t < rg->to) { /* Must split region */
502                         /*
503                          * Check for an entry in the cache before dropping
504                          * lock and attempting allocation.
505                          */
506                         if (!nrg &&
507                             resv->region_cache_count > resv->adds_in_progress) {
508                                 nrg = list_first_entry(&resv->region_cache,
509                                                         struct file_region,
510                                                         link);
511                                 list_del(&nrg->link);
512                                 resv->region_cache_count--;
513                         }
514
515                         if (!nrg) {
516                                 spin_unlock(&resv->lock);
517                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
518                                 if (!nrg)
519                                         return -ENOMEM;
520                                 goto retry;
521                         }
522
523                         del += t - f;
524
525                         /* New entry for end of split region */
526                         nrg->from = t;
527                         nrg->to = rg->to;
528                         INIT_LIST_HEAD(&nrg->link);
529
530                         /* Original entry is trimmed */
531                         rg->to = f;
532
533                         list_add(&nrg->link, &rg->link);
534                         nrg = NULL;
535                         break;
536                 }
537
538                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
539                         del += rg->to - rg->from;
540                         list_del(&rg->link);
541                         kfree(rg);
542                         continue;
543                 }
544
545                 if (f <= rg->from) {    /* Trim beginning of region */
546                         del += t - rg->from;
547                         rg->from = t;
548                 } else {                /* Trim end of region */
549                         del += rg->to - f;
550                         rg->to = f;
551                 }
552         }
553
554         spin_unlock(&resv->lock);
555         kfree(nrg);
556         return del;
557 }
558
559 /*
560  * A rare out of memory error was encountered which prevented removal of
561  * the reserve map region for a page.  The huge page itself was free'ed
562  * and removed from the page cache.  This routine will adjust the subpool
563  * usage count, and the global reserve count if needed.  By incrementing
564  * these counts, the reserve map entry which could not be deleted will
565  * appear as a "reserved" entry instead of simply dangling with incorrect
566  * counts.
567  */
568 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
569 {
570         struct hugepage_subpool *spool = subpool_inode(inode);
571         long rsv_adjust;
572
573         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
574         if (restore_reserve && rsv_adjust) {
575                 struct hstate *h = hstate_inode(inode);
576
577                 hugetlb_acct_memory(h, 1);
578         }
579 }
580
581 /*
582  * Count and return the number of huge pages in the reserve map
583  * that intersect with the range [f, t).
584  */
585 static long region_count(struct resv_map *resv, long f, long t)
586 {
587         struct list_head *head = &resv->regions;
588         struct file_region *rg;
589         long chg = 0;
590
591         spin_lock(&resv->lock);
592         /* Locate each segment we overlap with, and count that overlap. */
593         list_for_each_entry(rg, head, link) {
594                 long seg_from;
595                 long seg_to;
596
597                 if (rg->to <= f)
598                         continue;
599                 if (rg->from >= t)
600                         break;
601
602                 seg_from = max(rg->from, f);
603                 seg_to = min(rg->to, t);
604
605                 chg += seg_to - seg_from;
606         }
607         spin_unlock(&resv->lock);
608
609         return chg;
610 }
611
612 /*
613  * Convert the address within this vma to the page offset within
614  * the mapping, in pagecache page units; huge pages here.
615  */
616 static pgoff_t vma_hugecache_offset(struct hstate *h,
617                         struct vm_area_struct *vma, unsigned long address)
618 {
619         return ((address - vma->vm_start) >> huge_page_shift(h)) +
620                         (vma->vm_pgoff >> huge_page_order(h));
621 }
622
623 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
624                                      unsigned long address)
625 {
626         return vma_hugecache_offset(hstate_vma(vma), vma, address);
627 }
628
629 /*
630  * Return the size of the pages allocated when backing a VMA. In the majority
631  * cases this will be same size as used by the page table entries.
632  */
633 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
634 {
635         struct hstate *hstate;
636
637         if (!is_vm_hugetlb_page(vma))
638                 return PAGE_SIZE;
639
640         hstate = hstate_vma(vma);
641
642         return 1UL << huge_page_shift(hstate);
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific version of this
650  * function is required.
651  */
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657 #endif
658
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689         return (unsigned long)vma->vm_private_data;
690 }
691
692 static void set_vma_private_data(struct vm_area_struct *vma,
693                                                         unsigned long value)
694 {
695         vma->vm_private_data = (void *)value;
696 }
697
698 struct resv_map *resv_map_alloc(void)
699 {
700         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703         if (!resv_map || !rg) {
704                 kfree(resv_map);
705                 kfree(rg);
706                 return NULL;
707         }
708
709         kref_init(&resv_map->refs);
710         spin_lock_init(&resv_map->lock);
711         INIT_LIST_HEAD(&resv_map->regions);
712
713         resv_map->adds_in_progress = 0;
714
715         INIT_LIST_HEAD(&resv_map->region_cache);
716         list_add(&rg->link, &resv_map->region_cache);
717         resv_map->region_cache_count = 1;
718
719         return resv_map;
720 }
721
722 void resv_map_release(struct kref *ref)
723 {
724         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725         struct list_head *head = &resv_map->region_cache;
726         struct file_region *rg, *trg;
727
728         /* Clear out any active regions before we release the map. */
729         region_del(resv_map, 0, LONG_MAX);
730
731         /* ... and any entries left in the cache */
732         list_for_each_entry_safe(rg, trg, head, link) {
733                 list_del(&rg->link);
734                 kfree(rg);
735         }
736
737         VM_BUG_ON(resv_map->adds_in_progress);
738
739         kfree(resv_map);
740 }
741
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744         return inode->i_mapping->private_data;
745 }
746
747 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
748 {
749         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750         if (vma->vm_flags & VM_MAYSHARE) {
751                 struct address_space *mapping = vma->vm_file->f_mapping;
752                 struct inode *inode = mapping->host;
753
754                 return inode_resv_map(inode);
755
756         } else {
757                 return (struct resv_map *)(get_vma_private_data(vma) &
758                                                         ~HPAGE_RESV_MASK);
759         }
760 }
761
762 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
763 {
764         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
766
767         set_vma_private_data(vma, (get_vma_private_data(vma) &
768                                 HPAGE_RESV_MASK) | (unsigned long)map);
769 }
770
771 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
772 {
773         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775
776         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 }
778
779 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
780 {
781         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782
783         return (get_vma_private_data(vma) & flag) != 0;
784 }
785
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
788 {
789         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790         if (!(vma->vm_flags & VM_MAYSHARE))
791                 vma->vm_private_data = (void *)0;
792 }
793
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
796 {
797         if (vma->vm_flags & VM_NORESERVE) {
798                 /*
799                  * This address is already reserved by other process(chg == 0),
800                  * so, we should decrement reserved count. Without decrementing,
801                  * reserve count remains after releasing inode, because this
802                  * allocated page will go into page cache and is regarded as
803                  * coming from reserved pool in releasing step.  Currently, we
804                  * don't have any other solution to deal with this situation
805                  * properly, so add work-around here.
806                  */
807                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
808                         return true;
809                 else
810                         return false;
811         }
812
813         /* Shared mappings always use reserves */
814         if (vma->vm_flags & VM_MAYSHARE) {
815                 /*
816                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
817                  * be a region map for all pages.  The only situation where
818                  * there is no region map is if a hole was punched via
819                  * fallocate.  In this case, there really are no reverves to
820                  * use.  This situation is indicated if chg != 0.
821                  */
822                 if (chg)
823                         return false;
824                 else
825                         return true;
826         }
827
828         /*
829          * Only the process that called mmap() has reserves for
830          * private mappings.
831          */
832         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
833                 return true;
834
835         return false;
836 }
837
838 static void enqueue_huge_page(struct hstate *h, struct page *page)
839 {
840         int nid = page_to_nid(page);
841         list_move(&page->lru, &h->hugepage_freelists[nid]);
842         h->free_huge_pages++;
843         h->free_huge_pages_node[nid]++;
844 }
845
846 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
847 {
848         struct page *page;
849
850         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
851                 if (!is_migrate_isolate_page(page))
852                         break;
853         /*
854          * if 'non-isolated free hugepage' not found on the list,
855          * the allocation fails.
856          */
857         if (&h->hugepage_freelists[nid] == &page->lru)
858                 return NULL;
859         list_move(&page->lru, &h->hugepage_activelist);
860         set_page_refcounted(page);
861         h->free_huge_pages--;
862         h->free_huge_pages_node[nid]--;
863         return page;
864 }
865
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t htlb_alloc_mask(struct hstate *h)
868 {
869         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
870                 return GFP_HIGHUSER_MOVABLE;
871         else
872                 return GFP_HIGHUSER;
873 }
874
875 static struct page *dequeue_huge_page_vma(struct hstate *h,
876                                 struct vm_area_struct *vma,
877                                 unsigned long address, int avoid_reserve,
878                                 long chg)
879 {
880         struct page *page = NULL;
881         struct mempolicy *mpol;
882         nodemask_t *nodemask;
883         struct zonelist *zonelist;
884         struct zone *zone;
885         struct zoneref *z;
886         unsigned int cpuset_mems_cookie;
887
888         /*
889          * A child process with MAP_PRIVATE mappings created by their parent
890          * have no page reserves. This check ensures that reservations are
891          * not "stolen". The child may still get SIGKILLed
892          */
893         if (!vma_has_reserves(vma, chg) &&
894                         h->free_huge_pages - h->resv_huge_pages == 0)
895                 goto err;
896
897         /* If reserves cannot be used, ensure enough pages are in the pool */
898         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
899                 goto err;
900
901 retry_cpuset:
902         cpuset_mems_cookie = read_mems_allowed_begin();
903         zonelist = huge_zonelist(vma, address,
904                                         htlb_alloc_mask(h), &mpol, &nodemask);
905
906         for_each_zone_zonelist_nodemask(zone, z, zonelist,
907                                                 MAX_NR_ZONES - 1, nodemask) {
908                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
909                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
910                         if (page) {
911                                 if (avoid_reserve)
912                                         break;
913                                 if (!vma_has_reserves(vma, chg))
914                                         break;
915
916                                 SetPagePrivate(page);
917                                 h->resv_huge_pages--;
918                                 break;
919                         }
920                 }
921         }
922
923         mpol_cond_put(mpol);
924         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
925                 goto retry_cpuset;
926         return page;
927
928 err:
929         return NULL;
930 }
931
932 /*
933  * common helper functions for hstate_next_node_to_{alloc|free}.
934  * We may have allocated or freed a huge page based on a different
935  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936  * be outside of *nodes_allowed.  Ensure that we use an allowed
937  * node for alloc or free.
938  */
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         nid = next_node(nid, *nodes_allowed);
942         if (nid == MAX_NUMNODES)
943                 nid = first_node(*nodes_allowed);
944         VM_BUG_ON(nid >= MAX_NUMNODES);
945
946         return nid;
947 }
948
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950 {
951         if (!node_isset(nid, *nodes_allowed))
952                 nid = next_node_allowed(nid, nodes_allowed);
953         return nid;
954 }
955
956 /*
957  * returns the previously saved node ["this node"] from which to
958  * allocate a persistent huge page for the pool and advance the
959  * next node from which to allocate, handling wrap at end of node
960  * mask.
961  */
962 static int hstate_next_node_to_alloc(struct hstate *h,
963                                         nodemask_t *nodes_allowed)
964 {
965         int nid;
966
967         VM_BUG_ON(!nodes_allowed);
968
969         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972         return nid;
973 }
974
975 /*
976  * helper for free_pool_huge_page() - return the previously saved
977  * node ["this node"] from which to free a huge page.  Advance the
978  * next node id whether or not we find a free huge page to free so
979  * that the next attempt to free addresses the next node.
980  */
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982 {
983         int nid;
984
985         VM_BUG_ON(!nodes_allowed);
986
987         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990         return nid;
991 }
992
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
994         for (nr_nodes = nodes_weight(*mask);                            \
995                 nr_nodes > 0 &&                                         \
996                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
997                 nr_nodes--)
998
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1000         for (nr_nodes = nodes_weight(*mask);                            \
1001                 nr_nodes > 0 &&                                         \
1002                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1003                 nr_nodes--)
1004
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page *page,
1007                                         unsigned int order)
1008 {
1009         int i;
1010         int nr_pages = 1 << order;
1011         struct page *p = page + 1;
1012
1013         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014                 clear_compound_head(p);
1015                 set_page_refcounted(p);
1016         }
1017
1018         set_compound_order(page, 0);
1019         __ClearPageHead(page);
1020 }
1021
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1023 {
1024         free_contig_range(page_to_pfn(page), 1 << order);
1025 }
1026
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028                                 unsigned long nr_pages)
1029 {
1030         unsigned long end_pfn = start_pfn + nr_pages;
1031         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032 }
1033
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1035                                 unsigned long nr_pages)
1036 {
1037         unsigned long i, end_pfn = start_pfn + nr_pages;
1038         struct page *page;
1039
1040         for (i = start_pfn; i < end_pfn; i++) {
1041                 if (!pfn_valid(i))
1042                         return false;
1043
1044                 page = pfn_to_page(i);
1045
1046                 if (PageReserved(page))
1047                         return false;
1048
1049                 if (page_count(page) > 0)
1050                         return false;
1051
1052                 if (PageHuge(page))
1053                         return false;
1054         }
1055
1056         return true;
1057 }
1058
1059 static bool zone_spans_last_pfn(const struct zone *zone,
1060                         unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062         unsigned long last_pfn = start_pfn + nr_pages - 1;
1063         return zone_spans_pfn(zone, last_pfn);
1064 }
1065
1066 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1067 {
1068         unsigned long nr_pages = 1 << order;
1069         unsigned long ret, pfn, flags;
1070         struct zone *z;
1071
1072         z = NODE_DATA(nid)->node_zones;
1073         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1074                 spin_lock_irqsave(&z->lock, flags);
1075
1076                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1077                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1078                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1079                                 /*
1080                                  * We release the zone lock here because
1081                                  * alloc_contig_range() will also lock the zone
1082                                  * at some point. If there's an allocation
1083                                  * spinning on this lock, it may win the race
1084                                  * and cause alloc_contig_range() to fail...
1085                                  */
1086                                 spin_unlock_irqrestore(&z->lock, flags);
1087                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1088                                 if (!ret)
1089                                         return pfn_to_page(pfn);
1090                                 spin_lock_irqsave(&z->lock, flags);
1091                         }
1092                         pfn += nr_pages;
1093                 }
1094
1095                 spin_unlock_irqrestore(&z->lock, flags);
1096         }
1097
1098         return NULL;
1099 }
1100
1101 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1103
1104 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1105 {
1106         struct page *page;
1107
1108         page = alloc_gigantic_page(nid, huge_page_order(h));
1109         if (page) {
1110                 prep_compound_gigantic_page(page, huge_page_order(h));
1111                 prep_new_huge_page(h, page, nid);
1112         }
1113
1114         return page;
1115 }
1116
1117 static int alloc_fresh_gigantic_page(struct hstate *h,
1118                                 nodemask_t *nodes_allowed)
1119 {
1120         struct page *page = NULL;
1121         int nr_nodes, node;
1122
1123         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1124                 page = alloc_fresh_gigantic_page_node(h, node);
1125                 if (page)
1126                         return 1;
1127         }
1128
1129         return 0;
1130 }
1131
1132 static inline bool gigantic_page_supported(void) { return true; }
1133 #else
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136 static inline void destroy_compound_gigantic_page(struct page *page,
1137                                                 unsigned int order) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1139                                         nodemask_t *nodes_allowed) { return 0; }
1140 #endif
1141
1142 static void update_and_free_page(struct hstate *h, struct page *page)
1143 {
1144         int i;
1145
1146         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1147                 return;
1148
1149         h->nr_huge_pages--;
1150         h->nr_huge_pages_node[page_to_nid(page)]--;
1151         for (i = 0; i < pages_per_huge_page(h); i++) {
1152                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1153                                 1 << PG_referenced | 1 << PG_dirty |
1154                                 1 << PG_active | 1 << PG_private |
1155                                 1 << PG_writeback);
1156         }
1157         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1159         set_page_refcounted(page);
1160         if (hstate_is_gigantic(h)) {
1161                 destroy_compound_gigantic_page(page, huge_page_order(h));
1162                 free_gigantic_page(page, huge_page_order(h));
1163         } else {
1164                 __free_pages(page, huge_page_order(h));
1165         }
1166 }
1167
1168 struct hstate *size_to_hstate(unsigned long size)
1169 {
1170         struct hstate *h;
1171
1172         for_each_hstate(h) {
1173                 if (huge_page_size(h) == size)
1174                         return h;
1175         }
1176         return NULL;
1177 }
1178
1179 /*
1180  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181  * to hstate->hugepage_activelist.)
1182  *
1183  * This function can be called for tail pages, but never returns true for them.
1184  */
1185 bool page_huge_active(struct page *page)
1186 {
1187         VM_BUG_ON_PAGE(!PageHuge(page), page);
1188         return PageHead(page) && PagePrivate(&page[1]);
1189 }
1190
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page *page)
1193 {
1194         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1195         SetPagePrivate(&page[1]);
1196 }
1197
1198 static void clear_page_huge_active(struct page *page)
1199 {
1200         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1201         ClearPagePrivate(&page[1]);
1202 }
1203
1204 void free_huge_page(struct page *page)
1205 {
1206         /*
1207          * Can't pass hstate in here because it is called from the
1208          * compound page destructor.
1209          */
1210         struct hstate *h = page_hstate(page);
1211         int nid = page_to_nid(page);
1212         struct hugepage_subpool *spool =
1213                 (struct hugepage_subpool *)page_private(page);
1214         bool restore_reserve;
1215
1216         set_page_private(page, 0);
1217         page->mapping = NULL;
1218         BUG_ON(page_count(page));
1219         BUG_ON(page_mapcount(page));
1220         restore_reserve = PagePrivate(page);
1221         ClearPagePrivate(page);
1222
1223         /*
1224          * A return code of zero implies that the subpool will be under its
1225          * minimum size if the reservation is not restored after page is free.
1226          * Therefore, force restore_reserve operation.
1227          */
1228         if (hugepage_subpool_put_pages(spool, 1) == 0)
1229                 restore_reserve = true;
1230
1231         spin_lock(&hugetlb_lock);
1232         clear_page_huge_active(page);
1233         hugetlb_cgroup_uncharge_page(hstate_index(h),
1234                                      pages_per_huge_page(h), page);
1235         if (restore_reserve)
1236                 h->resv_huge_pages++;
1237
1238         if (h->surplus_huge_pages_node[nid]) {
1239                 /* remove the page from active list */
1240                 list_del(&page->lru);
1241                 update_and_free_page(h, page);
1242                 h->surplus_huge_pages--;
1243                 h->surplus_huge_pages_node[nid]--;
1244         } else {
1245                 arch_clear_hugepage_flags(page);
1246                 enqueue_huge_page(h, page);
1247         }
1248         spin_unlock(&hugetlb_lock);
1249 }
1250
1251 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1252 {
1253         INIT_LIST_HEAD(&page->lru);
1254         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255         spin_lock(&hugetlb_lock);
1256         set_hugetlb_cgroup(page, NULL);
1257         h->nr_huge_pages++;
1258         h->nr_huge_pages_node[nid]++;
1259         spin_unlock(&hugetlb_lock);
1260         put_page(page); /* free it into the hugepage allocator */
1261 }
1262
1263 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1264 {
1265         int i;
1266         int nr_pages = 1 << order;
1267         struct page *p = page + 1;
1268
1269         /* we rely on prep_new_huge_page to set the destructor */
1270         set_compound_order(page, order);
1271         __SetPageHead(page);
1272         __ClearPageReserved(page);
1273         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1274                 /*
1275                  * For gigantic hugepages allocated through bootmem at
1276                  * boot, it's safer to be consistent with the not-gigantic
1277                  * hugepages and clear the PG_reserved bit from all tail pages
1278                  * too.  Otherwse drivers using get_user_pages() to access tail
1279                  * pages may get the reference counting wrong if they see
1280                  * PG_reserved set on a tail page (despite the head page not
1281                  * having PG_reserved set).  Enforcing this consistency between
1282                  * head and tail pages allows drivers to optimize away a check
1283                  * on the head page when they need know if put_page() is needed
1284                  * after get_user_pages().
1285                  */
1286                 __ClearPageReserved(p);
1287                 set_page_count(p, 0);
1288                 set_compound_head(p, page);
1289         }
1290 }
1291
1292 /*
1293  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294  * transparent huge pages.  See the PageTransHuge() documentation for more
1295  * details.
1296  */
1297 int PageHuge(struct page *page)
1298 {
1299         if (!PageCompound(page))
1300                 return 0;
1301
1302         page = compound_head(page);
1303         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306
1307 /*
1308  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309  * normal or transparent huge pages.
1310  */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313         if (!PageHead(page_head))
1314                 return 0;
1315
1316         return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321         struct page *page_head = compound_head(page);
1322         pgoff_t index = page_index(page_head);
1323         unsigned long compound_idx;
1324
1325         if (!PageHuge(page_head))
1326                 return page_index(page);
1327
1328         if (compound_order(page_head) >= MAX_ORDER)
1329                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330         else
1331                 compound_idx = page - page_head;
1332
1333         return (index << compound_order(page_head)) + compound_idx;
1334 }
1335
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338         struct page *page;
1339
1340         page = __alloc_pages_node(nid,
1341                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342                                                 __GFP_REPEAT|__GFP_NOWARN,
1343                 huge_page_order(h));
1344         if (page) {
1345                 prep_new_huge_page(h, page, nid);
1346         }
1347
1348         return page;
1349 }
1350
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353         struct page *page;
1354         int nr_nodes, node;
1355         int ret = 0;
1356
1357         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358                 page = alloc_fresh_huge_page_node(h, node);
1359                 if (page) {
1360                         ret = 1;
1361                         break;
1362                 }
1363         }
1364
1365         if (ret)
1366                 count_vm_event(HTLB_BUDDY_PGALLOC);
1367         else
1368                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370         return ret;
1371 }
1372
1373 /*
1374  * Free huge page from pool from next node to free.
1375  * Attempt to keep persistent huge pages more or less
1376  * balanced over allowed nodes.
1377  * Called with hugetlb_lock locked.
1378  */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380                                                          bool acct_surplus)
1381 {
1382         int nr_nodes, node;
1383         int ret = 0;
1384
1385         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386                 /*
1387                  * If we're returning unused surplus pages, only examine
1388                  * nodes with surplus pages.
1389                  */
1390                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391                     !list_empty(&h->hugepage_freelists[node])) {
1392                         struct page *page =
1393                                 list_entry(h->hugepage_freelists[node].next,
1394                                           struct page, lru);
1395                         list_del(&page->lru);
1396                         h->free_huge_pages--;
1397                         h->free_huge_pages_node[node]--;
1398                         if (acct_surplus) {
1399                                 h->surplus_huge_pages--;
1400                                 h->surplus_huge_pages_node[node]--;
1401                         }
1402                         update_and_free_page(h, page);
1403                         ret = 1;
1404                         break;
1405                 }
1406         }
1407
1408         return ret;
1409 }
1410
1411 /*
1412  * Dissolve a given free hugepage into free buddy pages. This function does
1413  * nothing for in-use (including surplus) hugepages.
1414  */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417         spin_lock(&hugetlb_lock);
1418         if (PageHuge(page) && !page_count(page)) {
1419                 struct page *head = compound_head(page);
1420                 struct hstate *h = page_hstate(head);
1421                 int nid = page_to_nid(head);
1422                 list_del(&head->lru);
1423                 h->free_huge_pages--;
1424                 h->free_huge_pages_node[nid]--;
1425                 update_and_free_page(h, head);
1426         }
1427         spin_unlock(&hugetlb_lock);
1428 }
1429
1430 /*
1431  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1432  * make specified memory blocks removable from the system.
1433  * Note that this will dissolve a free gigantic hugepage completely, if any
1434  * part of it lies within the given range.
1435  */
1436 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1437 {
1438         unsigned long pfn;
1439
1440         if (!hugepages_supported())
1441                 return;
1442
1443         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1444                 dissolve_free_huge_page(pfn_to_page(pfn));
1445 }
1446
1447 /*
1448  * There are 3 ways this can get called:
1449  * 1. With vma+addr: we use the VMA's memory policy
1450  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1451  *    page from any node, and let the buddy allocator itself figure
1452  *    it out.
1453  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1454  *    strictly from 'nid'
1455  */
1456 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1457                 struct vm_area_struct *vma, unsigned long addr, int nid)
1458 {
1459         int order = huge_page_order(h);
1460         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1461         unsigned int cpuset_mems_cookie;
1462
1463         /*
1464          * We need a VMA to get a memory policy.  If we do not
1465          * have one, we use the 'nid' argument.
1466          *
1467          * The mempolicy stuff below has some non-inlined bits
1468          * and calls ->vm_ops.  That makes it hard to optimize at
1469          * compile-time, even when NUMA is off and it does
1470          * nothing.  This helps the compiler optimize it out.
1471          */
1472         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1473                 /*
1474                  * If a specific node is requested, make sure to
1475                  * get memory from there, but only when a node
1476                  * is explicitly specified.
1477                  */
1478                 if (nid != NUMA_NO_NODE)
1479                         gfp |= __GFP_THISNODE;
1480                 /*
1481                  * Make sure to call something that can handle
1482                  * nid=NUMA_NO_NODE
1483                  */
1484                 return alloc_pages_node(nid, gfp, order);
1485         }
1486
1487         /*
1488          * OK, so we have a VMA.  Fetch the mempolicy and try to
1489          * allocate a huge page with it.  We will only reach this
1490          * when CONFIG_NUMA=y.
1491          */
1492         do {
1493                 struct page *page;
1494                 struct mempolicy *mpol;
1495                 struct zonelist *zl;
1496                 nodemask_t *nodemask;
1497
1498                 cpuset_mems_cookie = read_mems_allowed_begin();
1499                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1500                 mpol_cond_put(mpol);
1501                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1502                 if (page)
1503                         return page;
1504         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1505
1506         return NULL;
1507 }
1508
1509 /*
1510  * There are two ways to allocate a huge page:
1511  * 1. When you have a VMA and an address (like a fault)
1512  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1513  *
1514  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1515  * this case which signifies that the allocation should be done with
1516  * respect for the VMA's memory policy.
1517  *
1518  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1519  * implies that memory policies will not be taken in to account.
1520  */
1521 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1522                 struct vm_area_struct *vma, unsigned long addr, int nid)
1523 {
1524         struct page *page;
1525         unsigned int r_nid;
1526
1527         if (hstate_is_gigantic(h))
1528                 return NULL;
1529
1530         /*
1531          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1532          * This makes sure the caller is picking _one_ of the modes with which
1533          * we can call this function, not both.
1534          */
1535         if (vma || (addr != -1)) {
1536                 VM_WARN_ON_ONCE(addr == -1);
1537                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1538         }
1539         /*
1540          * Assume we will successfully allocate the surplus page to
1541          * prevent racing processes from causing the surplus to exceed
1542          * overcommit
1543          *
1544          * This however introduces a different race, where a process B
1545          * tries to grow the static hugepage pool while alloc_pages() is
1546          * called by process A. B will only examine the per-node
1547          * counters in determining if surplus huge pages can be
1548          * converted to normal huge pages in adjust_pool_surplus(). A
1549          * won't be able to increment the per-node counter, until the
1550          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1551          * no more huge pages can be converted from surplus to normal
1552          * state (and doesn't try to convert again). Thus, we have a
1553          * case where a surplus huge page exists, the pool is grown, and
1554          * the surplus huge page still exists after, even though it
1555          * should just have been converted to a normal huge page. This
1556          * does not leak memory, though, as the hugepage will be freed
1557          * once it is out of use. It also does not allow the counters to
1558          * go out of whack in adjust_pool_surplus() as we don't modify
1559          * the node values until we've gotten the hugepage and only the
1560          * per-node value is checked there.
1561          */
1562         spin_lock(&hugetlb_lock);
1563         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1564                 spin_unlock(&hugetlb_lock);
1565                 return NULL;
1566         } else {
1567                 h->nr_huge_pages++;
1568                 h->surplus_huge_pages++;
1569         }
1570         spin_unlock(&hugetlb_lock);
1571
1572         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1573
1574         spin_lock(&hugetlb_lock);
1575         if (page) {
1576                 INIT_LIST_HEAD(&page->lru);
1577                 r_nid = page_to_nid(page);
1578                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1579                 set_hugetlb_cgroup(page, NULL);
1580                 /*
1581                  * We incremented the global counters already
1582                  */
1583                 h->nr_huge_pages_node[r_nid]++;
1584                 h->surplus_huge_pages_node[r_nid]++;
1585                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1586         } else {
1587                 h->nr_huge_pages--;
1588                 h->surplus_huge_pages--;
1589                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1590         }
1591         spin_unlock(&hugetlb_lock);
1592
1593         return page;
1594 }
1595
1596 /*
1597  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1598  * NUMA_NO_NODE, which means that it may be allocated
1599  * anywhere.
1600  */
1601 static
1602 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1603 {
1604         unsigned long addr = -1;
1605
1606         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1607 }
1608
1609 /*
1610  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1611  */
1612 static
1613 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1614                 struct vm_area_struct *vma, unsigned long addr)
1615 {
1616         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1617 }
1618
1619 /*
1620  * This allocation function is useful in the context where vma is irrelevant.
1621  * E.g. soft-offlining uses this function because it only cares physical
1622  * address of error page.
1623  */
1624 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1625 {
1626         struct page *page = NULL;
1627
1628         spin_lock(&hugetlb_lock);
1629         if (h->free_huge_pages - h->resv_huge_pages > 0)
1630                 page = dequeue_huge_page_node(h, nid);
1631         spin_unlock(&hugetlb_lock);
1632
1633         if (!page)
1634                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1635
1636         return page;
1637 }
1638
1639 /*
1640  * Increase the hugetlb pool such that it can accommodate a reservation
1641  * of size 'delta'.
1642  */
1643 static int gather_surplus_pages(struct hstate *h, int delta)
1644 {
1645         struct list_head surplus_list;
1646         struct page *page, *tmp;
1647         int ret, i;
1648         int needed, allocated;
1649         bool alloc_ok = true;
1650
1651         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1652         if (needed <= 0) {
1653                 h->resv_huge_pages += delta;
1654                 return 0;
1655         }
1656
1657         allocated = 0;
1658         INIT_LIST_HEAD(&surplus_list);
1659
1660         ret = -ENOMEM;
1661 retry:
1662         spin_unlock(&hugetlb_lock);
1663         for (i = 0; i < needed; i++) {
1664                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1665                 if (!page) {
1666                         alloc_ok = false;
1667                         break;
1668                 }
1669                 list_add(&page->lru, &surplus_list);
1670         }
1671         allocated += i;
1672
1673         /*
1674          * After retaking hugetlb_lock, we need to recalculate 'needed'
1675          * because either resv_huge_pages or free_huge_pages may have changed.
1676          */
1677         spin_lock(&hugetlb_lock);
1678         needed = (h->resv_huge_pages + delta) -
1679                         (h->free_huge_pages + allocated);
1680         if (needed > 0) {
1681                 if (alloc_ok)
1682                         goto retry;
1683                 /*
1684                  * We were not able to allocate enough pages to
1685                  * satisfy the entire reservation so we free what
1686                  * we've allocated so far.
1687                  */
1688                 goto free;
1689         }
1690         /*
1691          * The surplus_list now contains _at_least_ the number of extra pages
1692          * needed to accommodate the reservation.  Add the appropriate number
1693          * of pages to the hugetlb pool and free the extras back to the buddy
1694          * allocator.  Commit the entire reservation here to prevent another
1695          * process from stealing the pages as they are added to the pool but
1696          * before they are reserved.
1697          */
1698         needed += allocated;
1699         h->resv_huge_pages += delta;
1700         ret = 0;
1701
1702         /* Free the needed pages to the hugetlb pool */
1703         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1704                 if ((--needed) < 0)
1705                         break;
1706                 /*
1707                  * This page is now managed by the hugetlb allocator and has
1708                  * no users -- drop the buddy allocator's reference.
1709                  */
1710                 put_page_testzero(page);
1711                 VM_BUG_ON_PAGE(page_count(page), page);
1712                 enqueue_huge_page(h, page);
1713         }
1714 free:
1715         spin_unlock(&hugetlb_lock);
1716
1717         /* Free unnecessary surplus pages to the buddy allocator */
1718         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1719                 put_page(page);
1720         spin_lock(&hugetlb_lock);
1721
1722         return ret;
1723 }
1724
1725 /*
1726  * When releasing a hugetlb pool reservation, any surplus pages that were
1727  * allocated to satisfy the reservation must be explicitly freed if they were
1728  * never used.
1729  * Called with hugetlb_lock held.
1730  */
1731 static void return_unused_surplus_pages(struct hstate *h,
1732                                         unsigned long unused_resv_pages)
1733 {
1734         unsigned long nr_pages;
1735
1736         /* Uncommit the reservation */
1737         h->resv_huge_pages -= unused_resv_pages;
1738
1739         /* Cannot return gigantic pages currently */
1740         if (hstate_is_gigantic(h))
1741                 return;
1742
1743         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1744
1745         /*
1746          * We want to release as many surplus pages as possible, spread
1747          * evenly across all nodes with memory. Iterate across these nodes
1748          * until we can no longer free unreserved surplus pages. This occurs
1749          * when the nodes with surplus pages have no free pages.
1750          * free_pool_huge_page() will balance the the freed pages across the
1751          * on-line nodes with memory and will handle the hstate accounting.
1752          */
1753         while (nr_pages--) {
1754                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1755                         break;
1756                 cond_resched_lock(&hugetlb_lock);
1757         }
1758 }
1759
1760
1761 /*
1762  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1763  * are used by the huge page allocation routines to manage reservations.
1764  *
1765  * vma_needs_reservation is called to determine if the huge page at addr
1766  * within the vma has an associated reservation.  If a reservation is
1767  * needed, the value 1 is returned.  The caller is then responsible for
1768  * managing the global reservation and subpool usage counts.  After
1769  * the huge page has been allocated, vma_commit_reservation is called
1770  * to add the page to the reservation map.  If the page allocation fails,
1771  * the reservation must be ended instead of committed.  vma_end_reservation
1772  * is called in such cases.
1773  *
1774  * In the normal case, vma_commit_reservation returns the same value
1775  * as the preceding vma_needs_reservation call.  The only time this
1776  * is not the case is if a reserve map was changed between calls.  It
1777  * is the responsibility of the caller to notice the difference and
1778  * take appropriate action.
1779  */
1780 enum vma_resv_mode {
1781         VMA_NEEDS_RESV,
1782         VMA_COMMIT_RESV,
1783         VMA_END_RESV,
1784 };
1785 static long __vma_reservation_common(struct hstate *h,
1786                                 struct vm_area_struct *vma, unsigned long addr,
1787                                 enum vma_resv_mode mode)
1788 {
1789         struct resv_map *resv;
1790         pgoff_t idx;
1791         long ret;
1792
1793         resv = vma_resv_map(vma);
1794         if (!resv)
1795                 return 1;
1796
1797         idx = vma_hugecache_offset(h, vma, addr);
1798         switch (mode) {
1799         case VMA_NEEDS_RESV:
1800                 ret = region_chg(resv, idx, idx + 1);
1801                 break;
1802         case VMA_COMMIT_RESV:
1803                 ret = region_add(resv, idx, idx + 1);
1804                 break;
1805         case VMA_END_RESV:
1806                 region_abort(resv, idx, idx + 1);
1807                 ret = 0;
1808                 break;
1809         default:
1810                 BUG();
1811         }
1812
1813         if (vma->vm_flags & VM_MAYSHARE)
1814                 return ret;
1815         else
1816                 return ret < 0 ? ret : 0;
1817 }
1818
1819 static long vma_needs_reservation(struct hstate *h,
1820                         struct vm_area_struct *vma, unsigned long addr)
1821 {
1822         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1823 }
1824
1825 static long vma_commit_reservation(struct hstate *h,
1826                         struct vm_area_struct *vma, unsigned long addr)
1827 {
1828         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1829 }
1830
1831 static void vma_end_reservation(struct hstate *h,
1832                         struct vm_area_struct *vma, unsigned long addr)
1833 {
1834         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1835 }
1836
1837 struct page *alloc_huge_page(struct vm_area_struct *vma,
1838                                     unsigned long addr, int avoid_reserve)
1839 {
1840         struct hugepage_subpool *spool = subpool_vma(vma);
1841         struct hstate *h = hstate_vma(vma);
1842         struct page *page;
1843         long map_chg, map_commit;
1844         long gbl_chg;
1845         int ret, idx;
1846         struct hugetlb_cgroup *h_cg;
1847
1848         idx = hstate_index(h);
1849         /*
1850          * Examine the region/reserve map to determine if the process
1851          * has a reservation for the page to be allocated.  A return
1852          * code of zero indicates a reservation exists (no change).
1853          */
1854         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1855         if (map_chg < 0)
1856                 return ERR_PTR(-ENOMEM);
1857
1858         /*
1859          * Processes that did not create the mapping will have no
1860          * reserves as indicated by the region/reserve map. Check
1861          * that the allocation will not exceed the subpool limit.
1862          * Allocations for MAP_NORESERVE mappings also need to be
1863          * checked against any subpool limit.
1864          */
1865         if (map_chg || avoid_reserve) {
1866                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1867                 if (gbl_chg < 0) {
1868                         vma_end_reservation(h, vma, addr);
1869                         return ERR_PTR(-ENOSPC);
1870                 }
1871
1872                 /*
1873                  * Even though there was no reservation in the region/reserve
1874                  * map, there could be reservations associated with the
1875                  * subpool that can be used.  This would be indicated if the
1876                  * return value of hugepage_subpool_get_pages() is zero.
1877                  * However, if avoid_reserve is specified we still avoid even
1878                  * the subpool reservations.
1879                  */
1880                 if (avoid_reserve)
1881                         gbl_chg = 1;
1882         }
1883
1884         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1885         if (ret)
1886                 goto out_subpool_put;
1887
1888         spin_lock(&hugetlb_lock);
1889         /*
1890          * glb_chg is passed to indicate whether or not a page must be taken
1891          * from the global free pool (global change).  gbl_chg == 0 indicates
1892          * a reservation exists for the allocation.
1893          */
1894         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1895         if (!page) {
1896                 spin_unlock(&hugetlb_lock);
1897                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1898                 if (!page)
1899                         goto out_uncharge_cgroup;
1900                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1901                         SetPagePrivate(page);
1902                         h->resv_huge_pages--;
1903                 }
1904                 spin_lock(&hugetlb_lock);
1905                 list_move(&page->lru, &h->hugepage_activelist);
1906                 /* Fall through */
1907         }
1908         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1909         spin_unlock(&hugetlb_lock);
1910
1911         set_page_private(page, (unsigned long)spool);
1912
1913         map_commit = vma_commit_reservation(h, vma, addr);
1914         if (unlikely(map_chg > map_commit)) {
1915                 /*
1916                  * The page was added to the reservation map between
1917                  * vma_needs_reservation and vma_commit_reservation.
1918                  * This indicates a race with hugetlb_reserve_pages.
1919                  * Adjust for the subpool count incremented above AND
1920                  * in hugetlb_reserve_pages for the same page.  Also,
1921                  * the reservation count added in hugetlb_reserve_pages
1922                  * no longer applies.
1923                  */
1924                 long rsv_adjust;
1925
1926                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1927                 hugetlb_acct_memory(h, -rsv_adjust);
1928         }
1929         return page;
1930
1931 out_uncharge_cgroup:
1932         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1933 out_subpool_put:
1934         if (map_chg || avoid_reserve)
1935                 hugepage_subpool_put_pages(spool, 1);
1936         vma_end_reservation(h, vma, addr);
1937         return ERR_PTR(-ENOSPC);
1938 }
1939
1940 /*
1941  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1942  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1943  * where no ERR_VALUE is expected to be returned.
1944  */
1945 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1946                                 unsigned long addr, int avoid_reserve)
1947 {
1948         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1949         if (IS_ERR(page))
1950                 page = NULL;
1951         return page;
1952 }
1953
1954 int __weak alloc_bootmem_huge_page(struct hstate *h)
1955 {
1956         struct huge_bootmem_page *m;
1957         int nr_nodes, node;
1958
1959         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1960                 void *addr;
1961
1962                 addr = memblock_virt_alloc_try_nid_nopanic(
1963                                 huge_page_size(h), huge_page_size(h),
1964                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1965                 if (addr) {
1966                         /*
1967                          * Use the beginning of the huge page to store the
1968                          * huge_bootmem_page struct (until gather_bootmem
1969                          * puts them into the mem_map).
1970                          */
1971                         m = addr;
1972                         goto found;
1973                 }
1974         }
1975         return 0;
1976
1977 found:
1978         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1979         /* Put them into a private list first because mem_map is not up yet */
1980         list_add(&m->list, &huge_boot_pages);
1981         m->hstate = h;
1982         return 1;
1983 }
1984
1985 static void __init prep_compound_huge_page(struct page *page,
1986                 unsigned int order)
1987 {
1988         if (unlikely(order > (MAX_ORDER - 1)))
1989                 prep_compound_gigantic_page(page, order);
1990         else
1991                 prep_compound_page(page, order);
1992 }
1993
1994 /* Put bootmem huge pages into the standard lists after mem_map is up */
1995 static void __init gather_bootmem_prealloc(void)
1996 {
1997         struct huge_bootmem_page *m;
1998
1999         list_for_each_entry(m, &huge_boot_pages, list) {
2000                 struct hstate *h = m->hstate;
2001                 struct page *page;
2002
2003 #ifdef CONFIG_HIGHMEM
2004                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2005                 memblock_free_late(__pa(m),
2006                                    sizeof(struct huge_bootmem_page));
2007 #else
2008                 page = virt_to_page(m);
2009 #endif
2010                 WARN_ON(page_count(page) != 1);
2011                 prep_compound_huge_page(page, h->order);
2012                 WARN_ON(PageReserved(page));
2013                 prep_new_huge_page(h, page, page_to_nid(page));
2014                 /*
2015                  * If we had gigantic hugepages allocated at boot time, we need
2016                  * to restore the 'stolen' pages to totalram_pages in order to
2017                  * fix confusing memory reports from free(1) and another
2018                  * side-effects, like CommitLimit going negative.
2019                  */
2020                 if (hstate_is_gigantic(h))
2021                         adjust_managed_page_count(page, 1 << h->order);
2022         }
2023 }
2024
2025 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2026 {
2027         unsigned long i;
2028
2029         for (i = 0; i < h->max_huge_pages; ++i) {
2030                 if (hstate_is_gigantic(h)) {
2031                         if (!alloc_bootmem_huge_page(h))
2032                                 break;
2033                 } else if (!alloc_fresh_huge_page(h,
2034                                          &node_states[N_MEMORY]))
2035                         break;
2036         }
2037         h->max_huge_pages = i;
2038 }
2039
2040 static void __init hugetlb_init_hstates(void)
2041 {
2042         struct hstate *h;
2043
2044         for_each_hstate(h) {
2045                 if (minimum_order > huge_page_order(h))
2046                         minimum_order = huge_page_order(h);
2047
2048                 /* oversize hugepages were init'ed in early boot */
2049                 if (!hstate_is_gigantic(h))
2050                         hugetlb_hstate_alloc_pages(h);
2051         }
2052         VM_BUG_ON(minimum_order == UINT_MAX);
2053 }
2054
2055 static char * __init memfmt(char *buf, unsigned long n)
2056 {
2057         if (n >= (1UL << 30))
2058                 sprintf(buf, "%lu GB", n >> 30);
2059         else if (n >= (1UL << 20))
2060                 sprintf(buf, "%lu MB", n >> 20);
2061         else
2062                 sprintf(buf, "%lu KB", n >> 10);
2063         return buf;
2064 }
2065
2066 static void __init report_hugepages(void)
2067 {
2068         struct hstate *h;
2069
2070         for_each_hstate(h) {
2071                 char buf[32];
2072                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2073                         memfmt(buf, huge_page_size(h)),
2074                         h->free_huge_pages);
2075         }
2076 }
2077
2078 #ifdef CONFIG_HIGHMEM
2079 static void try_to_free_low(struct hstate *h, unsigned long count,
2080                                                 nodemask_t *nodes_allowed)
2081 {
2082         int i;
2083
2084         if (hstate_is_gigantic(h))
2085                 return;
2086
2087         for_each_node_mask(i, *nodes_allowed) {
2088                 struct page *page, *next;
2089                 struct list_head *freel = &h->hugepage_freelists[i];
2090                 list_for_each_entry_safe(page, next, freel, lru) {
2091                         if (count >= h->nr_huge_pages)
2092                                 return;
2093                         if (PageHighMem(page))
2094                                 continue;
2095                         list_del(&page->lru);
2096                         update_and_free_page(h, page);
2097                         h->free_huge_pages--;
2098                         h->free_huge_pages_node[page_to_nid(page)]--;
2099                 }
2100         }
2101 }
2102 #else
2103 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2104                                                 nodemask_t *nodes_allowed)
2105 {
2106 }
2107 #endif
2108
2109 /*
2110  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2111  * balanced by operating on them in a round-robin fashion.
2112  * Returns 1 if an adjustment was made.
2113  */
2114 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2115                                 int delta)
2116 {
2117         int nr_nodes, node;
2118
2119         VM_BUG_ON(delta != -1 && delta != 1);
2120
2121         if (delta < 0) {
2122                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2123                         if (h->surplus_huge_pages_node[node])
2124                                 goto found;
2125                 }
2126         } else {
2127                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2128                         if (h->surplus_huge_pages_node[node] <
2129                                         h->nr_huge_pages_node[node])
2130                                 goto found;
2131                 }
2132         }
2133         return 0;
2134
2135 found:
2136         h->surplus_huge_pages += delta;
2137         h->surplus_huge_pages_node[node] += delta;
2138         return 1;
2139 }
2140
2141 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2142 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2143                                                 nodemask_t *nodes_allowed)
2144 {
2145         unsigned long min_count, ret;
2146
2147         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2148                 return h->max_huge_pages;
2149
2150         /*
2151          * Increase the pool size
2152          * First take pages out of surplus state.  Then make up the
2153          * remaining difference by allocating fresh huge pages.
2154          *
2155          * We might race with __alloc_buddy_huge_page() here and be unable
2156          * to convert a surplus huge page to a normal huge page. That is
2157          * not critical, though, it just means the overall size of the
2158          * pool might be one hugepage larger than it needs to be, but
2159          * within all the constraints specified by the sysctls.
2160          */
2161         spin_lock(&hugetlb_lock);
2162         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2163                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2164                         break;
2165         }
2166
2167         while (count > persistent_huge_pages(h)) {
2168                 /*
2169                  * If this allocation races such that we no longer need the
2170                  * page, free_huge_page will handle it by freeing the page
2171                  * and reducing the surplus.
2172                  */
2173                 spin_unlock(&hugetlb_lock);
2174
2175                 /* yield cpu to avoid soft lockup */
2176                 cond_resched();
2177
2178                 if (hstate_is_gigantic(h))
2179                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2180                 else
2181                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2182                 spin_lock(&hugetlb_lock);
2183                 if (!ret)
2184                         goto out;
2185
2186                 /* Bail for signals. Probably ctrl-c from user */
2187                 if (signal_pending(current))
2188                         goto out;
2189         }
2190
2191         /*
2192          * Decrease the pool size
2193          * First return free pages to the buddy allocator (being careful
2194          * to keep enough around to satisfy reservations).  Then place
2195          * pages into surplus state as needed so the pool will shrink
2196          * to the desired size as pages become free.
2197          *
2198          * By placing pages into the surplus state independent of the
2199          * overcommit value, we are allowing the surplus pool size to
2200          * exceed overcommit. There are few sane options here. Since
2201          * __alloc_buddy_huge_page() is checking the global counter,
2202          * though, we'll note that we're not allowed to exceed surplus
2203          * and won't grow the pool anywhere else. Not until one of the
2204          * sysctls are changed, or the surplus pages go out of use.
2205          */
2206         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2207         min_count = max(count, min_count);
2208         try_to_free_low(h, min_count, nodes_allowed);
2209         while (min_count < persistent_huge_pages(h)) {
2210                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2211                         break;
2212                 cond_resched_lock(&hugetlb_lock);
2213         }
2214         while (count < persistent_huge_pages(h)) {
2215                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2216                         break;
2217         }
2218 out:
2219         ret = persistent_huge_pages(h);
2220         spin_unlock(&hugetlb_lock);
2221         return ret;
2222 }
2223
2224 #define HSTATE_ATTR_RO(_name) \
2225         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2226
2227 #define HSTATE_ATTR(_name) \
2228         static struct kobj_attribute _name##_attr = \
2229                 __ATTR(_name, 0644, _name##_show, _name##_store)
2230
2231 static struct kobject *hugepages_kobj;
2232 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2233
2234 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2235
2236 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2237 {
2238         int i;
2239
2240         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2241                 if (hstate_kobjs[i] == kobj) {
2242                         if (nidp)
2243                                 *nidp = NUMA_NO_NODE;
2244                         return &hstates[i];
2245                 }
2246
2247         return kobj_to_node_hstate(kobj, nidp);
2248 }
2249
2250 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2251                                         struct kobj_attribute *attr, char *buf)
2252 {
2253         struct hstate *h;
2254         unsigned long nr_huge_pages;
2255         int nid;
2256
2257         h = kobj_to_hstate(kobj, &nid);
2258         if (nid == NUMA_NO_NODE)
2259                 nr_huge_pages = h->nr_huge_pages;
2260         else
2261                 nr_huge_pages = h->nr_huge_pages_node[nid];
2262
2263         return sprintf(buf, "%lu\n", nr_huge_pages);
2264 }
2265
2266 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2267                                            struct hstate *h, int nid,
2268                                            unsigned long count, size_t len)
2269 {
2270         int err;
2271         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2272
2273         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2274                 err = -EINVAL;
2275                 goto out;
2276         }
2277
2278         if (nid == NUMA_NO_NODE) {
2279                 /*
2280                  * global hstate attribute
2281                  */
2282                 if (!(obey_mempolicy &&
2283                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2284                         NODEMASK_FREE(nodes_allowed);
2285                         nodes_allowed = &node_states[N_MEMORY];
2286                 }
2287         } else if (nodes_allowed) {
2288                 /*
2289                  * per node hstate attribute: adjust count to global,
2290                  * but restrict alloc/free to the specified node.
2291                  */
2292                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2293                 init_nodemask_of_node(nodes_allowed, nid);
2294         } else
2295                 nodes_allowed = &node_states[N_MEMORY];
2296
2297         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2298
2299         if (nodes_allowed != &node_states[N_MEMORY])
2300                 NODEMASK_FREE(nodes_allowed);
2301
2302         return len;
2303 out:
2304         NODEMASK_FREE(nodes_allowed);
2305         return err;
2306 }
2307
2308 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2309                                          struct kobject *kobj, const char *buf,
2310                                          size_t len)
2311 {
2312         struct hstate *h;
2313         unsigned long count;
2314         int nid;
2315         int err;
2316
2317         err = kstrtoul(buf, 10, &count);
2318         if (err)
2319                 return err;
2320
2321         h = kobj_to_hstate(kobj, &nid);
2322         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2323 }
2324
2325 static ssize_t nr_hugepages_show(struct kobject *kobj,
2326                                        struct kobj_attribute *attr, char *buf)
2327 {
2328         return nr_hugepages_show_common(kobj, attr, buf);
2329 }
2330
2331 static ssize_t nr_hugepages_store(struct kobject *kobj,
2332                struct kobj_attribute *attr, const char *buf, size_t len)
2333 {
2334         return nr_hugepages_store_common(false, kobj, buf, len);
2335 }
2336 HSTATE_ATTR(nr_hugepages);
2337
2338 #ifdef CONFIG_NUMA
2339
2340 /*
2341  * hstate attribute for optionally mempolicy-based constraint on persistent
2342  * huge page alloc/free.
2343  */
2344 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2345                                        struct kobj_attribute *attr, char *buf)
2346 {
2347         return nr_hugepages_show_common(kobj, attr, buf);
2348 }
2349
2350 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2351                struct kobj_attribute *attr, const char *buf, size_t len)
2352 {
2353         return nr_hugepages_store_common(true, kobj, buf, len);
2354 }
2355 HSTATE_ATTR(nr_hugepages_mempolicy);
2356 #endif
2357
2358
2359 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2360                                         struct kobj_attribute *attr, char *buf)
2361 {
2362         struct hstate *h = kobj_to_hstate(kobj, NULL);
2363         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2364 }
2365
2366 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2367                 struct kobj_attribute *attr, const char *buf, size_t count)
2368 {
2369         int err;
2370         unsigned long input;
2371         struct hstate *h = kobj_to_hstate(kobj, NULL);
2372
2373         if (hstate_is_gigantic(h))
2374                 return -EINVAL;
2375
2376         err = kstrtoul(buf, 10, &input);
2377         if (err)
2378                 return err;
2379
2380         spin_lock(&hugetlb_lock);
2381         h->nr_overcommit_huge_pages = input;
2382         spin_unlock(&hugetlb_lock);
2383
2384         return count;
2385 }
2386 HSTATE_ATTR(nr_overcommit_hugepages);
2387
2388 static ssize_t free_hugepages_show(struct kobject *kobj,
2389                                         struct kobj_attribute *attr, char *buf)
2390 {
2391         struct hstate *h;
2392         unsigned long free_huge_pages;
2393         int nid;
2394
2395         h = kobj_to_hstate(kobj, &nid);
2396         if (nid == NUMA_NO_NODE)
2397                 free_huge_pages = h->free_huge_pages;
2398         else
2399                 free_huge_pages = h->free_huge_pages_node[nid];
2400
2401         return sprintf(buf, "%lu\n", free_huge_pages);
2402 }
2403 HSTATE_ATTR_RO(free_hugepages);
2404
2405 static ssize_t resv_hugepages_show(struct kobject *kobj,
2406                                         struct kobj_attribute *attr, char *buf)
2407 {
2408         struct hstate *h = kobj_to_hstate(kobj, NULL);
2409         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2410 }
2411 HSTATE_ATTR_RO(resv_hugepages);
2412
2413 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2414                                         struct kobj_attribute *attr, char *buf)
2415 {
2416         struct hstate *h;
2417         unsigned long surplus_huge_pages;
2418         int nid;
2419
2420         h = kobj_to_hstate(kobj, &nid);
2421         if (nid == NUMA_NO_NODE)
2422                 surplus_huge_pages = h->surplus_huge_pages;
2423         else
2424                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2425
2426         return sprintf(buf, "%lu\n", surplus_huge_pages);
2427 }
2428 HSTATE_ATTR_RO(surplus_hugepages);
2429
2430 static struct attribute *hstate_attrs[] = {
2431         &nr_hugepages_attr.attr,
2432         &nr_overcommit_hugepages_attr.attr,
2433         &free_hugepages_attr.attr,
2434         &resv_hugepages_attr.attr,
2435         &surplus_hugepages_attr.attr,
2436 #ifdef CONFIG_NUMA
2437         &nr_hugepages_mempolicy_attr.attr,
2438 #endif
2439         NULL,
2440 };
2441
2442 static struct attribute_group hstate_attr_group = {
2443         .attrs = hstate_attrs,
2444 };
2445
2446 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2447                                     struct kobject **hstate_kobjs,
2448                                     struct attribute_group *hstate_attr_group)
2449 {
2450         int retval;
2451         int hi = hstate_index(h);
2452
2453         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2454         if (!hstate_kobjs[hi])
2455                 return -ENOMEM;
2456
2457         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2458         if (retval)
2459                 kobject_put(hstate_kobjs[hi]);
2460
2461         return retval;
2462 }
2463
2464 static void __init hugetlb_sysfs_init(void)
2465 {
2466         struct hstate *h;
2467         int err;
2468
2469         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2470         if (!hugepages_kobj)
2471                 return;
2472
2473         for_each_hstate(h) {
2474                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2475                                          hstate_kobjs, &hstate_attr_group);
2476                 if (err)
2477                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2478         }
2479 }
2480
2481 #ifdef CONFIG_NUMA
2482
2483 /*
2484  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2485  * with node devices in node_devices[] using a parallel array.  The array
2486  * index of a node device or _hstate == node id.
2487  * This is here to avoid any static dependency of the node device driver, in
2488  * the base kernel, on the hugetlb module.
2489  */
2490 struct node_hstate {
2491         struct kobject          *hugepages_kobj;
2492         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2493 };
2494 static struct node_hstate node_hstates[MAX_NUMNODES];
2495
2496 /*
2497  * A subset of global hstate attributes for node devices
2498  */
2499 static struct attribute *per_node_hstate_attrs[] = {
2500         &nr_hugepages_attr.attr,
2501         &free_hugepages_attr.attr,
2502         &surplus_hugepages_attr.attr,
2503         NULL,
2504 };
2505
2506 static struct attribute_group per_node_hstate_attr_group = {
2507         .attrs = per_node_hstate_attrs,
2508 };
2509
2510 /*
2511  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2512  * Returns node id via non-NULL nidp.
2513  */
2514 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2515 {
2516         int nid;
2517
2518         for (nid = 0; nid < nr_node_ids; nid++) {
2519                 struct node_hstate *nhs = &node_hstates[nid];
2520                 int i;
2521                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2522                         if (nhs->hstate_kobjs[i] == kobj) {
2523                                 if (nidp)
2524                                         *nidp = nid;
2525                                 return &hstates[i];
2526                         }
2527         }
2528
2529         BUG();
2530         return NULL;
2531 }
2532
2533 /*
2534  * Unregister hstate attributes from a single node device.
2535  * No-op if no hstate attributes attached.
2536  */
2537 static void hugetlb_unregister_node(struct node *node)
2538 {
2539         struct hstate *h;
2540         struct node_hstate *nhs = &node_hstates[node->dev.id];
2541
2542         if (!nhs->hugepages_kobj)
2543                 return;         /* no hstate attributes */
2544
2545         for_each_hstate(h) {
2546                 int idx = hstate_index(h);
2547                 if (nhs->hstate_kobjs[idx]) {
2548                         kobject_put(nhs->hstate_kobjs[idx]);
2549                         nhs->hstate_kobjs[idx] = NULL;
2550                 }
2551         }
2552
2553         kobject_put(nhs->hugepages_kobj);
2554         nhs->hugepages_kobj = NULL;
2555 }
2556
2557 /*
2558  * hugetlb module exit:  unregister hstate attributes from node devices
2559  * that have them.
2560  */
2561 static void hugetlb_unregister_all_nodes(void)
2562 {
2563         int nid;
2564
2565         /*
2566          * disable node device registrations.
2567          */
2568         register_hugetlbfs_with_node(NULL, NULL);
2569
2570         /*
2571          * remove hstate attributes from any nodes that have them.
2572          */
2573         for (nid = 0; nid < nr_node_ids; nid++)
2574                 hugetlb_unregister_node(node_devices[nid]);
2575 }
2576
2577 /*
2578  * Register hstate attributes for a single node device.
2579  * No-op if attributes already registered.
2580  */
2581 static void hugetlb_register_node(struct node *node)
2582 {
2583         struct hstate *h;
2584         struct node_hstate *nhs = &node_hstates[node->dev.id];
2585         int err;
2586
2587         if (nhs->hugepages_kobj)
2588                 return;         /* already allocated */
2589
2590         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2591                                                         &node->dev.kobj);
2592         if (!nhs->hugepages_kobj)
2593                 return;
2594
2595         for_each_hstate(h) {
2596                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2597                                                 nhs->hstate_kobjs,
2598                                                 &per_node_hstate_attr_group);
2599                 if (err) {
2600                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2601                                 h->name, node->dev.id);
2602                         hugetlb_unregister_node(node);
2603                         break;
2604                 }
2605         }
2606 }
2607
2608 /*
2609  * hugetlb init time:  register hstate attributes for all registered node
2610  * devices of nodes that have memory.  All on-line nodes should have
2611  * registered their associated device by this time.
2612  */
2613 static void __init hugetlb_register_all_nodes(void)
2614 {
2615         int nid;
2616
2617         for_each_node_state(nid, N_MEMORY) {
2618                 struct node *node = node_devices[nid];
2619                 if (node->dev.id == nid)
2620                         hugetlb_register_node(node);
2621         }
2622
2623         /*
2624          * Let the node device driver know we're here so it can
2625          * [un]register hstate attributes on node hotplug.
2626          */
2627         register_hugetlbfs_with_node(hugetlb_register_node,
2628                                      hugetlb_unregister_node);
2629 }
2630 #else   /* !CONFIG_NUMA */
2631
2632 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2633 {
2634         BUG();
2635         if (nidp)
2636                 *nidp = -1;
2637         return NULL;
2638 }
2639
2640 static void hugetlb_unregister_all_nodes(void) { }
2641
2642 static void hugetlb_register_all_nodes(void) { }
2643
2644 #endif
2645
2646 static void __exit hugetlb_exit(void)
2647 {
2648         struct hstate *h;
2649
2650         hugetlb_unregister_all_nodes();
2651
2652         for_each_hstate(h) {
2653                 kobject_put(hstate_kobjs[hstate_index(h)]);
2654         }
2655
2656         kobject_put(hugepages_kobj);
2657         kfree(hugetlb_fault_mutex_table);
2658 }
2659 module_exit(hugetlb_exit);
2660
2661 static int __init hugetlb_init(void)
2662 {
2663         int i;
2664
2665         if (!hugepages_supported())
2666                 return 0;
2667
2668         if (!size_to_hstate(default_hstate_size)) {
2669                 default_hstate_size = HPAGE_SIZE;
2670                 if (!size_to_hstate(default_hstate_size))
2671                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2672         }
2673         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2674         if (default_hstate_max_huge_pages)
2675                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2676
2677         hugetlb_init_hstates();
2678         gather_bootmem_prealloc();
2679         report_hugepages();
2680
2681         hugetlb_sysfs_init();
2682         hugetlb_register_all_nodes();
2683         hugetlb_cgroup_file_init();
2684
2685 #ifdef CONFIG_SMP
2686         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2687 #else
2688         num_fault_mutexes = 1;
2689 #endif
2690         hugetlb_fault_mutex_table =
2691                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2692         BUG_ON(!hugetlb_fault_mutex_table);
2693
2694         for (i = 0; i < num_fault_mutexes; i++)
2695                 mutex_init(&hugetlb_fault_mutex_table[i]);
2696         return 0;
2697 }
2698 module_init(hugetlb_init);
2699
2700 /* Should be called on processing a hugepagesz=... option */
2701 void __init hugetlb_add_hstate(unsigned int order)
2702 {
2703         struct hstate *h;
2704         unsigned long i;
2705
2706         if (size_to_hstate(PAGE_SIZE << order)) {
2707                 pr_warning("hugepagesz= specified twice, ignoring\n");
2708                 return;
2709         }
2710         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2711         BUG_ON(order == 0);
2712         h = &hstates[hugetlb_max_hstate++];
2713         h->order = order;
2714         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2715         h->nr_huge_pages = 0;
2716         h->free_huge_pages = 0;
2717         for (i = 0; i < MAX_NUMNODES; ++i)
2718                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2719         INIT_LIST_HEAD(&h->hugepage_activelist);
2720         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2721         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2722         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2723                                         huge_page_size(h)/1024);
2724
2725         parsed_hstate = h;
2726 }
2727
2728 static int __init hugetlb_nrpages_setup(char *s)
2729 {
2730         unsigned long *mhp;
2731         static unsigned long *last_mhp;
2732
2733         /*
2734          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2735          * so this hugepages= parameter goes to the "default hstate".
2736          */
2737         if (!hugetlb_max_hstate)
2738                 mhp = &default_hstate_max_huge_pages;
2739         else
2740                 mhp = &parsed_hstate->max_huge_pages;
2741
2742         if (mhp == last_mhp) {
2743                 pr_warning("hugepages= specified twice without "
2744                            "interleaving hugepagesz=, ignoring\n");
2745                 return 1;
2746         }
2747
2748         if (sscanf(s, "%lu", mhp) <= 0)
2749                 *mhp = 0;
2750
2751         /*
2752          * Global state is always initialized later in hugetlb_init.
2753          * But we need to allocate >= MAX_ORDER hstates here early to still
2754          * use the bootmem allocator.
2755          */
2756         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2757                 hugetlb_hstate_alloc_pages(parsed_hstate);
2758
2759         last_mhp = mhp;
2760
2761         return 1;
2762 }
2763 __setup("hugepages=", hugetlb_nrpages_setup);
2764
2765 static int __init hugetlb_default_setup(char *s)
2766 {
2767         default_hstate_size = memparse(s, &s);
2768         return 1;
2769 }
2770 __setup("default_hugepagesz=", hugetlb_default_setup);
2771
2772 static unsigned int cpuset_mems_nr(unsigned int *array)
2773 {
2774         int node;
2775         unsigned int nr = 0;
2776
2777         for_each_node_mask(node, cpuset_current_mems_allowed)
2778                 nr += array[node];
2779
2780         return nr;
2781 }
2782
2783 #ifdef CONFIG_SYSCTL
2784 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2785                          struct ctl_table *table, int write,
2786                          void __user *buffer, size_t *length, loff_t *ppos)
2787 {
2788         struct hstate *h = &default_hstate;
2789         unsigned long tmp = h->max_huge_pages;
2790         int ret;
2791
2792         if (!hugepages_supported())
2793                 return -ENOTSUPP;
2794
2795         table->data = &tmp;
2796         table->maxlen = sizeof(unsigned long);
2797         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2798         if (ret)
2799                 goto out;
2800
2801         if (write)
2802                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2803                                                   NUMA_NO_NODE, tmp, *length);
2804 out:
2805         return ret;
2806 }
2807
2808 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2809                           void __user *buffer, size_t *length, loff_t *ppos)
2810 {
2811
2812         return hugetlb_sysctl_handler_common(false, table, write,
2813                                                         buffer, length, ppos);
2814 }
2815
2816 #ifdef CONFIG_NUMA
2817 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2818                           void __user *buffer, size_t *length, loff_t *ppos)
2819 {
2820         return hugetlb_sysctl_handler_common(true, table, write,
2821                                                         buffer, length, ppos);
2822 }
2823 #endif /* CONFIG_NUMA */
2824
2825 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2826                         void __user *buffer,
2827                         size_t *length, loff_t *ppos)
2828 {
2829         struct hstate *h = &default_hstate;
2830         unsigned long tmp;
2831         int ret;
2832
2833         if (!hugepages_supported())
2834                 return -ENOTSUPP;
2835
2836         tmp = h->nr_overcommit_huge_pages;
2837
2838         if (write && hstate_is_gigantic(h))
2839                 return -EINVAL;
2840
2841         table->data = &tmp;
2842         table->maxlen = sizeof(unsigned long);
2843         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2844         if (ret)
2845                 goto out;
2846
2847         if (write) {
2848                 spin_lock(&hugetlb_lock);
2849                 h->nr_overcommit_huge_pages = tmp;
2850                 spin_unlock(&hugetlb_lock);
2851         }
2852 out:
2853         return ret;
2854 }
2855
2856 #endif /* CONFIG_SYSCTL */
2857
2858 void hugetlb_report_meminfo(struct seq_file *m)
2859 {
2860         struct hstate *h = &default_hstate;
2861         if (!hugepages_supported())
2862                 return;
2863         seq_printf(m,
2864                         "HugePages_Total:   %5lu\n"
2865                         "HugePages_Free:    %5lu\n"
2866                         "HugePages_Rsvd:    %5lu\n"
2867                         "HugePages_Surp:    %5lu\n"
2868                         "Hugepagesize:   %8lu kB\n",
2869                         h->nr_huge_pages,
2870                         h->free_huge_pages,
2871                         h->resv_huge_pages,
2872                         h->surplus_huge_pages,
2873                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2874 }
2875
2876 int hugetlb_report_node_meminfo(int nid, char *buf)
2877 {
2878         struct hstate *h = &default_hstate;
2879         if (!hugepages_supported())
2880                 return 0;
2881         return sprintf(buf,
2882                 "Node %d HugePages_Total: %5u\n"
2883                 "Node %d HugePages_Free:  %5u\n"
2884                 "Node %d HugePages_Surp:  %5u\n",
2885                 nid, h->nr_huge_pages_node[nid],
2886                 nid, h->free_huge_pages_node[nid],
2887                 nid, h->surplus_huge_pages_node[nid]);
2888 }
2889
2890 void hugetlb_show_meminfo(void)
2891 {
2892         struct hstate *h;
2893         int nid;
2894
2895         if (!hugepages_supported())
2896                 return;
2897
2898         for_each_node_state(nid, N_MEMORY)
2899                 for_each_hstate(h)
2900                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2901                                 nid,
2902                                 h->nr_huge_pages_node[nid],
2903                                 h->free_huge_pages_node[nid],
2904                                 h->surplus_huge_pages_node[nid],
2905                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2906 }
2907
2908 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2909 {
2910         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2911                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2912 }
2913
2914 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2915 unsigned long hugetlb_total_pages(void)
2916 {
2917         struct hstate *h;
2918         unsigned long nr_total_pages = 0;
2919
2920         for_each_hstate(h)
2921                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2922         return nr_total_pages;
2923 }
2924
2925 static int hugetlb_acct_memory(struct hstate *h, long delta)
2926 {
2927         int ret = -ENOMEM;
2928
2929         spin_lock(&hugetlb_lock);
2930         /*
2931          * When cpuset is configured, it breaks the strict hugetlb page
2932          * reservation as the accounting is done on a global variable. Such
2933          * reservation is completely rubbish in the presence of cpuset because
2934          * the reservation is not checked against page availability for the
2935          * current cpuset. Application can still potentially OOM'ed by kernel
2936          * with lack of free htlb page in cpuset that the task is in.
2937          * Attempt to enforce strict accounting with cpuset is almost
2938          * impossible (or too ugly) because cpuset is too fluid that
2939          * task or memory node can be dynamically moved between cpusets.
2940          *
2941          * The change of semantics for shared hugetlb mapping with cpuset is
2942          * undesirable. However, in order to preserve some of the semantics,
2943          * we fall back to check against current free page availability as
2944          * a best attempt and hopefully to minimize the impact of changing
2945          * semantics that cpuset has.
2946          */
2947         if (delta > 0) {
2948                 if (gather_surplus_pages(h, delta) < 0)
2949                         goto out;
2950
2951                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2952                         return_unused_surplus_pages(h, delta);
2953                         goto out;
2954                 }
2955         }
2956
2957         ret = 0;
2958         if (delta < 0)
2959                 return_unused_surplus_pages(h, (unsigned long) -delta);
2960
2961 out:
2962         spin_unlock(&hugetlb_lock);
2963         return ret;
2964 }
2965
2966 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2967 {
2968         struct resv_map *resv = vma_resv_map(vma);
2969
2970         /*
2971          * This new VMA should share its siblings reservation map if present.
2972          * The VMA will only ever have a valid reservation map pointer where
2973          * it is being copied for another still existing VMA.  As that VMA
2974          * has a reference to the reservation map it cannot disappear until
2975          * after this open call completes.  It is therefore safe to take a
2976          * new reference here without additional locking.
2977          */
2978         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2979                 kref_get(&resv->refs);
2980 }
2981
2982 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2983 {
2984         struct hstate *h = hstate_vma(vma);
2985         struct resv_map *resv = vma_resv_map(vma);
2986         struct hugepage_subpool *spool = subpool_vma(vma);
2987         unsigned long reserve, start, end;
2988         long gbl_reserve;
2989
2990         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2991                 return;
2992
2993         start = vma_hugecache_offset(h, vma, vma->vm_start);
2994         end = vma_hugecache_offset(h, vma, vma->vm_end);
2995
2996         reserve = (end - start) - region_count(resv, start, end);
2997
2998         kref_put(&resv->refs, resv_map_release);
2999
3000         if (reserve) {
3001                 /*
3002                  * Decrement reserve counts.  The global reserve count may be
3003                  * adjusted if the subpool has a minimum size.
3004                  */
3005                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3006                 hugetlb_acct_memory(h, -gbl_reserve);
3007         }
3008 }
3009
3010 /*
3011  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3012  * handle_mm_fault() to try to instantiate regular-sized pages in the
3013  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3014  * this far.
3015  */
3016 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3017 {
3018         BUG();
3019         return 0;
3020 }
3021
3022 const struct vm_operations_struct hugetlb_vm_ops = {
3023         .fault = hugetlb_vm_op_fault,
3024         .open = hugetlb_vm_op_open,
3025         .close = hugetlb_vm_op_close,
3026 };
3027
3028 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3029                                 int writable)
3030 {
3031         pte_t entry;
3032
3033         if (writable) {
3034                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3035                                          vma->vm_page_prot)));
3036         } else {
3037                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3038                                            vma->vm_page_prot));
3039         }
3040         entry = pte_mkyoung(entry);
3041         entry = pte_mkhuge(entry);
3042         entry = arch_make_huge_pte(entry, vma, page, writable);
3043
3044         return entry;
3045 }
3046
3047 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3048                                    unsigned long address, pte_t *ptep)
3049 {
3050         pte_t entry;
3051
3052         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3053         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3054                 update_mmu_cache(vma, address, ptep);
3055 }
3056
3057 static int is_hugetlb_entry_migration(pte_t pte)
3058 {
3059         swp_entry_t swp;
3060
3061         if (huge_pte_none(pte) || pte_present(pte))
3062                 return 0;
3063         swp = pte_to_swp_entry(pte);
3064         if (non_swap_entry(swp) && is_migration_entry(swp))
3065                 return 1;
3066         else
3067                 return 0;
3068 }
3069
3070 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3071 {
3072         swp_entry_t swp;
3073
3074         if (huge_pte_none(pte) || pte_present(pte))
3075                 return 0;
3076         swp = pte_to_swp_entry(pte);
3077         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3078                 return 1;
3079         else
3080                 return 0;
3081 }
3082
3083 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3084                             struct vm_area_struct *vma)
3085 {
3086         pte_t *src_pte, *dst_pte, entry;
3087         struct page *ptepage;
3088         unsigned long addr;
3089         int cow;
3090         struct hstate *h = hstate_vma(vma);
3091         unsigned long sz = huge_page_size(h);
3092         unsigned long mmun_start;       /* For mmu_notifiers */
3093         unsigned long mmun_end;         /* For mmu_notifiers */
3094         int ret = 0;
3095
3096         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3097
3098         mmun_start = vma->vm_start;
3099         mmun_end = vma->vm_end;
3100         if (cow)
3101                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3102
3103         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3104                 spinlock_t *src_ptl, *dst_ptl;
3105                 src_pte = huge_pte_offset(src, addr);
3106                 if (!src_pte)
3107                         continue;
3108                 dst_pte = huge_pte_alloc(dst, addr, sz);
3109                 if (!dst_pte) {
3110                         ret = -ENOMEM;
3111                         break;
3112                 }
3113
3114                 /* If the pagetables are shared don't copy or take references */
3115                 if (dst_pte == src_pte)
3116                         continue;
3117
3118                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3119                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3120                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3121                 entry = huge_ptep_get(src_pte);
3122                 if (huge_pte_none(entry)) { /* skip none entry */
3123                         ;
3124                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3125                                     is_hugetlb_entry_hwpoisoned(entry))) {
3126                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3127
3128                         if (is_write_migration_entry(swp_entry) && cow) {
3129                                 /*
3130                                  * COW mappings require pages in both
3131                                  * parent and child to be set to read.
3132                                  */
3133                                 make_migration_entry_read(&swp_entry);
3134                                 entry = swp_entry_to_pte(swp_entry);
3135                                 set_huge_pte_at(src, addr, src_pte, entry);
3136                         }
3137                         set_huge_pte_at(dst, addr, dst_pte, entry);
3138                 } else {
3139                         if (cow) {
3140                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3141                                 mmu_notifier_invalidate_range(src, mmun_start,
3142                                                                    mmun_end);
3143                         }
3144                         entry = huge_ptep_get(src_pte);
3145                         ptepage = pte_page(entry);
3146                         get_page(ptepage);
3147                         page_dup_rmap(ptepage);
3148                         set_huge_pte_at(dst, addr, dst_pte, entry);
3149                         hugetlb_count_add(pages_per_huge_page(h), dst);
3150                 }
3151                 spin_unlock(src_ptl);
3152                 spin_unlock(dst_ptl);
3153         }
3154
3155         if (cow)
3156                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3157
3158         return ret;
3159 }
3160
3161 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3162                             unsigned long start, unsigned long end,
3163                             struct page *ref_page)
3164 {
3165         int force_flush = 0;
3166         struct mm_struct *mm = vma->vm_mm;
3167         unsigned long address;
3168         pte_t *ptep;
3169         pte_t pte;
3170         spinlock_t *ptl;
3171         struct page *page;
3172         struct hstate *h = hstate_vma(vma);
3173         unsigned long sz = huge_page_size(h);
3174         const unsigned long mmun_start = start; /* For mmu_notifiers */
3175         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3176
3177         WARN_ON(!is_vm_hugetlb_page(vma));
3178         BUG_ON(start & ~huge_page_mask(h));
3179         BUG_ON(end & ~huge_page_mask(h));
3180
3181         tlb_start_vma(tlb, vma);
3182         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3183         address = start;
3184 again:
3185         for (; address < end; address += sz) {
3186                 ptep = huge_pte_offset(mm, address);
3187                 if (!ptep)
3188                         continue;
3189
3190                 ptl = huge_pte_lock(h, mm, ptep);
3191                 if (huge_pmd_unshare(mm, &address, ptep))
3192                         goto unlock;
3193
3194                 pte = huge_ptep_get(ptep);
3195                 if (huge_pte_none(pte))
3196                         goto unlock;
3197
3198                 /*
3199                  * Migrating hugepage or HWPoisoned hugepage is already
3200                  * unmapped and its refcount is dropped, so just clear pte here.
3201                  */
3202                 if (unlikely(!pte_present(pte))) {
3203                         huge_pte_clear(mm, address, ptep);
3204                         goto unlock;
3205                 }
3206
3207                 page = pte_page(pte);
3208                 /*
3209                  * If a reference page is supplied, it is because a specific
3210                  * page is being unmapped, not a range. Ensure the page we
3211                  * are about to unmap is the actual page of interest.
3212                  */
3213                 if (ref_page) {
3214                         if (page != ref_page)
3215                                 goto unlock;
3216
3217                         /*
3218                          * Mark the VMA as having unmapped its page so that
3219                          * future faults in this VMA will fail rather than
3220                          * looking like data was lost
3221                          */
3222                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3223                 }
3224
3225                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3226                 tlb_remove_tlb_entry(tlb, ptep, address);
3227                 if (huge_pte_dirty(pte))
3228                         set_page_dirty(page);
3229
3230                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3231                 page_remove_rmap(page);
3232                 force_flush = !__tlb_remove_page(tlb, page);
3233                 if (force_flush) {
3234                         address += sz;
3235                         spin_unlock(ptl);
3236                         break;
3237                 }
3238                 /* Bail out after unmapping reference page if supplied */
3239                 if (ref_page) {
3240                         spin_unlock(ptl);
3241                         break;
3242                 }
3243 unlock:
3244                 spin_unlock(ptl);
3245         }
3246         /*
3247          * mmu_gather ran out of room to batch pages, we break out of
3248          * the PTE lock to avoid doing the potential expensive TLB invalidate
3249          * and page-free while holding it.
3250          */
3251         if (force_flush) {
3252                 force_flush = 0;
3253                 tlb_flush_mmu(tlb);
3254                 if (address < end && !ref_page)
3255                         goto again;
3256         }
3257         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3258         tlb_end_vma(tlb, vma);
3259 }
3260
3261 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3262                           struct vm_area_struct *vma, unsigned long start,
3263                           unsigned long end, struct page *ref_page)
3264 {
3265         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3266
3267         /*
3268          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3269          * test will fail on a vma being torn down, and not grab a page table
3270          * on its way out.  We're lucky that the flag has such an appropriate
3271          * name, and can in fact be safely cleared here. We could clear it
3272          * before the __unmap_hugepage_range above, but all that's necessary
3273          * is to clear it before releasing the i_mmap_rwsem. This works
3274          * because in the context this is called, the VMA is about to be
3275          * destroyed and the i_mmap_rwsem is held.
3276          */
3277         vma->vm_flags &= ~VM_MAYSHARE;
3278 }
3279
3280 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3281                           unsigned long end, struct page *ref_page)
3282 {
3283         struct mm_struct *mm;
3284         struct mmu_gather tlb;
3285
3286         mm = vma->vm_mm;
3287
3288         tlb_gather_mmu(&tlb, mm, start, end);
3289         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3290         tlb_finish_mmu(&tlb, start, end);
3291 }
3292
3293 /*
3294  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3295  * mappping it owns the reserve page for. The intention is to unmap the page
3296  * from other VMAs and let the children be SIGKILLed if they are faulting the
3297  * same region.
3298  */
3299 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3300                               struct page *page, unsigned long address)
3301 {
3302         struct hstate *h = hstate_vma(vma);
3303         struct vm_area_struct *iter_vma;
3304         struct address_space *mapping;
3305         pgoff_t pgoff;
3306
3307         /*
3308          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3309          * from page cache lookup which is in HPAGE_SIZE units.
3310          */
3311         address = address & huge_page_mask(h);
3312         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3313                         vma->vm_pgoff;
3314         mapping = file_inode(vma->vm_file)->i_mapping;
3315
3316         /*
3317          * Take the mapping lock for the duration of the table walk. As
3318          * this mapping should be shared between all the VMAs,
3319          * __unmap_hugepage_range() is called as the lock is already held
3320          */
3321         i_mmap_lock_write(mapping);
3322         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3323                 /* Do not unmap the current VMA */
3324                 if (iter_vma == vma)
3325                         continue;
3326
3327                 /*
3328                  * Shared VMAs have their own reserves and do not affect
3329                  * MAP_PRIVATE accounting but it is possible that a shared
3330                  * VMA is using the same page so check and skip such VMAs.
3331                  */
3332                 if (iter_vma->vm_flags & VM_MAYSHARE)
3333                         continue;
3334
3335                 /*
3336                  * Unmap the page from other VMAs without their own reserves.
3337                  * They get marked to be SIGKILLed if they fault in these
3338                  * areas. This is because a future no-page fault on this VMA
3339                  * could insert a zeroed page instead of the data existing
3340                  * from the time of fork. This would look like data corruption
3341                  */
3342                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3343                         unmap_hugepage_range(iter_vma, address,
3344                                              address + huge_page_size(h), page);
3345         }
3346         i_mmap_unlock_write(mapping);
3347 }
3348
3349 /*
3350  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3351  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3352  * cannot race with other handlers or page migration.
3353  * Keep the pte_same checks anyway to make transition from the mutex easier.
3354  */
3355 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3356                         unsigned long address, pte_t *ptep, pte_t pte,
3357                         struct page *pagecache_page, spinlock_t *ptl)
3358 {
3359         struct hstate *h = hstate_vma(vma);
3360         struct page *old_page, *new_page;
3361         int ret = 0, outside_reserve = 0;
3362         unsigned long mmun_start;       /* For mmu_notifiers */
3363         unsigned long mmun_end;         /* For mmu_notifiers */
3364
3365         old_page = pte_page(pte);
3366
3367 retry_avoidcopy:
3368         /* If no-one else is actually using this page, avoid the copy
3369          * and just make the page writable */
3370         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3371                 page_move_anon_rmap(old_page, vma, address);
3372                 set_huge_ptep_writable(vma, address, ptep);
3373                 return 0;
3374         }
3375
3376         /*
3377          * If the process that created a MAP_PRIVATE mapping is about to
3378          * perform a COW due to a shared page count, attempt to satisfy
3379          * the allocation without using the existing reserves. The pagecache
3380          * page is used to determine if the reserve at this address was
3381          * consumed or not. If reserves were used, a partial faulted mapping
3382          * at the time of fork() could consume its reserves on COW instead
3383          * of the full address range.
3384          */
3385         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3386                         old_page != pagecache_page)
3387                 outside_reserve = 1;
3388
3389         page_cache_get(old_page);
3390
3391         /*
3392          * Drop page table lock as buddy allocator may be called. It will
3393          * be acquired again before returning to the caller, as expected.
3394          */
3395         spin_unlock(ptl);
3396         new_page = alloc_huge_page(vma, address, outside_reserve);
3397
3398         if (IS_ERR(new_page)) {
3399                 /*
3400                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3401                  * it is due to references held by a child and an insufficient
3402                  * huge page pool. To guarantee the original mappers
3403                  * reliability, unmap the page from child processes. The child
3404                  * may get SIGKILLed if it later faults.
3405                  */
3406                 if (outside_reserve) {
3407                         page_cache_release(old_page);
3408                         BUG_ON(huge_pte_none(pte));
3409                         unmap_ref_private(mm, vma, old_page, address);
3410                         BUG_ON(huge_pte_none(pte));
3411                         spin_lock(ptl);
3412                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3413                         if (likely(ptep &&
3414                                    pte_same(huge_ptep_get(ptep), pte)))
3415                                 goto retry_avoidcopy;
3416                         /*
3417                          * race occurs while re-acquiring page table
3418                          * lock, and our job is done.
3419                          */
3420                         return 0;
3421                 }
3422
3423                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3424                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3425                 goto out_release_old;
3426         }
3427
3428         /*
3429          * When the original hugepage is shared one, it does not have
3430          * anon_vma prepared.
3431          */
3432         if (unlikely(anon_vma_prepare(vma))) {
3433                 ret = VM_FAULT_OOM;
3434                 goto out_release_all;
3435         }
3436
3437         copy_user_huge_page(new_page, old_page, address, vma,
3438                             pages_per_huge_page(h));
3439         __SetPageUptodate(new_page);
3440         set_page_huge_active(new_page);
3441
3442         mmun_start = address & huge_page_mask(h);
3443         mmun_end = mmun_start + huge_page_size(h);
3444         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3445
3446         /*
3447          * Retake the page table lock to check for racing updates
3448          * before the page tables are altered
3449          */
3450         spin_lock(ptl);
3451         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3452         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3453                 ClearPagePrivate(new_page);
3454
3455                 /* Break COW */
3456                 huge_ptep_clear_flush(vma, address, ptep);
3457                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3458                 set_huge_pte_at(mm, address, ptep,
3459                                 make_huge_pte(vma, new_page, 1));
3460                 page_remove_rmap(old_page);
3461                 hugepage_add_new_anon_rmap(new_page, vma, address);
3462                 /* Make the old page be freed below */
3463                 new_page = old_page;
3464         }
3465         spin_unlock(ptl);
3466         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3467 out_release_all:
3468         page_cache_release(new_page);
3469 out_release_old:
3470         page_cache_release(old_page);
3471
3472         spin_lock(ptl); /* Caller expects lock to be held */
3473         return ret;
3474 }
3475
3476 /* Return the pagecache page at a given address within a VMA */
3477 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3478                         struct vm_area_struct *vma, unsigned long address)
3479 {
3480         struct address_space *mapping;
3481         pgoff_t idx;
3482
3483         mapping = vma->vm_file->f_mapping;
3484         idx = vma_hugecache_offset(h, vma, address);
3485
3486         return find_lock_page(mapping, idx);
3487 }
3488
3489 /*
3490  * Return whether there is a pagecache page to back given address within VMA.
3491  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3492  */
3493 static bool hugetlbfs_pagecache_present(struct hstate *h,
3494                         struct vm_area_struct *vma, unsigned long address)
3495 {
3496         struct address_space *mapping;
3497         pgoff_t idx;
3498         struct page *page;
3499
3500         mapping = vma->vm_file->f_mapping;
3501         idx = vma_hugecache_offset(h, vma, address);
3502
3503         page = find_get_page(mapping, idx);
3504         if (page)
3505                 put_page(page);
3506         return page != NULL;
3507 }
3508
3509 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3510                            pgoff_t idx)
3511 {
3512         struct inode *inode = mapping->host;
3513         struct hstate *h = hstate_inode(inode);
3514         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3515
3516         if (err)
3517                 return err;
3518         ClearPagePrivate(page);
3519
3520         spin_lock(&inode->i_lock);
3521         inode->i_blocks += blocks_per_huge_page(h);
3522         spin_unlock(&inode->i_lock);
3523         return 0;
3524 }
3525
3526 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3527                            struct address_space *mapping, pgoff_t idx,
3528                            unsigned long address, pte_t *ptep, unsigned int flags)
3529 {
3530         struct hstate *h = hstate_vma(vma);
3531         int ret = VM_FAULT_SIGBUS;
3532         int anon_rmap = 0;
3533         unsigned long size;
3534         struct page *page;
3535         pte_t new_pte;
3536         spinlock_t *ptl;
3537
3538         /*
3539          * Currently, we are forced to kill the process in the event the
3540          * original mapper has unmapped pages from the child due to a failed
3541          * COW. Warn that such a situation has occurred as it may not be obvious
3542          */
3543         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3544                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3545                            current->pid);
3546                 return ret;
3547         }
3548
3549         /*
3550          * Use page lock to guard against racing truncation
3551          * before we get page_table_lock.
3552          */
3553 retry:
3554         page = find_lock_page(mapping, idx);
3555         if (!page) {
3556                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3557                 if (idx >= size)
3558                         goto out;
3559                 page = alloc_huge_page(vma, address, 0);
3560                 if (IS_ERR(page)) {
3561                         ret = PTR_ERR(page);
3562                         if (ret == -ENOMEM)
3563                                 ret = VM_FAULT_OOM;
3564                         else
3565                                 ret = VM_FAULT_SIGBUS;
3566                         goto out;
3567                 }
3568                 clear_huge_page(page, address, pages_per_huge_page(h));
3569                 __SetPageUptodate(page);
3570                 set_page_huge_active(page);
3571
3572                 if (vma->vm_flags & VM_MAYSHARE) {
3573                         int err = huge_add_to_page_cache(page, mapping, idx);
3574                         if (err) {
3575                                 put_page(page);
3576                                 if (err == -EEXIST)
3577                                         goto retry;
3578                                 goto out;
3579                         }
3580                 } else {
3581                         lock_page(page);
3582                         if (unlikely(anon_vma_prepare(vma))) {
3583                                 ret = VM_FAULT_OOM;
3584                                 goto backout_unlocked;
3585                         }
3586                         anon_rmap = 1;
3587                 }
3588         } else {
3589                 /*
3590                  * If memory error occurs between mmap() and fault, some process
3591                  * don't have hwpoisoned swap entry for errored virtual address.
3592                  * So we need to block hugepage fault by PG_hwpoison bit check.
3593                  */
3594                 if (unlikely(PageHWPoison(page))) {
3595                         ret = VM_FAULT_HWPOISON |
3596                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3597                         goto backout_unlocked;
3598                 }
3599         }
3600
3601         /*
3602          * If we are going to COW a private mapping later, we examine the
3603          * pending reservations for this page now. This will ensure that
3604          * any allocations necessary to record that reservation occur outside
3605          * the spinlock.
3606          */
3607         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3608                 if (vma_needs_reservation(h, vma, address) < 0) {
3609                         ret = VM_FAULT_OOM;
3610                         goto backout_unlocked;
3611                 }
3612                 /* Just decrements count, does not deallocate */
3613                 vma_end_reservation(h, vma, address);
3614         }
3615
3616         ptl = huge_pte_lockptr(h, mm, ptep);
3617         spin_lock(ptl);
3618         size = i_size_read(mapping->host) >> huge_page_shift(h);
3619         if (idx >= size)
3620                 goto backout;
3621
3622         ret = 0;
3623         if (!huge_pte_none(huge_ptep_get(ptep)))
3624                 goto backout;
3625
3626         if (anon_rmap) {
3627                 ClearPagePrivate(page);
3628                 hugepage_add_new_anon_rmap(page, vma, address);
3629         } else
3630                 page_dup_rmap(page);
3631         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3632                                 && (vma->vm_flags & VM_SHARED)));
3633         set_huge_pte_at(mm, address, ptep, new_pte);
3634
3635         hugetlb_count_add(pages_per_huge_page(h), mm);
3636         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3637                 /* Optimization, do the COW without a second fault */
3638                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3639         }
3640
3641         spin_unlock(ptl);
3642         unlock_page(page);
3643 out:
3644         return ret;
3645
3646 backout:
3647         spin_unlock(ptl);
3648 backout_unlocked:
3649         unlock_page(page);
3650         put_page(page);
3651         goto out;
3652 }
3653
3654 #ifdef CONFIG_SMP
3655 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3656                             struct vm_area_struct *vma,
3657                             struct address_space *mapping,
3658                             pgoff_t idx, unsigned long address)
3659 {
3660         unsigned long key[2];
3661         u32 hash;
3662
3663         if (vma->vm_flags & VM_SHARED) {
3664                 key[0] = (unsigned long) mapping;
3665                 key[1] = idx;
3666         } else {
3667                 key[0] = (unsigned long) mm;
3668                 key[1] = address >> huge_page_shift(h);
3669         }
3670
3671         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3672
3673         return hash & (num_fault_mutexes - 1);
3674 }
3675 #else
3676 /*
3677  * For uniprocesor systems we always use a single mutex, so just
3678  * return 0 and avoid the hashing overhead.
3679  */
3680 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3681                             struct vm_area_struct *vma,
3682                             struct address_space *mapping,
3683                             pgoff_t idx, unsigned long address)
3684 {
3685         return 0;
3686 }
3687 #endif
3688
3689 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3690                         unsigned long address, unsigned int flags)
3691 {
3692         pte_t *ptep, entry;
3693         spinlock_t *ptl;
3694         int ret;
3695         u32 hash;
3696         pgoff_t idx;
3697         struct page *page = NULL;
3698         struct page *pagecache_page = NULL;
3699         struct hstate *h = hstate_vma(vma);
3700         struct address_space *mapping;
3701         int need_wait_lock = 0;
3702
3703         address &= huge_page_mask(h);
3704
3705         ptep = huge_pte_offset(mm, address);
3706         if (ptep) {
3707                 entry = huge_ptep_get(ptep);
3708                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3709                         migration_entry_wait_huge(vma, mm, ptep);
3710                         return 0;
3711                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3712                         return VM_FAULT_HWPOISON_LARGE |
3713                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3714         } else {
3715                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3716                 if (!ptep)
3717                         return VM_FAULT_OOM;
3718         }
3719
3720         mapping = vma->vm_file->f_mapping;
3721         idx = vma_hugecache_offset(h, vma, address);
3722
3723         /*
3724          * Serialize hugepage allocation and instantiation, so that we don't
3725          * get spurious allocation failures if two CPUs race to instantiate
3726          * the same page in the page cache.
3727          */
3728         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3729         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3730
3731         entry = huge_ptep_get(ptep);
3732         if (huge_pte_none(entry)) {
3733                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3734                 goto out_mutex;
3735         }
3736
3737         ret = 0;
3738
3739         /*
3740          * entry could be a migration/hwpoison entry at this point, so this
3741          * check prevents the kernel from going below assuming that we have
3742          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3743          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3744          * handle it.
3745          */
3746         if (!pte_present(entry))
3747                 goto out_mutex;
3748
3749         /*
3750          * If we are going to COW the mapping later, we examine the pending
3751          * reservations for this page now. This will ensure that any
3752          * allocations necessary to record that reservation occur outside the
3753          * spinlock. For private mappings, we also lookup the pagecache
3754          * page now as it is used to determine if a reservation has been
3755          * consumed.
3756          */
3757         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3758                 if (vma_needs_reservation(h, vma, address) < 0) {
3759                         ret = VM_FAULT_OOM;
3760                         goto out_mutex;
3761                 }
3762                 /* Just decrements count, does not deallocate */
3763                 vma_end_reservation(h, vma, address);
3764
3765                 if (!(vma->vm_flags & VM_MAYSHARE))
3766                         pagecache_page = hugetlbfs_pagecache_page(h,
3767                                                                 vma, address);
3768         }
3769
3770         ptl = huge_pte_lock(h, mm, ptep);
3771
3772         /* Check for a racing update before calling hugetlb_cow */
3773         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3774                 goto out_ptl;
3775
3776         /*
3777          * hugetlb_cow() requires page locks of pte_page(entry) and
3778          * pagecache_page, so here we need take the former one
3779          * when page != pagecache_page or !pagecache_page.
3780          */
3781         page = pte_page(entry);
3782         if (page != pagecache_page)
3783                 if (!trylock_page(page)) {
3784                         need_wait_lock = 1;
3785                         goto out_ptl;
3786                 }
3787
3788         get_page(page);
3789
3790         if (flags & FAULT_FLAG_WRITE) {
3791                 if (!huge_pte_write(entry)) {
3792                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3793                                         pagecache_page, ptl);
3794                         goto out_put_page;
3795                 }
3796                 entry = huge_pte_mkdirty(entry);
3797         }
3798         entry = pte_mkyoung(entry);
3799         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3800                                                 flags & FAULT_FLAG_WRITE))
3801                 update_mmu_cache(vma, address, ptep);
3802 out_put_page:
3803         if (page != pagecache_page)
3804                 unlock_page(page);
3805         put_page(page);
3806 out_ptl:
3807         spin_unlock(ptl);
3808
3809         if (pagecache_page) {
3810                 unlock_page(pagecache_page);
3811                 put_page(pagecache_page);
3812         }
3813 out_mutex:
3814         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3815         /*
3816          * Generally it's safe to hold refcount during waiting page lock. But
3817          * here we just wait to defer the next page fault to avoid busy loop and
3818          * the page is not used after unlocked before returning from the current
3819          * page fault. So we are safe from accessing freed page, even if we wait
3820          * here without taking refcount.
3821          */
3822         if (need_wait_lock)
3823                 wait_on_page_locked(page);
3824         return ret;
3825 }
3826
3827 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3828                          struct page **pages, struct vm_area_struct **vmas,
3829                          unsigned long *position, unsigned long *nr_pages,
3830                          long i, unsigned int flags)
3831 {
3832         unsigned long pfn_offset;
3833         unsigned long vaddr = *position;
3834         unsigned long remainder = *nr_pages;
3835         struct hstate *h = hstate_vma(vma);
3836
3837         while (vaddr < vma->vm_end && remainder) {
3838                 pte_t *pte;
3839                 spinlock_t *ptl = NULL;
3840                 int absent;
3841                 struct page *page;
3842
3843                 /*
3844                  * If we have a pending SIGKILL, don't keep faulting pages and
3845                  * potentially allocating memory.
3846                  */
3847                 if (unlikely(fatal_signal_pending(current))) {
3848                         remainder = 0;
3849                         break;
3850                 }
3851
3852                 /*
3853                  * Some archs (sparc64, sh*) have multiple pte_ts to
3854                  * each hugepage.  We have to make sure we get the
3855                  * first, for the page indexing below to work.
3856                  *
3857                  * Note that page table lock is not held when pte is null.
3858                  */
3859                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3860                 if (pte)
3861                         ptl = huge_pte_lock(h, mm, pte);
3862                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3863
3864                 /*
3865                  * When coredumping, it suits get_dump_page if we just return
3866                  * an error where there's an empty slot with no huge pagecache
3867                  * to back it.  This way, we avoid allocating a hugepage, and
3868                  * the sparse dumpfile avoids allocating disk blocks, but its
3869                  * huge holes still show up with zeroes where they need to be.
3870                  */
3871                 if (absent && (flags & FOLL_DUMP) &&
3872                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3873                         if (pte)
3874                                 spin_unlock(ptl);
3875                         remainder = 0;
3876                         break;
3877                 }
3878
3879                 /*
3880                  * We need call hugetlb_fault for both hugepages under migration
3881                  * (in which case hugetlb_fault waits for the migration,) and
3882                  * hwpoisoned hugepages (in which case we need to prevent the
3883                  * caller from accessing to them.) In order to do this, we use
3884                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3885                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3886                  * both cases, and because we can't follow correct pages
3887                  * directly from any kind of swap entries.
3888                  */
3889                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3890                     ((flags & FOLL_WRITE) &&
3891                       !huge_pte_write(huge_ptep_get(pte)))) {
3892                         int ret;
3893
3894                         if (pte)
3895                                 spin_unlock(ptl);
3896                         ret = hugetlb_fault(mm, vma, vaddr,
3897                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3898                         if (!(ret & VM_FAULT_ERROR))
3899                                 continue;
3900
3901                         remainder = 0;
3902                         break;
3903                 }
3904
3905                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3906                 page = pte_page(huge_ptep_get(pte));
3907 same_page:
3908                 if (pages) {
3909                         pages[i] = mem_map_offset(page, pfn_offset);
3910                         get_page_foll(pages[i]);
3911                 }
3912
3913                 if (vmas)
3914                         vmas[i] = vma;
3915
3916                 vaddr += PAGE_SIZE;
3917                 ++pfn_offset;
3918                 --remainder;
3919                 ++i;
3920                 if (vaddr < vma->vm_end && remainder &&
3921                                 pfn_offset < pages_per_huge_page(h)) {
3922                         /*
3923                          * We use pfn_offset to avoid touching the pageframes
3924                          * of this compound page.
3925                          */
3926                         goto same_page;
3927                 }
3928                 spin_unlock(ptl);
3929         }
3930         *nr_pages = remainder;
3931         *position = vaddr;
3932
3933         return i ? i : -EFAULT;
3934 }
3935
3936 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3937                 unsigned long address, unsigned long end, pgprot_t newprot)
3938 {
3939         struct mm_struct *mm = vma->vm_mm;
3940         unsigned long start = address;
3941         pte_t *ptep;
3942         pte_t pte;
3943         struct hstate *h = hstate_vma(vma);
3944         unsigned long pages = 0;
3945
3946         BUG_ON(address >= end);
3947         flush_cache_range(vma, address, end);
3948
3949         mmu_notifier_invalidate_range_start(mm, start, end);
3950         i_mmap_lock_write(vma->vm_file->f_mapping);
3951         for (; address < end; address += huge_page_size(h)) {
3952                 spinlock_t *ptl;
3953                 ptep = huge_pte_offset(mm, address);
3954                 if (!ptep)
3955                         continue;
3956                 ptl = huge_pte_lock(h, mm, ptep);
3957                 if (huge_pmd_unshare(mm, &address, ptep)) {
3958                         pages++;
3959                         spin_unlock(ptl);
3960                         continue;
3961                 }
3962                 pte = huge_ptep_get(ptep);
3963                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3964                         spin_unlock(ptl);
3965                         continue;
3966                 }
3967                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3968                         swp_entry_t entry = pte_to_swp_entry(pte);
3969
3970                         if (is_write_migration_entry(entry)) {
3971                                 pte_t newpte;
3972
3973                                 make_migration_entry_read(&entry);
3974                                 newpte = swp_entry_to_pte(entry);
3975                                 set_huge_pte_at(mm, address, ptep, newpte);
3976                                 pages++;
3977                         }
3978                         spin_unlock(ptl);
3979                         continue;
3980                 }
3981                 if (!huge_pte_none(pte)) {
3982                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3983                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3984                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3985                         set_huge_pte_at(mm, address, ptep, pte);
3986                         pages++;
3987                 }
3988                 spin_unlock(ptl);
3989         }
3990         /*
3991          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3992          * may have cleared our pud entry and done put_page on the page table:
3993          * once we release i_mmap_rwsem, another task can do the final put_page
3994          * and that page table be reused and filled with junk.
3995          */
3996         flush_tlb_range(vma, start, end);
3997         mmu_notifier_invalidate_range(mm, start, end);
3998         i_mmap_unlock_write(vma->vm_file->f_mapping);
3999         mmu_notifier_invalidate_range_end(mm, start, end);
4000
4001         return pages << h->order;
4002 }
4003
4004 int hugetlb_reserve_pages(struct inode *inode,
4005                                         long from, long to,
4006                                         struct vm_area_struct *vma,
4007                                         vm_flags_t vm_flags)
4008 {
4009         long ret, chg;
4010         struct hstate *h = hstate_inode(inode);
4011         struct hugepage_subpool *spool = subpool_inode(inode);
4012         struct resv_map *resv_map;
4013         long gbl_reserve;
4014
4015         /*
4016          * Only apply hugepage reservation if asked. At fault time, an
4017          * attempt will be made for VM_NORESERVE to allocate a page
4018          * without using reserves
4019          */
4020         if (vm_flags & VM_NORESERVE)
4021                 return 0;
4022
4023         /*
4024          * Shared mappings base their reservation on the number of pages that
4025          * are already allocated on behalf of the file. Private mappings need
4026          * to reserve the full area even if read-only as mprotect() may be
4027          * called to make the mapping read-write. Assume !vma is a shm mapping
4028          */
4029         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4030                 resv_map = inode_resv_map(inode);
4031
4032                 chg = region_chg(resv_map, from, to);
4033
4034         } else {
4035                 resv_map = resv_map_alloc();
4036                 if (!resv_map)
4037                         return -ENOMEM;
4038
4039                 chg = to - from;
4040
4041                 set_vma_resv_map(vma, resv_map);
4042                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4043         }
4044
4045         if (chg < 0) {
4046                 ret = chg;
4047                 goto out_err;
4048         }
4049
4050         /*
4051          * There must be enough pages in the subpool for the mapping. If
4052          * the subpool has a minimum size, there may be some global
4053          * reservations already in place (gbl_reserve).
4054          */
4055         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4056         if (gbl_reserve < 0) {
4057                 ret = -ENOSPC;
4058                 goto out_err;
4059         }
4060
4061         /*
4062          * Check enough hugepages are available for the reservation.
4063          * Hand the pages back to the subpool if there are not
4064          */
4065         ret = hugetlb_acct_memory(h, gbl_reserve);
4066         if (ret < 0) {
4067                 /* put back original number of pages, chg */
4068                 (void)hugepage_subpool_put_pages(spool, chg);
4069                 goto out_err;
4070         }
4071
4072         /*
4073          * Account for the reservations made. Shared mappings record regions
4074          * that have reservations as they are shared by multiple VMAs.
4075          * When the last VMA disappears, the region map says how much
4076          * the reservation was and the page cache tells how much of
4077          * the reservation was consumed. Private mappings are per-VMA and
4078          * only the consumed reservations are tracked. When the VMA
4079          * disappears, the original reservation is the VMA size and the
4080          * consumed reservations are stored in the map. Hence, nothing
4081          * else has to be done for private mappings here
4082          */
4083         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4084                 long add = region_add(resv_map, from, to);
4085
4086                 if (unlikely(chg > add)) {
4087                         /*
4088                          * pages in this range were added to the reserve
4089                          * map between region_chg and region_add.  This
4090                          * indicates a race with alloc_huge_page.  Adjust
4091                          * the subpool and reserve counts modified above
4092                          * based on the difference.
4093                          */
4094                         long rsv_adjust;
4095
4096                         rsv_adjust = hugepage_subpool_put_pages(spool,
4097                                                                 chg - add);
4098                         hugetlb_acct_memory(h, -rsv_adjust);
4099                 }
4100         }
4101         return 0;
4102 out_err:
4103         if (!vma || vma->vm_flags & VM_MAYSHARE)
4104                 region_abort(resv_map, from, to);
4105         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4106                 kref_put(&resv_map->refs, resv_map_release);
4107         return ret;
4108 }
4109
4110 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4111                                                                 long freed)
4112 {
4113         struct hstate *h = hstate_inode(inode);
4114         struct resv_map *resv_map = inode_resv_map(inode);
4115         long chg = 0;
4116         struct hugepage_subpool *spool = subpool_inode(inode);
4117         long gbl_reserve;
4118
4119         if (resv_map) {
4120                 chg = region_del(resv_map, start, end);
4121                 /*
4122                  * region_del() can fail in the rare case where a region
4123                  * must be split and another region descriptor can not be
4124                  * allocated.  If end == LONG_MAX, it will not fail.
4125                  */
4126                 if (chg < 0)
4127                         return chg;
4128         }
4129
4130         spin_lock(&inode->i_lock);
4131         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4132         spin_unlock(&inode->i_lock);
4133
4134         /*
4135          * If the subpool has a minimum size, the number of global
4136          * reservations to be released may be adjusted.
4137          */
4138         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4139         hugetlb_acct_memory(h, -gbl_reserve);
4140
4141         return 0;
4142 }
4143
4144 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4145 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4146                                 struct vm_area_struct *vma,
4147                                 unsigned long addr, pgoff_t idx)
4148 {
4149         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4150                                 svma->vm_start;
4151         unsigned long sbase = saddr & PUD_MASK;
4152         unsigned long s_end = sbase + PUD_SIZE;
4153
4154         /* Allow segments to share if only one is marked locked */
4155         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4156         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4157
4158         /*
4159          * match the virtual addresses, permission and the alignment of the
4160          * page table page.
4161          */
4162         if (pmd_index(addr) != pmd_index(saddr) ||
4163             vm_flags != svm_flags ||
4164             sbase < svma->vm_start || svma->vm_end < s_end)
4165                 return 0;
4166
4167         return saddr;
4168 }
4169
4170 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4171 {
4172         unsigned long base = addr & PUD_MASK;
4173         unsigned long end = base + PUD_SIZE;
4174
4175         /*
4176          * check on proper vm_flags and page table alignment
4177          */
4178         if (vma->vm_flags & VM_MAYSHARE &&
4179             vma->vm_start <= base && end <= vma->vm_end)
4180                 return true;
4181         return false;
4182 }
4183
4184 /*
4185  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4186  * and returns the corresponding pte. While this is not necessary for the
4187  * !shared pmd case because we can allocate the pmd later as well, it makes the
4188  * code much cleaner. pmd allocation is essential for the shared case because
4189  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4190  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4191  * bad pmd for sharing.
4192  */
4193 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4194 {
4195         struct vm_area_struct *vma = find_vma(mm, addr);
4196         struct address_space *mapping = vma->vm_file->f_mapping;
4197         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4198                         vma->vm_pgoff;
4199         struct vm_area_struct *svma;
4200         unsigned long saddr;
4201         pte_t *spte = NULL;
4202         pte_t *pte;
4203         spinlock_t *ptl;
4204
4205         if (!vma_shareable(vma, addr))
4206                 return (pte_t *)pmd_alloc(mm, pud, addr);
4207
4208         i_mmap_lock_write(mapping);
4209         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4210                 if (svma == vma)
4211                         continue;
4212
4213                 saddr = page_table_shareable(svma, vma, addr, idx);
4214                 if (saddr) {
4215                         spte = huge_pte_offset(svma->vm_mm, saddr);
4216                         if (spte) {
4217                                 get_page(virt_to_page(spte));
4218                                 break;
4219                         }
4220                 }
4221         }
4222
4223         if (!spte)
4224                 goto out;
4225
4226         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4227         spin_lock(ptl);
4228         if (pud_none(*pud)) {
4229                 pud_populate(mm, pud,
4230                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4231                 mm_inc_nr_pmds(mm);
4232         } else {
4233                 put_page(virt_to_page(spte));
4234         }
4235         spin_unlock(ptl);
4236 out:
4237         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4238         i_mmap_unlock_write(mapping);
4239         return pte;
4240 }
4241
4242 /*
4243  * unmap huge page backed by shared pte.
4244  *
4245  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4246  * indicated by page_count > 1, unmap is achieved by clearing pud and
4247  * decrementing the ref count. If count == 1, the pte page is not shared.
4248  *
4249  * called with page table lock held.
4250  *
4251  * returns: 1 successfully unmapped a shared pte page
4252  *          0 the underlying pte page is not shared, or it is the last user
4253  */
4254 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4255 {
4256         pgd_t *pgd = pgd_offset(mm, *addr);
4257         pud_t *pud = pud_offset(pgd, *addr);
4258
4259         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4260         if (page_count(virt_to_page(ptep)) == 1)
4261                 return 0;
4262
4263         pud_clear(pud);
4264         put_page(virt_to_page(ptep));
4265         mm_dec_nr_pmds(mm);
4266         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4267         return 1;
4268 }
4269 #define want_pmd_share()        (1)
4270 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4271 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4272 {
4273         return NULL;
4274 }
4275
4276 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4277 {
4278         return 0;
4279 }
4280 #define want_pmd_share()        (0)
4281 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4282
4283 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4284 pte_t *huge_pte_alloc(struct mm_struct *mm,
4285                         unsigned long addr, unsigned long sz)
4286 {
4287         pgd_t *pgd;
4288         pud_t *pud;
4289         pte_t *pte = NULL;
4290
4291         pgd = pgd_offset(mm, addr);
4292         pud = pud_alloc(mm, pgd, addr);
4293         if (pud) {
4294                 if (sz == PUD_SIZE) {
4295                         pte = (pte_t *)pud;
4296                 } else {
4297                         BUG_ON(sz != PMD_SIZE);
4298                         if (want_pmd_share() && pud_none(*pud))
4299                                 pte = huge_pmd_share(mm, addr, pud);
4300                         else
4301                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4302                 }
4303         }
4304         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4305
4306         return pte;
4307 }
4308
4309 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4310 {
4311         pgd_t *pgd;
4312         pud_t *pud;
4313         pmd_t *pmd = NULL;
4314
4315         pgd = pgd_offset(mm, addr);
4316         if (pgd_present(*pgd)) {
4317                 pud = pud_offset(pgd, addr);
4318                 if (pud_present(*pud)) {
4319                         if (pud_huge(*pud))
4320                                 return (pte_t *)pud;
4321                         pmd = pmd_offset(pud, addr);
4322                 }
4323         }
4324         return (pte_t *) pmd;
4325 }
4326
4327 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4328
4329 /*
4330  * These functions are overwritable if your architecture needs its own
4331  * behavior.
4332  */
4333 struct page * __weak
4334 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4335                               int write)
4336 {
4337         return ERR_PTR(-EINVAL);
4338 }
4339
4340 struct page * __weak
4341 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4342                 pmd_t *pmd, int flags)
4343 {
4344         struct page *page = NULL;
4345         spinlock_t *ptl;
4346 retry:
4347         ptl = pmd_lockptr(mm, pmd);
4348         spin_lock(ptl);
4349         /*
4350          * make sure that the address range covered by this pmd is not
4351          * unmapped from other threads.
4352          */
4353         if (!pmd_huge(*pmd))
4354                 goto out;
4355         if (pmd_present(*pmd)) {
4356                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4357                 if (flags & FOLL_GET)
4358                         get_page(page);
4359         } else {
4360                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4361                         spin_unlock(ptl);
4362                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4363                         goto retry;
4364                 }
4365                 /*
4366                  * hwpoisoned entry is treated as no_page_table in
4367                  * follow_page_mask().
4368                  */
4369         }
4370 out:
4371         spin_unlock(ptl);
4372         return page;
4373 }
4374
4375 struct page * __weak
4376 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4377                 pud_t *pud, int flags)
4378 {
4379         if (flags & FOLL_GET)
4380                 return NULL;
4381
4382         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4383 }
4384
4385 #ifdef CONFIG_MEMORY_FAILURE
4386
4387 /*
4388  * This function is called from memory failure code.
4389  * Assume the caller holds page lock of the head page.
4390  */
4391 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4392 {
4393         struct hstate *h = page_hstate(hpage);
4394         int nid = page_to_nid(hpage);
4395         int ret = -EBUSY;
4396
4397         spin_lock(&hugetlb_lock);
4398         /*
4399          * Just checking !page_huge_active is not enough, because that could be
4400          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4401          */
4402         if (!page_huge_active(hpage) && !page_count(hpage)) {
4403                 /*
4404                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4405                  * but dangling hpage->lru can trigger list-debug warnings
4406                  * (this happens when we call unpoison_memory() on it),
4407                  * so let it point to itself with list_del_init().
4408                  */
4409                 list_del_init(&hpage->lru);
4410                 set_page_refcounted(hpage);
4411                 h->free_huge_pages--;
4412                 h->free_huge_pages_node[nid]--;
4413                 ret = 0;
4414         }
4415         spin_unlock(&hugetlb_lock);
4416         return ret;
4417 }
4418 #endif
4419
4420 bool isolate_huge_page(struct page *page, struct list_head *list)
4421 {
4422         bool ret = true;
4423
4424         VM_BUG_ON_PAGE(!PageHead(page), page);
4425         spin_lock(&hugetlb_lock);
4426         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4427                 ret = false;
4428                 goto unlock;
4429         }
4430         clear_page_huge_active(page);
4431         list_move_tail(&page->lru, list);
4432 unlock:
4433         spin_unlock(&hugetlb_lock);
4434         return ret;
4435 }
4436
4437 void putback_active_hugepage(struct page *page)
4438 {
4439         VM_BUG_ON_PAGE(!PageHead(page), page);
4440         spin_lock(&hugetlb_lock);
4441         set_page_huge_active(page);
4442         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4443         spin_unlock(&hugetlb_lock);
4444         put_page(page);
4445 }