ARM: dtsi: rk3228: add psci support
[firefly-linux-kernel-4.4.55.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66
67 #include <asm/futex.h>
68
69 #include "rtmutex_common.h"
70
71 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
72 int __read_mostly futex_cmpxchg_enabled;
73 #endif
74
75 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
76
77 /*
78  * Futex flags used to encode options to functions and preserve them across
79  * restarts.
80  */
81 #define FLAGS_SHARED            0x01
82 #define FLAGS_CLOCKRT           0x02
83 #define FLAGS_HAS_TIMEOUT       0x04
84
85 /*
86  * Priority Inheritance state:
87  */
88 struct futex_pi_state {
89         /*
90          * list of 'owned' pi_state instances - these have to be
91          * cleaned up in do_exit() if the task exits prematurely:
92          */
93         struct list_head list;
94
95         /*
96          * The PI object:
97          */
98         struct rt_mutex pi_mutex;
99
100         struct task_struct *owner;
101         atomic_t refcount;
102
103         union futex_key key;
104 };
105
106 /**
107  * struct futex_q - The hashed futex queue entry, one per waiting task
108  * @list:               priority-sorted list of tasks waiting on this futex
109  * @task:               the task waiting on the futex
110  * @lock_ptr:           the hash bucket lock
111  * @key:                the key the futex is hashed on
112  * @pi_state:           optional priority inheritance state
113  * @rt_waiter:          rt_waiter storage for use with requeue_pi
114  * @requeue_pi_key:     the requeue_pi target futex key
115  * @bitset:             bitset for the optional bitmasked wakeup
116  *
117  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
118  * we can wake only the relevant ones (hashed queues may be shared).
119  *
120  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
121  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
122  * The order of wakeup is always to make the first condition true, then
123  * the second.
124  *
125  * PI futexes are typically woken before they are removed from the hash list via
126  * the rt_mutex code. See unqueue_me_pi().
127  */
128 struct futex_q {
129         struct plist_node list;
130
131         struct task_struct *task;
132         spinlock_t *lock_ptr;
133         union futex_key key;
134         struct futex_pi_state *pi_state;
135         struct rt_mutex_waiter *rt_waiter;
136         union futex_key *requeue_pi_key;
137         u32 bitset;
138 };
139
140 static const struct futex_q futex_q_init = {
141         /* list gets initialized in queue_me()*/
142         .key = FUTEX_KEY_INIT,
143         .bitset = FUTEX_BITSET_MATCH_ANY
144 };
145
146 /*
147  * Hash buckets are shared by all the futex_keys that hash to the same
148  * location.  Each key may have multiple futex_q structures, one for each task
149  * waiting on a futex.
150  */
151 struct futex_hash_bucket {
152         spinlock_t lock;
153         struct plist_head chain;
154 };
155
156 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
157
158 /*
159  * We hash on the keys returned from get_futex_key (see below).
160  */
161 static struct futex_hash_bucket *hash_futex(union futex_key *key)
162 {
163         u32 hash = jhash2((u32*)&key->both.word,
164                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
165                           key->both.offset);
166         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
167 }
168
169 /*
170  * Return 1 if two futex_keys are equal, 0 otherwise.
171  */
172 static inline int match_futex(union futex_key *key1, union futex_key *key2)
173 {
174         return (key1 && key2
175                 && key1->both.word == key2->both.word
176                 && key1->both.ptr == key2->both.ptr
177                 && key1->both.offset == key2->both.offset);
178 }
179
180 /*
181  * Take a reference to the resource addressed by a key.
182  * Can be called while holding spinlocks.
183  *
184  */
185 static void get_futex_key_refs(union futex_key *key)
186 {
187         if (!key->both.ptr)
188                 return;
189
190         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
191         case FUT_OFF_INODE:
192                 ihold(key->shared.inode);
193                 break;
194         case FUT_OFF_MMSHARED:
195                 atomic_inc(&key->private.mm->mm_count);
196                 break;
197         }
198 }
199
200 /*
201  * Drop a reference to the resource addressed by a key.
202  * The hash bucket spinlock must not be held.
203  */
204 static void drop_futex_key_refs(union futex_key *key)
205 {
206         if (!key->both.ptr) {
207                 /* If we're here then we tried to put a key we failed to get */
208                 WARN_ON_ONCE(1);
209                 return;
210         }
211
212         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
213         case FUT_OFF_INODE:
214                 iput(key->shared.inode);
215                 break;
216         case FUT_OFF_MMSHARED:
217                 mmdrop(key->private.mm);
218                 break;
219         }
220 }
221
222 /**
223  * get_futex_key() - Get parameters which are the keys for a futex
224  * @uaddr:      virtual address of the futex
225  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
226  * @key:        address where result is stored.
227  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
228  *              VERIFY_WRITE)
229  *
230  * Return: a negative error code or 0
231  *
232  * The key words are stored in *key on success.
233  *
234  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
235  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
236  * We can usually work out the index without swapping in the page.
237  *
238  * lock_page() might sleep, the caller should not hold a spinlock.
239  */
240 static int
241 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
242 {
243         unsigned long address = (unsigned long)uaddr;
244         struct mm_struct *mm = current->mm;
245         struct page *page, *page_head;
246         int err, ro = 0;
247
248         /*
249          * The futex address must be "naturally" aligned.
250          */
251         key->both.offset = address % PAGE_SIZE;
252         if (unlikely((address % sizeof(u32)) != 0))
253                 return -EINVAL;
254         address -= key->both.offset;
255
256         /*
257          * PROCESS_PRIVATE futexes are fast.
258          * As the mm cannot disappear under us and the 'key' only needs
259          * virtual address, we dont even have to find the underlying vma.
260          * Note : We do have to check 'uaddr' is a valid user address,
261          *        but access_ok() should be faster than find_vma()
262          */
263         if (!fshared) {
264                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
265                         return -EFAULT;
266                 key->private.mm = mm;
267                 key->private.address = address;
268                 get_futex_key_refs(key);
269                 return 0;
270         }
271
272 again:
273         err = get_user_pages_fast(address, 1, 1, &page);
274         /*
275          * If write access is not required (eg. FUTEX_WAIT), try
276          * and get read-only access.
277          */
278         if (err == -EFAULT && rw == VERIFY_READ) {
279                 err = get_user_pages_fast(address, 1, 0, &page);
280                 ro = 1;
281         }
282         if (err < 0)
283                 return err;
284         else
285                 err = 0;
286
287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
288         page_head = page;
289         if (unlikely(PageTail(page))) {
290                 put_page(page);
291                 /* serialize against __split_huge_page_splitting() */
292                 local_irq_disable();
293                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
294                         page_head = compound_head(page);
295                         /*
296                          * page_head is valid pointer but we must pin
297                          * it before taking the PG_lock and/or
298                          * PG_compound_lock. The moment we re-enable
299                          * irqs __split_huge_page_splitting() can
300                          * return and the head page can be freed from
301                          * under us. We can't take the PG_lock and/or
302                          * PG_compound_lock on a page that could be
303                          * freed from under us.
304                          */
305                         if (page != page_head) {
306                                 get_page(page_head);
307                                 put_page(page);
308                         }
309                         local_irq_enable();
310                 } else {
311                         local_irq_enable();
312                         goto again;
313                 }
314         }
315 #else
316         page_head = compound_head(page);
317         if (page != page_head) {
318                 get_page(page_head);
319                 put_page(page);
320         }
321 #endif
322
323         lock_page(page_head);
324
325         /*
326          * If page_head->mapping is NULL, then it cannot be a PageAnon
327          * page; but it might be the ZERO_PAGE or in the gate area or
328          * in a special mapping (all cases which we are happy to fail);
329          * or it may have been a good file page when get_user_pages_fast
330          * found it, but truncated or holepunched or subjected to
331          * invalidate_complete_page2 before we got the page lock (also
332          * cases which we are happy to fail).  And we hold a reference,
333          * so refcount care in invalidate_complete_page's remove_mapping
334          * prevents drop_caches from setting mapping to NULL beneath us.
335          *
336          * The case we do have to guard against is when memory pressure made
337          * shmem_writepage move it from filecache to swapcache beneath us:
338          * an unlikely race, but we do need to retry for page_head->mapping.
339          */
340         if (!page_head->mapping) {
341                 int shmem_swizzled = PageSwapCache(page_head);
342                 unlock_page(page_head);
343                 put_page(page_head);
344                 if (shmem_swizzled)
345                         goto again;
346                 return -EFAULT;
347         }
348
349         /*
350          * Private mappings are handled in a simple way.
351          *
352          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
353          * it's a read-only handle, it's expected that futexes attach to
354          * the object not the particular process.
355          */
356         if (PageAnon(page_head)) {
357                 /*
358                  * A RO anonymous page will never change and thus doesn't make
359                  * sense for futex operations.
360                  */
361                 if (ro) {
362                         err = -EFAULT;
363                         goto out;
364                 }
365
366                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
367                 key->private.mm = mm;
368                 key->private.address = address;
369         } else {
370                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
371                 key->shared.inode = page_head->mapping->host;
372                 key->shared.pgoff = basepage_index(page);
373         }
374
375         get_futex_key_refs(key);
376
377 out:
378         unlock_page(page_head);
379         put_page(page_head);
380         return err;
381 }
382
383 static inline void put_futex_key(union futex_key *key)
384 {
385         drop_futex_key_refs(key);
386 }
387
388 /**
389  * fault_in_user_writeable() - Fault in user address and verify RW access
390  * @uaddr:      pointer to faulting user space address
391  *
392  * Slow path to fixup the fault we just took in the atomic write
393  * access to @uaddr.
394  *
395  * We have no generic implementation of a non-destructive write to the
396  * user address. We know that we faulted in the atomic pagefault
397  * disabled section so we can as well avoid the #PF overhead by
398  * calling get_user_pages() right away.
399  */
400 static int fault_in_user_writeable(u32 __user *uaddr)
401 {
402         struct mm_struct *mm = current->mm;
403         int ret;
404
405         down_read(&mm->mmap_sem);
406         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
407                                FAULT_FLAG_WRITE);
408         up_read(&mm->mmap_sem);
409
410         return ret < 0 ? ret : 0;
411 }
412
413 /**
414  * futex_top_waiter() - Return the highest priority waiter on a futex
415  * @hb:         the hash bucket the futex_q's reside in
416  * @key:        the futex key (to distinguish it from other futex futex_q's)
417  *
418  * Must be called with the hb lock held.
419  */
420 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
421                                         union futex_key *key)
422 {
423         struct futex_q *this;
424
425         plist_for_each_entry(this, &hb->chain, list) {
426                 if (match_futex(&this->key, key))
427                         return this;
428         }
429         return NULL;
430 }
431
432 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
433                                       u32 uval, u32 newval)
434 {
435         int ret;
436
437         pagefault_disable();
438         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
439         pagefault_enable();
440
441         return ret;
442 }
443
444 static int get_futex_value_locked(u32 *dest, u32 __user *from)
445 {
446         int ret;
447
448         pagefault_disable();
449         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
450         pagefault_enable();
451
452         return ret ? -EFAULT : 0;
453 }
454
455
456 /*
457  * PI code:
458  */
459 static int refill_pi_state_cache(void)
460 {
461         struct futex_pi_state *pi_state;
462
463         if (likely(current->pi_state_cache))
464                 return 0;
465
466         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
467
468         if (!pi_state)
469                 return -ENOMEM;
470
471         INIT_LIST_HEAD(&pi_state->list);
472         /* pi_mutex gets initialized later */
473         pi_state->owner = NULL;
474         atomic_set(&pi_state->refcount, 1);
475         pi_state->key = FUTEX_KEY_INIT;
476
477         current->pi_state_cache = pi_state;
478
479         return 0;
480 }
481
482 static struct futex_pi_state * alloc_pi_state(void)
483 {
484         struct futex_pi_state *pi_state = current->pi_state_cache;
485
486         WARN_ON(!pi_state);
487         current->pi_state_cache = NULL;
488
489         return pi_state;
490 }
491
492 static void free_pi_state(struct futex_pi_state *pi_state)
493 {
494         if (!atomic_dec_and_test(&pi_state->refcount))
495                 return;
496
497         /*
498          * If pi_state->owner is NULL, the owner is most probably dying
499          * and has cleaned up the pi_state already
500          */
501         if (pi_state->owner) {
502                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
503                 list_del_init(&pi_state->list);
504                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
505
506                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
507         }
508
509         if (current->pi_state_cache)
510                 kfree(pi_state);
511         else {
512                 /*
513                  * pi_state->list is already empty.
514                  * clear pi_state->owner.
515                  * refcount is at 0 - put it back to 1.
516                  */
517                 pi_state->owner = NULL;
518                 atomic_set(&pi_state->refcount, 1);
519                 current->pi_state_cache = pi_state;
520         }
521 }
522
523 /*
524  * Look up the task based on what TID userspace gave us.
525  * We dont trust it.
526  */
527 static struct task_struct * futex_find_get_task(pid_t pid)
528 {
529         struct task_struct *p;
530
531         rcu_read_lock();
532         p = find_task_by_vpid(pid);
533         if (p)
534                 get_task_struct(p);
535
536         rcu_read_unlock();
537
538         return p;
539 }
540
541 /*
542  * This task is holding PI mutexes at exit time => bad.
543  * Kernel cleans up PI-state, but userspace is likely hosed.
544  * (Robust-futex cleanup is separate and might save the day for userspace.)
545  */
546 void exit_pi_state_list(struct task_struct *curr)
547 {
548         struct list_head *next, *head = &curr->pi_state_list;
549         struct futex_pi_state *pi_state;
550         struct futex_hash_bucket *hb;
551         union futex_key key = FUTEX_KEY_INIT;
552
553         if (!futex_cmpxchg_enabled)
554                 return;
555         /*
556          * We are a ZOMBIE and nobody can enqueue itself on
557          * pi_state_list anymore, but we have to be careful
558          * versus waiters unqueueing themselves:
559          */
560         raw_spin_lock_irq(&curr->pi_lock);
561         while (!list_empty(head)) {
562
563                 next = head->next;
564                 pi_state = list_entry(next, struct futex_pi_state, list);
565                 key = pi_state->key;
566                 hb = hash_futex(&key);
567                 raw_spin_unlock_irq(&curr->pi_lock);
568
569                 spin_lock(&hb->lock);
570
571                 raw_spin_lock_irq(&curr->pi_lock);
572                 /*
573                  * We dropped the pi-lock, so re-check whether this
574                  * task still owns the PI-state:
575                  */
576                 if (head->next != next) {
577                         spin_unlock(&hb->lock);
578                         continue;
579                 }
580
581                 WARN_ON(pi_state->owner != curr);
582                 WARN_ON(list_empty(&pi_state->list));
583                 list_del_init(&pi_state->list);
584                 pi_state->owner = NULL;
585                 raw_spin_unlock_irq(&curr->pi_lock);
586
587                 rt_mutex_unlock(&pi_state->pi_mutex);
588
589                 spin_unlock(&hb->lock);
590
591                 raw_spin_lock_irq(&curr->pi_lock);
592         }
593         raw_spin_unlock_irq(&curr->pi_lock);
594 }
595
596 /*
597  * We need to check the following states:
598  *
599  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
600  *
601  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
602  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
603  *
604  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
605  *
606  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
607  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
608  *
609  * [6]  Found  | Found    | task      | 0         | 1      | Valid
610  *
611  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
612  *
613  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
614  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
615  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
616  *
617  * [1]  Indicates that the kernel can acquire the futex atomically. We
618  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
619  *
620  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
621  *      thread is found then it indicates that the owner TID has died.
622  *
623  * [3]  Invalid. The waiter is queued on a non PI futex
624  *
625  * [4]  Valid state after exit_robust_list(), which sets the user space
626  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
627  *
628  * [5]  The user space value got manipulated between exit_robust_list()
629  *      and exit_pi_state_list()
630  *
631  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
632  *      the pi_state but cannot access the user space value.
633  *
634  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
635  *
636  * [8]  Owner and user space value match
637  *
638  * [9]  There is no transient state which sets the user space TID to 0
639  *      except exit_robust_list(), but this is indicated by the
640  *      FUTEX_OWNER_DIED bit. See [4]
641  *
642  * [10] There is no transient state which leaves owner and user space
643  *      TID out of sync.
644  */
645 static int
646 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
647                 union futex_key *key, struct futex_pi_state **ps)
648 {
649         struct futex_pi_state *pi_state = NULL;
650         struct futex_q *this, *next;
651         struct plist_head *head;
652         struct task_struct *p;
653         pid_t pid = uval & FUTEX_TID_MASK;
654
655         head = &hb->chain;
656
657         plist_for_each_entry_safe(this, next, head, list) {
658                 if (match_futex(&this->key, key)) {
659                         /*
660                          * Sanity check the waiter before increasing
661                          * the refcount and attaching to it.
662                          */
663                         pi_state = this->pi_state;
664                         /*
665                          * Userspace might have messed up non-PI and
666                          * PI futexes [3]
667                          */
668                         if (unlikely(!pi_state))
669                                 return -EINVAL;
670
671                         WARN_ON(!atomic_read(&pi_state->refcount));
672
673                         /*
674                          * Handle the owner died case:
675                          */
676                         if (uval & FUTEX_OWNER_DIED) {
677                                 /*
678                                  * exit_pi_state_list sets owner to NULL and
679                                  * wakes the topmost waiter. The task which
680                                  * acquires the pi_state->rt_mutex will fixup
681                                  * owner.
682                                  */
683                                 if (!pi_state->owner) {
684                                         /*
685                                          * No pi state owner, but the user
686                                          * space TID is not 0. Inconsistent
687                                          * state. [5]
688                                          */
689                                         if (pid)
690                                                 return -EINVAL;
691                                         /*
692                                          * Take a ref on the state and
693                                          * return. [4]
694                                          */
695                                         goto out_state;
696                                 }
697
698                                 /*
699                                  * If TID is 0, then either the dying owner
700                                  * has not yet executed exit_pi_state_list()
701                                  * or some waiter acquired the rtmutex in the
702                                  * pi state, but did not yet fixup the TID in
703                                  * user space.
704                                  *
705                                  * Take a ref on the state and return. [6]
706                                  */
707                                 if (!pid)
708                                         goto out_state;
709                         } else {
710                                 /*
711                                  * If the owner died bit is not set,
712                                  * then the pi_state must have an
713                                  * owner. [7]
714                                  */
715                                 if (!pi_state->owner)
716                                         return -EINVAL;
717                         }
718
719                         /*
720                          * Bail out if user space manipulated the
721                          * futex value. If pi state exists then the
722                          * owner TID must be the same as the user
723                          * space TID. [9/10]
724                          */
725                         if (pid != task_pid_vnr(pi_state->owner))
726                                 return -EINVAL;
727
728                 out_state:
729                         atomic_inc(&pi_state->refcount);
730                         *ps = pi_state;
731                         return 0;
732                 }
733         }
734
735         /*
736          * We are the first waiter - try to look up the real owner and attach
737          * the new pi_state to it, but bail out when TID = 0 [1]
738          */
739         if (!pid)
740                 return -ESRCH;
741         p = futex_find_get_task(pid);
742         if (!p)
743                 return -ESRCH;
744
745         if (!p->mm) {
746                 put_task_struct(p);
747                 return -EPERM;
748         }
749
750         /*
751          * We need to look at the task state flags to figure out,
752          * whether the task is exiting. To protect against the do_exit
753          * change of the task flags, we do this protected by
754          * p->pi_lock:
755          */
756         raw_spin_lock_irq(&p->pi_lock);
757         if (unlikely(p->flags & PF_EXITING)) {
758                 /*
759                  * The task is on the way out. When PF_EXITPIDONE is
760                  * set, we know that the task has finished the
761                  * cleanup:
762                  */
763                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
764
765                 raw_spin_unlock_irq(&p->pi_lock);
766                 put_task_struct(p);
767                 return ret;
768         }
769
770         /*
771          * No existing pi state. First waiter. [2]
772          */
773         pi_state = alloc_pi_state();
774
775         /*
776          * Initialize the pi_mutex in locked state and make 'p'
777          * the owner of it:
778          */
779         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
780
781         /* Store the key for possible exit cleanups: */
782         pi_state->key = *key;
783
784         WARN_ON(!list_empty(&pi_state->list));
785         list_add(&pi_state->list, &p->pi_state_list);
786         pi_state->owner = p;
787         raw_spin_unlock_irq(&p->pi_lock);
788
789         put_task_struct(p);
790
791         *ps = pi_state;
792
793         return 0;
794 }
795
796 /**
797  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
798  * @uaddr:              the pi futex user address
799  * @hb:                 the pi futex hash bucket
800  * @key:                the futex key associated with uaddr and hb
801  * @ps:                 the pi_state pointer where we store the result of the
802  *                      lookup
803  * @task:               the task to perform the atomic lock work for.  This will
804  *                      be "current" except in the case of requeue pi.
805  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
806  *
807  * Return:
808  *  0 - ready to wait;
809  *  1 - acquired the lock;
810  * <0 - error
811  *
812  * The hb->lock and futex_key refs shall be held by the caller.
813  */
814 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
815                                 union futex_key *key,
816                                 struct futex_pi_state **ps,
817                                 struct task_struct *task, int set_waiters)
818 {
819         int lock_taken, ret, force_take = 0;
820         u32 uval, newval, curval, vpid = task_pid_vnr(task);
821
822 retry:
823         ret = lock_taken = 0;
824
825         /*
826          * To avoid races, we attempt to take the lock here again
827          * (by doing a 0 -> TID atomic cmpxchg), while holding all
828          * the locks. It will most likely not succeed.
829          */
830         newval = vpid;
831         if (set_waiters)
832                 newval |= FUTEX_WAITERS;
833
834         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
835                 return -EFAULT;
836
837         /*
838          * Detect deadlocks.
839          */
840         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
841                 return -EDEADLK;
842
843         /*
844          * Surprise - we got the lock, but we do not trust user space at all.
845          */
846         if (unlikely(!curval)) {
847                 /*
848                  * We verify whether there is kernel state for this
849                  * futex. If not, we can safely assume, that the 0 ->
850                  * TID transition is correct. If state exists, we do
851                  * not bother to fixup the user space state as it was
852                  * corrupted already.
853                  */
854                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
855         }
856
857         uval = curval;
858
859         /*
860          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
861          * to wake at the next unlock.
862          */
863         newval = curval | FUTEX_WAITERS;
864
865         /*
866          * Should we force take the futex? See below.
867          */
868         if (unlikely(force_take)) {
869                 /*
870                  * Keep the OWNER_DIED and the WAITERS bit and set the
871                  * new TID value.
872                  */
873                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
874                 force_take = 0;
875                 lock_taken = 1;
876         }
877
878         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
879                 return -EFAULT;
880         if (unlikely(curval != uval))
881                 goto retry;
882
883         /*
884          * We took the lock due to forced take over.
885          */
886         if (unlikely(lock_taken))
887                 return 1;
888
889         /*
890          * We dont have the lock. Look up the PI state (or create it if
891          * we are the first waiter):
892          */
893         ret = lookup_pi_state(uval, hb, key, ps);
894
895         if (unlikely(ret)) {
896                 switch (ret) {
897                 case -ESRCH:
898                         /*
899                          * We failed to find an owner for this
900                          * futex. So we have no pi_state to block
901                          * on. This can happen in two cases:
902                          *
903                          * 1) The owner died
904                          * 2) A stale FUTEX_WAITERS bit
905                          *
906                          * Re-read the futex value.
907                          */
908                         if (get_futex_value_locked(&curval, uaddr))
909                                 return -EFAULT;
910
911                         /*
912                          * If the owner died or we have a stale
913                          * WAITERS bit the owner TID in the user space
914                          * futex is 0.
915                          */
916                         if (!(curval & FUTEX_TID_MASK)) {
917                                 force_take = 1;
918                                 goto retry;
919                         }
920                 default:
921                         break;
922                 }
923         }
924
925         return ret;
926 }
927
928 /**
929  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
930  * @q:  The futex_q to unqueue
931  *
932  * The q->lock_ptr must not be NULL and must be held by the caller.
933  */
934 static void __unqueue_futex(struct futex_q *q)
935 {
936         struct futex_hash_bucket *hb;
937
938         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
939             || WARN_ON(plist_node_empty(&q->list)))
940                 return;
941
942         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
943         plist_del(&q->list, &hb->chain);
944 }
945
946 /*
947  * The hash bucket lock must be held when this is called.
948  * Afterwards, the futex_q must not be accessed.
949  */
950 static void wake_futex(struct futex_q *q)
951 {
952         struct task_struct *p = q->task;
953
954         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
955                 return;
956
957         /*
958          * We set q->lock_ptr = NULL _before_ we wake up the task. If
959          * a non-futex wake up happens on another CPU then the task
960          * might exit and p would dereference a non-existing task
961          * struct. Prevent this by holding a reference on p across the
962          * wake up.
963          */
964         get_task_struct(p);
965
966         __unqueue_futex(q);
967         /*
968          * The waiting task can free the futex_q as soon as
969          * q->lock_ptr = NULL is written, without taking any locks. A
970          * memory barrier is required here to prevent the following
971          * store to lock_ptr from getting ahead of the plist_del.
972          */
973         smp_wmb();
974         q->lock_ptr = NULL;
975
976         wake_up_state(p, TASK_NORMAL);
977         put_task_struct(p);
978 }
979
980 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
981 {
982         struct task_struct *new_owner;
983         struct futex_pi_state *pi_state = this->pi_state;
984         u32 uninitialized_var(curval), newval;
985         int ret = 0;
986
987         if (!pi_state)
988                 return -EINVAL;
989
990         /*
991          * If current does not own the pi_state then the futex is
992          * inconsistent and user space fiddled with the futex value.
993          */
994         if (pi_state->owner != current)
995                 return -EINVAL;
996
997         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
998         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
999
1000         /*
1001          * It is possible that the next waiter (the one that brought
1002          * this owner to the kernel) timed out and is no longer
1003          * waiting on the lock.
1004          */
1005         if (!new_owner)
1006                 new_owner = this->task;
1007
1008         /*
1009          * We pass it to the next owner. The WAITERS bit is always
1010          * kept enabled while there is PI state around. We cleanup the
1011          * owner died bit, because we are the owner.
1012          */
1013         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1014
1015         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1016                 ret = -EFAULT;
1017         else if (curval != uval)
1018                 ret = -EINVAL;
1019         if (ret) {
1020                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1021                 return ret;
1022         }
1023
1024         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1025         WARN_ON(list_empty(&pi_state->list));
1026         list_del_init(&pi_state->list);
1027         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1028
1029         raw_spin_lock_irq(&new_owner->pi_lock);
1030         WARN_ON(!list_empty(&pi_state->list));
1031         list_add(&pi_state->list, &new_owner->pi_state_list);
1032         pi_state->owner = new_owner;
1033         raw_spin_unlock_irq(&new_owner->pi_lock);
1034
1035         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1036         rt_mutex_unlock(&pi_state->pi_mutex);
1037
1038         return 0;
1039 }
1040
1041 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1042 {
1043         u32 uninitialized_var(oldval);
1044
1045         /*
1046          * There is no waiter, so we unlock the futex. The owner died
1047          * bit has not to be preserved here. We are the owner:
1048          */
1049         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1050                 return -EFAULT;
1051         if (oldval != uval)
1052                 return -EAGAIN;
1053
1054         return 0;
1055 }
1056
1057 /*
1058  * Express the locking dependencies for lockdep:
1059  */
1060 static inline void
1061 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1062 {
1063         if (hb1 <= hb2) {
1064                 spin_lock(&hb1->lock);
1065                 if (hb1 < hb2)
1066                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1067         } else { /* hb1 > hb2 */
1068                 spin_lock(&hb2->lock);
1069                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1070         }
1071 }
1072
1073 static inline void
1074 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1075 {
1076         spin_unlock(&hb1->lock);
1077         if (hb1 != hb2)
1078                 spin_unlock(&hb2->lock);
1079 }
1080
1081 /*
1082  * Wake up waiters matching bitset queued on this futex (uaddr).
1083  */
1084 static int
1085 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1086 {
1087         struct futex_hash_bucket *hb;
1088         struct futex_q *this, *next;
1089         struct plist_head *head;
1090         union futex_key key = FUTEX_KEY_INIT;
1091         int ret;
1092
1093         if (!bitset)
1094                 return -EINVAL;
1095
1096         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1097         if (unlikely(ret != 0))
1098                 goto out;
1099
1100         hb = hash_futex(&key);
1101         spin_lock(&hb->lock);
1102         head = &hb->chain;
1103
1104         plist_for_each_entry_safe(this, next, head, list) {
1105                 if (match_futex (&this->key, &key)) {
1106                         if (this->pi_state || this->rt_waiter) {
1107                                 ret = -EINVAL;
1108                                 break;
1109                         }
1110
1111                         /* Check if one of the bits is set in both bitsets */
1112                         if (!(this->bitset & bitset))
1113                                 continue;
1114
1115                         wake_futex(this);
1116                         if (++ret >= nr_wake)
1117                                 break;
1118                 }
1119         }
1120
1121         spin_unlock(&hb->lock);
1122         put_futex_key(&key);
1123 out:
1124         return ret;
1125 }
1126
1127 /*
1128  * Wake up all waiters hashed on the physical page that is mapped
1129  * to this virtual address:
1130  */
1131 static int
1132 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1133               int nr_wake, int nr_wake2, int op)
1134 {
1135         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1136         struct futex_hash_bucket *hb1, *hb2;
1137         struct plist_head *head;
1138         struct futex_q *this, *next;
1139         int ret, op_ret;
1140
1141 retry:
1142         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1143         if (unlikely(ret != 0))
1144                 goto out;
1145         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1146         if (unlikely(ret != 0))
1147                 goto out_put_key1;
1148
1149         hb1 = hash_futex(&key1);
1150         hb2 = hash_futex(&key2);
1151
1152 retry_private:
1153         double_lock_hb(hb1, hb2);
1154         op_ret = futex_atomic_op_inuser(op, uaddr2);
1155         if (unlikely(op_ret < 0)) {
1156
1157                 double_unlock_hb(hb1, hb2);
1158
1159 #ifndef CONFIG_MMU
1160                 /*
1161                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1162                  * but we might get them from range checking
1163                  */
1164                 ret = op_ret;
1165                 goto out_put_keys;
1166 #endif
1167
1168                 if (unlikely(op_ret != -EFAULT)) {
1169                         ret = op_ret;
1170                         goto out_put_keys;
1171                 }
1172
1173                 ret = fault_in_user_writeable(uaddr2);
1174                 if (ret)
1175                         goto out_put_keys;
1176
1177                 if (!(flags & FLAGS_SHARED))
1178                         goto retry_private;
1179
1180                 put_futex_key(&key2);
1181                 put_futex_key(&key1);
1182                 goto retry;
1183         }
1184
1185         head = &hb1->chain;
1186
1187         plist_for_each_entry_safe(this, next, head, list) {
1188                 if (match_futex (&this->key, &key1)) {
1189                         if (this->pi_state || this->rt_waiter) {
1190                                 ret = -EINVAL;
1191                                 goto out_unlock;
1192                         }
1193                         wake_futex(this);
1194                         if (++ret >= nr_wake)
1195                                 break;
1196                 }
1197         }
1198
1199         if (op_ret > 0) {
1200                 head = &hb2->chain;
1201
1202                 op_ret = 0;
1203                 plist_for_each_entry_safe(this, next, head, list) {
1204                         if (match_futex (&this->key, &key2)) {
1205                                 if (this->pi_state || this->rt_waiter) {
1206                                         ret = -EINVAL;
1207                                         goto out_unlock;
1208                                 }
1209                                 wake_futex(this);
1210                                 if (++op_ret >= nr_wake2)
1211                                         break;
1212                         }
1213                 }
1214                 ret += op_ret;
1215         }
1216
1217 out_unlock:
1218         double_unlock_hb(hb1, hb2);
1219 out_put_keys:
1220         put_futex_key(&key2);
1221 out_put_key1:
1222         put_futex_key(&key1);
1223 out:
1224         return ret;
1225 }
1226
1227 /**
1228  * requeue_futex() - Requeue a futex_q from one hb to another
1229  * @q:          the futex_q to requeue
1230  * @hb1:        the source hash_bucket
1231  * @hb2:        the target hash_bucket
1232  * @key2:       the new key for the requeued futex_q
1233  */
1234 static inline
1235 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1236                    struct futex_hash_bucket *hb2, union futex_key *key2)
1237 {
1238
1239         /*
1240          * If key1 and key2 hash to the same bucket, no need to
1241          * requeue.
1242          */
1243         if (likely(&hb1->chain != &hb2->chain)) {
1244                 plist_del(&q->list, &hb1->chain);
1245                 plist_add(&q->list, &hb2->chain);
1246                 q->lock_ptr = &hb2->lock;
1247         }
1248         get_futex_key_refs(key2);
1249         q->key = *key2;
1250 }
1251
1252 /**
1253  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1254  * @q:          the futex_q
1255  * @key:        the key of the requeue target futex
1256  * @hb:         the hash_bucket of the requeue target futex
1257  *
1258  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1259  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1260  * to the requeue target futex so the waiter can detect the wakeup on the right
1261  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1262  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1263  * to protect access to the pi_state to fixup the owner later.  Must be called
1264  * with both q->lock_ptr and hb->lock held.
1265  */
1266 static inline
1267 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1268                            struct futex_hash_bucket *hb)
1269 {
1270         get_futex_key_refs(key);
1271         q->key = *key;
1272
1273         __unqueue_futex(q);
1274
1275         WARN_ON(!q->rt_waiter);
1276         q->rt_waiter = NULL;
1277
1278         q->lock_ptr = &hb->lock;
1279
1280         wake_up_state(q->task, TASK_NORMAL);
1281 }
1282
1283 /**
1284  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1285  * @pifutex:            the user address of the to futex
1286  * @hb1:                the from futex hash bucket, must be locked by the caller
1287  * @hb2:                the to futex hash bucket, must be locked by the caller
1288  * @key1:               the from futex key
1289  * @key2:               the to futex key
1290  * @ps:                 address to store the pi_state pointer
1291  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1292  *
1293  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1294  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1295  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1296  * hb1 and hb2 must be held by the caller.
1297  *
1298  * Return:
1299  *  0 - failed to acquire the lock atomically;
1300  * >0 - acquired the lock, return value is vpid of the top_waiter
1301  * <0 - error
1302  */
1303 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1304                                  struct futex_hash_bucket *hb1,
1305                                  struct futex_hash_bucket *hb2,
1306                                  union futex_key *key1, union futex_key *key2,
1307                                  struct futex_pi_state **ps, int set_waiters)
1308 {
1309         struct futex_q *top_waiter = NULL;
1310         u32 curval;
1311         int ret, vpid;
1312
1313         if (get_futex_value_locked(&curval, pifutex))
1314                 return -EFAULT;
1315
1316         /*
1317          * Find the top_waiter and determine if there are additional waiters.
1318          * If the caller intends to requeue more than 1 waiter to pifutex,
1319          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1320          * as we have means to handle the possible fault.  If not, don't set
1321          * the bit unecessarily as it will force the subsequent unlock to enter
1322          * the kernel.
1323          */
1324         top_waiter = futex_top_waiter(hb1, key1);
1325
1326         /* There are no waiters, nothing for us to do. */
1327         if (!top_waiter)
1328                 return 0;
1329
1330         /* Ensure we requeue to the expected futex. */
1331         if (!match_futex(top_waiter->requeue_pi_key, key2))
1332                 return -EINVAL;
1333
1334         /*
1335          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1336          * the contended case or if set_waiters is 1.  The pi_state is returned
1337          * in ps in contended cases.
1338          */
1339         vpid = task_pid_vnr(top_waiter->task);
1340         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1341                                    set_waiters);
1342         if (ret == 1) {
1343                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1344                 return vpid;
1345         }
1346         return ret;
1347 }
1348
1349 /**
1350  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1351  * @uaddr1:     source futex user address
1352  * @flags:      futex flags (FLAGS_SHARED, etc.)
1353  * @uaddr2:     target futex user address
1354  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1355  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1356  * @cmpval:     @uaddr1 expected value (or %NULL)
1357  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1358  *              pi futex (pi to pi requeue is not supported)
1359  *
1360  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1361  * uaddr2 atomically on behalf of the top waiter.
1362  *
1363  * Return:
1364  * >=0 - on success, the number of tasks requeued or woken;
1365  *  <0 - on error
1366  */
1367 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1368                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1369                          u32 *cmpval, int requeue_pi)
1370 {
1371         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1372         int drop_count = 0, task_count = 0, ret;
1373         struct futex_pi_state *pi_state = NULL;
1374         struct futex_hash_bucket *hb1, *hb2;
1375         struct plist_head *head1;
1376         struct futex_q *this, *next;
1377
1378         if (requeue_pi) {
1379                 /*
1380                  * Requeue PI only works on two distinct uaddrs. This
1381                  * check is only valid for private futexes. See below.
1382                  */
1383                 if (uaddr1 == uaddr2)
1384                         return -EINVAL;
1385
1386                 /*
1387                  * requeue_pi requires a pi_state, try to allocate it now
1388                  * without any locks in case it fails.
1389                  */
1390                 if (refill_pi_state_cache())
1391                         return -ENOMEM;
1392                 /*
1393                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1394                  * + nr_requeue, since it acquires the rt_mutex prior to
1395                  * returning to userspace, so as to not leave the rt_mutex with
1396                  * waiters and no owner.  However, second and third wake-ups
1397                  * cannot be predicted as they involve race conditions with the
1398                  * first wake and a fault while looking up the pi_state.  Both
1399                  * pthread_cond_signal() and pthread_cond_broadcast() should
1400                  * use nr_wake=1.
1401                  */
1402                 if (nr_wake != 1)
1403                         return -EINVAL;
1404         }
1405
1406 retry:
1407         if (pi_state != NULL) {
1408                 /*
1409                  * We will have to lookup the pi_state again, so free this one
1410                  * to keep the accounting correct.
1411                  */
1412                 free_pi_state(pi_state);
1413                 pi_state = NULL;
1414         }
1415
1416         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1417         if (unlikely(ret != 0))
1418                 goto out;
1419         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1420                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1421         if (unlikely(ret != 0))
1422                 goto out_put_key1;
1423
1424         /*
1425          * The check above which compares uaddrs is not sufficient for
1426          * shared futexes. We need to compare the keys:
1427          */
1428         if (requeue_pi && match_futex(&key1, &key2)) {
1429                 ret = -EINVAL;
1430                 goto out_put_keys;
1431         }
1432
1433         hb1 = hash_futex(&key1);
1434         hb2 = hash_futex(&key2);
1435
1436 retry_private:
1437         double_lock_hb(hb1, hb2);
1438
1439         if (likely(cmpval != NULL)) {
1440                 u32 curval;
1441
1442                 ret = get_futex_value_locked(&curval, uaddr1);
1443
1444                 if (unlikely(ret)) {
1445                         double_unlock_hb(hb1, hb2);
1446
1447                         ret = get_user(curval, uaddr1);
1448                         if (ret)
1449                                 goto out_put_keys;
1450
1451                         if (!(flags & FLAGS_SHARED))
1452                                 goto retry_private;
1453
1454                         put_futex_key(&key2);
1455                         put_futex_key(&key1);
1456                         goto retry;
1457                 }
1458                 if (curval != *cmpval) {
1459                         ret = -EAGAIN;
1460                         goto out_unlock;
1461                 }
1462         }
1463
1464         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1465                 /*
1466                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1467                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1468                  * bit.  We force this here where we are able to easily handle
1469                  * faults rather in the requeue loop below.
1470                  */
1471                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1472                                                  &key2, &pi_state, nr_requeue);
1473
1474                 /*
1475                  * At this point the top_waiter has either taken uaddr2 or is
1476                  * waiting on it.  If the former, then the pi_state will not
1477                  * exist yet, look it up one more time to ensure we have a
1478                  * reference to it. If the lock was taken, ret contains the
1479                  * vpid of the top waiter task.
1480                  */
1481                 if (ret > 0) {
1482                         WARN_ON(pi_state);
1483                         drop_count++;
1484                         task_count++;
1485                         /*
1486                          * If we acquired the lock, then the user
1487                          * space value of uaddr2 should be vpid. It
1488                          * cannot be changed by the top waiter as it
1489                          * is blocked on hb2 lock if it tries to do
1490                          * so. If something fiddled with it behind our
1491                          * back the pi state lookup might unearth
1492                          * it. So we rather use the known value than
1493                          * rereading and handing potential crap to
1494                          * lookup_pi_state.
1495                          */
1496                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1497                 }
1498
1499                 switch (ret) {
1500                 case 0:
1501                         break;
1502                 case -EFAULT:
1503                         double_unlock_hb(hb1, hb2);
1504                         put_futex_key(&key2);
1505                         put_futex_key(&key1);
1506                         ret = fault_in_user_writeable(uaddr2);
1507                         if (!ret)
1508                                 goto retry;
1509                         goto out;
1510                 case -EAGAIN:
1511                         /* The owner was exiting, try again. */
1512                         double_unlock_hb(hb1, hb2);
1513                         put_futex_key(&key2);
1514                         put_futex_key(&key1);
1515                         cond_resched();
1516                         goto retry;
1517                 default:
1518                         goto out_unlock;
1519                 }
1520         }
1521
1522         head1 = &hb1->chain;
1523         plist_for_each_entry_safe(this, next, head1, list) {
1524                 if (task_count - nr_wake >= nr_requeue)
1525                         break;
1526
1527                 if (!match_futex(&this->key, &key1))
1528                         continue;
1529
1530                 /*
1531                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1532                  * be paired with each other and no other futex ops.
1533                  *
1534                  * We should never be requeueing a futex_q with a pi_state,
1535                  * which is awaiting a futex_unlock_pi().
1536                  */
1537                 if ((requeue_pi && !this->rt_waiter) ||
1538                     (!requeue_pi && this->rt_waiter) ||
1539                     this->pi_state) {
1540                         ret = -EINVAL;
1541                         break;
1542                 }
1543
1544                 /*
1545                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1546                  * lock, we already woke the top_waiter.  If not, it will be
1547                  * woken by futex_unlock_pi().
1548                  */
1549                 if (++task_count <= nr_wake && !requeue_pi) {
1550                         wake_futex(this);
1551                         continue;
1552                 }
1553
1554                 /* Ensure we requeue to the expected futex for requeue_pi. */
1555                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1556                         ret = -EINVAL;
1557                         break;
1558                 }
1559
1560                 /*
1561                  * Requeue nr_requeue waiters and possibly one more in the case
1562                  * of requeue_pi if we couldn't acquire the lock atomically.
1563                  */
1564                 if (requeue_pi) {
1565                         /* Prepare the waiter to take the rt_mutex. */
1566                         atomic_inc(&pi_state->refcount);
1567                         this->pi_state = pi_state;
1568                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1569                                                         this->rt_waiter,
1570                                                         this->task, 1);
1571                         if (ret == 1) {
1572                                 /* We got the lock. */
1573                                 requeue_pi_wake_futex(this, &key2, hb2);
1574                                 drop_count++;
1575                                 continue;
1576                         } else if (ret) {
1577                                 /* -EDEADLK */
1578                                 this->pi_state = NULL;
1579                                 free_pi_state(pi_state);
1580                                 goto out_unlock;
1581                         }
1582                 }
1583                 requeue_futex(this, hb1, hb2, &key2);
1584                 drop_count++;
1585         }
1586
1587 out_unlock:
1588         double_unlock_hb(hb1, hb2);
1589
1590         /*
1591          * drop_futex_key_refs() must be called outside the spinlocks. During
1592          * the requeue we moved futex_q's from the hash bucket at key1 to the
1593          * one at key2 and updated their key pointer.  We no longer need to
1594          * hold the references to key1.
1595          */
1596         while (--drop_count >= 0)
1597                 drop_futex_key_refs(&key1);
1598
1599 out_put_keys:
1600         put_futex_key(&key2);
1601 out_put_key1:
1602         put_futex_key(&key1);
1603 out:
1604         if (pi_state != NULL)
1605                 free_pi_state(pi_state);
1606         return ret ? ret : task_count;
1607 }
1608
1609 /* The key must be already stored in q->key. */
1610 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1611         __acquires(&hb->lock)
1612 {
1613         struct futex_hash_bucket *hb;
1614
1615         hb = hash_futex(&q->key);
1616         q->lock_ptr = &hb->lock;
1617
1618         spin_lock(&hb->lock);
1619         return hb;
1620 }
1621
1622 static inline void
1623 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1624         __releases(&hb->lock)
1625 {
1626         spin_unlock(&hb->lock);
1627 }
1628
1629 /**
1630  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1631  * @q:  The futex_q to enqueue
1632  * @hb: The destination hash bucket
1633  *
1634  * The hb->lock must be held by the caller, and is released here. A call to
1635  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1636  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1637  * or nothing if the unqueue is done as part of the wake process and the unqueue
1638  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1639  * an example).
1640  */
1641 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1642         __releases(&hb->lock)
1643 {
1644         int prio;
1645
1646         /*
1647          * The priority used to register this element is
1648          * - either the real thread-priority for the real-time threads
1649          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1650          * - or MAX_RT_PRIO for non-RT threads.
1651          * Thus, all RT-threads are woken first in priority order, and
1652          * the others are woken last, in FIFO order.
1653          */
1654         prio = min(current->normal_prio, MAX_RT_PRIO);
1655
1656         plist_node_init(&q->list, prio);
1657         plist_add(&q->list, &hb->chain);
1658         q->task = current;
1659         spin_unlock(&hb->lock);
1660 }
1661
1662 /**
1663  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1664  * @q:  The futex_q to unqueue
1665  *
1666  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1667  * be paired with exactly one earlier call to queue_me().
1668  *
1669  * Return:
1670  *   1 - if the futex_q was still queued (and we removed unqueued it);
1671  *   0 - if the futex_q was already removed by the waking thread
1672  */
1673 static int unqueue_me(struct futex_q *q)
1674 {
1675         spinlock_t *lock_ptr;
1676         int ret = 0;
1677
1678         /* In the common case we don't take the spinlock, which is nice. */
1679 retry:
1680         lock_ptr = q->lock_ptr;
1681         barrier();
1682         if (lock_ptr != NULL) {
1683                 spin_lock(lock_ptr);
1684                 /*
1685                  * q->lock_ptr can change between reading it and
1686                  * spin_lock(), causing us to take the wrong lock.  This
1687                  * corrects the race condition.
1688                  *
1689                  * Reasoning goes like this: if we have the wrong lock,
1690                  * q->lock_ptr must have changed (maybe several times)
1691                  * between reading it and the spin_lock().  It can
1692                  * change again after the spin_lock() but only if it was
1693                  * already changed before the spin_lock().  It cannot,
1694                  * however, change back to the original value.  Therefore
1695                  * we can detect whether we acquired the correct lock.
1696                  */
1697                 if (unlikely(lock_ptr != q->lock_ptr)) {
1698                         spin_unlock(lock_ptr);
1699                         goto retry;
1700                 }
1701                 __unqueue_futex(q);
1702
1703                 BUG_ON(q->pi_state);
1704
1705                 spin_unlock(lock_ptr);
1706                 ret = 1;
1707         }
1708
1709         drop_futex_key_refs(&q->key);
1710         return ret;
1711 }
1712
1713 /*
1714  * PI futexes can not be requeued and must remove themself from the
1715  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1716  * and dropped here.
1717  */
1718 static void unqueue_me_pi(struct futex_q *q)
1719         __releases(q->lock_ptr)
1720 {
1721         __unqueue_futex(q);
1722
1723         BUG_ON(!q->pi_state);
1724         free_pi_state(q->pi_state);
1725         q->pi_state = NULL;
1726
1727         spin_unlock(q->lock_ptr);
1728 }
1729
1730 /*
1731  * Fixup the pi_state owner with the new owner.
1732  *
1733  * Must be called with hash bucket lock held and mm->sem held for non
1734  * private futexes.
1735  */
1736 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1737                                 struct task_struct *newowner)
1738 {
1739         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1740         struct futex_pi_state *pi_state = q->pi_state;
1741         struct task_struct *oldowner = pi_state->owner;
1742         u32 uval, uninitialized_var(curval), newval;
1743         int ret;
1744
1745         /* Owner died? */
1746         if (!pi_state->owner)
1747                 newtid |= FUTEX_OWNER_DIED;
1748
1749         /*
1750          * We are here either because we stole the rtmutex from the
1751          * previous highest priority waiter or we are the highest priority
1752          * waiter but failed to get the rtmutex the first time.
1753          * We have to replace the newowner TID in the user space variable.
1754          * This must be atomic as we have to preserve the owner died bit here.
1755          *
1756          * Note: We write the user space value _before_ changing the pi_state
1757          * because we can fault here. Imagine swapped out pages or a fork
1758          * that marked all the anonymous memory readonly for cow.
1759          *
1760          * Modifying pi_state _before_ the user space value would
1761          * leave the pi_state in an inconsistent state when we fault
1762          * here, because we need to drop the hash bucket lock to
1763          * handle the fault. This might be observed in the PID check
1764          * in lookup_pi_state.
1765          */
1766 retry:
1767         if (get_futex_value_locked(&uval, uaddr))
1768                 goto handle_fault;
1769
1770         while (1) {
1771                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1772
1773                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1774                         goto handle_fault;
1775                 if (curval == uval)
1776                         break;
1777                 uval = curval;
1778         }
1779
1780         /*
1781          * We fixed up user space. Now we need to fix the pi_state
1782          * itself.
1783          */
1784         if (pi_state->owner != NULL) {
1785                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1786                 WARN_ON(list_empty(&pi_state->list));
1787                 list_del_init(&pi_state->list);
1788                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1789         }
1790
1791         pi_state->owner = newowner;
1792
1793         raw_spin_lock_irq(&newowner->pi_lock);
1794         WARN_ON(!list_empty(&pi_state->list));
1795         list_add(&pi_state->list, &newowner->pi_state_list);
1796         raw_spin_unlock_irq(&newowner->pi_lock);
1797         return 0;
1798
1799         /*
1800          * To handle the page fault we need to drop the hash bucket
1801          * lock here. That gives the other task (either the highest priority
1802          * waiter itself or the task which stole the rtmutex) the
1803          * chance to try the fixup of the pi_state. So once we are
1804          * back from handling the fault we need to check the pi_state
1805          * after reacquiring the hash bucket lock and before trying to
1806          * do another fixup. When the fixup has been done already we
1807          * simply return.
1808          */
1809 handle_fault:
1810         spin_unlock(q->lock_ptr);
1811
1812         ret = fault_in_user_writeable(uaddr);
1813
1814         spin_lock(q->lock_ptr);
1815
1816         /*
1817          * Check if someone else fixed it for us:
1818          */
1819         if (pi_state->owner != oldowner)
1820                 return 0;
1821
1822         if (ret)
1823                 return ret;
1824
1825         goto retry;
1826 }
1827
1828 static long futex_wait_restart(struct restart_block *restart);
1829
1830 /**
1831  * fixup_owner() - Post lock pi_state and corner case management
1832  * @uaddr:      user address of the futex
1833  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1834  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1835  *
1836  * After attempting to lock an rt_mutex, this function is called to cleanup
1837  * the pi_state owner as well as handle race conditions that may allow us to
1838  * acquire the lock. Must be called with the hb lock held.
1839  *
1840  * Return:
1841  *  1 - success, lock taken;
1842  *  0 - success, lock not taken;
1843  * <0 - on error (-EFAULT)
1844  */
1845 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1846 {
1847         struct task_struct *owner;
1848         int ret = 0;
1849
1850         if (locked) {
1851                 /*
1852                  * Got the lock. We might not be the anticipated owner if we
1853                  * did a lock-steal - fix up the PI-state in that case:
1854                  */
1855                 if (q->pi_state->owner != current)
1856                         ret = fixup_pi_state_owner(uaddr, q, current);
1857                 goto out;
1858         }
1859
1860         /*
1861          * Catch the rare case, where the lock was released when we were on the
1862          * way back before we locked the hash bucket.
1863          */
1864         if (q->pi_state->owner == current) {
1865                 /*
1866                  * Try to get the rt_mutex now. This might fail as some other
1867                  * task acquired the rt_mutex after we removed ourself from the
1868                  * rt_mutex waiters list.
1869                  */
1870                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1871                         locked = 1;
1872                         goto out;
1873                 }
1874
1875                 /*
1876                  * pi_state is incorrect, some other task did a lock steal and
1877                  * we returned due to timeout or signal without taking the
1878                  * rt_mutex. Too late.
1879                  */
1880                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1881                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1882                 if (!owner)
1883                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1884                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1885                 ret = fixup_pi_state_owner(uaddr, q, owner);
1886                 goto out;
1887         }
1888
1889         /*
1890          * Paranoia check. If we did not take the lock, then we should not be
1891          * the owner of the rt_mutex.
1892          */
1893         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1894                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1895                                 "pi-state %p\n", ret,
1896                                 q->pi_state->pi_mutex.owner,
1897                                 q->pi_state->owner);
1898
1899 out:
1900         return ret ? ret : locked;
1901 }
1902
1903 /**
1904  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1905  * @hb:         the futex hash bucket, must be locked by the caller
1906  * @q:          the futex_q to queue up on
1907  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1908  */
1909 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1910                                 struct hrtimer_sleeper *timeout)
1911 {
1912         /*
1913          * The task state is guaranteed to be set before another task can
1914          * wake it. set_current_state() is implemented using set_mb() and
1915          * queue_me() calls spin_unlock() upon completion, both serializing
1916          * access to the hash list and forcing another memory barrier.
1917          */
1918         set_current_state(TASK_INTERRUPTIBLE);
1919         queue_me(q, hb);
1920
1921         /* Arm the timer */
1922         if (timeout) {
1923                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1924                 if (!hrtimer_active(&timeout->timer))
1925                         timeout->task = NULL;
1926         }
1927
1928         /*
1929          * If we have been removed from the hash list, then another task
1930          * has tried to wake us, and we can skip the call to schedule().
1931          */
1932         if (likely(!plist_node_empty(&q->list))) {
1933                 /*
1934                  * If the timer has already expired, current will already be
1935                  * flagged for rescheduling. Only call schedule if there
1936                  * is no timeout, or if it has yet to expire.
1937                  */
1938                 if (!timeout || timeout->task)
1939                         freezable_schedule();
1940         }
1941         __set_current_state(TASK_RUNNING);
1942 }
1943
1944 /**
1945  * futex_wait_setup() - Prepare to wait on a futex
1946  * @uaddr:      the futex userspace address
1947  * @val:        the expected value
1948  * @flags:      futex flags (FLAGS_SHARED, etc.)
1949  * @q:          the associated futex_q
1950  * @hb:         storage for hash_bucket pointer to be returned to caller
1951  *
1952  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1953  * compare it with the expected value.  Handle atomic faults internally.
1954  * Return with the hb lock held and a q.key reference on success, and unlocked
1955  * with no q.key reference on failure.
1956  *
1957  * Return:
1958  *  0 - uaddr contains val and hb has been locked;
1959  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1960  */
1961 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1962                            struct futex_q *q, struct futex_hash_bucket **hb)
1963 {
1964         u32 uval;
1965         int ret;
1966
1967         /*
1968          * Access the page AFTER the hash-bucket is locked.
1969          * Order is important:
1970          *
1971          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1972          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1973          *
1974          * The basic logical guarantee of a futex is that it blocks ONLY
1975          * if cond(var) is known to be true at the time of blocking, for
1976          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1977          * would open a race condition where we could block indefinitely with
1978          * cond(var) false, which would violate the guarantee.
1979          *
1980          * On the other hand, we insert q and release the hash-bucket only
1981          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1982          * absorb a wakeup if *uaddr does not match the desired values
1983          * while the syscall executes.
1984          */
1985 retry:
1986         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1987         if (unlikely(ret != 0))
1988                 return ret;
1989
1990 retry_private:
1991         *hb = queue_lock(q);
1992
1993         ret = get_futex_value_locked(&uval, uaddr);
1994
1995         if (ret) {
1996                 queue_unlock(q, *hb);
1997
1998                 ret = get_user(uval, uaddr);
1999                 if (ret)
2000                         goto out;
2001
2002                 if (!(flags & FLAGS_SHARED))
2003                         goto retry_private;
2004
2005                 put_futex_key(&q->key);
2006                 goto retry;
2007         }
2008
2009         if (uval != val) {
2010                 queue_unlock(q, *hb);
2011                 ret = -EWOULDBLOCK;
2012         }
2013
2014 out:
2015         if (ret)
2016                 put_futex_key(&q->key);
2017         return ret;
2018 }
2019
2020 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2021                       ktime_t *abs_time, u32 bitset)
2022 {
2023         struct hrtimer_sleeper timeout, *to = NULL;
2024         struct restart_block *restart;
2025         struct futex_hash_bucket *hb;
2026         struct futex_q q = futex_q_init;
2027         int ret;
2028
2029         if (!bitset)
2030                 return -EINVAL;
2031         q.bitset = bitset;
2032
2033         if (abs_time) {
2034                 to = &timeout;
2035
2036                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2037                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2038                                       HRTIMER_MODE_ABS);
2039                 hrtimer_init_sleeper(to, current);
2040                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2041                                              current->timer_slack_ns);
2042         }
2043
2044 retry:
2045         /*
2046          * Prepare to wait on uaddr. On success, holds hb lock and increments
2047          * q.key refs.
2048          */
2049         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2050         if (ret)
2051                 goto out;
2052
2053         /* queue_me and wait for wakeup, timeout, or a signal. */
2054         futex_wait_queue_me(hb, &q, to);
2055
2056         /* If we were woken (and unqueued), we succeeded, whatever. */
2057         ret = 0;
2058         /* unqueue_me() drops q.key ref */
2059         if (!unqueue_me(&q))
2060                 goto out;
2061         ret = -ETIMEDOUT;
2062         if (to && !to->task)
2063                 goto out;
2064
2065         /*
2066          * We expect signal_pending(current), but we might be the
2067          * victim of a spurious wakeup as well.
2068          */
2069         if (!signal_pending(current))
2070                 goto retry;
2071
2072         ret = -ERESTARTSYS;
2073         if (!abs_time)
2074                 goto out;
2075
2076         restart = &current_thread_info()->restart_block;
2077         restart->fn = futex_wait_restart;
2078         restart->futex.uaddr = uaddr;
2079         restart->futex.val = val;
2080         restart->futex.time = abs_time->tv64;
2081         restart->futex.bitset = bitset;
2082         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2083
2084         ret = -ERESTART_RESTARTBLOCK;
2085
2086 out:
2087         if (to) {
2088                 hrtimer_cancel(&to->timer);
2089                 destroy_hrtimer_on_stack(&to->timer);
2090         }
2091         return ret;
2092 }
2093
2094
2095 static long futex_wait_restart(struct restart_block *restart)
2096 {
2097         u32 __user *uaddr = restart->futex.uaddr;
2098         ktime_t t, *tp = NULL;
2099
2100         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2101                 t.tv64 = restart->futex.time;
2102                 tp = &t;
2103         }
2104         restart->fn = do_no_restart_syscall;
2105
2106         return (long)futex_wait(uaddr, restart->futex.flags,
2107                                 restart->futex.val, tp, restart->futex.bitset);
2108 }
2109
2110
2111 /*
2112  * Userspace tried a 0 -> TID atomic transition of the futex value
2113  * and failed. The kernel side here does the whole locking operation:
2114  * if there are waiters then it will block, it does PI, etc. (Due to
2115  * races the kernel might see a 0 value of the futex too.)
2116  */
2117 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2118                          ktime_t *time, int trylock)
2119 {
2120         struct hrtimer_sleeper timeout, *to = NULL;
2121         struct futex_hash_bucket *hb;
2122         struct futex_q q = futex_q_init;
2123         int res, ret;
2124
2125         if (refill_pi_state_cache())
2126                 return -ENOMEM;
2127
2128         if (time) {
2129                 to = &timeout;
2130                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2131                                       HRTIMER_MODE_ABS);
2132                 hrtimer_init_sleeper(to, current);
2133                 hrtimer_set_expires(&to->timer, *time);
2134         }
2135
2136 retry:
2137         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2138         if (unlikely(ret != 0))
2139                 goto out;
2140
2141 retry_private:
2142         hb = queue_lock(&q);
2143
2144         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2145         if (unlikely(ret)) {
2146                 switch (ret) {
2147                 case 1:
2148                         /* We got the lock. */
2149                         ret = 0;
2150                         goto out_unlock_put_key;
2151                 case -EFAULT:
2152                         goto uaddr_faulted;
2153                 case -EAGAIN:
2154                         /*
2155                          * Task is exiting and we just wait for the
2156                          * exit to complete.
2157                          */
2158                         queue_unlock(&q, hb);
2159                         put_futex_key(&q.key);
2160                         cond_resched();
2161                         goto retry;
2162                 default:
2163                         goto out_unlock_put_key;
2164                 }
2165         }
2166
2167         /*
2168          * Only actually queue now that the atomic ops are done:
2169          */
2170         queue_me(&q, hb);
2171
2172         WARN_ON(!q.pi_state);
2173         /*
2174          * Block on the PI mutex:
2175          */
2176         if (!trylock)
2177                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2178         else {
2179                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2180                 /* Fixup the trylock return value: */
2181                 ret = ret ? 0 : -EWOULDBLOCK;
2182         }
2183
2184         spin_lock(q.lock_ptr);
2185         /*
2186          * Fixup the pi_state owner and possibly acquire the lock if we
2187          * haven't already.
2188          */
2189         res = fixup_owner(uaddr, &q, !ret);
2190         /*
2191          * If fixup_owner() returned an error, proprogate that.  If it acquired
2192          * the lock, clear our -ETIMEDOUT or -EINTR.
2193          */
2194         if (res)
2195                 ret = (res < 0) ? res : 0;
2196
2197         /*
2198          * If fixup_owner() faulted and was unable to handle the fault, unlock
2199          * it and return the fault to userspace.
2200          */
2201         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2202                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2203
2204         /* Unqueue and drop the lock */
2205         unqueue_me_pi(&q);
2206
2207         goto out_put_key;
2208
2209 out_unlock_put_key:
2210         queue_unlock(&q, hb);
2211
2212 out_put_key:
2213         put_futex_key(&q.key);
2214 out:
2215         if (to)
2216                 destroy_hrtimer_on_stack(&to->timer);
2217         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2218
2219 uaddr_faulted:
2220         queue_unlock(&q, hb);
2221
2222         ret = fault_in_user_writeable(uaddr);
2223         if (ret)
2224                 goto out_put_key;
2225
2226         if (!(flags & FLAGS_SHARED))
2227                 goto retry_private;
2228
2229         put_futex_key(&q.key);
2230         goto retry;
2231 }
2232
2233 /*
2234  * Userspace attempted a TID -> 0 atomic transition, and failed.
2235  * This is the in-kernel slowpath: we look up the PI state (if any),
2236  * and do the rt-mutex unlock.
2237  */
2238 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2239 {
2240         struct futex_hash_bucket *hb;
2241         struct futex_q *this, *next;
2242         struct plist_head *head;
2243         union futex_key key = FUTEX_KEY_INIT;
2244         u32 uval, vpid = task_pid_vnr(current);
2245         int ret;
2246
2247 retry:
2248         if (get_user(uval, uaddr))
2249                 return -EFAULT;
2250         /*
2251          * We release only a lock we actually own:
2252          */
2253         if ((uval & FUTEX_TID_MASK) != vpid)
2254                 return -EPERM;
2255
2256         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2257         if (unlikely(ret != 0))
2258                 goto out;
2259
2260         hb = hash_futex(&key);
2261         spin_lock(&hb->lock);
2262
2263         /*
2264          * To avoid races, try to do the TID -> 0 atomic transition
2265          * again. If it succeeds then we can return without waking
2266          * anyone else up. We only try this if neither the waiters nor
2267          * the owner died bit are set.
2268          */
2269         if (!(uval & ~FUTEX_TID_MASK) &&
2270             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2271                 goto pi_faulted;
2272         /*
2273          * Rare case: we managed to release the lock atomically,
2274          * no need to wake anyone else up:
2275          */
2276         if (unlikely(uval == vpid))
2277                 goto out_unlock;
2278
2279         /*
2280          * Ok, other tasks may need to be woken up - check waiters
2281          * and do the wakeup if necessary:
2282          */
2283         head = &hb->chain;
2284
2285         plist_for_each_entry_safe(this, next, head, list) {
2286                 if (!match_futex (&this->key, &key))
2287                         continue;
2288                 ret = wake_futex_pi(uaddr, uval, this);
2289                 /*
2290                  * The atomic access to the futex value
2291                  * generated a pagefault, so retry the
2292                  * user-access and the wakeup:
2293                  */
2294                 if (ret == -EFAULT)
2295                         goto pi_faulted;
2296                 goto out_unlock;
2297         }
2298         /*
2299          * No waiters - kernel unlocks the futex:
2300          */
2301         ret = unlock_futex_pi(uaddr, uval);
2302         if (ret == -EFAULT)
2303                 goto pi_faulted;
2304
2305 out_unlock:
2306         spin_unlock(&hb->lock);
2307         put_futex_key(&key);
2308
2309 out:
2310         return ret;
2311
2312 pi_faulted:
2313         spin_unlock(&hb->lock);
2314         put_futex_key(&key);
2315
2316         ret = fault_in_user_writeable(uaddr);
2317         if (!ret)
2318                 goto retry;
2319
2320         return ret;
2321 }
2322
2323 /**
2324  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2325  * @hb:         the hash_bucket futex_q was original enqueued on
2326  * @q:          the futex_q woken while waiting to be requeued
2327  * @key2:       the futex_key of the requeue target futex
2328  * @timeout:    the timeout associated with the wait (NULL if none)
2329  *
2330  * Detect if the task was woken on the initial futex as opposed to the requeue
2331  * target futex.  If so, determine if it was a timeout or a signal that caused
2332  * the wakeup and return the appropriate error code to the caller.  Must be
2333  * called with the hb lock held.
2334  *
2335  * Return:
2336  *  0 = no early wakeup detected;
2337  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2338  */
2339 static inline
2340 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2341                                    struct futex_q *q, union futex_key *key2,
2342                                    struct hrtimer_sleeper *timeout)
2343 {
2344         int ret = 0;
2345
2346         /*
2347          * With the hb lock held, we avoid races while we process the wakeup.
2348          * We only need to hold hb (and not hb2) to ensure atomicity as the
2349          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2350          * It can't be requeued from uaddr2 to something else since we don't
2351          * support a PI aware source futex for requeue.
2352          */
2353         if (!match_futex(&q->key, key2)) {
2354                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2355                 /*
2356                  * We were woken prior to requeue by a timeout or a signal.
2357                  * Unqueue the futex_q and determine which it was.
2358                  */
2359                 plist_del(&q->list, &hb->chain);
2360
2361                 /* Handle spurious wakeups gracefully */
2362                 ret = -EWOULDBLOCK;
2363                 if (timeout && !timeout->task)
2364                         ret = -ETIMEDOUT;
2365                 else if (signal_pending(current))
2366                         ret = -ERESTARTNOINTR;
2367         }
2368         return ret;
2369 }
2370
2371 /**
2372  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2373  * @uaddr:      the futex we initially wait on (non-pi)
2374  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2375  *              the same type, no requeueing from private to shared, etc.
2376  * @val:        the expected value of uaddr
2377  * @abs_time:   absolute timeout
2378  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2379  * @uaddr2:     the pi futex we will take prior to returning to user-space
2380  *
2381  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2382  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2383  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2384  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2385  * without one, the pi logic would not know which task to boost/deboost, if
2386  * there was a need to.
2387  *
2388  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2389  * via the following--
2390  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2391  * 2) wakeup on uaddr2 after a requeue
2392  * 3) signal
2393  * 4) timeout
2394  *
2395  * If 3, cleanup and return -ERESTARTNOINTR.
2396  *
2397  * If 2, we may then block on trying to take the rt_mutex and return via:
2398  * 5) successful lock
2399  * 6) signal
2400  * 7) timeout
2401  * 8) other lock acquisition failure
2402  *
2403  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2404  *
2405  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2406  *
2407  * Return:
2408  *  0 - On success;
2409  * <0 - On error
2410  */
2411 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2412                                  u32 val, ktime_t *abs_time, u32 bitset,
2413                                  u32 __user *uaddr2)
2414 {
2415         struct hrtimer_sleeper timeout, *to = NULL;
2416         struct rt_mutex_waiter rt_waiter;
2417         struct rt_mutex *pi_mutex = NULL;
2418         struct futex_hash_bucket *hb;
2419         union futex_key key2 = FUTEX_KEY_INIT;
2420         struct futex_q q = futex_q_init;
2421         int res, ret;
2422
2423         if (uaddr == uaddr2)
2424                 return -EINVAL;
2425
2426         if (!bitset)
2427                 return -EINVAL;
2428
2429         if (abs_time) {
2430                 to = &timeout;
2431                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2432                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2433                                       HRTIMER_MODE_ABS);
2434                 hrtimer_init_sleeper(to, current);
2435                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2436                                              current->timer_slack_ns);
2437         }
2438
2439         /*
2440          * The waiter is allocated on our stack, manipulated by the requeue
2441          * code while we sleep on uaddr.
2442          */
2443         debug_rt_mutex_init_waiter(&rt_waiter);
2444         rt_waiter.task = NULL;
2445
2446         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2447         if (unlikely(ret != 0))
2448                 goto out;
2449
2450         q.bitset = bitset;
2451         q.rt_waiter = &rt_waiter;
2452         q.requeue_pi_key = &key2;
2453
2454         /*
2455          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2456          * count.
2457          */
2458         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2459         if (ret)
2460                 goto out_key2;
2461
2462         /*
2463          * The check above which compares uaddrs is not sufficient for
2464          * shared futexes. We need to compare the keys:
2465          */
2466         if (match_futex(&q.key, &key2)) {
2467                 ret = -EINVAL;
2468                 goto out_put_keys;
2469         }
2470
2471         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2472         futex_wait_queue_me(hb, &q, to);
2473
2474         spin_lock(&hb->lock);
2475         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2476         spin_unlock(&hb->lock);
2477         if (ret)
2478                 goto out_put_keys;
2479
2480         /*
2481          * In order for us to be here, we know our q.key == key2, and since
2482          * we took the hb->lock above, we also know that futex_requeue() has
2483          * completed and we no longer have to concern ourselves with a wakeup
2484          * race with the atomic proxy lock acquisition by the requeue code. The
2485          * futex_requeue dropped our key1 reference and incremented our key2
2486          * reference count.
2487          */
2488
2489         /* Check if the requeue code acquired the second futex for us. */
2490         if (!q.rt_waiter) {
2491                 /*
2492                  * Got the lock. We might not be the anticipated owner if we
2493                  * did a lock-steal - fix up the PI-state in that case.
2494                  */
2495                 if (q.pi_state && (q.pi_state->owner != current)) {
2496                         spin_lock(q.lock_ptr);
2497                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2498                         spin_unlock(q.lock_ptr);
2499                 }
2500         } else {
2501                 /*
2502                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2503                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2504                  * the pi_state.
2505                  */
2506                 WARN_ON(!q.pi_state);
2507                 pi_mutex = &q.pi_state->pi_mutex;
2508                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2509                 debug_rt_mutex_free_waiter(&rt_waiter);
2510
2511                 spin_lock(q.lock_ptr);
2512                 /*
2513                  * Fixup the pi_state owner and possibly acquire the lock if we
2514                  * haven't already.
2515                  */
2516                 res = fixup_owner(uaddr2, &q, !ret);
2517                 /*
2518                  * If fixup_owner() returned an error, proprogate that.  If it
2519                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2520                  */
2521                 if (res)
2522                         ret = (res < 0) ? res : 0;
2523
2524                 /* Unqueue and drop the lock. */
2525                 unqueue_me_pi(&q);
2526         }
2527
2528         /*
2529          * If fixup_pi_state_owner() faulted and was unable to handle the
2530          * fault, unlock the rt_mutex and return the fault to userspace.
2531          */
2532         if (ret == -EFAULT) {
2533                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2534                         rt_mutex_unlock(pi_mutex);
2535         } else if (ret == -EINTR) {
2536                 /*
2537                  * We've already been requeued, but cannot restart by calling
2538                  * futex_lock_pi() directly. We could restart this syscall, but
2539                  * it would detect that the user space "val" changed and return
2540                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2541                  * -EWOULDBLOCK directly.
2542                  */
2543                 ret = -EWOULDBLOCK;
2544         }
2545
2546 out_put_keys:
2547         put_futex_key(&q.key);
2548 out_key2:
2549         put_futex_key(&key2);
2550
2551 out:
2552         if (to) {
2553                 hrtimer_cancel(&to->timer);
2554                 destroy_hrtimer_on_stack(&to->timer);
2555         }
2556         return ret;
2557 }
2558
2559 /*
2560  * Support for robust futexes: the kernel cleans up held futexes at
2561  * thread exit time.
2562  *
2563  * Implementation: user-space maintains a per-thread list of locks it
2564  * is holding. Upon do_exit(), the kernel carefully walks this list,
2565  * and marks all locks that are owned by this thread with the
2566  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2567  * always manipulated with the lock held, so the list is private and
2568  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2569  * field, to allow the kernel to clean up if the thread dies after
2570  * acquiring the lock, but just before it could have added itself to
2571  * the list. There can only be one such pending lock.
2572  */
2573
2574 /**
2575  * sys_set_robust_list() - Set the robust-futex list head of a task
2576  * @head:       pointer to the list-head
2577  * @len:        length of the list-head, as userspace expects
2578  */
2579 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2580                 size_t, len)
2581 {
2582         if (!futex_cmpxchg_enabled)
2583                 return -ENOSYS;
2584         /*
2585          * The kernel knows only one size for now:
2586          */
2587         if (unlikely(len != sizeof(*head)))
2588                 return -EINVAL;
2589
2590         current->robust_list = head;
2591
2592         return 0;
2593 }
2594
2595 /**
2596  * sys_get_robust_list() - Get the robust-futex list head of a task
2597  * @pid:        pid of the process [zero for current task]
2598  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2599  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2600  */
2601 SYSCALL_DEFINE3(get_robust_list, int, pid,
2602                 struct robust_list_head __user * __user *, head_ptr,
2603                 size_t __user *, len_ptr)
2604 {
2605         struct robust_list_head __user *head;
2606         unsigned long ret;
2607         struct task_struct *p;
2608
2609         if (!futex_cmpxchg_enabled)
2610                 return -ENOSYS;
2611
2612         rcu_read_lock();
2613
2614         ret = -ESRCH;
2615         if (!pid)
2616                 p = current;
2617         else {
2618                 p = find_task_by_vpid(pid);
2619                 if (!p)
2620                         goto err_unlock;
2621         }
2622
2623         ret = -EPERM;
2624         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2625                 goto err_unlock;
2626
2627         head = p->robust_list;
2628         rcu_read_unlock();
2629
2630         if (put_user(sizeof(*head), len_ptr))
2631                 return -EFAULT;
2632         return put_user(head, head_ptr);
2633
2634 err_unlock:
2635         rcu_read_unlock();
2636
2637         return ret;
2638 }
2639
2640 /*
2641  * Process a futex-list entry, check whether it's owned by the
2642  * dying task, and do notification if so:
2643  */
2644 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2645 {
2646         u32 uval, uninitialized_var(nval), mval;
2647
2648 retry:
2649         if (get_user(uval, uaddr))
2650                 return -1;
2651
2652         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2653                 /*
2654                  * Ok, this dying thread is truly holding a futex
2655                  * of interest. Set the OWNER_DIED bit atomically
2656                  * via cmpxchg, and if the value had FUTEX_WAITERS
2657                  * set, wake up a waiter (if any). (We have to do a
2658                  * futex_wake() even if OWNER_DIED is already set -
2659                  * to handle the rare but possible case of recursive
2660                  * thread-death.) The rest of the cleanup is done in
2661                  * userspace.
2662                  */
2663                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2664                 /*
2665                  * We are not holding a lock here, but we want to have
2666                  * the pagefault_disable/enable() protection because
2667                  * we want to handle the fault gracefully. If the
2668                  * access fails we try to fault in the futex with R/W
2669                  * verification via get_user_pages. get_user() above
2670                  * does not guarantee R/W access. If that fails we
2671                  * give up and leave the futex locked.
2672                  */
2673                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2674                         if (fault_in_user_writeable(uaddr))
2675                                 return -1;
2676                         goto retry;
2677                 }
2678                 if (nval != uval)
2679                         goto retry;
2680
2681                 /*
2682                  * Wake robust non-PI futexes here. The wakeup of
2683                  * PI futexes happens in exit_pi_state():
2684                  */
2685                 if (!pi && (uval & FUTEX_WAITERS))
2686                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2687         }
2688         return 0;
2689 }
2690
2691 /*
2692  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2693  */
2694 static inline int fetch_robust_entry(struct robust_list __user **entry,
2695                                      struct robust_list __user * __user *head,
2696                                      unsigned int *pi)
2697 {
2698         unsigned long uentry;
2699
2700         if (get_user(uentry, (unsigned long __user *)head))
2701                 return -EFAULT;
2702
2703         *entry = (void __user *)(uentry & ~1UL);
2704         *pi = uentry & 1;
2705
2706         return 0;
2707 }
2708
2709 /*
2710  * Walk curr->robust_list (very carefully, it's a userspace list!)
2711  * and mark any locks found there dead, and notify any waiters.
2712  *
2713  * We silently return on any sign of list-walking problem.
2714  */
2715 void exit_robust_list(struct task_struct *curr)
2716 {
2717         struct robust_list_head __user *head = curr->robust_list;
2718         struct robust_list __user *entry, *next_entry, *pending;
2719         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2720         unsigned int uninitialized_var(next_pi);
2721         unsigned long futex_offset;
2722         int rc;
2723
2724         if (!futex_cmpxchg_enabled)
2725                 return;
2726
2727         /*
2728          * Fetch the list head (which was registered earlier, via
2729          * sys_set_robust_list()):
2730          */
2731         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2732                 return;
2733         /*
2734          * Fetch the relative futex offset:
2735          */
2736         if (get_user(futex_offset, &head->futex_offset))
2737                 return;
2738         /*
2739          * Fetch any possibly pending lock-add first, and handle it
2740          * if it exists:
2741          */
2742         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2743                 return;
2744
2745         next_entry = NULL;      /* avoid warning with gcc */
2746         while (entry != &head->list) {
2747                 /*
2748                  * Fetch the next entry in the list before calling
2749                  * handle_futex_death:
2750                  */
2751                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2752                 /*
2753                  * A pending lock might already be on the list, so
2754                  * don't process it twice:
2755                  */
2756                 if (entry != pending)
2757                         if (handle_futex_death((void __user *)entry + futex_offset,
2758                                                 curr, pi))
2759                                 return;
2760                 if (rc)
2761                         return;
2762                 entry = next_entry;
2763                 pi = next_pi;
2764                 /*
2765                  * Avoid excessively long or circular lists:
2766                  */
2767                 if (!--limit)
2768                         break;
2769
2770                 cond_resched();
2771         }
2772
2773         if (pending)
2774                 handle_futex_death((void __user *)pending + futex_offset,
2775                                    curr, pip);
2776 }
2777
2778 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2779                 u32 __user *uaddr2, u32 val2, u32 val3)
2780 {
2781         int cmd = op & FUTEX_CMD_MASK;
2782         unsigned int flags = 0;
2783
2784         if (!(op & FUTEX_PRIVATE_FLAG))
2785                 flags |= FLAGS_SHARED;
2786
2787         if (op & FUTEX_CLOCK_REALTIME) {
2788                 flags |= FLAGS_CLOCKRT;
2789                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2790                         return -ENOSYS;
2791         }
2792
2793         switch (cmd) {
2794         case FUTEX_LOCK_PI:
2795         case FUTEX_UNLOCK_PI:
2796         case FUTEX_TRYLOCK_PI:
2797         case FUTEX_WAIT_REQUEUE_PI:
2798         case FUTEX_CMP_REQUEUE_PI:
2799                 if (!futex_cmpxchg_enabled)
2800                         return -ENOSYS;
2801         }
2802
2803         switch (cmd) {
2804         case FUTEX_WAIT:
2805                 val3 = FUTEX_BITSET_MATCH_ANY;
2806         case FUTEX_WAIT_BITSET:
2807                 return futex_wait(uaddr, flags, val, timeout, val3);
2808         case FUTEX_WAKE:
2809                 val3 = FUTEX_BITSET_MATCH_ANY;
2810         case FUTEX_WAKE_BITSET:
2811                 return futex_wake(uaddr, flags, val, val3);
2812         case FUTEX_REQUEUE:
2813                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2814         case FUTEX_CMP_REQUEUE:
2815                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2816         case FUTEX_WAKE_OP:
2817                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2818         case FUTEX_LOCK_PI:
2819                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2820         case FUTEX_UNLOCK_PI:
2821                 return futex_unlock_pi(uaddr, flags);
2822         case FUTEX_TRYLOCK_PI:
2823                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2824         case FUTEX_WAIT_REQUEUE_PI:
2825                 val3 = FUTEX_BITSET_MATCH_ANY;
2826                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2827                                              uaddr2);
2828         case FUTEX_CMP_REQUEUE_PI:
2829                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2830         }
2831         return -ENOSYS;
2832 }
2833
2834
2835 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2836                 struct timespec __user *, utime, u32 __user *, uaddr2,
2837                 u32, val3)
2838 {
2839         struct timespec ts;
2840         ktime_t t, *tp = NULL;
2841         u32 val2 = 0;
2842         int cmd = op & FUTEX_CMD_MASK;
2843
2844         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2845                       cmd == FUTEX_WAIT_BITSET ||
2846                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2847                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2848                         return -EFAULT;
2849                 if (!timespec_valid(&ts))
2850                         return -EINVAL;
2851
2852                 t = timespec_to_ktime(ts);
2853                 if (cmd == FUTEX_WAIT)
2854                         t = ktime_add_safe(ktime_get(), t);
2855                 tp = &t;
2856         }
2857         /*
2858          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2859          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2860          */
2861         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2862             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2863                 val2 = (u32) (unsigned long) utime;
2864
2865         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2866 }
2867
2868 static void __init futex_detect_cmpxchg(void)
2869 {
2870 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2871         u32 curval;
2872
2873         /*
2874          * This will fail and we want it. Some arch implementations do
2875          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2876          * functionality. We want to know that before we call in any
2877          * of the complex code paths. Also we want to prevent
2878          * registration of robust lists in that case. NULL is
2879          * guaranteed to fault and we get -EFAULT on functional
2880          * implementation, the non-functional ones will return
2881          * -ENOSYS.
2882          */
2883         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2884                 futex_cmpxchg_enabled = 1;
2885 #endif
2886 }
2887
2888 static int __init futex_init(void)
2889 {
2890         int i;
2891
2892         futex_detect_cmpxchg();
2893
2894         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2895                 plist_head_init(&futex_queues[i].chain);
2896                 spin_lock_init(&futex_queues[i].lock);
2897         }
2898
2899         return 0;
2900 }
2901 __initcall(futex_init);