arm64: dts: rockchip: rk3399: add aclk/hclk_vop init freq
[firefly-linux-kernel-4.4.55.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         /*
186          * If the current transaction is locked down for commit, wait
187          * for the lock to be released.
188          */
189         if (t->t_state == T_LOCKED) {
190                 wait_transaction_locked(journal);
191                 return 1;
192         }
193
194         /*
195          * If there is not enough space left in the log to write all
196          * potential buffers requested by this operation, we need to
197          * stall pending a log checkpoint to free some more log space.
198          */
199         needed = atomic_add_return(total, &t->t_outstanding_credits);
200         if (needed > journal->j_max_transaction_buffers) {
201                 /*
202                  * If the current transaction is already too large,
203                  * then start to commit it: we can then go back and
204                  * attach this handle to a new transaction.
205                  */
206                 atomic_sub(total, &t->t_outstanding_credits);
207
208                 /*
209                  * Is the number of reserved credits in the current transaction too
210                  * big to fit this handle? Wait until reserved credits are freed.
211                  */
212                 if (atomic_read(&journal->j_reserved_credits) + total >
213                     journal->j_max_transaction_buffers) {
214                         read_unlock(&journal->j_state_lock);
215                         wait_event(journal->j_wait_reserved,
216                                    atomic_read(&journal->j_reserved_credits) + total <=
217                                    journal->j_max_transaction_buffers);
218                         return 1;
219                 }
220
221                 wait_transaction_locked(journal);
222                 return 1;
223         }
224
225         /*
226          * The commit code assumes that it can get enough log space
227          * without forcing a checkpoint.  This is *critical* for
228          * correctness: a checkpoint of a buffer which is also
229          * associated with a committing transaction creates a deadlock,
230          * so commit simply cannot force through checkpoints.
231          *
232          * We must therefore ensure the necessary space in the journal
233          * *before* starting to dirty potentially checkpointed buffers
234          * in the new transaction.
235          */
236         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237                 atomic_sub(total, &t->t_outstanding_credits);
238                 read_unlock(&journal->j_state_lock);
239                 write_lock(&journal->j_state_lock);
240                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241                         __jbd2_log_wait_for_space(journal);
242                 write_unlock(&journal->j_state_lock);
243                 return 1;
244         }
245
246         /* No reservation? We are done... */
247         if (!rsv_blocks)
248                 return 0;
249
250         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251         /* We allow at most half of a transaction to be reserved */
252         if (needed > journal->j_max_transaction_buffers / 2) {
253                 sub_reserved_credits(journal, rsv_blocks);
254                 atomic_sub(total, &t->t_outstanding_credits);
255                 read_unlock(&journal->j_state_lock);
256                 wait_event(journal->j_wait_reserved,
257                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
258                          <= journal->j_max_transaction_buffers / 2);
259                 return 1;
260         }
261         return 0;
262 }
263
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272                              gfp_t gfp_mask)
273 {
274         transaction_t   *transaction, *new_transaction = NULL;
275         int             blocks = handle->h_buffer_credits;
276         int             rsv_blocks = 0;
277         unsigned long ts = jiffies;
278
279         if (handle->h_rsv_handle)
280                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282         /*
283          * Limit the number of reserved credits to 1/2 of maximum transaction
284          * size and limit the number of total credits to not exceed maximum
285          * transaction size per operation.
286          */
287         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289                 printk(KERN_ERR "JBD2: %s wants too many credits "
290                        "credits:%d rsv_credits:%d max:%d\n",
291                        current->comm, blocks, rsv_blocks,
292                        journal->j_max_transaction_buffers);
293                 WARN_ON(1);
294                 return -ENOSPC;
295         }
296
297 alloc_transaction:
298         if (!journal->j_running_transaction) {
299                 /*
300                  * If __GFP_FS is not present, then we may be being called from
301                  * inside the fs writeback layer, so we MUST NOT fail.
302                  */
303                 if ((gfp_mask & __GFP_FS) == 0)
304                         gfp_mask |= __GFP_NOFAIL;
305                 new_transaction = kmem_cache_zalloc(transaction_cache,
306                                                     gfp_mask);
307                 if (!new_transaction)
308                         return -ENOMEM;
309         }
310
311         jbd_debug(3, "New handle %p going live.\n", handle);
312
313         /*
314          * We need to hold j_state_lock until t_updates has been incremented,
315          * for proper journal barrier handling
316          */
317 repeat:
318         read_lock(&journal->j_state_lock);
319         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320         if (is_journal_aborted(journal) ||
321             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322                 read_unlock(&journal->j_state_lock);
323                 jbd2_journal_free_transaction(new_transaction);
324                 return -EROFS;
325         }
326
327         /*
328          * Wait on the journal's transaction barrier if necessary. Specifically
329          * we allow reserved handles to proceed because otherwise commit could
330          * deadlock on page writeback not being able to complete.
331          */
332         if (!handle->h_reserved && journal->j_barrier_count) {
333                 read_unlock(&journal->j_state_lock);
334                 wait_event(journal->j_wait_transaction_locked,
335                                 journal->j_barrier_count == 0);
336                 goto repeat;
337         }
338
339         if (!journal->j_running_transaction) {
340                 read_unlock(&journal->j_state_lock);
341                 if (!new_transaction)
342                         goto alloc_transaction;
343                 write_lock(&journal->j_state_lock);
344                 if (!journal->j_running_transaction &&
345                     (handle->h_reserved || !journal->j_barrier_count)) {
346                         jbd2_get_transaction(journal, new_transaction);
347                         new_transaction = NULL;
348                 }
349                 write_unlock(&journal->j_state_lock);
350                 goto repeat;
351         }
352
353         transaction = journal->j_running_transaction;
354
355         if (!handle->h_reserved) {
356                 /* We may have dropped j_state_lock - restart in that case */
357                 if (add_transaction_credits(journal, blocks, rsv_blocks))
358                         goto repeat;
359         } else {
360                 /*
361                  * We have handle reserved so we are allowed to join T_LOCKED
362                  * transaction and we don't have to check for transaction size
363                  * and journal space.
364                  */
365                 sub_reserved_credits(journal, blocks);
366                 handle->h_reserved = 0;
367         }
368
369         /* OK, account for the buffers that this operation expects to
370          * use and add the handle to the running transaction. 
371          */
372         update_t_max_wait(transaction, ts);
373         handle->h_transaction = transaction;
374         handle->h_requested_credits = blocks;
375         handle->h_start_jiffies = jiffies;
376         atomic_inc(&transaction->t_updates);
377         atomic_inc(&transaction->t_handle_count);
378         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379                   handle, blocks,
380                   atomic_read(&transaction->t_outstanding_credits),
381                   jbd2_log_space_left(journal));
382         read_unlock(&journal->j_state_lock);
383         current->journal_info = handle;
384
385         lock_map_acquire(&handle->h_lockdep_map);
386         jbd2_journal_free_transaction(new_transaction);
387         return 0;
388 }
389
390 static struct lock_class_key jbd2_handle_key;
391
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396         if (!handle)
397                 return NULL;
398         handle->h_buffer_credits = nblocks;
399         handle->h_ref = 1;
400
401         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402                                                 &jbd2_handle_key, 0);
403
404         return handle;
405 }
406
407 /**
408  * handle_t *jbd2_journal_start() - Obtain a new handle.
409  * @journal: Journal to start transaction on.
410  * @nblocks: number of block buffer we might modify
411  *
412  * We make sure that the transaction can guarantee at least nblocks of
413  * modified buffers in the log.  We block until the log can guarantee
414  * that much space. Additionally, if rsv_blocks > 0, we also create another
415  * handle with rsv_blocks reserved blocks in the journal. This handle is
416  * is stored in h_rsv_handle. It is not attached to any particular transaction
417  * and thus doesn't block transaction commit. If the caller uses this reserved
418  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419  * on the parent handle will dispose the reserved one. Reserved handle has to
420  * be converted to a normal handle using jbd2_journal_start_reserved() before
421  * it can be used.
422  *
423  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424  * on failure.
425  */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427                               gfp_t gfp_mask, unsigned int type,
428                               unsigned int line_no)
429 {
430         handle_t *handle = journal_current_handle();
431         int err;
432
433         if (!journal)
434                 return ERR_PTR(-EROFS);
435
436         if (handle) {
437                 J_ASSERT(handle->h_transaction->t_journal == journal);
438                 handle->h_ref++;
439                 return handle;
440         }
441
442         handle = new_handle(nblocks);
443         if (!handle)
444                 return ERR_PTR(-ENOMEM);
445         if (rsv_blocks) {
446                 handle_t *rsv_handle;
447
448                 rsv_handle = new_handle(rsv_blocks);
449                 if (!rsv_handle) {
450                         jbd2_free_handle(handle);
451                         return ERR_PTR(-ENOMEM);
452                 }
453                 rsv_handle->h_reserved = 1;
454                 rsv_handle->h_journal = journal;
455                 handle->h_rsv_handle = rsv_handle;
456         }
457
458         err = start_this_handle(journal, handle, gfp_mask);
459         if (err < 0) {
460                 if (handle->h_rsv_handle)
461                         jbd2_free_handle(handle->h_rsv_handle);
462                 jbd2_free_handle(handle);
463                 return ERR_PTR(err);
464         }
465         handle->h_type = type;
466         handle->h_line_no = line_no;
467         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468                                 handle->h_transaction->t_tid, type,
469                                 line_no, nblocks);
470         return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473
474
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483         journal_t *journal = handle->h_journal;
484
485         WARN_ON(!handle->h_reserved);
486         sub_reserved_credits(journal, handle->h_buffer_credits);
487         jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490
491 /**
492  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493  * @handle: handle to start
494  *
495  * Start handle that has been previously reserved with jbd2_journal_reserve().
496  * This attaches @handle to the running transaction (or creates one if there's
497  * not transaction running). Unlike jbd2_journal_start() this function cannot
498  * block on journal commit, checkpointing, or similar stuff. It can block on
499  * memory allocation or frozen journal though.
500  *
501  * Return 0 on success, non-zero on error - handle is freed in that case.
502  */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504                                 unsigned int line_no)
505 {
506         journal_t *journal = handle->h_journal;
507         int ret = -EIO;
508
509         if (WARN_ON(!handle->h_reserved)) {
510                 /* Someone passed in normal handle? Just stop it. */
511                 jbd2_journal_stop(handle);
512                 return ret;
513         }
514         /*
515          * Usefulness of mixing of reserved and unreserved handles is
516          * questionable. So far nobody seems to need it so just error out.
517          */
518         if (WARN_ON(current->journal_info)) {
519                 jbd2_journal_free_reserved(handle);
520                 return ret;
521         }
522
523         handle->h_journal = NULL;
524         /*
525          * GFP_NOFS is here because callers are likely from writeback or
526          * similarly constrained call sites
527          */
528         ret = start_this_handle(journal, handle, GFP_NOFS);
529         if (ret < 0) {
530                 jbd2_journal_free_reserved(handle);
531                 return ret;
532         }
533         handle->h_type = type;
534         handle->h_line_no = line_no;
535         return 0;
536 }
537 EXPORT_SYMBOL(jbd2_journal_start_reserved);
538
539 /**
540  * int jbd2_journal_extend() - extend buffer credits.
541  * @handle:  handle to 'extend'
542  * @nblocks: nr blocks to try to extend by.
543  *
544  * Some transactions, such as large extends and truncates, can be done
545  * atomically all at once or in several stages.  The operation requests
546  * a credit for a number of buffer modications in advance, but can
547  * extend its credit if it needs more.
548  *
549  * jbd2_journal_extend tries to give the running handle more buffer credits.
550  * It does not guarantee that allocation - this is a best-effort only.
551  * The calling process MUST be able to deal cleanly with a failure to
552  * extend here.
553  *
554  * Return 0 on success, non-zero on failure.
555  *
556  * return code < 0 implies an error
557  * return code > 0 implies normal transaction-full status.
558  */
559 int jbd2_journal_extend(handle_t *handle, int nblocks)
560 {
561         transaction_t *transaction = handle->h_transaction;
562         journal_t *journal;
563         int result;
564         int wanted;
565
566         if (is_handle_aborted(handle))
567                 return -EROFS;
568         journal = transaction->t_journal;
569
570         result = 1;
571
572         read_lock(&journal->j_state_lock);
573
574         /* Don't extend a locked-down transaction! */
575         if (transaction->t_state != T_RUNNING) {
576                 jbd_debug(3, "denied handle %p %d blocks: "
577                           "transaction not running\n", handle, nblocks);
578                 goto error_out;
579         }
580
581         spin_lock(&transaction->t_handle_lock);
582         wanted = atomic_add_return(nblocks,
583                                    &transaction->t_outstanding_credits);
584
585         if (wanted > journal->j_max_transaction_buffers) {
586                 jbd_debug(3, "denied handle %p %d blocks: "
587                           "transaction too large\n", handle, nblocks);
588                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
589                 goto unlock;
590         }
591
592         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
593             jbd2_log_space_left(journal)) {
594                 jbd_debug(3, "denied handle %p %d blocks: "
595                           "insufficient log space\n", handle, nblocks);
596                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
597                 goto unlock;
598         }
599
600         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
601                                  transaction->t_tid,
602                                  handle->h_type, handle->h_line_no,
603                                  handle->h_buffer_credits,
604                                  nblocks);
605
606         handle->h_buffer_credits += nblocks;
607         handle->h_requested_credits += nblocks;
608         result = 0;
609
610         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
611 unlock:
612         spin_unlock(&transaction->t_handle_lock);
613 error_out:
614         read_unlock(&journal->j_state_lock);
615         return result;
616 }
617
618
619 /**
620  * int jbd2_journal_restart() - restart a handle .
621  * @handle:  handle to restart
622  * @nblocks: nr credits requested
623  *
624  * Restart a handle for a multi-transaction filesystem
625  * operation.
626  *
627  * If the jbd2_journal_extend() call above fails to grant new buffer credits
628  * to a running handle, a call to jbd2_journal_restart will commit the
629  * handle's transaction so far and reattach the handle to a new
630  * transaction capabable of guaranteeing the requested number of
631  * credits. We preserve reserved handle if there's any attached to the
632  * passed in handle.
633  */
634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
635 {
636         transaction_t *transaction = handle->h_transaction;
637         journal_t *journal;
638         tid_t           tid;
639         int             need_to_start, ret;
640
641         /* If we've had an abort of any type, don't even think about
642          * actually doing the restart! */
643         if (is_handle_aborted(handle))
644                 return 0;
645         journal = transaction->t_journal;
646
647         /*
648          * First unlink the handle from its current transaction, and start the
649          * commit on that.
650          */
651         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
652         J_ASSERT(journal_current_handle() == handle);
653
654         read_lock(&journal->j_state_lock);
655         spin_lock(&transaction->t_handle_lock);
656         atomic_sub(handle->h_buffer_credits,
657                    &transaction->t_outstanding_credits);
658         if (handle->h_rsv_handle) {
659                 sub_reserved_credits(journal,
660                                      handle->h_rsv_handle->h_buffer_credits);
661         }
662         if (atomic_dec_and_test(&transaction->t_updates))
663                 wake_up(&journal->j_wait_updates);
664         tid = transaction->t_tid;
665         spin_unlock(&transaction->t_handle_lock);
666         handle->h_transaction = NULL;
667         current->journal_info = NULL;
668
669         jbd_debug(2, "restarting handle %p\n", handle);
670         need_to_start = !tid_geq(journal->j_commit_request, tid);
671         read_unlock(&journal->j_state_lock);
672         if (need_to_start)
673                 jbd2_log_start_commit(journal, tid);
674
675         lock_map_release(&handle->h_lockdep_map);
676         handle->h_buffer_credits = nblocks;
677         ret = start_this_handle(journal, handle, gfp_mask);
678         return ret;
679 }
680 EXPORT_SYMBOL(jbd2__journal_restart);
681
682
683 int jbd2_journal_restart(handle_t *handle, int nblocks)
684 {
685         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
686 }
687 EXPORT_SYMBOL(jbd2_journal_restart);
688
689 /**
690  * void jbd2_journal_lock_updates () - establish a transaction barrier.
691  * @journal:  Journal to establish a barrier on.
692  *
693  * This locks out any further updates from being started, and blocks
694  * until all existing updates have completed, returning only once the
695  * journal is in a quiescent state with no updates running.
696  *
697  * The journal lock should not be held on entry.
698  */
699 void jbd2_journal_lock_updates(journal_t *journal)
700 {
701         DEFINE_WAIT(wait);
702
703         write_lock(&journal->j_state_lock);
704         ++journal->j_barrier_count;
705
706         /* Wait until there are no reserved handles */
707         if (atomic_read(&journal->j_reserved_credits)) {
708                 write_unlock(&journal->j_state_lock);
709                 wait_event(journal->j_wait_reserved,
710                            atomic_read(&journal->j_reserved_credits) == 0);
711                 write_lock(&journal->j_state_lock);
712         }
713
714         /* Wait until there are no running updates */
715         while (1) {
716                 transaction_t *transaction = journal->j_running_transaction;
717
718                 if (!transaction)
719                         break;
720
721                 spin_lock(&transaction->t_handle_lock);
722                 prepare_to_wait(&journal->j_wait_updates, &wait,
723                                 TASK_UNINTERRUPTIBLE);
724                 if (!atomic_read(&transaction->t_updates)) {
725                         spin_unlock(&transaction->t_handle_lock);
726                         finish_wait(&journal->j_wait_updates, &wait);
727                         break;
728                 }
729                 spin_unlock(&transaction->t_handle_lock);
730                 write_unlock(&journal->j_state_lock);
731                 schedule();
732                 finish_wait(&journal->j_wait_updates, &wait);
733                 write_lock(&journal->j_state_lock);
734         }
735         write_unlock(&journal->j_state_lock);
736
737         /*
738          * We have now established a barrier against other normal updates, but
739          * we also need to barrier against other jbd2_journal_lock_updates() calls
740          * to make sure that we serialise special journal-locked operations
741          * too.
742          */
743         mutex_lock(&journal->j_barrier);
744 }
745
746 /**
747  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
748  * @journal:  Journal to release the barrier on.
749  *
750  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
751  *
752  * Should be called without the journal lock held.
753  */
754 void jbd2_journal_unlock_updates (journal_t *journal)
755 {
756         J_ASSERT(journal->j_barrier_count != 0);
757
758         mutex_unlock(&journal->j_barrier);
759         write_lock(&journal->j_state_lock);
760         --journal->j_barrier_count;
761         write_unlock(&journal->j_state_lock);
762         wake_up(&journal->j_wait_transaction_locked);
763 }
764
765 static void warn_dirty_buffer(struct buffer_head *bh)
766 {
767         char b[BDEVNAME_SIZE];
768
769         printk(KERN_WARNING
770                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
771                "There's a risk of filesystem corruption in case of system "
772                "crash.\n",
773                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
774 }
775
776 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
777 static void jbd2_freeze_jh_data(struct journal_head *jh)
778 {
779         struct page *page;
780         int offset;
781         char *source;
782         struct buffer_head *bh = jh2bh(jh);
783
784         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
785         page = bh->b_page;
786         offset = offset_in_page(bh->b_data);
787         source = kmap_atomic(page);
788         /* Fire data frozen trigger just before we copy the data */
789         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
790         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
791         kunmap_atomic(source);
792
793         /*
794          * Now that the frozen data is saved off, we need to store any matching
795          * triggers.
796          */
797         jh->b_frozen_triggers = jh->b_triggers;
798 }
799
800 /*
801  * If the buffer is already part of the current transaction, then there
802  * is nothing we need to do.  If it is already part of a prior
803  * transaction which we are still committing to disk, then we need to
804  * make sure that we do not overwrite the old copy: we do copy-out to
805  * preserve the copy going to disk.  We also account the buffer against
806  * the handle's metadata buffer credits (unless the buffer is already
807  * part of the transaction, that is).
808  *
809  */
810 static int
811 do_get_write_access(handle_t *handle, struct journal_head *jh,
812                         int force_copy)
813 {
814         struct buffer_head *bh;
815         transaction_t *transaction = handle->h_transaction;
816         journal_t *journal;
817         int error;
818         char *frozen_buffer = NULL;
819         unsigned long start_lock, time_lock;
820
821         if (is_handle_aborted(handle))
822                 return -EROFS;
823         journal = transaction->t_journal;
824
825         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
826
827         JBUFFER_TRACE(jh, "entry");
828 repeat:
829         bh = jh2bh(jh);
830
831         /* @@@ Need to check for errors here at some point. */
832
833         start_lock = jiffies;
834         lock_buffer(bh);
835         jbd_lock_bh_state(bh);
836
837         /* If it takes too long to lock the buffer, trace it */
838         time_lock = jbd2_time_diff(start_lock, jiffies);
839         if (time_lock > HZ/10)
840                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
841                         jiffies_to_msecs(time_lock));
842
843         /* We now hold the buffer lock so it is safe to query the buffer
844          * state.  Is the buffer dirty?
845          *
846          * If so, there are two possibilities.  The buffer may be
847          * non-journaled, and undergoing a quite legitimate writeback.
848          * Otherwise, it is journaled, and we don't expect dirty buffers
849          * in that state (the buffers should be marked JBD_Dirty
850          * instead.)  So either the IO is being done under our own
851          * control and this is a bug, or it's a third party IO such as
852          * dump(8) (which may leave the buffer scheduled for read ---
853          * ie. locked but not dirty) or tune2fs (which may actually have
854          * the buffer dirtied, ugh.)  */
855
856         if (buffer_dirty(bh)) {
857                 /*
858                  * First question: is this buffer already part of the current
859                  * transaction or the existing committing transaction?
860                  */
861                 if (jh->b_transaction) {
862                         J_ASSERT_JH(jh,
863                                 jh->b_transaction == transaction ||
864                                 jh->b_transaction ==
865                                         journal->j_committing_transaction);
866                         if (jh->b_next_transaction)
867                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
868                                                         transaction);
869                         warn_dirty_buffer(bh);
870                 }
871                 /*
872                  * In any case we need to clean the dirty flag and we must
873                  * do it under the buffer lock to be sure we don't race
874                  * with running write-out.
875                  */
876                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
877                 clear_buffer_dirty(bh);
878                 set_buffer_jbddirty(bh);
879         }
880
881         unlock_buffer(bh);
882
883         error = -EROFS;
884         if (is_handle_aborted(handle)) {
885                 jbd_unlock_bh_state(bh);
886                 goto out;
887         }
888         error = 0;
889
890         /*
891          * The buffer is already part of this transaction if b_transaction or
892          * b_next_transaction points to it
893          */
894         if (jh->b_transaction == transaction ||
895             jh->b_next_transaction == transaction)
896                 goto done;
897
898         /*
899          * this is the first time this transaction is touching this buffer,
900          * reset the modified flag
901          */
902        jh->b_modified = 0;
903
904         /*
905          * If the buffer is not journaled right now, we need to make sure it
906          * doesn't get written to disk before the caller actually commits the
907          * new data
908          */
909         if (!jh->b_transaction) {
910                 JBUFFER_TRACE(jh, "no transaction");
911                 J_ASSERT_JH(jh, !jh->b_next_transaction);
912                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
913                 /*
914                  * Make sure all stores to jh (b_modified, b_frozen_data) are
915                  * visible before attaching it to the running transaction.
916                  * Paired with barrier in jbd2_write_access_granted()
917                  */
918                 smp_wmb();
919                 spin_lock(&journal->j_list_lock);
920                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
921                 spin_unlock(&journal->j_list_lock);
922                 goto done;
923         }
924         /*
925          * If there is already a copy-out version of this buffer, then we don't
926          * need to make another one
927          */
928         if (jh->b_frozen_data) {
929                 JBUFFER_TRACE(jh, "has frozen data");
930                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
931                 goto attach_next;
932         }
933
934         JBUFFER_TRACE(jh, "owned by older transaction");
935         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
936         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
937
938         /*
939          * There is one case we have to be very careful about.  If the
940          * committing transaction is currently writing this buffer out to disk
941          * and has NOT made a copy-out, then we cannot modify the buffer
942          * contents at all right now.  The essence of copy-out is that it is
943          * the extra copy, not the primary copy, which gets journaled.  If the
944          * primary copy is already going to disk then we cannot do copy-out
945          * here.
946          */
947         if (buffer_shadow(bh)) {
948                 JBUFFER_TRACE(jh, "on shadow: sleep");
949                 jbd_unlock_bh_state(bh);
950                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
951                 goto repeat;
952         }
953
954         /*
955          * Only do the copy if the currently-owning transaction still needs it.
956          * If buffer isn't on BJ_Metadata list, the committing transaction is
957          * past that stage (here we use the fact that BH_Shadow is set under
958          * bh_state lock together with refiling to BJ_Shadow list and at this
959          * point we know the buffer doesn't have BH_Shadow set).
960          *
961          * Subtle point, though: if this is a get_undo_access, then we will be
962          * relying on the frozen_data to contain the new value of the
963          * committed_data record after the transaction, so we HAVE to force the
964          * frozen_data copy in that case.
965          */
966         if (jh->b_jlist == BJ_Metadata || force_copy) {
967                 JBUFFER_TRACE(jh, "generate frozen data");
968                 if (!frozen_buffer) {
969                         JBUFFER_TRACE(jh, "allocate memory for buffer");
970                         jbd_unlock_bh_state(bh);
971                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
972                         if (!frozen_buffer) {
973                                 printk(KERN_ERR "%s: OOM for frozen_buffer\n",
974                                        __func__);
975                                 JBUFFER_TRACE(jh, "oom!");
976                                 error = -ENOMEM;
977                                 goto out;
978                         }
979                         goto repeat;
980                 }
981                 jh->b_frozen_data = frozen_buffer;
982                 frozen_buffer = NULL;
983                 jbd2_freeze_jh_data(jh);
984         }
985 attach_next:
986         /*
987          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
988          * before attaching it to the running transaction. Paired with barrier
989          * in jbd2_write_access_granted()
990          */
991         smp_wmb();
992         jh->b_next_transaction = transaction;
993
994 done:
995         jbd_unlock_bh_state(bh);
996
997         /*
998          * If we are about to journal a buffer, then any revoke pending on it is
999          * no longer valid
1000          */
1001         jbd2_journal_cancel_revoke(handle, jh);
1002
1003 out:
1004         if (unlikely(frozen_buffer))    /* It's usually NULL */
1005                 jbd2_free(frozen_buffer, bh->b_size);
1006
1007         JBUFFER_TRACE(jh, "exit");
1008         return error;
1009 }
1010
1011 /* Fast check whether buffer is already attached to the required transaction */
1012 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1013                                                         bool undo)
1014 {
1015         struct journal_head *jh;
1016         bool ret = false;
1017
1018         /* Dirty buffers require special handling... */
1019         if (buffer_dirty(bh))
1020                 return false;
1021
1022         /*
1023          * RCU protects us from dereferencing freed pages. So the checks we do
1024          * are guaranteed not to oops. However the jh slab object can get freed
1025          * & reallocated while we work with it. So we have to be careful. When
1026          * we see jh attached to the running transaction, we know it must stay
1027          * so until the transaction is committed. Thus jh won't be freed and
1028          * will be attached to the same bh while we run.  However it can
1029          * happen jh gets freed, reallocated, and attached to the transaction
1030          * just after we get pointer to it from bh. So we have to be careful
1031          * and recheck jh still belongs to our bh before we return success.
1032          */
1033         rcu_read_lock();
1034         if (!buffer_jbd(bh))
1035                 goto out;
1036         /* This should be bh2jh() but that doesn't work with inline functions */
1037         jh = READ_ONCE(bh->b_private);
1038         if (!jh)
1039                 goto out;
1040         /* For undo access buffer must have data copied */
1041         if (undo && !jh->b_committed_data)
1042                 goto out;
1043         if (jh->b_transaction != handle->h_transaction &&
1044             jh->b_next_transaction != handle->h_transaction)
1045                 goto out;
1046         /*
1047          * There are two reasons for the barrier here:
1048          * 1) Make sure to fetch b_bh after we did previous checks so that we
1049          * detect when jh went through free, realloc, attach to transaction
1050          * while we were checking. Paired with implicit barrier in that path.
1051          * 2) So that access to bh done after jbd2_write_access_granted()
1052          * doesn't get reordered and see inconsistent state of concurrent
1053          * do_get_write_access().
1054          */
1055         smp_mb();
1056         if (unlikely(jh->b_bh != bh))
1057                 goto out;
1058         ret = true;
1059 out:
1060         rcu_read_unlock();
1061         return ret;
1062 }
1063
1064 /**
1065  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1066  * @handle: transaction to add buffer modifications to
1067  * @bh:     bh to be used for metadata writes
1068  *
1069  * Returns an error code or 0 on success.
1070  *
1071  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1072  * because we're write()ing a buffer which is also part of a shared mapping.
1073  */
1074
1075 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1076 {
1077         struct journal_head *jh;
1078         int rc;
1079
1080         if (jbd2_write_access_granted(handle, bh, false))
1081                 return 0;
1082
1083         jh = jbd2_journal_add_journal_head(bh);
1084         /* We do not want to get caught playing with fields which the
1085          * log thread also manipulates.  Make sure that the buffer
1086          * completes any outstanding IO before proceeding. */
1087         rc = do_get_write_access(handle, jh, 0);
1088         jbd2_journal_put_journal_head(jh);
1089         return rc;
1090 }
1091
1092
1093 /*
1094  * When the user wants to journal a newly created buffer_head
1095  * (ie. getblk() returned a new buffer and we are going to populate it
1096  * manually rather than reading off disk), then we need to keep the
1097  * buffer_head locked until it has been completely filled with new
1098  * data.  In this case, we should be able to make the assertion that
1099  * the bh is not already part of an existing transaction.
1100  *
1101  * The buffer should already be locked by the caller by this point.
1102  * There is no lock ranking violation: it was a newly created,
1103  * unlocked buffer beforehand. */
1104
1105 /**
1106  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1107  * @handle: transaction to new buffer to
1108  * @bh: new buffer.
1109  *
1110  * Call this if you create a new bh.
1111  */
1112 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1113 {
1114         transaction_t *transaction = handle->h_transaction;
1115         journal_t *journal;
1116         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1117         int err;
1118
1119         jbd_debug(5, "journal_head %p\n", jh);
1120         err = -EROFS;
1121         if (is_handle_aborted(handle))
1122                 goto out;
1123         journal = transaction->t_journal;
1124         err = 0;
1125
1126         JBUFFER_TRACE(jh, "entry");
1127         /*
1128          * The buffer may already belong to this transaction due to pre-zeroing
1129          * in the filesystem's new_block code.  It may also be on the previous,
1130          * committing transaction's lists, but it HAS to be in Forget state in
1131          * that case: the transaction must have deleted the buffer for it to be
1132          * reused here.
1133          */
1134         jbd_lock_bh_state(bh);
1135         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1136                 jh->b_transaction == NULL ||
1137                 (jh->b_transaction == journal->j_committing_transaction &&
1138                           jh->b_jlist == BJ_Forget)));
1139
1140         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1141         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1142
1143         if (jh->b_transaction == NULL) {
1144                 /*
1145                  * Previous jbd2_journal_forget() could have left the buffer
1146                  * with jbddirty bit set because it was being committed. When
1147                  * the commit finished, we've filed the buffer for
1148                  * checkpointing and marked it dirty. Now we are reallocating
1149                  * the buffer so the transaction freeing it must have
1150                  * committed and so it's safe to clear the dirty bit.
1151                  */
1152                 clear_buffer_dirty(jh2bh(jh));
1153                 /* first access by this transaction */
1154                 jh->b_modified = 0;
1155
1156                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1157                 spin_lock(&journal->j_list_lock);
1158                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1159                 spin_unlock(&journal->j_list_lock);
1160         } else if (jh->b_transaction == journal->j_committing_transaction) {
1161                 /* first access by this transaction */
1162                 jh->b_modified = 0;
1163
1164                 JBUFFER_TRACE(jh, "set next transaction");
1165                 spin_lock(&journal->j_list_lock);
1166                 jh->b_next_transaction = transaction;
1167                 spin_unlock(&journal->j_list_lock);
1168         }
1169         jbd_unlock_bh_state(bh);
1170
1171         /*
1172          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1173          * blocks which contain freed but then revoked metadata.  We need
1174          * to cancel the revoke in case we end up freeing it yet again
1175          * and the reallocating as data - this would cause a second revoke,
1176          * which hits an assertion error.
1177          */
1178         JBUFFER_TRACE(jh, "cancelling revoke");
1179         jbd2_journal_cancel_revoke(handle, jh);
1180 out:
1181         jbd2_journal_put_journal_head(jh);
1182         return err;
1183 }
1184
1185 /**
1186  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1187  *     non-rewindable consequences
1188  * @handle: transaction
1189  * @bh: buffer to undo
1190  *
1191  * Sometimes there is a need to distinguish between metadata which has
1192  * been committed to disk and that which has not.  The ext3fs code uses
1193  * this for freeing and allocating space, we have to make sure that we
1194  * do not reuse freed space until the deallocation has been committed,
1195  * since if we overwrote that space we would make the delete
1196  * un-rewindable in case of a crash.
1197  *
1198  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1199  * buffer for parts of non-rewindable operations such as delete
1200  * operations on the bitmaps.  The journaling code must keep a copy of
1201  * the buffer's contents prior to the undo_access call until such time
1202  * as we know that the buffer has definitely been committed to disk.
1203  *
1204  * We never need to know which transaction the committed data is part
1205  * of, buffers touched here are guaranteed to be dirtied later and so
1206  * will be committed to a new transaction in due course, at which point
1207  * we can discard the old committed data pointer.
1208  *
1209  * Returns error number or 0 on success.
1210  */
1211 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1212 {
1213         int err;
1214         struct journal_head *jh;
1215         char *committed_data = NULL;
1216
1217         JBUFFER_TRACE(jh, "entry");
1218         if (jbd2_write_access_granted(handle, bh, true))
1219                 return 0;
1220
1221         jh = jbd2_journal_add_journal_head(bh);
1222         /*
1223          * Do this first --- it can drop the journal lock, so we want to
1224          * make sure that obtaining the committed_data is done
1225          * atomically wrt. completion of any outstanding commits.
1226          */
1227         err = do_get_write_access(handle, jh, 1);
1228         if (err)
1229                 goto out;
1230
1231 repeat:
1232         if (!jh->b_committed_data) {
1233                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1234                 if (!committed_data) {
1235                         printk(KERN_ERR "%s: No memory for committed data\n",
1236                                 __func__);
1237                         err = -ENOMEM;
1238                         goto out;
1239                 }
1240         }
1241
1242         jbd_lock_bh_state(bh);
1243         if (!jh->b_committed_data) {
1244                 /* Copy out the current buffer contents into the
1245                  * preserved, committed copy. */
1246                 JBUFFER_TRACE(jh, "generate b_committed data");
1247                 if (!committed_data) {
1248                         jbd_unlock_bh_state(bh);
1249                         goto repeat;
1250                 }
1251
1252                 jh->b_committed_data = committed_data;
1253                 committed_data = NULL;
1254                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1255         }
1256         jbd_unlock_bh_state(bh);
1257 out:
1258         jbd2_journal_put_journal_head(jh);
1259         if (unlikely(committed_data))
1260                 jbd2_free(committed_data, bh->b_size);
1261         return err;
1262 }
1263
1264 /**
1265  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1266  * @bh: buffer to trigger on
1267  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1268  *
1269  * Set any triggers on this journal_head.  This is always safe, because
1270  * triggers for a committing buffer will be saved off, and triggers for
1271  * a running transaction will match the buffer in that transaction.
1272  *
1273  * Call with NULL to clear the triggers.
1274  */
1275 void jbd2_journal_set_triggers(struct buffer_head *bh,
1276                                struct jbd2_buffer_trigger_type *type)
1277 {
1278         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1279
1280         if (WARN_ON(!jh))
1281                 return;
1282         jh->b_triggers = type;
1283         jbd2_journal_put_journal_head(jh);
1284 }
1285
1286 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1287                                 struct jbd2_buffer_trigger_type *triggers)
1288 {
1289         struct buffer_head *bh = jh2bh(jh);
1290
1291         if (!triggers || !triggers->t_frozen)
1292                 return;
1293
1294         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1295 }
1296
1297 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1298                                struct jbd2_buffer_trigger_type *triggers)
1299 {
1300         if (!triggers || !triggers->t_abort)
1301                 return;
1302
1303         triggers->t_abort(triggers, jh2bh(jh));
1304 }
1305
1306 /**
1307  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1308  * @handle: transaction to add buffer to.
1309  * @bh: buffer to mark
1310  *
1311  * mark dirty metadata which needs to be journaled as part of the current
1312  * transaction.
1313  *
1314  * The buffer must have previously had jbd2_journal_get_write_access()
1315  * called so that it has a valid journal_head attached to the buffer
1316  * head.
1317  *
1318  * The buffer is placed on the transaction's metadata list and is marked
1319  * as belonging to the transaction.
1320  *
1321  * Returns error number or 0 on success.
1322  *
1323  * Special care needs to be taken if the buffer already belongs to the
1324  * current committing transaction (in which case we should have frozen
1325  * data present for that commit).  In that case, we don't relink the
1326  * buffer: that only gets done when the old transaction finally
1327  * completes its commit.
1328  */
1329 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1330 {
1331         transaction_t *transaction = handle->h_transaction;
1332         journal_t *journal;
1333         struct journal_head *jh;
1334         int ret = 0;
1335
1336         if (is_handle_aborted(handle))
1337                 return -EROFS;
1338         if (!buffer_jbd(bh)) {
1339                 ret = -EUCLEAN;
1340                 goto out;
1341         }
1342         /*
1343          * We don't grab jh reference here since the buffer must be part
1344          * of the running transaction.
1345          */
1346         jh = bh2jh(bh);
1347         /*
1348          * This and the following assertions are unreliable since we may see jh
1349          * in inconsistent state unless we grab bh_state lock. But this is
1350          * crucial to catch bugs so let's do a reliable check until the
1351          * lockless handling is fully proven.
1352          */
1353         if (jh->b_transaction != transaction &&
1354             jh->b_next_transaction != transaction) {
1355                 jbd_lock_bh_state(bh);
1356                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1357                                 jh->b_next_transaction == transaction);
1358                 jbd_unlock_bh_state(bh);
1359         }
1360         if (jh->b_modified == 1) {
1361                 /* If it's in our transaction it must be in BJ_Metadata list. */
1362                 if (jh->b_transaction == transaction &&
1363                     jh->b_jlist != BJ_Metadata) {
1364                         jbd_lock_bh_state(bh);
1365                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1366                                         jh->b_jlist == BJ_Metadata);
1367                         jbd_unlock_bh_state(bh);
1368                 }
1369                 goto out;
1370         }
1371
1372         journal = transaction->t_journal;
1373         jbd_debug(5, "journal_head %p\n", jh);
1374         JBUFFER_TRACE(jh, "entry");
1375
1376         jbd_lock_bh_state(bh);
1377
1378         if (jh->b_modified == 0) {
1379                 /*
1380                  * This buffer's got modified and becoming part
1381                  * of the transaction. This needs to be done
1382                  * once a transaction -bzzz
1383                  */
1384                 jh->b_modified = 1;
1385                 if (handle->h_buffer_credits <= 0) {
1386                         ret = -ENOSPC;
1387                         goto out_unlock_bh;
1388                 }
1389                 handle->h_buffer_credits--;
1390         }
1391
1392         /*
1393          * fastpath, to avoid expensive locking.  If this buffer is already
1394          * on the running transaction's metadata list there is nothing to do.
1395          * Nobody can take it off again because there is a handle open.
1396          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1397          * result in this test being false, so we go in and take the locks.
1398          */
1399         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1400                 JBUFFER_TRACE(jh, "fastpath");
1401                 if (unlikely(jh->b_transaction !=
1402                              journal->j_running_transaction)) {
1403                         printk(KERN_ERR "JBD2: %s: "
1404                                "jh->b_transaction (%llu, %p, %u) != "
1405                                "journal->j_running_transaction (%p, %u)\n",
1406                                journal->j_devname,
1407                                (unsigned long long) bh->b_blocknr,
1408                                jh->b_transaction,
1409                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1410                                journal->j_running_transaction,
1411                                journal->j_running_transaction ?
1412                                journal->j_running_transaction->t_tid : 0);
1413                         ret = -EINVAL;
1414                 }
1415                 goto out_unlock_bh;
1416         }
1417
1418         set_buffer_jbddirty(bh);
1419
1420         /*
1421          * Metadata already on the current transaction list doesn't
1422          * need to be filed.  Metadata on another transaction's list must
1423          * be committing, and will be refiled once the commit completes:
1424          * leave it alone for now.
1425          */
1426         if (jh->b_transaction != transaction) {
1427                 JBUFFER_TRACE(jh, "already on other transaction");
1428                 if (unlikely(((jh->b_transaction !=
1429                                journal->j_committing_transaction)) ||
1430                              (jh->b_next_transaction != transaction))) {
1431                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1432                                "bad jh for block %llu: "
1433                                "transaction (%p, %u), "
1434                                "jh->b_transaction (%p, %u), "
1435                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1436                                journal->j_devname,
1437                                (unsigned long long) bh->b_blocknr,
1438                                transaction, transaction->t_tid,
1439                                jh->b_transaction,
1440                                jh->b_transaction ?
1441                                jh->b_transaction->t_tid : 0,
1442                                jh->b_next_transaction,
1443                                jh->b_next_transaction ?
1444                                jh->b_next_transaction->t_tid : 0,
1445                                jh->b_jlist);
1446                         WARN_ON(1);
1447                         ret = -EINVAL;
1448                 }
1449                 /* And this case is illegal: we can't reuse another
1450                  * transaction's data buffer, ever. */
1451                 goto out_unlock_bh;
1452         }
1453
1454         /* That test should have eliminated the following case: */
1455         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1456
1457         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1458         spin_lock(&journal->j_list_lock);
1459         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1460         spin_unlock(&journal->j_list_lock);
1461 out_unlock_bh:
1462         jbd_unlock_bh_state(bh);
1463 out:
1464         JBUFFER_TRACE(jh, "exit");
1465         return ret;
1466 }
1467
1468 /**
1469  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1470  * @handle: transaction handle
1471  * @bh:     bh to 'forget'
1472  *
1473  * We can only do the bforget if there are no commits pending against the
1474  * buffer.  If the buffer is dirty in the current running transaction we
1475  * can safely unlink it.
1476  *
1477  * bh may not be a journalled buffer at all - it may be a non-JBD
1478  * buffer which came off the hashtable.  Check for this.
1479  *
1480  * Decrements bh->b_count by one.
1481  *
1482  * Allow this call even if the handle has aborted --- it may be part of
1483  * the caller's cleanup after an abort.
1484  */
1485 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1486 {
1487         transaction_t *transaction = handle->h_transaction;
1488         journal_t *journal;
1489         struct journal_head *jh;
1490         int drop_reserve = 0;
1491         int err = 0;
1492         int was_modified = 0;
1493
1494         if (is_handle_aborted(handle))
1495                 return -EROFS;
1496         journal = transaction->t_journal;
1497
1498         BUFFER_TRACE(bh, "entry");
1499
1500         jbd_lock_bh_state(bh);
1501
1502         if (!buffer_jbd(bh))
1503                 goto not_jbd;
1504         jh = bh2jh(bh);
1505
1506         /* Critical error: attempting to delete a bitmap buffer, maybe?
1507          * Don't do any jbd operations, and return an error. */
1508         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1509                          "inconsistent data on disk")) {
1510                 err = -EIO;
1511                 goto not_jbd;
1512         }
1513
1514         /* keep track of whether or not this transaction modified us */
1515         was_modified = jh->b_modified;
1516
1517         /*
1518          * The buffer's going from the transaction, we must drop
1519          * all references -bzzz
1520          */
1521         jh->b_modified = 0;
1522
1523         if (jh->b_transaction == transaction) {
1524                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1525
1526                 /* If we are forgetting a buffer which is already part
1527                  * of this transaction, then we can just drop it from
1528                  * the transaction immediately. */
1529                 clear_buffer_dirty(bh);
1530                 clear_buffer_jbddirty(bh);
1531
1532                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1533
1534                 /*
1535                  * we only want to drop a reference if this transaction
1536                  * modified the buffer
1537                  */
1538                 if (was_modified)
1539                         drop_reserve = 1;
1540
1541                 /*
1542                  * We are no longer going to journal this buffer.
1543                  * However, the commit of this transaction is still
1544                  * important to the buffer: the delete that we are now
1545                  * processing might obsolete an old log entry, so by
1546                  * committing, we can satisfy the buffer's checkpoint.
1547                  *
1548                  * So, if we have a checkpoint on the buffer, we should
1549                  * now refile the buffer on our BJ_Forget list so that
1550                  * we know to remove the checkpoint after we commit.
1551                  */
1552
1553                 spin_lock(&journal->j_list_lock);
1554                 if (jh->b_cp_transaction) {
1555                         __jbd2_journal_temp_unlink_buffer(jh);
1556                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1557                 } else {
1558                         __jbd2_journal_unfile_buffer(jh);
1559                         if (!buffer_jbd(bh)) {
1560                                 spin_unlock(&journal->j_list_lock);
1561                                 jbd_unlock_bh_state(bh);
1562                                 __bforget(bh);
1563                                 goto drop;
1564                         }
1565                 }
1566                 spin_unlock(&journal->j_list_lock);
1567         } else if (jh->b_transaction) {
1568                 J_ASSERT_JH(jh, (jh->b_transaction ==
1569                                  journal->j_committing_transaction));
1570                 /* However, if the buffer is still owned by a prior
1571                  * (committing) transaction, we can't drop it yet... */
1572                 JBUFFER_TRACE(jh, "belongs to older transaction");
1573                 /* ... but we CAN drop it from the new transaction if we
1574                  * have also modified it since the original commit. */
1575
1576                 if (jh->b_next_transaction) {
1577                         J_ASSERT(jh->b_next_transaction == transaction);
1578                         spin_lock(&journal->j_list_lock);
1579                         jh->b_next_transaction = NULL;
1580                         spin_unlock(&journal->j_list_lock);
1581
1582                         /*
1583                          * only drop a reference if this transaction modified
1584                          * the buffer
1585                          */
1586                         if (was_modified)
1587                                 drop_reserve = 1;
1588                 }
1589         }
1590
1591 not_jbd:
1592         jbd_unlock_bh_state(bh);
1593         __brelse(bh);
1594 drop:
1595         if (drop_reserve) {
1596                 /* no need to reserve log space for this block -bzzz */
1597                 handle->h_buffer_credits++;
1598         }
1599         return err;
1600 }
1601
1602 /**
1603  * int jbd2_journal_stop() - complete a transaction
1604  * @handle: tranaction to complete.
1605  *
1606  * All done for a particular handle.
1607  *
1608  * There is not much action needed here.  We just return any remaining
1609  * buffer credits to the transaction and remove the handle.  The only
1610  * complication is that we need to start a commit operation if the
1611  * filesystem is marked for synchronous update.
1612  *
1613  * jbd2_journal_stop itself will not usually return an error, but it may
1614  * do so in unusual circumstances.  In particular, expect it to
1615  * return -EIO if a jbd2_journal_abort has been executed since the
1616  * transaction began.
1617  */
1618 int jbd2_journal_stop(handle_t *handle)
1619 {
1620         transaction_t *transaction = handle->h_transaction;
1621         journal_t *journal;
1622         int err = 0, wait_for_commit = 0;
1623         tid_t tid;
1624         pid_t pid;
1625
1626         if (!transaction) {
1627                 /*
1628                  * Handle is already detached from the transaction so
1629                  * there is nothing to do other than decrease a refcount,
1630                  * or free the handle if refcount drops to zero
1631                  */
1632                 if (--handle->h_ref > 0) {
1633                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1634                                                          handle->h_ref);
1635                         return err;
1636                 } else {
1637                         if (handle->h_rsv_handle)
1638                                 jbd2_free_handle(handle->h_rsv_handle);
1639                         goto free_and_exit;
1640                 }
1641         }
1642         journal = transaction->t_journal;
1643
1644         J_ASSERT(journal_current_handle() == handle);
1645
1646         if (is_handle_aborted(handle))
1647                 err = -EIO;
1648         else
1649                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1650
1651         if (--handle->h_ref > 0) {
1652                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1653                           handle->h_ref);
1654                 return err;
1655         }
1656
1657         jbd_debug(4, "Handle %p going down\n", handle);
1658         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1659                                 transaction->t_tid,
1660                                 handle->h_type, handle->h_line_no,
1661                                 jiffies - handle->h_start_jiffies,
1662                                 handle->h_sync, handle->h_requested_credits,
1663                                 (handle->h_requested_credits -
1664                                  handle->h_buffer_credits));
1665
1666         /*
1667          * Implement synchronous transaction batching.  If the handle
1668          * was synchronous, don't force a commit immediately.  Let's
1669          * yield and let another thread piggyback onto this
1670          * transaction.  Keep doing that while new threads continue to
1671          * arrive.  It doesn't cost much - we're about to run a commit
1672          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1673          * operations by 30x or more...
1674          *
1675          * We try and optimize the sleep time against what the
1676          * underlying disk can do, instead of having a static sleep
1677          * time.  This is useful for the case where our storage is so
1678          * fast that it is more optimal to go ahead and force a flush
1679          * and wait for the transaction to be committed than it is to
1680          * wait for an arbitrary amount of time for new writers to
1681          * join the transaction.  We achieve this by measuring how
1682          * long it takes to commit a transaction, and compare it with
1683          * how long this transaction has been running, and if run time
1684          * < commit time then we sleep for the delta and commit.  This
1685          * greatly helps super fast disks that would see slowdowns as
1686          * more threads started doing fsyncs.
1687          *
1688          * But don't do this if this process was the most recent one
1689          * to perform a synchronous write.  We do this to detect the
1690          * case where a single process is doing a stream of sync
1691          * writes.  No point in waiting for joiners in that case.
1692          *
1693          * Setting max_batch_time to 0 disables this completely.
1694          */
1695         pid = current->pid;
1696         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1697             journal->j_max_batch_time) {
1698                 u64 commit_time, trans_time;
1699
1700                 journal->j_last_sync_writer = pid;
1701
1702                 read_lock(&journal->j_state_lock);
1703                 commit_time = journal->j_average_commit_time;
1704                 read_unlock(&journal->j_state_lock);
1705
1706                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1707                                                    transaction->t_start_time));
1708
1709                 commit_time = max_t(u64, commit_time,
1710                                     1000*journal->j_min_batch_time);
1711                 commit_time = min_t(u64, commit_time,
1712                                     1000*journal->j_max_batch_time);
1713
1714                 if (trans_time < commit_time) {
1715                         ktime_t expires = ktime_add_ns(ktime_get(),
1716                                                        commit_time);
1717                         set_current_state(TASK_UNINTERRUPTIBLE);
1718                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1719                 }
1720         }
1721
1722         if (handle->h_sync)
1723                 transaction->t_synchronous_commit = 1;
1724         current->journal_info = NULL;
1725         atomic_sub(handle->h_buffer_credits,
1726                    &transaction->t_outstanding_credits);
1727
1728         /*
1729          * If the handle is marked SYNC, we need to set another commit
1730          * going!  We also want to force a commit if the current
1731          * transaction is occupying too much of the log, or if the
1732          * transaction is too old now.
1733          */
1734         if (handle->h_sync ||
1735             (atomic_read(&transaction->t_outstanding_credits) >
1736              journal->j_max_transaction_buffers) ||
1737             time_after_eq(jiffies, transaction->t_expires)) {
1738                 /* Do this even for aborted journals: an abort still
1739                  * completes the commit thread, it just doesn't write
1740                  * anything to disk. */
1741
1742                 jbd_debug(2, "transaction too old, requesting commit for "
1743                                         "handle %p\n", handle);
1744                 /* This is non-blocking */
1745                 jbd2_log_start_commit(journal, transaction->t_tid);
1746
1747                 /*
1748                  * Special case: JBD2_SYNC synchronous updates require us
1749                  * to wait for the commit to complete.
1750                  */
1751                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1752                         wait_for_commit = 1;
1753         }
1754
1755         /*
1756          * Once we drop t_updates, if it goes to zero the transaction
1757          * could start committing on us and eventually disappear.  So
1758          * once we do this, we must not dereference transaction
1759          * pointer again.
1760          */
1761         tid = transaction->t_tid;
1762         if (atomic_dec_and_test(&transaction->t_updates)) {
1763                 wake_up(&journal->j_wait_updates);
1764                 if (journal->j_barrier_count)
1765                         wake_up(&journal->j_wait_transaction_locked);
1766         }
1767
1768         if (wait_for_commit)
1769                 err = jbd2_log_wait_commit(journal, tid);
1770
1771         lock_map_release(&handle->h_lockdep_map);
1772
1773         if (handle->h_rsv_handle)
1774                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1775 free_and_exit:
1776         jbd2_free_handle(handle);
1777         return err;
1778 }
1779
1780 /*
1781  *
1782  * List management code snippets: various functions for manipulating the
1783  * transaction buffer lists.
1784  *
1785  */
1786
1787 /*
1788  * Append a buffer to a transaction list, given the transaction's list head
1789  * pointer.
1790  *
1791  * j_list_lock is held.
1792  *
1793  * jbd_lock_bh_state(jh2bh(jh)) is held.
1794  */
1795
1796 static inline void
1797 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1798 {
1799         if (!*list) {
1800                 jh->b_tnext = jh->b_tprev = jh;
1801                 *list = jh;
1802         } else {
1803                 /* Insert at the tail of the list to preserve order */
1804                 struct journal_head *first = *list, *last = first->b_tprev;
1805                 jh->b_tprev = last;
1806                 jh->b_tnext = first;
1807                 last->b_tnext = first->b_tprev = jh;
1808         }
1809 }
1810
1811 /*
1812  * Remove a buffer from a transaction list, given the transaction's list
1813  * head pointer.
1814  *
1815  * Called with j_list_lock held, and the journal may not be locked.
1816  *
1817  * jbd_lock_bh_state(jh2bh(jh)) is held.
1818  */
1819
1820 static inline void
1821 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1822 {
1823         if (*list == jh) {
1824                 *list = jh->b_tnext;
1825                 if (*list == jh)
1826                         *list = NULL;
1827         }
1828         jh->b_tprev->b_tnext = jh->b_tnext;
1829         jh->b_tnext->b_tprev = jh->b_tprev;
1830 }
1831
1832 /*
1833  * Remove a buffer from the appropriate transaction list.
1834  *
1835  * Note that this function can *change* the value of
1836  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1837  * t_reserved_list.  If the caller is holding onto a copy of one of these
1838  * pointers, it could go bad.  Generally the caller needs to re-read the
1839  * pointer from the transaction_t.
1840  *
1841  * Called under j_list_lock.
1842  */
1843 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1844 {
1845         struct journal_head **list = NULL;
1846         transaction_t *transaction;
1847         struct buffer_head *bh = jh2bh(jh);
1848
1849         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1850         transaction = jh->b_transaction;
1851         if (transaction)
1852                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1853
1854         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1855         if (jh->b_jlist != BJ_None)
1856                 J_ASSERT_JH(jh, transaction != NULL);
1857
1858         switch (jh->b_jlist) {
1859         case BJ_None:
1860                 return;
1861         case BJ_Metadata:
1862                 transaction->t_nr_buffers--;
1863                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1864                 list = &transaction->t_buffers;
1865                 break;
1866         case BJ_Forget:
1867                 list = &transaction->t_forget;
1868                 break;
1869         case BJ_Shadow:
1870                 list = &transaction->t_shadow_list;
1871                 break;
1872         case BJ_Reserved:
1873                 list = &transaction->t_reserved_list;
1874                 break;
1875         }
1876
1877         __blist_del_buffer(list, jh);
1878         jh->b_jlist = BJ_None;
1879         if (test_clear_buffer_jbddirty(bh))
1880                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1881 }
1882
1883 /*
1884  * Remove buffer from all transactions.
1885  *
1886  * Called with bh_state lock and j_list_lock
1887  *
1888  * jh and bh may be already freed when this function returns.
1889  */
1890 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1891 {
1892         __jbd2_journal_temp_unlink_buffer(jh);
1893         jh->b_transaction = NULL;
1894         jbd2_journal_put_journal_head(jh);
1895 }
1896
1897 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1898 {
1899         struct buffer_head *bh = jh2bh(jh);
1900
1901         /* Get reference so that buffer cannot be freed before we unlock it */
1902         get_bh(bh);
1903         jbd_lock_bh_state(bh);
1904         spin_lock(&journal->j_list_lock);
1905         __jbd2_journal_unfile_buffer(jh);
1906         spin_unlock(&journal->j_list_lock);
1907         jbd_unlock_bh_state(bh);
1908         __brelse(bh);
1909 }
1910
1911 /*
1912  * Called from jbd2_journal_try_to_free_buffers().
1913  *
1914  * Called under jbd_lock_bh_state(bh)
1915  */
1916 static void
1917 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1918 {
1919         struct journal_head *jh;
1920
1921         jh = bh2jh(bh);
1922
1923         if (buffer_locked(bh) || buffer_dirty(bh))
1924                 goto out;
1925
1926         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1927                 goto out;
1928
1929         spin_lock(&journal->j_list_lock);
1930         if (jh->b_cp_transaction != NULL) {
1931                 /* written-back checkpointed metadata buffer */
1932                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1933                 __jbd2_journal_remove_checkpoint(jh);
1934         }
1935         spin_unlock(&journal->j_list_lock);
1936 out:
1937         return;
1938 }
1939
1940 /**
1941  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1942  * @journal: journal for operation
1943  * @page: to try and free
1944  * @gfp_mask: we use the mask to detect how hard should we try to release
1945  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1946  * code to release the buffers.
1947  *
1948  *
1949  * For all the buffers on this page,
1950  * if they are fully written out ordered data, move them onto BUF_CLEAN
1951  * so try_to_free_buffers() can reap them.
1952  *
1953  * This function returns non-zero if we wish try_to_free_buffers()
1954  * to be called. We do this if the page is releasable by try_to_free_buffers().
1955  * We also do it if the page has locked or dirty buffers and the caller wants
1956  * us to perform sync or async writeout.
1957  *
1958  * This complicates JBD locking somewhat.  We aren't protected by the
1959  * BKL here.  We wish to remove the buffer from its committing or
1960  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1961  *
1962  * This may *change* the value of transaction_t->t_datalist, so anyone
1963  * who looks at t_datalist needs to lock against this function.
1964  *
1965  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1966  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1967  * will come out of the lock with the buffer dirty, which makes it
1968  * ineligible for release here.
1969  *
1970  * Who else is affected by this?  hmm...  Really the only contender
1971  * is do_get_write_access() - it could be looking at the buffer while
1972  * journal_try_to_free_buffer() is changing its state.  But that
1973  * cannot happen because we never reallocate freed data as metadata
1974  * while the data is part of a transaction.  Yes?
1975  *
1976  * Return 0 on failure, 1 on success
1977  */
1978 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1979                                 struct page *page, gfp_t gfp_mask)
1980 {
1981         struct buffer_head *head;
1982         struct buffer_head *bh;
1983         int ret = 0;
1984
1985         J_ASSERT(PageLocked(page));
1986
1987         head = page_buffers(page);
1988         bh = head;
1989         do {
1990                 struct journal_head *jh;
1991
1992                 /*
1993                  * We take our own ref against the journal_head here to avoid
1994                  * having to add tons of locking around each instance of
1995                  * jbd2_journal_put_journal_head().
1996                  */
1997                 jh = jbd2_journal_grab_journal_head(bh);
1998                 if (!jh)
1999                         continue;
2000
2001                 jbd_lock_bh_state(bh);
2002                 __journal_try_to_free_buffer(journal, bh);
2003                 jbd2_journal_put_journal_head(jh);
2004                 jbd_unlock_bh_state(bh);
2005                 if (buffer_jbd(bh))
2006                         goto busy;
2007         } while ((bh = bh->b_this_page) != head);
2008
2009         ret = try_to_free_buffers(page);
2010
2011 busy:
2012         return ret;
2013 }
2014
2015 /*
2016  * This buffer is no longer needed.  If it is on an older transaction's
2017  * checkpoint list we need to record it on this transaction's forget list
2018  * to pin this buffer (and hence its checkpointing transaction) down until
2019  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2020  * release it.
2021  * Returns non-zero if JBD no longer has an interest in the buffer.
2022  *
2023  * Called under j_list_lock.
2024  *
2025  * Called under jbd_lock_bh_state(bh).
2026  */
2027 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2028 {
2029         int may_free = 1;
2030         struct buffer_head *bh = jh2bh(jh);
2031
2032         if (jh->b_cp_transaction) {
2033                 JBUFFER_TRACE(jh, "on running+cp transaction");
2034                 __jbd2_journal_temp_unlink_buffer(jh);
2035                 /*
2036                  * We don't want to write the buffer anymore, clear the
2037                  * bit so that we don't confuse checks in
2038                  * __journal_file_buffer
2039                  */
2040                 clear_buffer_dirty(bh);
2041                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2042                 may_free = 0;
2043         } else {
2044                 JBUFFER_TRACE(jh, "on running transaction");
2045                 __jbd2_journal_unfile_buffer(jh);
2046         }
2047         return may_free;
2048 }
2049
2050 /*
2051  * jbd2_journal_invalidatepage
2052  *
2053  * This code is tricky.  It has a number of cases to deal with.
2054  *
2055  * There are two invariants which this code relies on:
2056  *
2057  * i_size must be updated on disk before we start calling invalidatepage on the
2058  * data.
2059  *
2060  *  This is done in ext3 by defining an ext3_setattr method which
2061  *  updates i_size before truncate gets going.  By maintaining this
2062  *  invariant, we can be sure that it is safe to throw away any buffers
2063  *  attached to the current transaction: once the transaction commits,
2064  *  we know that the data will not be needed.
2065  *
2066  *  Note however that we can *not* throw away data belonging to the
2067  *  previous, committing transaction!
2068  *
2069  * Any disk blocks which *are* part of the previous, committing
2070  * transaction (and which therefore cannot be discarded immediately) are
2071  * not going to be reused in the new running transaction
2072  *
2073  *  The bitmap committed_data images guarantee this: any block which is
2074  *  allocated in one transaction and removed in the next will be marked
2075  *  as in-use in the committed_data bitmap, so cannot be reused until
2076  *  the next transaction to delete the block commits.  This means that
2077  *  leaving committing buffers dirty is quite safe: the disk blocks
2078  *  cannot be reallocated to a different file and so buffer aliasing is
2079  *  not possible.
2080  *
2081  *
2082  * The above applies mainly to ordered data mode.  In writeback mode we
2083  * don't make guarantees about the order in which data hits disk --- in
2084  * particular we don't guarantee that new dirty data is flushed before
2085  * transaction commit --- so it is always safe just to discard data
2086  * immediately in that mode.  --sct
2087  */
2088
2089 /*
2090  * The journal_unmap_buffer helper function returns zero if the buffer
2091  * concerned remains pinned as an anonymous buffer belonging to an older
2092  * transaction.
2093  *
2094  * We're outside-transaction here.  Either or both of j_running_transaction
2095  * and j_committing_transaction may be NULL.
2096  */
2097 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2098                                 int partial_page)
2099 {
2100         transaction_t *transaction;
2101         struct journal_head *jh;
2102         int may_free = 1;
2103
2104         BUFFER_TRACE(bh, "entry");
2105
2106         /*
2107          * It is safe to proceed here without the j_list_lock because the
2108          * buffers cannot be stolen by try_to_free_buffers as long as we are
2109          * holding the page lock. --sct
2110          */
2111
2112         if (!buffer_jbd(bh))
2113                 goto zap_buffer_unlocked;
2114
2115         /* OK, we have data buffer in journaled mode */
2116         write_lock(&journal->j_state_lock);
2117         jbd_lock_bh_state(bh);
2118         spin_lock(&journal->j_list_lock);
2119
2120         jh = jbd2_journal_grab_journal_head(bh);
2121         if (!jh)
2122                 goto zap_buffer_no_jh;
2123
2124         /*
2125          * We cannot remove the buffer from checkpoint lists until the
2126          * transaction adding inode to orphan list (let's call it T)
2127          * is committed.  Otherwise if the transaction changing the
2128          * buffer would be cleaned from the journal before T is
2129          * committed, a crash will cause that the correct contents of
2130          * the buffer will be lost.  On the other hand we have to
2131          * clear the buffer dirty bit at latest at the moment when the
2132          * transaction marking the buffer as freed in the filesystem
2133          * structures is committed because from that moment on the
2134          * block can be reallocated and used by a different page.
2135          * Since the block hasn't been freed yet but the inode has
2136          * already been added to orphan list, it is safe for us to add
2137          * the buffer to BJ_Forget list of the newest transaction.
2138          *
2139          * Also we have to clear buffer_mapped flag of a truncated buffer
2140          * because the buffer_head may be attached to the page straddling
2141          * i_size (can happen only when blocksize < pagesize) and thus the
2142          * buffer_head can be reused when the file is extended again. So we end
2143          * up keeping around invalidated buffers attached to transactions'
2144          * BJ_Forget list just to stop checkpointing code from cleaning up
2145          * the transaction this buffer was modified in.
2146          */
2147         transaction = jh->b_transaction;
2148         if (transaction == NULL) {
2149                 /* First case: not on any transaction.  If it
2150                  * has no checkpoint link, then we can zap it:
2151                  * it's a writeback-mode buffer so we don't care
2152                  * if it hits disk safely. */
2153                 if (!jh->b_cp_transaction) {
2154                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2155                         goto zap_buffer;
2156                 }
2157
2158                 if (!buffer_dirty(bh)) {
2159                         /* bdflush has written it.  We can drop it now */
2160                         __jbd2_journal_remove_checkpoint(jh);
2161                         goto zap_buffer;
2162                 }
2163
2164                 /* OK, it must be in the journal but still not
2165                  * written fully to disk: it's metadata or
2166                  * journaled data... */
2167
2168                 if (journal->j_running_transaction) {
2169                         /* ... and once the current transaction has
2170                          * committed, the buffer won't be needed any
2171                          * longer. */
2172                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2173                         may_free = __dispose_buffer(jh,
2174                                         journal->j_running_transaction);
2175                         goto zap_buffer;
2176                 } else {
2177                         /* There is no currently-running transaction. So the
2178                          * orphan record which we wrote for this file must have
2179                          * passed into commit.  We must attach this buffer to
2180                          * the committing transaction, if it exists. */
2181                         if (journal->j_committing_transaction) {
2182                                 JBUFFER_TRACE(jh, "give to committing trans");
2183                                 may_free = __dispose_buffer(jh,
2184                                         journal->j_committing_transaction);
2185                                 goto zap_buffer;
2186                         } else {
2187                                 /* The orphan record's transaction has
2188                                  * committed.  We can cleanse this buffer */
2189                                 clear_buffer_jbddirty(bh);
2190                                 __jbd2_journal_remove_checkpoint(jh);
2191                                 goto zap_buffer;
2192                         }
2193                 }
2194         } else if (transaction == journal->j_committing_transaction) {
2195                 JBUFFER_TRACE(jh, "on committing transaction");
2196                 /*
2197                  * The buffer is committing, we simply cannot touch
2198                  * it. If the page is straddling i_size we have to wait
2199                  * for commit and try again.
2200                  */
2201                 if (partial_page) {
2202                         jbd2_journal_put_journal_head(jh);
2203                         spin_unlock(&journal->j_list_lock);
2204                         jbd_unlock_bh_state(bh);
2205                         write_unlock(&journal->j_state_lock);
2206                         return -EBUSY;
2207                 }
2208                 /*
2209                  * OK, buffer won't be reachable after truncate. We just set
2210                  * j_next_transaction to the running transaction (if there is
2211                  * one) and mark buffer as freed so that commit code knows it
2212                  * should clear dirty bits when it is done with the buffer.
2213                  */
2214                 set_buffer_freed(bh);
2215                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2216                         jh->b_next_transaction = journal->j_running_transaction;
2217                 jbd2_journal_put_journal_head(jh);
2218                 spin_unlock(&journal->j_list_lock);
2219                 jbd_unlock_bh_state(bh);
2220                 write_unlock(&journal->j_state_lock);
2221                 return 0;
2222         } else {
2223                 /* Good, the buffer belongs to the running transaction.
2224                  * We are writing our own transaction's data, not any
2225                  * previous one's, so it is safe to throw it away
2226                  * (remember that we expect the filesystem to have set
2227                  * i_size already for this truncate so recovery will not
2228                  * expose the disk blocks we are discarding here.) */
2229                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2230                 JBUFFER_TRACE(jh, "on running transaction");
2231                 may_free = __dispose_buffer(jh, transaction);
2232         }
2233
2234 zap_buffer:
2235         /*
2236          * This is tricky. Although the buffer is truncated, it may be reused
2237          * if blocksize < pagesize and it is attached to the page straddling
2238          * EOF. Since the buffer might have been added to BJ_Forget list of the
2239          * running transaction, journal_get_write_access() won't clear
2240          * b_modified and credit accounting gets confused. So clear b_modified
2241          * here.
2242          */
2243         jh->b_modified = 0;
2244         jbd2_journal_put_journal_head(jh);
2245 zap_buffer_no_jh:
2246         spin_unlock(&journal->j_list_lock);
2247         jbd_unlock_bh_state(bh);
2248         write_unlock(&journal->j_state_lock);
2249 zap_buffer_unlocked:
2250         clear_buffer_dirty(bh);
2251         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2252         clear_buffer_mapped(bh);
2253         clear_buffer_req(bh);
2254         clear_buffer_new(bh);
2255         clear_buffer_delay(bh);
2256         clear_buffer_unwritten(bh);
2257         bh->b_bdev = NULL;
2258         return may_free;
2259 }
2260
2261 /**
2262  * void jbd2_journal_invalidatepage()
2263  * @journal: journal to use for flush...
2264  * @page:    page to flush
2265  * @offset:  start of the range to invalidate
2266  * @length:  length of the range to invalidate
2267  *
2268  * Reap page buffers containing data after in the specified range in page.
2269  * Can return -EBUSY if buffers are part of the committing transaction and
2270  * the page is straddling i_size. Caller then has to wait for current commit
2271  * and try again.
2272  */
2273 int jbd2_journal_invalidatepage(journal_t *journal,
2274                                 struct page *page,
2275                                 unsigned int offset,
2276                                 unsigned int length)
2277 {
2278         struct buffer_head *head, *bh, *next;
2279         unsigned int stop = offset + length;
2280         unsigned int curr_off = 0;
2281         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2282         int may_free = 1;
2283         int ret = 0;
2284
2285         if (!PageLocked(page))
2286                 BUG();
2287         if (!page_has_buffers(page))
2288                 return 0;
2289
2290         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2291
2292         /* We will potentially be playing with lists other than just the
2293          * data lists (especially for journaled data mode), so be
2294          * cautious in our locking. */
2295
2296         head = bh = page_buffers(page);
2297         do {
2298                 unsigned int next_off = curr_off + bh->b_size;
2299                 next = bh->b_this_page;
2300
2301                 if (next_off > stop)
2302                         return 0;
2303
2304                 if (offset <= curr_off) {
2305                         /* This block is wholly outside the truncation point */
2306                         lock_buffer(bh);
2307                         ret = journal_unmap_buffer(journal, bh, partial_page);
2308                         unlock_buffer(bh);
2309                         if (ret < 0)
2310                                 return ret;
2311                         may_free &= ret;
2312                 }
2313                 curr_off = next_off;
2314                 bh = next;
2315
2316         } while (bh != head);
2317
2318         if (!partial_page) {
2319                 if (may_free && try_to_free_buffers(page))
2320                         J_ASSERT(!page_has_buffers(page));
2321         }
2322         return 0;
2323 }
2324
2325 /*
2326  * File a buffer on the given transaction list.
2327  */
2328 void __jbd2_journal_file_buffer(struct journal_head *jh,
2329                         transaction_t *transaction, int jlist)
2330 {
2331         struct journal_head **list = NULL;
2332         int was_dirty = 0;
2333         struct buffer_head *bh = jh2bh(jh);
2334
2335         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2336         assert_spin_locked(&transaction->t_journal->j_list_lock);
2337
2338         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2339         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2340                                 jh->b_transaction == NULL);
2341
2342         if (jh->b_transaction && jh->b_jlist == jlist)
2343                 return;
2344
2345         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2346             jlist == BJ_Shadow || jlist == BJ_Forget) {
2347                 /*
2348                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2349                  * instead of buffer_dirty. We should not see a dirty bit set
2350                  * here because we clear it in do_get_write_access but e.g.
2351                  * tune2fs can modify the sb and set the dirty bit at any time
2352                  * so we try to gracefully handle that.
2353                  */
2354                 if (buffer_dirty(bh))
2355                         warn_dirty_buffer(bh);
2356                 if (test_clear_buffer_dirty(bh) ||
2357                     test_clear_buffer_jbddirty(bh))
2358                         was_dirty = 1;
2359         }
2360
2361         if (jh->b_transaction)
2362                 __jbd2_journal_temp_unlink_buffer(jh);
2363         else
2364                 jbd2_journal_grab_journal_head(bh);
2365         jh->b_transaction = transaction;
2366
2367         switch (jlist) {
2368         case BJ_None:
2369                 J_ASSERT_JH(jh, !jh->b_committed_data);
2370                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2371                 return;
2372         case BJ_Metadata:
2373                 transaction->t_nr_buffers++;
2374                 list = &transaction->t_buffers;
2375                 break;
2376         case BJ_Forget:
2377                 list = &transaction->t_forget;
2378                 break;
2379         case BJ_Shadow:
2380                 list = &transaction->t_shadow_list;
2381                 break;
2382         case BJ_Reserved:
2383                 list = &transaction->t_reserved_list;
2384                 break;
2385         }
2386
2387         __blist_add_buffer(list, jh);
2388         jh->b_jlist = jlist;
2389
2390         if (was_dirty)
2391                 set_buffer_jbddirty(bh);
2392 }
2393
2394 void jbd2_journal_file_buffer(struct journal_head *jh,
2395                                 transaction_t *transaction, int jlist)
2396 {
2397         jbd_lock_bh_state(jh2bh(jh));
2398         spin_lock(&transaction->t_journal->j_list_lock);
2399         __jbd2_journal_file_buffer(jh, transaction, jlist);
2400         spin_unlock(&transaction->t_journal->j_list_lock);
2401         jbd_unlock_bh_state(jh2bh(jh));
2402 }
2403
2404 /*
2405  * Remove a buffer from its current buffer list in preparation for
2406  * dropping it from its current transaction entirely.  If the buffer has
2407  * already started to be used by a subsequent transaction, refile the
2408  * buffer on that transaction's metadata list.
2409  *
2410  * Called under j_list_lock
2411  * Called under jbd_lock_bh_state(jh2bh(jh))
2412  *
2413  * jh and bh may be already free when this function returns
2414  */
2415 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2416 {
2417         int was_dirty, jlist;
2418         struct buffer_head *bh = jh2bh(jh);
2419
2420         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2421         if (jh->b_transaction)
2422                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2423
2424         /* If the buffer is now unused, just drop it. */
2425         if (jh->b_next_transaction == NULL) {
2426                 __jbd2_journal_unfile_buffer(jh);
2427                 return;
2428         }
2429
2430         /*
2431          * It has been modified by a later transaction: add it to the new
2432          * transaction's metadata list.
2433          */
2434
2435         was_dirty = test_clear_buffer_jbddirty(bh);
2436         __jbd2_journal_temp_unlink_buffer(jh);
2437         /*
2438          * We set b_transaction here because b_next_transaction will inherit
2439          * our jh reference and thus __jbd2_journal_file_buffer() must not
2440          * take a new one.
2441          */
2442         jh->b_transaction = jh->b_next_transaction;
2443         jh->b_next_transaction = NULL;
2444         if (buffer_freed(bh))
2445                 jlist = BJ_Forget;
2446         else if (jh->b_modified)
2447                 jlist = BJ_Metadata;
2448         else
2449                 jlist = BJ_Reserved;
2450         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2451         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2452
2453         if (was_dirty)
2454                 set_buffer_jbddirty(bh);
2455 }
2456
2457 /*
2458  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2459  * bh reference so that we can safely unlock bh.
2460  *
2461  * The jh and bh may be freed by this call.
2462  */
2463 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2464 {
2465         struct buffer_head *bh = jh2bh(jh);
2466
2467         /* Get reference so that buffer cannot be freed before we unlock it */
2468         get_bh(bh);
2469         jbd_lock_bh_state(bh);
2470         spin_lock(&journal->j_list_lock);
2471         __jbd2_journal_refile_buffer(jh);
2472         jbd_unlock_bh_state(bh);
2473         spin_unlock(&journal->j_list_lock);
2474         __brelse(bh);
2475 }
2476
2477 /*
2478  * File inode in the inode list of the handle's transaction
2479  */
2480 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2481 {
2482         transaction_t *transaction = handle->h_transaction;
2483         journal_t *journal;
2484
2485         if (is_handle_aborted(handle))
2486                 return -EROFS;
2487         journal = transaction->t_journal;
2488
2489         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2490                         transaction->t_tid);
2491
2492         /*
2493          * First check whether inode isn't already on the transaction's
2494          * lists without taking the lock. Note that this check is safe
2495          * without the lock as we cannot race with somebody removing inode
2496          * from the transaction. The reason is that we remove inode from the
2497          * transaction only in journal_release_jbd_inode() and when we commit
2498          * the transaction. We are guarded from the first case by holding
2499          * a reference to the inode. We are safe against the second case
2500          * because if jinode->i_transaction == transaction, commit code
2501          * cannot touch the transaction because we hold reference to it,
2502          * and if jinode->i_next_transaction == transaction, commit code
2503          * will only file the inode where we want it.
2504          */
2505         if (jinode->i_transaction == transaction ||
2506             jinode->i_next_transaction == transaction)
2507                 return 0;
2508
2509         spin_lock(&journal->j_list_lock);
2510
2511         if (jinode->i_transaction == transaction ||
2512             jinode->i_next_transaction == transaction)
2513                 goto done;
2514
2515         /*
2516          * We only ever set this variable to 1 so the test is safe. Since
2517          * t_need_data_flush is likely to be set, we do the test to save some
2518          * cacheline bouncing
2519          */
2520         if (!transaction->t_need_data_flush)
2521                 transaction->t_need_data_flush = 1;
2522         /* On some different transaction's list - should be
2523          * the committing one */
2524         if (jinode->i_transaction) {
2525                 J_ASSERT(jinode->i_next_transaction == NULL);
2526                 J_ASSERT(jinode->i_transaction ==
2527                                         journal->j_committing_transaction);
2528                 jinode->i_next_transaction = transaction;
2529                 goto done;
2530         }
2531         /* Not on any transaction list... */
2532         J_ASSERT(!jinode->i_next_transaction);
2533         jinode->i_transaction = transaction;
2534         list_add(&jinode->i_list, &transaction->t_inode_list);
2535 done:
2536         spin_unlock(&journal->j_list_lock);
2537
2538         return 0;
2539 }
2540
2541 /*
2542  * File truncate and transaction commit interact with each other in a
2543  * non-trivial way.  If a transaction writing data block A is
2544  * committing, we cannot discard the data by truncate until we have
2545  * written them.  Otherwise if we crashed after the transaction with
2546  * write has committed but before the transaction with truncate has
2547  * committed, we could see stale data in block A.  This function is a
2548  * helper to solve this problem.  It starts writeout of the truncated
2549  * part in case it is in the committing transaction.
2550  *
2551  * Filesystem code must call this function when inode is journaled in
2552  * ordered mode before truncation happens and after the inode has been
2553  * placed on orphan list with the new inode size. The second condition
2554  * avoids the race that someone writes new data and we start
2555  * committing the transaction after this function has been called but
2556  * before a transaction for truncate is started (and furthermore it
2557  * allows us to optimize the case where the addition to orphan list
2558  * happens in the same transaction as write --- we don't have to write
2559  * any data in such case).
2560  */
2561 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2562                                         struct jbd2_inode *jinode,
2563                                         loff_t new_size)
2564 {
2565         transaction_t *inode_trans, *commit_trans;
2566         int ret = 0;
2567
2568         /* This is a quick check to avoid locking if not necessary */
2569         if (!jinode->i_transaction)
2570                 goto out;
2571         /* Locks are here just to force reading of recent values, it is
2572          * enough that the transaction was not committing before we started
2573          * a transaction adding the inode to orphan list */
2574         read_lock(&journal->j_state_lock);
2575         commit_trans = journal->j_committing_transaction;
2576         read_unlock(&journal->j_state_lock);
2577         spin_lock(&journal->j_list_lock);
2578         inode_trans = jinode->i_transaction;
2579         spin_unlock(&journal->j_list_lock);
2580         if (inode_trans == commit_trans) {
2581                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2582                         new_size, LLONG_MAX);
2583                 if (ret)
2584                         jbd2_journal_abort(journal, ret);
2585         }
2586 out:
2587         return ret;
2588 }