clk: rockchip: rk3328: add pclk for acodec
[firefly-linux-kernel-4.4.55.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79         HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87                 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {0,}
149 };
150
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152
153 /*  board_id = Subsystem Device ID & Vendor ID
154  *  product = Marketing Name for the board
155  *  access = Address of the struct of function pointers
156  */
157 static struct board_type products[] = {
158         {0x3241103C, "Smart Array P212", &SA5_access},
159         {0x3243103C, "Smart Array P410", &SA5_access},
160         {0x3245103C, "Smart Array P410i", &SA5_access},
161         {0x3247103C, "Smart Array P411", &SA5_access},
162         {0x3249103C, "Smart Array P812", &SA5_access},
163         {0x324A103C, "Smart Array P712m", &SA5_access},
164         {0x324B103C, "Smart Array P711m", &SA5_access},
165         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166         {0x3350103C, "Smart Array P222", &SA5_access},
167         {0x3351103C, "Smart Array P420", &SA5_access},
168         {0x3352103C, "Smart Array P421", &SA5_access},
169         {0x3353103C, "Smart Array P822", &SA5_access},
170         {0x3354103C, "Smart Array P420i", &SA5_access},
171         {0x3355103C, "Smart Array P220i", &SA5_access},
172         {0x3356103C, "Smart Array P721m", &SA5_access},
173         {0x1921103C, "Smart Array P830i", &SA5_access},
174         {0x1922103C, "Smart Array P430", &SA5_access},
175         {0x1923103C, "Smart Array P431", &SA5_access},
176         {0x1924103C, "Smart Array P830", &SA5_access},
177         {0x1926103C, "Smart Array P731m", &SA5_access},
178         {0x1928103C, "Smart Array P230i", &SA5_access},
179         {0x1929103C, "Smart Array P530", &SA5_access},
180         {0x21BD103C, "Smart Array P244br", &SA5_access},
181         {0x21BE103C, "Smart Array P741m", &SA5_access},
182         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
183         {0x21C0103C, "Smart Array P440ar", &SA5_access},
184         {0x21C1103C, "Smart Array P840ar", &SA5_access},
185         {0x21C2103C, "Smart Array P440", &SA5_access},
186         {0x21C3103C, "Smart Array P441", &SA5_access},
187         {0x21C4103C, "Smart Array", &SA5_access},
188         {0x21C5103C, "Smart Array P841", &SA5_access},
189         {0x21C6103C, "Smart HBA H244br", &SA5_access},
190         {0x21C7103C, "Smart HBA H240", &SA5_access},
191         {0x21C8103C, "Smart HBA H241", &SA5_access},
192         {0x21C9103C, "Smart Array", &SA5_access},
193         {0x21CA103C, "Smart Array P246br", &SA5_access},
194         {0x21CB103C, "Smart Array P840", &SA5_access},
195         {0x21CC103C, "Smart Array", &SA5_access},
196         {0x21CD103C, "Smart Array", &SA5_access},
197         {0x21CE103C, "Smart HBA", &SA5_access},
198         {0x05809005, "SmartHBA-SA", &SA5_access},
199         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
200         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
202         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
203         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216                         struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220                 struct sas_rphy *rphy);
221
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234         void __user *arg);
235 #endif
236
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241                                             struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244         int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252         unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263         struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265         struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268         int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274                                u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276                                     unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279                                      int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294         struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299         unsigned long *priv = shost_priv(sdev->host);
300         return (struct ctlr_info *) *priv;
301 }
302
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305         unsigned long *priv = shost_priv(sh);
306         return (struct ctlr_info *) *priv;
307 }
308
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311         return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316         return c->abort_pending || c->reset_pending;
317 }
318
319 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321                         u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323         struct scsi_sense_hdr sshdr;
324         bool rc;
325
326         *sense_key = -1;
327         *asc = -1;
328         *ascq = -1;
329
330         if (sense_data_len < 1)
331                 return;
332
333         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334         if (rc) {
335                 *sense_key = sshdr.sense_key;
336                 *asc = sshdr.asc;
337                 *ascq = sshdr.ascq;
338         }
339 }
340
341 static int check_for_unit_attention(struct ctlr_info *h,
342         struct CommandList *c)
343 {
344         u8 sense_key, asc, ascq;
345         int sense_len;
346
347         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348                 sense_len = sizeof(c->err_info->SenseInfo);
349         else
350                 sense_len = c->err_info->SenseLen;
351
352         decode_sense_data(c->err_info->SenseInfo, sense_len,
353                                 &sense_key, &asc, &ascq);
354         if (sense_key != UNIT_ATTENTION || asc == 0xff)
355                 return 0;
356
357         switch (asc) {
358         case STATE_CHANGED:
359                 dev_warn(&h->pdev->dev,
360                         "%s: a state change detected, command retried\n",
361                         h->devname);
362                 break;
363         case LUN_FAILED:
364                 dev_warn(&h->pdev->dev,
365                         "%s: LUN failure detected\n", h->devname);
366                 break;
367         case REPORT_LUNS_CHANGED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: report LUN data changed\n", h->devname);
370         /*
371          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372          * target (array) devices.
373          */
374                 break;
375         case POWER_OR_RESET:
376                 dev_warn(&h->pdev->dev,
377                         "%s: a power on or device reset detected\n",
378                         h->devname);
379                 break;
380         case UNIT_ATTENTION_CLEARED:
381                 dev_warn(&h->pdev->dev,
382                         "%s: unit attention cleared by another initiator\n",
383                         h->devname);
384                 break;
385         default:
386                 dev_warn(&h->pdev->dev,
387                         "%s: unknown unit attention detected\n",
388                         h->devname);
389                 break;
390         }
391         return 1;
392 }
393
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399                 return 0;
400         dev_warn(&h->pdev->dev, HPSA "device busy");
401         return 1;
402 }
403
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406                 struct device_attribute *attr, char *buf)
407 {
408         int ld;
409         struct ctlr_info *h;
410         struct Scsi_Host *shost = class_to_shost(dev);
411
412         h = shost_to_hba(shost);
413         ld = lockup_detected(h);
414
415         return sprintf(buf, "ld=%d\n", ld);
416 }
417
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419                                          struct device_attribute *attr,
420                                          const char *buf, size_t count)
421 {
422         int status, len;
423         struct ctlr_info *h;
424         struct Scsi_Host *shost = class_to_shost(dev);
425         char tmpbuf[10];
426
427         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428                 return -EACCES;
429         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430         strncpy(tmpbuf, buf, len);
431         tmpbuf[len] = '\0';
432         if (sscanf(tmpbuf, "%d", &status) != 1)
433                 return -EINVAL;
434         h = shost_to_hba(shost);
435         h->acciopath_status = !!status;
436         dev_warn(&h->pdev->dev,
437                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438                 h->acciopath_status ? "enabled" : "disabled");
439         return count;
440 }
441
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443                                          struct device_attribute *attr,
444                                          const char *buf, size_t count)
445 {
446         int debug_level, len;
447         struct ctlr_info *h;
448         struct Scsi_Host *shost = class_to_shost(dev);
449         char tmpbuf[10];
450
451         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452                 return -EACCES;
453         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454         strncpy(tmpbuf, buf, len);
455         tmpbuf[len] = '\0';
456         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457                 return -EINVAL;
458         if (debug_level < 0)
459                 debug_level = 0;
460         h = shost_to_hba(shost);
461         h->raid_offload_debug = debug_level;
462         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463                 h->raid_offload_debug);
464         return count;
465 }
466
467 static ssize_t host_store_rescan(struct device *dev,
468                                  struct device_attribute *attr,
469                                  const char *buf, size_t count)
470 {
471         struct ctlr_info *h;
472         struct Scsi_Host *shost = class_to_shost(dev);
473         h = shost_to_hba(shost);
474         hpsa_scan_start(h->scsi_host);
475         return count;
476 }
477
478 static ssize_t host_show_firmware_revision(struct device *dev,
479              struct device_attribute *attr, char *buf)
480 {
481         struct ctlr_info *h;
482         struct Scsi_Host *shost = class_to_shost(dev);
483         unsigned char *fwrev;
484
485         h = shost_to_hba(shost);
486         if (!h->hba_inquiry_data)
487                 return 0;
488         fwrev = &h->hba_inquiry_data[32];
489         return snprintf(buf, 20, "%c%c%c%c\n",
490                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494              struct device_attribute *attr, char *buf)
495 {
496         struct Scsi_Host *shost = class_to_shost(dev);
497         struct ctlr_info *h = shost_to_hba(shost);
498
499         return snprintf(buf, 20, "%d\n",
500                         atomic_read(&h->commands_outstanding));
501 }
502
503 static ssize_t host_show_transport_mode(struct device *dev,
504         struct device_attribute *attr, char *buf)
505 {
506         struct ctlr_info *h;
507         struct Scsi_Host *shost = class_to_shost(dev);
508
509         h = shost_to_hba(shost);
510         return snprintf(buf, 20, "%s\n",
511                 h->transMethod & CFGTBL_Trans_Performant ?
512                         "performant" : "simple");
513 }
514
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516         struct device_attribute *attr, char *buf)
517 {
518         struct ctlr_info *h;
519         struct Scsi_Host *shost = class_to_shost(dev);
520
521         h = shost_to_hba(shost);
522         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
524 }
525
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528         0x324a103C, /* Smart Array P712m */
529         0x324b103C, /* Smart Array P711m */
530         0x3223103C, /* Smart Array P800 */
531         0x3234103C, /* Smart Array P400 */
532         0x3235103C, /* Smart Array P400i */
533         0x3211103C, /* Smart Array E200i */
534         0x3212103C, /* Smart Array E200 */
535         0x3213103C, /* Smart Array E200i */
536         0x3214103C, /* Smart Array E200i */
537         0x3215103C, /* Smart Array E200i */
538         0x3237103C, /* Smart Array E500 */
539         0x323D103C, /* Smart Array P700m */
540         0x40800E11, /* Smart Array 5i */
541         0x409C0E11, /* Smart Array 6400 */
542         0x409D0E11, /* Smart Array 6400 EM */
543         0x40700E11, /* Smart Array 5300 */
544         0x40820E11, /* Smart Array 532 */
545         0x40830E11, /* Smart Array 5312 */
546         0x409A0E11, /* Smart Array 641 */
547         0x409B0E11, /* Smart Array 642 */
548         0x40910E11, /* Smart Array 6i */
549 };
550
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553         0x40800E11, /* Smart Array 5i */
554         0x40700E11, /* Smart Array 5300 */
555         0x40820E11, /* Smart Array 532 */
556         0x40830E11, /* Smart Array 5312 */
557         0x409A0E11, /* Smart Array 641 */
558         0x409B0E11, /* Smart Array 642 */
559         0x40910E11, /* Smart Array 6i */
560         /* Exclude 640x boards.  These are two pci devices in one slot
561          * which share a battery backed cache module.  One controls the
562          * cache, the other accesses the cache through the one that controls
563          * it.  If we reset the one controlling the cache, the other will
564          * likely not be happy.  Just forbid resetting this conjoined mess.
565          * The 640x isn't really supported by hpsa anyway.
566          */
567         0x409C0E11, /* Smart Array 6400 */
568         0x409D0E11, /* Smart Array 6400 EM */
569 };
570
571 static u32 needs_abort_tags_swizzled[] = {
572         0x323D103C, /* Smart Array P700m */
573         0x324a103C, /* Smart Array P712m */
574         0x324b103C, /* SmartArray P711m */
575 };
576
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579         int i;
580
581         for (i = 0; i < nelems; i++)
582                 if (a[i] == board_id)
583                         return 1;
584         return 0;
585 }
586
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589         return !board_id_in_array(unresettable_controller,
590                         ARRAY_SIZE(unresettable_controller), board_id);
591 }
592
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595         return !board_id_in_array(soft_unresettable_controller,
596                         ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_resettable(u32 board_id)
600 {
601         return ctlr_is_hard_resettable(board_id) ||
602                 ctlr_is_soft_resettable(board_id);
603 }
604
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607         return board_id_in_array(needs_abort_tags_swizzled,
608                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610
611 static ssize_t host_show_resettable(struct device *dev,
612         struct device_attribute *attr, char *buf)
613 {
614         struct ctlr_info *h;
615         struct Scsi_Host *shost = class_to_shost(dev);
616
617         h = shost_to_hba(shost);
618         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623         return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0     0
630 #define HPSA_RAID_4     1
631 #define HPSA_RAID_1     2       /* also used for RAID 10 */
632 #define HPSA_RAID_5     3       /* also used for RAID 50 */
633 #define HPSA_RAID_51    4
634 #define HPSA_RAID_6     5       /* also used for RAID 60 */
635 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641         return !device->physical_device;
642 }
643
644 static ssize_t raid_level_show(struct device *dev,
645              struct device_attribute *attr, char *buf)
646 {
647         ssize_t l = 0;
648         unsigned char rlevel;
649         struct ctlr_info *h;
650         struct scsi_device *sdev;
651         struct hpsa_scsi_dev_t *hdev;
652         unsigned long flags;
653
654         sdev = to_scsi_device(dev);
655         h = sdev_to_hba(sdev);
656         spin_lock_irqsave(&h->lock, flags);
657         hdev = sdev->hostdata;
658         if (!hdev) {
659                 spin_unlock_irqrestore(&h->lock, flags);
660                 return -ENODEV;
661         }
662
663         /* Is this even a logical drive? */
664         if (!is_logical_device(hdev)) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667                 return l;
668         }
669
670         rlevel = hdev->raid_level;
671         spin_unlock_irqrestore(&h->lock, flags);
672         if (rlevel > RAID_UNKNOWN)
673                 rlevel = RAID_UNKNOWN;
674         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675         return l;
676 }
677
678 static ssize_t lunid_show(struct device *dev,
679              struct device_attribute *attr, char *buf)
680 {
681         struct ctlr_info *h;
682         struct scsi_device *sdev;
683         struct hpsa_scsi_dev_t *hdev;
684         unsigned long flags;
685         unsigned char lunid[8];
686
687         sdev = to_scsi_device(dev);
688         h = sdev_to_hba(sdev);
689         spin_lock_irqsave(&h->lock, flags);
690         hdev = sdev->hostdata;
691         if (!hdev) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 return -ENODEV;
694         }
695         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696         spin_unlock_irqrestore(&h->lock, flags);
697         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698                 lunid[0], lunid[1], lunid[2], lunid[3],
699                 lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701
702 static ssize_t unique_id_show(struct device *dev,
703              struct device_attribute *attr, char *buf)
704 {
705         struct ctlr_info *h;
706         struct scsi_device *sdev;
707         struct hpsa_scsi_dev_t *hdev;
708         unsigned long flags;
709         unsigned char sn[16];
710
711         sdev = to_scsi_device(dev);
712         h = sdev_to_hba(sdev);
713         spin_lock_irqsave(&h->lock, flags);
714         hdev = sdev->hostdata;
715         if (!hdev) {
716                 spin_unlock_irqrestore(&h->lock, flags);
717                 return -ENODEV;
718         }
719         memcpy(sn, hdev->device_id, sizeof(sn));
720         spin_unlock_irqrestore(&h->lock, flags);
721         return snprintf(buf, 16 * 2 + 2,
722                         "%02X%02X%02X%02X%02X%02X%02X%02X"
723                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724                         sn[0], sn[1], sn[2], sn[3],
725                         sn[4], sn[5], sn[6], sn[7],
726                         sn[8], sn[9], sn[10], sn[11],
727                         sn[12], sn[13], sn[14], sn[15]);
728 }
729
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731              struct device_attribute *attr, char *buf)
732 {
733         struct ctlr_info *h;
734         struct scsi_device *sdev;
735         struct hpsa_scsi_dev_t *hdev;
736         unsigned long flags;
737         int offload_enabled;
738
739         sdev = to_scsi_device(dev);
740         h = sdev_to_hba(sdev);
741         spin_lock_irqsave(&h->lock, flags);
742         hdev = sdev->hostdata;
743         if (!hdev) {
744                 spin_unlock_irqrestore(&h->lock, flags);
745                 return -ENODEV;
746         }
747         offload_enabled = hdev->offload_enabled;
748         spin_unlock_irqrestore(&h->lock, flags);
749         return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751
752 #define MAX_PATHS 8
753
754 static ssize_t path_info_show(struct device *dev,
755              struct device_attribute *attr, char *buf)
756 {
757         struct ctlr_info *h;
758         struct scsi_device *sdev;
759         struct hpsa_scsi_dev_t *hdev;
760         unsigned long flags;
761         int i;
762         int output_len = 0;
763         u8 box;
764         u8 bay;
765         u8 path_map_index = 0;
766         char *active;
767         unsigned char phys_connector[2];
768
769         sdev = to_scsi_device(dev);
770         h = sdev_to_hba(sdev);
771         spin_lock_irqsave(&h->devlock, flags);
772         hdev = sdev->hostdata;
773         if (!hdev) {
774                 spin_unlock_irqrestore(&h->devlock, flags);
775                 return -ENODEV;
776         }
777
778         bay = hdev->bay;
779         for (i = 0; i < MAX_PATHS; i++) {
780                 path_map_index = 1<<i;
781                 if (i == hdev->active_path_index)
782                         active = "Active";
783                 else if (hdev->path_map & path_map_index)
784                         active = "Inactive";
785                 else
786                         continue;
787
788                 output_len += scnprintf(buf + output_len,
789                                 PAGE_SIZE - output_len,
790                                 "[%d:%d:%d:%d] %20.20s ",
791                                 h->scsi_host->host_no,
792                                 hdev->bus, hdev->target, hdev->lun,
793                                 scsi_device_type(hdev->devtype));
794
795                 if (hdev->external ||
796                         hdev->devtype == TYPE_RAID ||
797                         is_logical_device(hdev)) {
798                         output_len += snprintf(buf + output_len,
799                                                 PAGE_SIZE - output_len,
800                                                 "%s\n", active);
801                         continue;
802                 }
803
804                 box = hdev->box[i];
805                 memcpy(&phys_connector, &hdev->phys_connector[i],
806                         sizeof(phys_connector));
807                 if (phys_connector[0] < '0')
808                         phys_connector[0] = '0';
809                 if (phys_connector[1] < '0')
810                         phys_connector[1] = '0';
811                 if (hdev->phys_connector[i] > 0)
812                         output_len += snprintf(buf + output_len,
813                                 PAGE_SIZE - output_len,
814                                 "PORT: %.2s ",
815                                 phys_connector);
816                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
817                         if (box == 0 || box == 0xFF) {
818                                 output_len += snprintf(buf + output_len,
819                                         PAGE_SIZE - output_len,
820                                         "BAY: %hhu %s\n",
821                                         bay, active);
822                         } else {
823                                 output_len += snprintf(buf + output_len,
824                                         PAGE_SIZE - output_len,
825                                         "BOX: %hhu BAY: %hhu %s\n",
826                                         box, bay, active);
827                         }
828                 } else if (box != 0 && box != 0xFF) {
829                         output_len += snprintf(buf + output_len,
830                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
831                                 box, active);
832                 } else
833                         output_len += snprintf(buf + output_len,
834                                 PAGE_SIZE - output_len, "%s\n", active);
835         }
836
837         spin_unlock_irqrestore(&h->devlock, flags);
838         return output_len;
839 }
840
841 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
842 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
843 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
844 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
846                         host_show_hp_ssd_smart_path_enabled, NULL);
847 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
848 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
849                 host_show_hp_ssd_smart_path_status,
850                 host_store_hp_ssd_smart_path_status);
851 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
852                         host_store_raid_offload_debug);
853 static DEVICE_ATTR(firmware_revision, S_IRUGO,
854         host_show_firmware_revision, NULL);
855 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
856         host_show_commands_outstanding, NULL);
857 static DEVICE_ATTR(transport_mode, S_IRUGO,
858         host_show_transport_mode, NULL);
859 static DEVICE_ATTR(resettable, S_IRUGO,
860         host_show_resettable, NULL);
861 static DEVICE_ATTR(lockup_detected, S_IRUGO,
862         host_show_lockup_detected, NULL);
863
864 static struct device_attribute *hpsa_sdev_attrs[] = {
865         &dev_attr_raid_level,
866         &dev_attr_lunid,
867         &dev_attr_unique_id,
868         &dev_attr_hp_ssd_smart_path_enabled,
869         &dev_attr_path_info,
870         NULL,
871 };
872
873 static struct device_attribute *hpsa_shost_attrs[] = {
874         &dev_attr_rescan,
875         &dev_attr_firmware_revision,
876         &dev_attr_commands_outstanding,
877         &dev_attr_transport_mode,
878         &dev_attr_resettable,
879         &dev_attr_hp_ssd_smart_path_status,
880         &dev_attr_raid_offload_debug,
881         &dev_attr_lockup_detected,
882         NULL,
883 };
884
885 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
886                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
887
888 static struct scsi_host_template hpsa_driver_template = {
889         .module                 = THIS_MODULE,
890         .name                   = HPSA,
891         .proc_name              = HPSA,
892         .queuecommand           = hpsa_scsi_queue_command,
893         .scan_start             = hpsa_scan_start,
894         .scan_finished          = hpsa_scan_finished,
895         .change_queue_depth     = hpsa_change_queue_depth,
896         .this_id                = -1,
897         .use_clustering         = ENABLE_CLUSTERING,
898         .eh_abort_handler       = hpsa_eh_abort_handler,
899         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
900         .ioctl                  = hpsa_ioctl,
901         .slave_alloc            = hpsa_slave_alloc,
902         .slave_configure        = hpsa_slave_configure,
903         .slave_destroy          = hpsa_slave_destroy,
904 #ifdef CONFIG_COMPAT
905         .compat_ioctl           = hpsa_compat_ioctl,
906 #endif
907         .sdev_attrs = hpsa_sdev_attrs,
908         .shost_attrs = hpsa_shost_attrs,
909         .max_sectors = 8192,
910         .no_write_same = 1,
911 };
912
913 static inline u32 next_command(struct ctlr_info *h, u8 q)
914 {
915         u32 a;
916         struct reply_queue_buffer *rq = &h->reply_queue[q];
917
918         if (h->transMethod & CFGTBL_Trans_io_accel1)
919                 return h->access.command_completed(h, q);
920
921         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
922                 return h->access.command_completed(h, q);
923
924         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
925                 a = rq->head[rq->current_entry];
926                 rq->current_entry++;
927                 atomic_dec(&h->commands_outstanding);
928         } else {
929                 a = FIFO_EMPTY;
930         }
931         /* Check for wraparound */
932         if (rq->current_entry == h->max_commands) {
933                 rq->current_entry = 0;
934                 rq->wraparound ^= 1;
935         }
936         return a;
937 }
938
939 /*
940  * There are some special bits in the bus address of the
941  * command that we have to set for the controller to know
942  * how to process the command:
943  *
944  * Normal performant mode:
945  * bit 0: 1 means performant mode, 0 means simple mode.
946  * bits 1-3 = block fetch table entry
947  * bits 4-6 = command type (== 0)
948  *
949  * ioaccel1 mode:
950  * bit 0 = "performant mode" bit.
951  * bits 1-3 = block fetch table entry
952  * bits 4-6 = command type (== 110)
953  * (command type is needed because ioaccel1 mode
954  * commands are submitted through the same register as normal
955  * mode commands, so this is how the controller knows whether
956  * the command is normal mode or ioaccel1 mode.)
957  *
958  * ioaccel2 mode:
959  * bit 0 = "performant mode" bit.
960  * bits 1-4 = block fetch table entry (note extra bit)
961  * bits 4-6 = not needed, because ioaccel2 mode has
962  * a separate special register for submitting commands.
963  */
964
965 /*
966  * set_performant_mode: Modify the tag for cciss performant
967  * set bit 0 for pull model, bits 3-1 for block fetch
968  * register number
969  */
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
972                                         int reply_queue)
973 {
974         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
975                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
976                 if (unlikely(!h->msix_vector))
977                         return;
978                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979                         c->Header.ReplyQueue =
980                                 raw_smp_processor_id() % h->nreply_queues;
981                 else
982                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
983         }
984 }
985
986 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
987                                                 struct CommandList *c,
988                                                 int reply_queue)
989 {
990         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
991
992         /*
993          * Tell the controller to post the reply to the queue for this
994          * processor.  This seems to give the best I/O throughput.
995          */
996         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
997                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
998         else
999                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1000         /*
1001          * Set the bits in the address sent down to include:
1002          *  - performant mode bit (bit 0)
1003          *  - pull count (bits 1-3)
1004          *  - command type (bits 4-6)
1005          */
1006         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1007                                         IOACCEL1_BUSADDR_CMDTYPE;
1008 }
1009
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1011                                                 struct CommandList *c,
1012                                                 int reply_queue)
1013 {
1014         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1015                 &h->ioaccel2_cmd_pool[c->cmdindex];
1016
1017         /* Tell the controller to post the reply to the queue for this
1018          * processor.  This seems to give the best I/O throughput.
1019          */
1020         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1022         else
1023                 cp->reply_queue = reply_queue % h->nreply_queues;
1024         /* Set the bits in the address sent down to include:
1025          *  - performant mode bit not used in ioaccel mode 2
1026          *  - pull count (bits 0-3)
1027          *  - command type isn't needed for ioaccel2
1028          */
1029         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1030 }
1031
1032 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1033                                                 struct CommandList *c,
1034                                                 int reply_queue)
1035 {
1036         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1037
1038         /*
1039          * Tell the controller to post the reply to the queue for this
1040          * processor.  This seems to give the best I/O throughput.
1041          */
1042         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1044         else
1045                 cp->reply_queue = reply_queue % h->nreply_queues;
1046         /*
1047          * Set the bits in the address sent down to include:
1048          *  - performant mode bit not used in ioaccel mode 2
1049          *  - pull count (bits 0-3)
1050          *  - command type isn't needed for ioaccel2
1051          */
1052         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1053 }
1054
1055 static int is_firmware_flash_cmd(u8 *cdb)
1056 {
1057         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1058 }
1059
1060 /*
1061  * During firmware flash, the heartbeat register may not update as frequently
1062  * as it should.  So we dial down lockup detection during firmware flash. and
1063  * dial it back up when firmware flash completes.
1064  */
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1068                 struct CommandList *c)
1069 {
1070         if (!is_firmware_flash_cmd(c->Request.CDB))
1071                 return;
1072         atomic_inc(&h->firmware_flash_in_progress);
1073         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1074 }
1075
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1077                 struct CommandList *c)
1078 {
1079         if (is_firmware_flash_cmd(c->Request.CDB) &&
1080                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1081                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1082 }
1083
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1085         struct CommandList *c, int reply_queue)
1086 {
1087         dial_down_lockup_detection_during_fw_flash(h, c);
1088         atomic_inc(&h->commands_outstanding);
1089         switch (c->cmd_type) {
1090         case CMD_IOACCEL1:
1091                 set_ioaccel1_performant_mode(h, c, reply_queue);
1092                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1093                 break;
1094         case CMD_IOACCEL2:
1095                 set_ioaccel2_performant_mode(h, c, reply_queue);
1096                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097                 break;
1098         case IOACCEL2_TMF:
1099                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1100                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1101                 break;
1102         default:
1103                 set_performant_mode(h, c, reply_queue);
1104                 h->access.submit_command(h, c);
1105         }
1106 }
1107
1108 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1109 {
1110         if (unlikely(hpsa_is_pending_event(c)))
1111                 return finish_cmd(c);
1112
1113         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1114 }
1115
1116 static inline int is_hba_lunid(unsigned char scsi3addr[])
1117 {
1118         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1119 }
1120
1121 static inline int is_scsi_rev_5(struct ctlr_info *h)
1122 {
1123         if (!h->hba_inquiry_data)
1124                 return 0;
1125         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1126                 return 1;
1127         return 0;
1128 }
1129
1130 static int hpsa_find_target_lun(struct ctlr_info *h,
1131         unsigned char scsi3addr[], int bus, int *target, int *lun)
1132 {
1133         /* finds an unused bus, target, lun for a new physical device
1134          * assumes h->devlock is held
1135          */
1136         int i, found = 0;
1137         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1138
1139         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1140
1141         for (i = 0; i < h->ndevices; i++) {
1142                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1143                         __set_bit(h->dev[i]->target, lun_taken);
1144         }
1145
1146         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1147         if (i < HPSA_MAX_DEVICES) {
1148                 /* *bus = 1; */
1149                 *target = i;
1150                 *lun = 0;
1151                 found = 1;
1152         }
1153         return !found;
1154 }
1155
1156 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1157         struct hpsa_scsi_dev_t *dev, char *description)
1158 {
1159 #define LABEL_SIZE 25
1160         char label[LABEL_SIZE];
1161
1162         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1163                 return;
1164
1165         switch (dev->devtype) {
1166         case TYPE_RAID:
1167                 snprintf(label, LABEL_SIZE, "controller");
1168                 break;
1169         case TYPE_ENCLOSURE:
1170                 snprintf(label, LABEL_SIZE, "enclosure");
1171                 break;
1172         case TYPE_DISK:
1173                 if (dev->external)
1174                         snprintf(label, LABEL_SIZE, "external");
1175                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1176                         snprintf(label, LABEL_SIZE, "%s",
1177                                 raid_label[PHYSICAL_DRIVE]);
1178                 else
1179                         snprintf(label, LABEL_SIZE, "RAID-%s",
1180                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1181                                 raid_label[dev->raid_level]);
1182                 break;
1183         case TYPE_ROM:
1184                 snprintf(label, LABEL_SIZE, "rom");
1185                 break;
1186         case TYPE_TAPE:
1187                 snprintf(label, LABEL_SIZE, "tape");
1188                 break;
1189         case TYPE_MEDIUM_CHANGER:
1190                 snprintf(label, LABEL_SIZE, "changer");
1191                 break;
1192         default:
1193                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1194                 break;
1195         }
1196
1197         dev_printk(level, &h->pdev->dev,
1198                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1200                         description,
1201                         scsi_device_type(dev->devtype),
1202                         dev->vendor,
1203                         dev->model,
1204                         label,
1205                         dev->offload_config ? '+' : '-',
1206                         dev->offload_enabled ? '+' : '-',
1207                         dev->expose_device);
1208 }
1209
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1212                 struct hpsa_scsi_dev_t *device,
1213                 struct hpsa_scsi_dev_t *added[], int *nadded)
1214 {
1215         /* assumes h->devlock is held */
1216         int n = h->ndevices;
1217         int i;
1218         unsigned char addr1[8], addr2[8];
1219         struct hpsa_scsi_dev_t *sd;
1220
1221         if (n >= HPSA_MAX_DEVICES) {
1222                 dev_err(&h->pdev->dev, "too many devices, some will be "
1223                         "inaccessible.\n");
1224                 return -1;
1225         }
1226
1227         /* physical devices do not have lun or target assigned until now. */
1228         if (device->lun != -1)
1229                 /* Logical device, lun is already assigned. */
1230                 goto lun_assigned;
1231
1232         /* If this device a non-zero lun of a multi-lun device
1233          * byte 4 of the 8-byte LUN addr will contain the logical
1234          * unit no, zero otherwise.
1235          */
1236         if (device->scsi3addr[4] == 0) {
1237                 /* This is not a non-zero lun of a multi-lun device */
1238                 if (hpsa_find_target_lun(h, device->scsi3addr,
1239                         device->bus, &device->target, &device->lun) != 0)
1240                         return -1;
1241                 goto lun_assigned;
1242         }
1243
1244         /* This is a non-zero lun of a multi-lun device.
1245          * Search through our list and find the device which
1246          * has the same 8 byte LUN address, excepting byte 4 and 5.
1247          * Assign the same bus and target for this new LUN.
1248          * Use the logical unit number from the firmware.
1249          */
1250         memcpy(addr1, device->scsi3addr, 8);
1251         addr1[4] = 0;
1252         addr1[5] = 0;
1253         for (i = 0; i < n; i++) {
1254                 sd = h->dev[i];
1255                 memcpy(addr2, sd->scsi3addr, 8);
1256                 addr2[4] = 0;
1257                 addr2[5] = 0;
1258                 /* differ only in byte 4 and 5? */
1259                 if (memcmp(addr1, addr2, 8) == 0) {
1260                         device->bus = sd->bus;
1261                         device->target = sd->target;
1262                         device->lun = device->scsi3addr[4];
1263                         break;
1264                 }
1265         }
1266         if (device->lun == -1) {
1267                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1268                         " suspect firmware bug or unsupported hardware "
1269                         "configuration.\n");
1270                         return -1;
1271         }
1272
1273 lun_assigned:
1274
1275         h->dev[n] = device;
1276         h->ndevices++;
1277         added[*nadded] = device;
1278         (*nadded)++;
1279         hpsa_show_dev_msg(KERN_INFO, h, device,
1280                 device->expose_device ? "added" : "masked");
1281         device->offload_to_be_enabled = device->offload_enabled;
1282         device->offload_enabled = 0;
1283         return 0;
1284 }
1285
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1288         int entry, struct hpsa_scsi_dev_t *new_entry)
1289 {
1290         int offload_enabled;
1291         /* assumes h->devlock is held */
1292         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1293
1294         /* Raid level changed. */
1295         h->dev[entry]->raid_level = new_entry->raid_level;
1296
1297         /* Raid offload parameters changed.  Careful about the ordering. */
1298         if (new_entry->offload_config && new_entry->offload_enabled) {
1299                 /*
1300                  * if drive is newly offload_enabled, we want to copy the
1301                  * raid map data first.  If previously offload_enabled and
1302                  * offload_config were set, raid map data had better be
1303                  * the same as it was before.  if raid map data is changed
1304                  * then it had better be the case that
1305                  * h->dev[entry]->offload_enabled is currently 0.
1306                  */
1307                 h->dev[entry]->raid_map = new_entry->raid_map;
1308                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1309         }
1310         if (new_entry->hba_ioaccel_enabled) {
1311                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1312                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1313         }
1314         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1315         h->dev[entry]->offload_config = new_entry->offload_config;
1316         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1317         h->dev[entry]->queue_depth = new_entry->queue_depth;
1318
1319         /*
1320          * We can turn off ioaccel offload now, but need to delay turning
1321          * it on until we can update h->dev[entry]->phys_disk[], but we
1322          * can't do that until all the devices are updated.
1323          */
1324         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1325         if (!new_entry->offload_enabled)
1326                 h->dev[entry]->offload_enabled = 0;
1327
1328         offload_enabled = h->dev[entry]->offload_enabled;
1329         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1330         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1331         h->dev[entry]->offload_enabled = offload_enabled;
1332 }
1333
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1336         int entry, struct hpsa_scsi_dev_t *new_entry,
1337         struct hpsa_scsi_dev_t *added[], int *nadded,
1338         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1339 {
1340         /* assumes h->devlock is held */
1341         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1342         removed[*nremoved] = h->dev[entry];
1343         (*nremoved)++;
1344
1345         /*
1346          * New physical devices won't have target/lun assigned yet
1347          * so we need to preserve the values in the slot we are replacing.
1348          */
1349         if (new_entry->target == -1) {
1350                 new_entry->target = h->dev[entry]->target;
1351                 new_entry->lun = h->dev[entry]->lun;
1352         }
1353
1354         h->dev[entry] = new_entry;
1355         added[*nadded] = new_entry;
1356         (*nadded)++;
1357         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1358         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1359         new_entry->offload_enabled = 0;
1360 }
1361
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1364         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1365 {
1366         /* assumes h->devlock is held */
1367         int i;
1368         struct hpsa_scsi_dev_t *sd;
1369
1370         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371
1372         sd = h->dev[entry];
1373         removed[*nremoved] = h->dev[entry];
1374         (*nremoved)++;
1375
1376         for (i = entry; i < h->ndevices-1; i++)
1377                 h->dev[i] = h->dev[i+1];
1378         h->ndevices--;
1379         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1380 }
1381
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383         (a)[7] == (b)[7] && \
1384         (a)[6] == (b)[6] && \
1385         (a)[5] == (b)[5] && \
1386         (a)[4] == (b)[4] && \
1387         (a)[3] == (b)[3] && \
1388         (a)[2] == (b)[2] && \
1389         (a)[1] == (b)[1] && \
1390         (a)[0] == (b)[0])
1391
1392 static void fixup_botched_add(struct ctlr_info *h,
1393         struct hpsa_scsi_dev_t *added)
1394 {
1395         /* called when scsi_add_device fails in order to re-adjust
1396          * h->dev[] to match the mid layer's view.
1397          */
1398         unsigned long flags;
1399         int i, j;
1400
1401         spin_lock_irqsave(&h->lock, flags);
1402         for (i = 0; i < h->ndevices; i++) {
1403                 if (h->dev[i] == added) {
1404                         for (j = i; j < h->ndevices-1; j++)
1405                                 h->dev[j] = h->dev[j+1];
1406                         h->ndevices--;
1407                         break;
1408                 }
1409         }
1410         spin_unlock_irqrestore(&h->lock, flags);
1411         kfree(added);
1412 }
1413
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1415         struct hpsa_scsi_dev_t *dev2)
1416 {
1417         /* we compare everything except lun and target as these
1418          * are not yet assigned.  Compare parts likely
1419          * to differ first
1420          */
1421         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1422                 sizeof(dev1->scsi3addr)) != 0)
1423                 return 0;
1424         if (memcmp(dev1->device_id, dev2->device_id,
1425                 sizeof(dev1->device_id)) != 0)
1426                 return 0;
1427         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1428                 return 0;
1429         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1430                 return 0;
1431         if (dev1->devtype != dev2->devtype)
1432                 return 0;
1433         if (dev1->bus != dev2->bus)
1434                 return 0;
1435         return 1;
1436 }
1437
1438 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1439         struct hpsa_scsi_dev_t *dev2)
1440 {
1441         /* Device attributes that can change, but don't mean
1442          * that the device is a different device, nor that the OS
1443          * needs to be told anything about the change.
1444          */
1445         if (dev1->raid_level != dev2->raid_level)
1446                 return 1;
1447         if (dev1->offload_config != dev2->offload_config)
1448                 return 1;
1449         if (dev1->offload_enabled != dev2->offload_enabled)
1450                 return 1;
1451         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1452                 if (dev1->queue_depth != dev2->queue_depth)
1453                         return 1;
1454         return 0;
1455 }
1456
1457 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1458  * and return needle location in *index.  If scsi3addr matches, but not
1459  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460  * location in *index.
1461  * In the case of a minor device attribute change, such as RAID level, just
1462  * return DEVICE_UPDATED, along with the updated device's location in index.
1463  * If needle not found, return DEVICE_NOT_FOUND.
1464  */
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1466         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1467         int *index)
1468 {
1469         int i;
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1474         if (needle == NULL)
1475                 return DEVICE_NOT_FOUND;
1476
1477         for (i = 0; i < haystack_size; i++) {
1478                 if (haystack[i] == NULL) /* previously removed. */
1479                         continue;
1480                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1481                         *index = i;
1482                         if (device_is_the_same(needle, haystack[i])) {
1483                                 if (device_updated(needle, haystack[i]))
1484                                         return DEVICE_UPDATED;
1485                                 return DEVICE_SAME;
1486                         } else {
1487                                 /* Keep offline devices offline */
1488                                 if (needle->volume_offline)
1489                                         return DEVICE_NOT_FOUND;
1490                                 return DEVICE_CHANGED;
1491                         }
1492                 }
1493         }
1494         *index = -1;
1495         return DEVICE_NOT_FOUND;
1496 }
1497
1498 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1499                                         unsigned char scsi3addr[])
1500 {
1501         struct offline_device_entry *device;
1502         unsigned long flags;
1503
1504         /* Check to see if device is already on the list */
1505         spin_lock_irqsave(&h->offline_device_lock, flags);
1506         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1507                 if (memcmp(device->scsi3addr, scsi3addr,
1508                         sizeof(device->scsi3addr)) == 0) {
1509                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510                         return;
1511                 }
1512         }
1513         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1514
1515         /* Device is not on the list, add it. */
1516         device = kmalloc(sizeof(*device), GFP_KERNEL);
1517         if (!device) {
1518                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1519                 return;
1520         }
1521         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1522         spin_lock_irqsave(&h->offline_device_lock, flags);
1523         list_add_tail(&device->offline_list, &h->offline_device_list);
1524         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1525 }
1526
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info *h,
1529         struct hpsa_scsi_dev_t *sd)
1530 {
1531         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1532                 dev_info(&h->pdev->dev,
1533                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534                         h->scsi_host->host_no,
1535                         sd->bus, sd->target, sd->lun);
1536         switch (sd->volume_offline) {
1537         case HPSA_LV_OK:
1538                 break;
1539         case HPSA_LV_UNDERGOING_ERASE:
1540                 dev_info(&h->pdev->dev,
1541                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542                         h->scsi_host->host_no,
1543                         sd->bus, sd->target, sd->lun);
1544                 break;
1545         case HPSA_LV_NOT_AVAILABLE:
1546                 dev_info(&h->pdev->dev,
1547                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548                         h->scsi_host->host_no,
1549                         sd->bus, sd->target, sd->lun);
1550                 break;
1551         case HPSA_LV_UNDERGOING_RPI:
1552                 dev_info(&h->pdev->dev,
1553                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554                         h->scsi_host->host_no,
1555                         sd->bus, sd->target, sd->lun);
1556                 break;
1557         case HPSA_LV_PENDING_RPI:
1558                 dev_info(&h->pdev->dev,
1559                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560                         h->scsi_host->host_no,
1561                         sd->bus, sd->target, sd->lun);
1562                 break;
1563         case HPSA_LV_ENCRYPTED_NO_KEY:
1564                 dev_info(&h->pdev->dev,
1565                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566                         h->scsi_host->host_no,
1567                         sd->bus, sd->target, sd->lun);
1568                 break;
1569         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1570                 dev_info(&h->pdev->dev,
1571                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572                         h->scsi_host->host_no,
1573                         sd->bus, sd->target, sd->lun);
1574                 break;
1575         case HPSA_LV_UNDERGOING_ENCRYPTION:
1576                 dev_info(&h->pdev->dev,
1577                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578                         h->scsi_host->host_no,
1579                         sd->bus, sd->target, sd->lun);
1580                 break;
1581         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1582                 dev_info(&h->pdev->dev,
1583                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584                         h->scsi_host->host_no,
1585                         sd->bus, sd->target, sd->lun);
1586                 break;
1587         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1588                 dev_info(&h->pdev->dev,
1589                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590                         h->scsi_host->host_no,
1591                         sd->bus, sd->target, sd->lun);
1592                 break;
1593         case HPSA_LV_PENDING_ENCRYPTION:
1594                 dev_info(&h->pdev->dev,
1595                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596                         h->scsi_host->host_no,
1597                         sd->bus, sd->target, sd->lun);
1598                 break;
1599         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1600                 dev_info(&h->pdev->dev,
1601                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602                         h->scsi_host->host_no,
1603                         sd->bus, sd->target, sd->lun);
1604                 break;
1605         }
1606 }
1607
1608 /*
1609  * Figure the list of physical drive pointers for a logical drive with
1610  * raid offload configured.
1611  */
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1613                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1614                                 struct hpsa_scsi_dev_t *logical_drive)
1615 {
1616         struct raid_map_data *map = &logical_drive->raid_map;
1617         struct raid_map_disk_data *dd = &map->data[0];
1618         int i, j;
1619         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1620                                 le16_to_cpu(map->metadata_disks_per_row);
1621         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1622                                 le16_to_cpu(map->layout_map_count) *
1623                                 total_disks_per_row;
1624         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1625                                 total_disks_per_row;
1626         int qdepth;
1627
1628         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1629                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1630
1631         logical_drive->nphysical_disks = nraid_map_entries;
1632
1633         qdepth = 0;
1634         for (i = 0; i < nraid_map_entries; i++) {
1635                 logical_drive->phys_disk[i] = NULL;
1636                 if (!logical_drive->offload_config)
1637                         continue;
1638                 for (j = 0; j < ndevices; j++) {
1639                         if (dev[j] == NULL)
1640                                 continue;
1641                         if (dev[j]->devtype != TYPE_DISK)
1642                                 continue;
1643                         if (is_logical_device(dev[j]))
1644                                 continue;
1645                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1646                                 continue;
1647
1648                         logical_drive->phys_disk[i] = dev[j];
1649                         if (i < nphys_disk)
1650                                 qdepth = min(h->nr_cmds, qdepth +
1651                                     logical_drive->phys_disk[i]->queue_depth);
1652                         break;
1653                 }
1654
1655                 /*
1656                  * This can happen if a physical drive is removed and
1657                  * the logical drive is degraded.  In that case, the RAID
1658                  * map data will refer to a physical disk which isn't actually
1659                  * present.  And in that case offload_enabled should already
1660                  * be 0, but we'll turn it off here just in case
1661                  */
1662                 if (!logical_drive->phys_disk[i]) {
1663                         logical_drive->offload_enabled = 0;
1664                         logical_drive->offload_to_be_enabled = 0;
1665                         logical_drive->queue_depth = 8;
1666                 }
1667         }
1668         if (nraid_map_entries)
1669                 /*
1670                  * This is correct for reads, too high for full stripe writes,
1671                  * way too high for partial stripe writes
1672                  */
1673                 logical_drive->queue_depth = qdepth;
1674         else
1675                 logical_drive->queue_depth = h->nr_cmds;
1676 }
1677
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1679                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1680 {
1681         int i;
1682
1683         for (i = 0; i < ndevices; i++) {
1684                 if (dev[i] == NULL)
1685                         continue;
1686                 if (dev[i]->devtype != TYPE_DISK)
1687                         continue;
1688                 if (!is_logical_device(dev[i]))
1689                         continue;
1690
1691                 /*
1692                  * If offload is currently enabled, the RAID map and
1693                  * phys_disk[] assignment *better* not be changing
1694                  * and since it isn't changing, we do not need to
1695                  * update it.
1696                  */
1697                 if (dev[i]->offload_enabled)
1698                         continue;
1699
1700                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1701         }
1702 }
1703
1704 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1705 {
1706         int rc = 0;
1707
1708         if (!h->scsi_host)
1709                 return 1;
1710
1711         if (is_logical_device(device)) /* RAID */
1712                 rc = scsi_add_device(h->scsi_host, device->bus,
1713                                         device->target, device->lun);
1714         else /* HBA */
1715                 rc = hpsa_add_sas_device(h->sas_host, device);
1716
1717         return rc;
1718 }
1719
1720 static void hpsa_remove_device(struct ctlr_info *h,
1721                         struct hpsa_scsi_dev_t *device)
1722 {
1723         struct scsi_device *sdev = NULL;
1724
1725         if (!h->scsi_host)
1726                 return;
1727
1728         if (is_logical_device(device)) { /* RAID */
1729                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1730                                                 device->target, device->lun);
1731                 if (sdev) {
1732                         scsi_remove_device(sdev);
1733                         scsi_device_put(sdev);
1734                 } else {
1735                         /*
1736                          * We don't expect to get here.  Future commands
1737                          * to this device will get a selection timeout as
1738                          * if the device were gone.
1739                          */
1740                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1741                                         "didn't find device for removal.");
1742                 }
1743         } else /* HBA */
1744                 hpsa_remove_sas_device(device);
1745 }
1746
1747 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1748         struct hpsa_scsi_dev_t *sd[], int nsds)
1749 {
1750         /* sd contains scsi3 addresses and devtypes, and inquiry
1751          * data.  This function takes what's in sd to be the current
1752          * reality and updates h->dev[] to reflect that reality.
1753          */
1754         int i, entry, device_change, changes = 0;
1755         struct hpsa_scsi_dev_t *csd;
1756         unsigned long flags;
1757         struct hpsa_scsi_dev_t **added, **removed;
1758         int nadded, nremoved;
1759
1760         /*
1761          * A reset can cause a device status to change
1762          * re-schedule the scan to see what happened.
1763          */
1764         if (h->reset_in_progress) {
1765                 h->drv_req_rescan = 1;
1766                 return;
1767         }
1768
1769         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1770         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1771
1772         if (!added || !removed) {
1773                 dev_warn(&h->pdev->dev, "out of memory in "
1774                         "adjust_hpsa_scsi_table\n");
1775                 goto free_and_out;
1776         }
1777
1778         spin_lock_irqsave(&h->devlock, flags);
1779
1780         /* find any devices in h->dev[] that are not in
1781          * sd[] and remove them from h->dev[], and for any
1782          * devices which have changed, remove the old device
1783          * info and add the new device info.
1784          * If minor device attributes change, just update
1785          * the existing device structure.
1786          */
1787         i = 0;
1788         nremoved = 0;
1789         nadded = 0;
1790         while (i < h->ndevices) {
1791                 csd = h->dev[i];
1792                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1793                 if (device_change == DEVICE_NOT_FOUND) {
1794                         changes++;
1795                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1796                         continue; /* remove ^^^, hence i not incremented */
1797                 } else if (device_change == DEVICE_CHANGED) {
1798                         changes++;
1799                         hpsa_scsi_replace_entry(h, i, sd[entry],
1800                                 added, &nadded, removed, &nremoved);
1801                         /* Set it to NULL to prevent it from being freed
1802                          * at the bottom of hpsa_update_scsi_devices()
1803                          */
1804                         sd[entry] = NULL;
1805                 } else if (device_change == DEVICE_UPDATED) {
1806                         hpsa_scsi_update_entry(h, i, sd[entry]);
1807                 }
1808                 i++;
1809         }
1810
1811         /* Now, make sure every device listed in sd[] is also
1812          * listed in h->dev[], adding them if they aren't found
1813          */
1814
1815         for (i = 0; i < nsds; i++) {
1816                 if (!sd[i]) /* if already added above. */
1817                         continue;
1818
1819                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820                  * as the SCSI mid-layer does not handle such devices well.
1821                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822                  * at 160Hz, and prevents the system from coming up.
1823                  */
1824                 if (sd[i]->volume_offline) {
1825                         hpsa_show_volume_status(h, sd[i]);
1826                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1827                         continue;
1828                 }
1829
1830                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1831                                         h->ndevices, &entry);
1832                 if (device_change == DEVICE_NOT_FOUND) {
1833                         changes++;
1834                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1835                                 break;
1836                         sd[i] = NULL; /* prevent from being freed later. */
1837                 } else if (device_change == DEVICE_CHANGED) {
1838                         /* should never happen... */
1839                         changes++;
1840                         dev_warn(&h->pdev->dev,
1841                                 "device unexpectedly changed.\n");
1842                         /* but if it does happen, we just ignore that device */
1843                 }
1844         }
1845         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1846
1847         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848          * any logical drives that need it enabled.
1849          */
1850         for (i = 0; i < h->ndevices; i++) {
1851                 if (h->dev[i] == NULL)
1852                         continue;
1853                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1854         }
1855
1856         spin_unlock_irqrestore(&h->devlock, flags);
1857
1858         /* Monitor devices which are in one of several NOT READY states to be
1859          * brought online later. This must be done without holding h->devlock,
1860          * so don't touch h->dev[]
1861          */
1862         for (i = 0; i < nsds; i++) {
1863                 if (!sd[i]) /* if already added above. */
1864                         continue;
1865                 if (sd[i]->volume_offline)
1866                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1867         }
1868
1869         /* Don't notify scsi mid layer of any changes the first time through
1870          * (or if there are no changes) scsi_scan_host will do it later the
1871          * first time through.
1872          */
1873         if (!changes)
1874                 goto free_and_out;
1875
1876         /* Notify scsi mid layer of any removed devices */
1877         for (i = 0; i < nremoved; i++) {
1878                 if (removed[i] == NULL)
1879                         continue;
1880                 if (removed[i]->expose_device)
1881                         hpsa_remove_device(h, removed[i]);
1882                 kfree(removed[i]);
1883                 removed[i] = NULL;
1884         }
1885
1886         /* Notify scsi mid layer of any added devices */
1887         for (i = 0; i < nadded; i++) {
1888                 int rc = 0;
1889
1890                 if (added[i] == NULL)
1891                         continue;
1892                 if (!(added[i]->expose_device))
1893                         continue;
1894                 rc = hpsa_add_device(h, added[i]);
1895                 if (!rc)
1896                         continue;
1897                 dev_warn(&h->pdev->dev,
1898                         "addition failed %d, device not added.", rc);
1899                 /* now we have to remove it from h->dev,
1900                  * since it didn't get added to scsi mid layer
1901                  */
1902                 fixup_botched_add(h, added[i]);
1903                 h->drv_req_rescan = 1;
1904         }
1905
1906 free_and_out:
1907         kfree(added);
1908         kfree(removed);
1909 }
1910
1911 /*
1912  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913  * Assume's h->devlock is held.
1914  */
1915 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1916         int bus, int target, int lun)
1917 {
1918         int i;
1919         struct hpsa_scsi_dev_t *sd;
1920
1921         for (i = 0; i < h->ndevices; i++) {
1922                 sd = h->dev[i];
1923                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1924                         return sd;
1925         }
1926         return NULL;
1927 }
1928
1929 static int hpsa_slave_alloc(struct scsi_device *sdev)
1930 {
1931         struct hpsa_scsi_dev_t *sd;
1932         unsigned long flags;
1933         struct ctlr_info *h;
1934
1935         h = sdev_to_hba(sdev);
1936         spin_lock_irqsave(&h->devlock, flags);
1937         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1938                 struct scsi_target *starget;
1939                 struct sas_rphy *rphy;
1940
1941                 starget = scsi_target(sdev);
1942                 rphy = target_to_rphy(starget);
1943                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1944                 if (sd) {
1945                         sd->target = sdev_id(sdev);
1946                         sd->lun = sdev->lun;
1947                 }
1948         } else
1949                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1950                                         sdev_id(sdev), sdev->lun);
1951
1952         if (sd && sd->expose_device) {
1953                 atomic_set(&sd->ioaccel_cmds_out, 0);
1954                 sdev->hostdata = sd;
1955         } else
1956                 sdev->hostdata = NULL;
1957         spin_unlock_irqrestore(&h->devlock, flags);
1958         return 0;
1959 }
1960
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device *sdev)
1963 {
1964         struct hpsa_scsi_dev_t *sd;
1965         int queue_depth;
1966
1967         sd = sdev->hostdata;
1968         sdev->no_uld_attach = !sd || !sd->expose_device;
1969
1970         if (sd)
1971                 queue_depth = sd->queue_depth != 0 ?
1972                         sd->queue_depth : sdev->host->can_queue;
1973         else
1974                 queue_depth = sdev->host->can_queue;
1975
1976         scsi_change_queue_depth(sdev, queue_depth);
1977
1978         return 0;
1979 }
1980
1981 static void hpsa_slave_destroy(struct scsi_device *sdev)
1982 {
1983         /* nothing to do. */
1984 }
1985
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1987 {
1988         int i;
1989
1990         if (!h->ioaccel2_cmd_sg_list)
1991                 return;
1992         for (i = 0; i < h->nr_cmds; i++) {
1993                 kfree(h->ioaccel2_cmd_sg_list[i]);
1994                 h->ioaccel2_cmd_sg_list[i] = NULL;
1995         }
1996         kfree(h->ioaccel2_cmd_sg_list);
1997         h->ioaccel2_cmd_sg_list = NULL;
1998 }
1999
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2001 {
2002         int i;
2003
2004         if (h->chainsize <= 0)
2005                 return 0;
2006
2007         h->ioaccel2_cmd_sg_list =
2008                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2009                                         GFP_KERNEL);
2010         if (!h->ioaccel2_cmd_sg_list)
2011                 return -ENOMEM;
2012         for (i = 0; i < h->nr_cmds; i++) {
2013                 h->ioaccel2_cmd_sg_list[i] =
2014                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2015                                         h->maxsgentries, GFP_KERNEL);
2016                 if (!h->ioaccel2_cmd_sg_list[i])
2017                         goto clean;
2018         }
2019         return 0;
2020
2021 clean:
2022         hpsa_free_ioaccel2_sg_chain_blocks(h);
2023         return -ENOMEM;
2024 }
2025
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2027 {
2028         int i;
2029
2030         if (!h->cmd_sg_list)
2031                 return;
2032         for (i = 0; i < h->nr_cmds; i++) {
2033                 kfree(h->cmd_sg_list[i]);
2034                 h->cmd_sg_list[i] = NULL;
2035         }
2036         kfree(h->cmd_sg_list);
2037         h->cmd_sg_list = NULL;
2038 }
2039
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2041 {
2042         int i;
2043
2044         if (h->chainsize <= 0)
2045                 return 0;
2046
2047         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2048                                 GFP_KERNEL);
2049         if (!h->cmd_sg_list) {
2050                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2051                 return -ENOMEM;
2052         }
2053         for (i = 0; i < h->nr_cmds; i++) {
2054                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2055                                                 h->chainsize, GFP_KERNEL);
2056                 if (!h->cmd_sg_list[i]) {
2057                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2058                         goto clean;
2059                 }
2060         }
2061         return 0;
2062
2063 clean:
2064         hpsa_free_sg_chain_blocks(h);
2065         return -ENOMEM;
2066 }
2067
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2069         struct io_accel2_cmd *cp, struct CommandList *c)
2070 {
2071         struct ioaccel2_sg_element *chain_block;
2072         u64 temp64;
2073         u32 chain_size;
2074
2075         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2076         chain_size = le32_to_cpu(cp->sg[0].length);
2077         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2078                                 PCI_DMA_TODEVICE);
2079         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2080                 /* prevent subsequent unmapping */
2081                 cp->sg->address = 0;
2082                 return -1;
2083         }
2084         cp->sg->address = cpu_to_le64(temp64);
2085         return 0;
2086 }
2087
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2089         struct io_accel2_cmd *cp)
2090 {
2091         struct ioaccel2_sg_element *chain_sg;
2092         u64 temp64;
2093         u32 chain_size;
2094
2095         chain_sg = cp->sg;
2096         temp64 = le64_to_cpu(chain_sg->address);
2097         chain_size = le32_to_cpu(cp->sg[0].length);
2098         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2099 }
2100
2101 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2102         struct CommandList *c)
2103 {
2104         struct SGDescriptor *chain_sg, *chain_block;
2105         u64 temp64;
2106         u32 chain_len;
2107
2108         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2109         chain_block = h->cmd_sg_list[c->cmdindex];
2110         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2111         chain_len = sizeof(*chain_sg) *
2112                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2113         chain_sg->Len = cpu_to_le32(chain_len);
2114         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2115                                 PCI_DMA_TODEVICE);
2116         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2117                 /* prevent subsequent unmapping */
2118                 chain_sg->Addr = cpu_to_le64(0);
2119                 return -1;
2120         }
2121         chain_sg->Addr = cpu_to_le64(temp64);
2122         return 0;
2123 }
2124
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2126         struct CommandList *c)
2127 {
2128         struct SGDescriptor *chain_sg;
2129
2130         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2131                 return;
2132
2133         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2134         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2135                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2136 }
2137
2138
2139 /* Decode the various types of errors on ioaccel2 path.
2140  * Return 1 for any error that should generate a RAID path retry.
2141  * Return 0 for errors that don't require a RAID path retry.
2142  */
2143 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2144                                         struct CommandList *c,
2145                                         struct scsi_cmnd *cmd,
2146                                         struct io_accel2_cmd *c2)
2147 {
2148         int data_len;
2149         int retry = 0;
2150         u32 ioaccel2_resid = 0;
2151
2152         switch (c2->error_data.serv_response) {
2153         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2154                 switch (c2->error_data.status) {
2155                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2156                         break;
2157                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2158                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2159                         if (c2->error_data.data_present !=
2160                                         IOACCEL2_SENSE_DATA_PRESENT) {
2161                                 memset(cmd->sense_buffer, 0,
2162                                         SCSI_SENSE_BUFFERSIZE);
2163                                 break;
2164                         }
2165                         /* copy the sense data */
2166                         data_len = c2->error_data.sense_data_len;
2167                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2168                                 data_len = SCSI_SENSE_BUFFERSIZE;
2169                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2170                                 data_len =
2171                                         sizeof(c2->error_data.sense_data_buff);
2172                         memcpy(cmd->sense_buffer,
2173                                 c2->error_data.sense_data_buff, data_len);
2174                         retry = 1;
2175                         break;
2176                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2177                         retry = 1;
2178                         break;
2179                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2180                         retry = 1;
2181                         break;
2182                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2183                         retry = 1;
2184                         break;
2185                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2186                         retry = 1;
2187                         break;
2188                 default:
2189                         retry = 1;
2190                         break;
2191                 }
2192                 break;
2193         case IOACCEL2_SERV_RESPONSE_FAILURE:
2194                 switch (c2->error_data.status) {
2195                 case IOACCEL2_STATUS_SR_IO_ERROR:
2196                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2197                 case IOACCEL2_STATUS_SR_OVERRUN:
2198                         retry = 1;
2199                         break;
2200                 case IOACCEL2_STATUS_SR_UNDERRUN:
2201                         cmd->result = (DID_OK << 16);           /* host byte */
2202                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2203                         ioaccel2_resid = get_unaligned_le32(
2204                                                 &c2->error_data.resid_cnt[0]);
2205                         scsi_set_resid(cmd, ioaccel2_resid);
2206                         break;
2207                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2208                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2209                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2210                         /* We will get an event from ctlr to trigger rescan */
2211                         retry = 1;
2212                         break;
2213                 default:
2214                         retry = 1;
2215                 }
2216                 break;
2217         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2218                 break;
2219         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2220                 break;
2221         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2222                 retry = 1;
2223                 break;
2224         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2225                 break;
2226         default:
2227                 retry = 1;
2228                 break;
2229         }
2230
2231         return retry;   /* retry on raid path? */
2232 }
2233
2234 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2235                 struct CommandList *c)
2236 {
2237         bool do_wake = false;
2238
2239         /*
2240          * Prevent the following race in the abort handler:
2241          *
2242          * 1. LLD is requested to abort a SCSI command
2243          * 2. The SCSI command completes
2244          * 3. The struct CommandList associated with step 2 is made available
2245          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2246          * 5. Abort handler follows scsi_cmnd->host_scribble and
2247          *    finds struct CommandList and tries to aborts it
2248          * Now we have aborted the wrong command.
2249          *
2250          * Reset c->scsi_cmd here so that the abort or reset handler will know
2251          * this command has completed.  Then, check to see if the handler is
2252          * waiting for this command, and, if so, wake it.
2253          */
2254         c->scsi_cmd = SCSI_CMD_IDLE;
2255         mb();   /* Declare command idle before checking for pending events. */
2256         if (c->abort_pending) {
2257                 do_wake = true;
2258                 c->abort_pending = false;
2259         }
2260         if (c->reset_pending) {
2261                 unsigned long flags;
2262                 struct hpsa_scsi_dev_t *dev;
2263
2264                 /*
2265                  * There appears to be a reset pending; lock the lock and
2266                  * reconfirm.  If so, then decrement the count of outstanding
2267                  * commands and wake the reset command if this is the last one.
2268                  */
2269                 spin_lock_irqsave(&h->lock, flags);
2270                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2271                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2272                         do_wake = true;
2273                 c->reset_pending = NULL;
2274                 spin_unlock_irqrestore(&h->lock, flags);
2275         }
2276
2277         if (do_wake)
2278                 wake_up_all(&h->event_sync_wait_queue);
2279 }
2280
2281 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2282                                       struct CommandList *c)
2283 {
2284         hpsa_cmd_resolve_events(h, c);
2285         cmd_tagged_free(h, c);
2286 }
2287
2288 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2289                 struct CommandList *c, struct scsi_cmnd *cmd)
2290 {
2291         hpsa_cmd_resolve_and_free(h, c);
2292         cmd->scsi_done(cmd);
2293 }
2294
2295 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2296 {
2297         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2298         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2299 }
2300
2301 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2302 {
2303         cmd->result = DID_ABORT << 16;
2304 }
2305
2306 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2307                                     struct scsi_cmnd *cmd)
2308 {
2309         hpsa_set_scsi_cmd_aborted(cmd);
2310         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2311                          c->Request.CDB, c->err_info->ScsiStatus);
2312         hpsa_cmd_resolve_and_free(h, c);
2313 }
2314
2315 static void process_ioaccel2_completion(struct ctlr_info *h,
2316                 struct CommandList *c, struct scsi_cmnd *cmd,
2317                 struct hpsa_scsi_dev_t *dev)
2318 {
2319         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2320
2321         /* check for good status */
2322         if (likely(c2->error_data.serv_response == 0 &&
2323                         c2->error_data.status == 0))
2324                 return hpsa_cmd_free_and_done(h, c, cmd);
2325
2326         /*
2327          * Any RAID offload error results in retry which will use
2328          * the normal I/O path so the controller can handle whatever's
2329          * wrong.
2330          */
2331         if (is_logical_device(dev) &&
2332                 c2->error_data.serv_response ==
2333                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2334                 if (c2->error_data.status ==
2335                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2336                         dev->offload_enabled = 0;
2337
2338                 return hpsa_retry_cmd(h, c);
2339         }
2340
2341         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2342                 return hpsa_retry_cmd(h, c);
2343
2344         return hpsa_cmd_free_and_done(h, c, cmd);
2345 }
2346
2347 /* Returns 0 on success, < 0 otherwise. */
2348 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2349                                         struct CommandList *cp)
2350 {
2351         u8 tmf_status = cp->err_info->ScsiStatus;
2352
2353         switch (tmf_status) {
2354         case CISS_TMF_COMPLETE:
2355                 /*
2356                  * CISS_TMF_COMPLETE never happens, instead,
2357                  * ei->CommandStatus == 0 for this case.
2358                  */
2359         case CISS_TMF_SUCCESS:
2360                 return 0;
2361         case CISS_TMF_INVALID_FRAME:
2362         case CISS_TMF_NOT_SUPPORTED:
2363         case CISS_TMF_FAILED:
2364         case CISS_TMF_WRONG_LUN:
2365         case CISS_TMF_OVERLAPPED_TAG:
2366                 break;
2367         default:
2368                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2369                                 tmf_status);
2370                 break;
2371         }
2372         return -tmf_status;
2373 }
2374
2375 static void complete_scsi_command(struct CommandList *cp)
2376 {
2377         struct scsi_cmnd *cmd;
2378         struct ctlr_info *h;
2379         struct ErrorInfo *ei;
2380         struct hpsa_scsi_dev_t *dev;
2381         struct io_accel2_cmd *c2;
2382
2383         u8 sense_key;
2384         u8 asc;      /* additional sense code */
2385         u8 ascq;     /* additional sense code qualifier */
2386         unsigned long sense_data_size;
2387
2388         ei = cp->err_info;
2389         cmd = cp->scsi_cmd;
2390         h = cp->h;
2391         dev = cmd->device->hostdata;
2392         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2393
2394         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2395         if ((cp->cmd_type == CMD_SCSI) &&
2396                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2397                 hpsa_unmap_sg_chain_block(h, cp);
2398
2399         if ((cp->cmd_type == CMD_IOACCEL2) &&
2400                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2401                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2402
2403         cmd->result = (DID_OK << 16);           /* host byte */
2404         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2405
2406         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2407                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2408
2409         /*
2410          * We check for lockup status here as it may be set for
2411          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2412          * fail_all_oustanding_cmds()
2413          */
2414         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2415                 /* DID_NO_CONNECT will prevent a retry */
2416                 cmd->result = DID_NO_CONNECT << 16;
2417                 return hpsa_cmd_free_and_done(h, cp, cmd);
2418         }
2419
2420         if ((unlikely(hpsa_is_pending_event(cp)))) {
2421                 if (cp->reset_pending)
2422                         return hpsa_cmd_resolve_and_free(h, cp);
2423                 if (cp->abort_pending)
2424                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2425         }
2426
2427         if (cp->cmd_type == CMD_IOACCEL2)
2428                 return process_ioaccel2_completion(h, cp, cmd, dev);
2429
2430         scsi_set_resid(cmd, ei->ResidualCnt);
2431         if (ei->CommandStatus == 0)
2432                 return hpsa_cmd_free_and_done(h, cp, cmd);
2433
2434         /* For I/O accelerator commands, copy over some fields to the normal
2435          * CISS header used below for error handling.
2436          */
2437         if (cp->cmd_type == CMD_IOACCEL1) {
2438                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2439                 cp->Header.SGList = scsi_sg_count(cmd);
2440                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2441                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2442                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2443                 cp->Header.tag = c->tag;
2444                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2445                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2446
2447                 /* Any RAID offload error results in retry which will use
2448                  * the normal I/O path so the controller can handle whatever's
2449                  * wrong.
2450                  */
2451                 if (is_logical_device(dev)) {
2452                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2453                                 dev->offload_enabled = 0;
2454                         return hpsa_retry_cmd(h, cp);
2455                 }
2456         }
2457
2458         /* an error has occurred */
2459         switch (ei->CommandStatus) {
2460
2461         case CMD_TARGET_STATUS:
2462                 cmd->result |= ei->ScsiStatus;
2463                 /* copy the sense data */
2464                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2465                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2466                 else
2467                         sense_data_size = sizeof(ei->SenseInfo);
2468                 if (ei->SenseLen < sense_data_size)
2469                         sense_data_size = ei->SenseLen;
2470                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2471                 if (ei->ScsiStatus)
2472                         decode_sense_data(ei->SenseInfo, sense_data_size,
2473                                 &sense_key, &asc, &ascq);
2474                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2475                         if (sense_key == ABORTED_COMMAND) {
2476                                 cmd->result |= DID_SOFT_ERROR << 16;
2477                                 break;
2478                         }
2479                         break;
2480                 }
2481                 /* Problem was not a check condition
2482                  * Pass it up to the upper layers...
2483                  */
2484                 if (ei->ScsiStatus) {
2485                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2486                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2487                                 "Returning result: 0x%x\n",
2488                                 cp, ei->ScsiStatus,
2489                                 sense_key, asc, ascq,
2490                                 cmd->result);
2491                 } else {  /* scsi status is zero??? How??? */
2492                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2493                                 "Returning no connection.\n", cp),
2494
2495                         /* Ordinarily, this case should never happen,
2496                          * but there is a bug in some released firmware
2497                          * revisions that allows it to happen if, for
2498                          * example, a 4100 backplane loses power and
2499                          * the tape drive is in it.  We assume that
2500                          * it's a fatal error of some kind because we
2501                          * can't show that it wasn't. We will make it
2502                          * look like selection timeout since that is
2503                          * the most common reason for this to occur,
2504                          * and it's severe enough.
2505                          */
2506
2507                         cmd->result = DID_NO_CONNECT << 16;
2508                 }
2509                 break;
2510
2511         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2512                 break;
2513         case CMD_DATA_OVERRUN:
2514                 dev_warn(&h->pdev->dev,
2515                         "CDB %16phN data overrun\n", cp->Request.CDB);
2516                 break;
2517         case CMD_INVALID: {
2518                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2519                 print_cmd(cp); */
2520                 /* We get CMD_INVALID if you address a non-existent device
2521                  * instead of a selection timeout (no response).  You will
2522                  * see this if you yank out a drive, then try to access it.
2523                  * This is kind of a shame because it means that any other
2524                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2525                  * missing target. */
2526                 cmd->result = DID_NO_CONNECT << 16;
2527         }
2528                 break;
2529         case CMD_PROTOCOL_ERR:
2530                 cmd->result = DID_ERROR << 16;
2531                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2532                                 cp->Request.CDB);
2533                 break;
2534         case CMD_HARDWARE_ERR:
2535                 cmd->result = DID_ERROR << 16;
2536                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2537                         cp->Request.CDB);
2538                 break;
2539         case CMD_CONNECTION_LOST:
2540                 cmd->result = DID_ERROR << 16;
2541                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2542                         cp->Request.CDB);
2543                 break;
2544         case CMD_ABORTED:
2545                 /* Return now to avoid calling scsi_done(). */
2546                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2547         case CMD_ABORT_FAILED:
2548                 cmd->result = DID_ERROR << 16;
2549                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2550                         cp->Request.CDB);
2551                 break;
2552         case CMD_UNSOLICITED_ABORT:
2553                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2554                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2555                         cp->Request.CDB);
2556                 break;
2557         case CMD_TIMEOUT:
2558                 cmd->result = DID_TIME_OUT << 16;
2559                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2560                         cp->Request.CDB);
2561                 break;
2562         case CMD_UNABORTABLE:
2563                 cmd->result = DID_ERROR << 16;
2564                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2565                 break;
2566         case CMD_TMF_STATUS:
2567                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2568                         cmd->result = DID_ERROR << 16;
2569                 break;
2570         case CMD_IOACCEL_DISABLED:
2571                 /* This only handles the direct pass-through case since RAID
2572                  * offload is handled above.  Just attempt a retry.
2573                  */
2574                 cmd->result = DID_SOFT_ERROR << 16;
2575                 dev_warn(&h->pdev->dev,
2576                                 "cp %p had HP SSD Smart Path error\n", cp);
2577                 break;
2578         default:
2579                 cmd->result = DID_ERROR << 16;
2580                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2581                                 cp, ei->CommandStatus);
2582         }
2583
2584         return hpsa_cmd_free_and_done(h, cp, cmd);
2585 }
2586
2587 static void hpsa_pci_unmap(struct pci_dev *pdev,
2588         struct CommandList *c, int sg_used, int data_direction)
2589 {
2590         int i;
2591
2592         for (i = 0; i < sg_used; i++)
2593                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2594                                 le32_to_cpu(c->SG[i].Len),
2595                                 data_direction);
2596 }
2597
2598 static int hpsa_map_one(struct pci_dev *pdev,
2599                 struct CommandList *cp,
2600                 unsigned char *buf,
2601                 size_t buflen,
2602                 int data_direction)
2603 {
2604         u64 addr64;
2605
2606         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2607                 cp->Header.SGList = 0;
2608                 cp->Header.SGTotal = cpu_to_le16(0);
2609                 return 0;
2610         }
2611
2612         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2613         if (dma_mapping_error(&pdev->dev, addr64)) {
2614                 /* Prevent subsequent unmap of something never mapped */
2615                 cp->Header.SGList = 0;
2616                 cp->Header.SGTotal = cpu_to_le16(0);
2617                 return -1;
2618         }
2619         cp->SG[0].Addr = cpu_to_le64(addr64);
2620         cp->SG[0].Len = cpu_to_le32(buflen);
2621         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2622         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2623         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2624         return 0;
2625 }
2626
2627 #define NO_TIMEOUT ((unsigned long) -1)
2628 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2629 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2630         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2631 {
2632         DECLARE_COMPLETION_ONSTACK(wait);
2633
2634         c->waiting = &wait;
2635         __enqueue_cmd_and_start_io(h, c, reply_queue);
2636         if (timeout_msecs == NO_TIMEOUT) {
2637                 /* TODO: get rid of this no-timeout thing */
2638                 wait_for_completion_io(&wait);
2639                 return IO_OK;
2640         }
2641         if (!wait_for_completion_io_timeout(&wait,
2642                                         msecs_to_jiffies(timeout_msecs))) {
2643                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2644                 return -ETIMEDOUT;
2645         }
2646         return IO_OK;
2647 }
2648
2649 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2650                                    int reply_queue, unsigned long timeout_msecs)
2651 {
2652         if (unlikely(lockup_detected(h))) {
2653                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2654                 return IO_OK;
2655         }
2656         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2657 }
2658
2659 static u32 lockup_detected(struct ctlr_info *h)
2660 {
2661         int cpu;
2662         u32 rc, *lockup_detected;
2663
2664         cpu = get_cpu();
2665         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2666         rc = *lockup_detected;
2667         put_cpu();
2668         return rc;
2669 }
2670
2671 #define MAX_DRIVER_CMD_RETRIES 25
2672 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2673         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2674 {
2675         int backoff_time = 10, retry_count = 0;
2676         int rc;
2677
2678         do {
2679                 memset(c->err_info, 0, sizeof(*c->err_info));
2680                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2681                                                   timeout_msecs);
2682                 if (rc)
2683                         break;
2684                 retry_count++;
2685                 if (retry_count > 3) {
2686                         msleep(backoff_time);
2687                         if (backoff_time < 1000)
2688                                 backoff_time *= 2;
2689                 }
2690         } while ((check_for_unit_attention(h, c) ||
2691                         check_for_busy(h, c)) &&
2692                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2693         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2694         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2695                 rc = -EIO;
2696         return rc;
2697 }
2698
2699 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2700                                 struct CommandList *c)
2701 {
2702         const u8 *cdb = c->Request.CDB;
2703         const u8 *lun = c->Header.LUN.LunAddrBytes;
2704
2705         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2706         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2707                 txt, lun[0], lun[1], lun[2], lun[3],
2708                 lun[4], lun[5], lun[6], lun[7],
2709                 cdb[0], cdb[1], cdb[2], cdb[3],
2710                 cdb[4], cdb[5], cdb[6], cdb[7],
2711                 cdb[8], cdb[9], cdb[10], cdb[11],
2712                 cdb[12], cdb[13], cdb[14], cdb[15]);
2713 }
2714
2715 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2716                         struct CommandList *cp)
2717 {
2718         const struct ErrorInfo *ei = cp->err_info;
2719         struct device *d = &cp->h->pdev->dev;
2720         u8 sense_key, asc, ascq;
2721         int sense_len;
2722
2723         switch (ei->CommandStatus) {
2724         case CMD_TARGET_STATUS:
2725                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2726                         sense_len = sizeof(ei->SenseInfo);
2727                 else
2728                         sense_len = ei->SenseLen;
2729                 decode_sense_data(ei->SenseInfo, sense_len,
2730                                         &sense_key, &asc, &ascq);
2731                 hpsa_print_cmd(h, "SCSI status", cp);
2732                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2733                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2734                                 sense_key, asc, ascq);
2735                 else
2736                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2737                 if (ei->ScsiStatus == 0)
2738                         dev_warn(d, "SCSI status is abnormally zero.  "
2739                         "(probably indicates selection timeout "
2740                         "reported incorrectly due to a known "
2741                         "firmware bug, circa July, 2001.)\n");
2742                 break;
2743         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2744                 break;
2745         case CMD_DATA_OVERRUN:
2746                 hpsa_print_cmd(h, "overrun condition", cp);
2747                 break;
2748         case CMD_INVALID: {
2749                 /* controller unfortunately reports SCSI passthru's
2750                  * to non-existent targets as invalid commands.
2751                  */
2752                 hpsa_print_cmd(h, "invalid command", cp);
2753                 dev_warn(d, "probably means device no longer present\n");
2754                 }
2755                 break;
2756         case CMD_PROTOCOL_ERR:
2757                 hpsa_print_cmd(h, "protocol error", cp);
2758                 break;
2759         case CMD_HARDWARE_ERR:
2760                 hpsa_print_cmd(h, "hardware error", cp);
2761                 break;
2762         case CMD_CONNECTION_LOST:
2763                 hpsa_print_cmd(h, "connection lost", cp);
2764                 break;
2765         case CMD_ABORTED:
2766                 hpsa_print_cmd(h, "aborted", cp);
2767                 break;
2768         case CMD_ABORT_FAILED:
2769                 hpsa_print_cmd(h, "abort failed", cp);
2770                 break;
2771         case CMD_UNSOLICITED_ABORT:
2772                 hpsa_print_cmd(h, "unsolicited abort", cp);
2773                 break;
2774         case CMD_TIMEOUT:
2775                 hpsa_print_cmd(h, "timed out", cp);
2776                 break;
2777         case CMD_UNABORTABLE:
2778                 hpsa_print_cmd(h, "unabortable", cp);
2779                 break;
2780         case CMD_CTLR_LOCKUP:
2781                 hpsa_print_cmd(h, "controller lockup detected", cp);
2782                 break;
2783         default:
2784                 hpsa_print_cmd(h, "unknown status", cp);
2785                 dev_warn(d, "Unknown command status %x\n",
2786                                 ei->CommandStatus);
2787         }
2788 }
2789
2790 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2791                         u16 page, unsigned char *buf,
2792                         unsigned char bufsize)
2793 {
2794         int rc = IO_OK;
2795         struct CommandList *c;
2796         struct ErrorInfo *ei;
2797
2798         c = cmd_alloc(h);
2799
2800         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2801                         page, scsi3addr, TYPE_CMD)) {
2802                 rc = -1;
2803                 goto out;
2804         }
2805         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2806                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2807         if (rc)
2808                 goto out;
2809         ei = c->err_info;
2810         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2811                 hpsa_scsi_interpret_error(h, c);
2812                 rc = -1;
2813         }
2814 out:
2815         cmd_free(h, c);
2816         return rc;
2817 }
2818
2819 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2820         u8 reset_type, int reply_queue)
2821 {
2822         int rc = IO_OK;
2823         struct CommandList *c;
2824         struct ErrorInfo *ei;
2825
2826         c = cmd_alloc(h);
2827
2828
2829         /* fill_cmd can't fail here, no data buffer to map. */
2830         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2831                         scsi3addr, TYPE_MSG);
2832         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2833         if (rc) {
2834                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2835                 goto out;
2836         }
2837         /* no unmap needed here because no data xfer. */
2838
2839         ei = c->err_info;
2840         if (ei->CommandStatus != 0) {
2841                 hpsa_scsi_interpret_error(h, c);
2842                 rc = -1;
2843         }
2844 out:
2845         cmd_free(h, c);
2846         return rc;
2847 }
2848
2849 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2850                                struct hpsa_scsi_dev_t *dev,
2851                                unsigned char *scsi3addr)
2852 {
2853         int i;
2854         bool match = false;
2855         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2856         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2857
2858         if (hpsa_is_cmd_idle(c))
2859                 return false;
2860
2861         switch (c->cmd_type) {
2862         case CMD_SCSI:
2863         case CMD_IOCTL_PEND:
2864                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2865                                 sizeof(c->Header.LUN.LunAddrBytes));
2866                 break;
2867
2868         case CMD_IOACCEL1:
2869         case CMD_IOACCEL2:
2870                 if (c->phys_disk == dev) {
2871                         /* HBA mode match */
2872                         match = true;
2873                 } else {
2874                         /* Possible RAID mode -- check each phys dev. */
2875                         /* FIXME:  Do we need to take out a lock here?  If
2876                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2877                          * instead. */
2878                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2879                                 /* FIXME: an alternate test might be
2880                                  *
2881                                  * match = dev->phys_disk[i]->ioaccel_handle
2882                                  *              == c2->scsi_nexus;      */
2883                                 match = dev->phys_disk[i] == c->phys_disk;
2884                         }
2885                 }
2886                 break;
2887
2888         case IOACCEL2_TMF:
2889                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2890                         match = dev->phys_disk[i]->ioaccel_handle ==
2891                                         le32_to_cpu(ac->it_nexus);
2892                 }
2893                 break;
2894
2895         case 0:         /* The command is in the middle of being initialized. */
2896                 match = false;
2897                 break;
2898
2899         default:
2900                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2901                         c->cmd_type);
2902                 BUG();
2903         }
2904
2905         return match;
2906 }
2907
2908 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2909         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2910 {
2911         int i;
2912         int rc = 0;
2913
2914         /* We can really only handle one reset at a time */
2915         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2916                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2917                 return -EINTR;
2918         }
2919
2920         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2921
2922         for (i = 0; i < h->nr_cmds; i++) {
2923                 struct CommandList *c = h->cmd_pool + i;
2924                 int refcount = atomic_inc_return(&c->refcount);
2925
2926                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2927                         unsigned long flags;
2928
2929                         /*
2930                          * Mark the target command as having a reset pending,
2931                          * then lock a lock so that the command cannot complete
2932                          * while we're considering it.  If the command is not
2933                          * idle then count it; otherwise revoke the event.
2934                          */
2935                         c->reset_pending = dev;
2936                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2937                         if (!hpsa_is_cmd_idle(c))
2938                                 atomic_inc(&dev->reset_cmds_out);
2939                         else
2940                                 c->reset_pending = NULL;
2941                         spin_unlock_irqrestore(&h->lock, flags);
2942                 }
2943
2944                 cmd_free(h, c);
2945         }
2946
2947         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2948         if (!rc)
2949                 wait_event(h->event_sync_wait_queue,
2950                         atomic_read(&dev->reset_cmds_out) == 0 ||
2951                         lockup_detected(h));
2952
2953         if (unlikely(lockup_detected(h))) {
2954                 dev_warn(&h->pdev->dev,
2955                          "Controller lockup detected during reset wait\n");
2956                 rc = -ENODEV;
2957         }
2958
2959         if (unlikely(rc))
2960                 atomic_set(&dev->reset_cmds_out, 0);
2961
2962         mutex_unlock(&h->reset_mutex);
2963         return rc;
2964 }
2965
2966 static void hpsa_get_raid_level(struct ctlr_info *h,
2967         unsigned char *scsi3addr, unsigned char *raid_level)
2968 {
2969         int rc;
2970         unsigned char *buf;
2971
2972         *raid_level = RAID_UNKNOWN;
2973         buf = kzalloc(64, GFP_KERNEL);
2974         if (!buf)
2975                 return;
2976         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2977         if (rc == 0)
2978                 *raid_level = buf[8];
2979         if (*raid_level > RAID_UNKNOWN)
2980                 *raid_level = RAID_UNKNOWN;
2981         kfree(buf);
2982         return;
2983 }
2984
2985 #define HPSA_MAP_DEBUG
2986 #ifdef HPSA_MAP_DEBUG
2987 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2988                                 struct raid_map_data *map_buff)
2989 {
2990         struct raid_map_disk_data *dd = &map_buff->data[0];
2991         int map, row, col;
2992         u16 map_cnt, row_cnt, disks_per_row;
2993
2994         if (rc != 0)
2995                 return;
2996
2997         /* Show details only if debugging has been activated. */
2998         if (h->raid_offload_debug < 2)
2999                 return;
3000
3001         dev_info(&h->pdev->dev, "structure_size = %u\n",
3002                                 le32_to_cpu(map_buff->structure_size));
3003         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3004                         le32_to_cpu(map_buff->volume_blk_size));
3005         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3006                         le64_to_cpu(map_buff->volume_blk_cnt));
3007         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3008                         map_buff->phys_blk_shift);
3009         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3010                         map_buff->parity_rotation_shift);
3011         dev_info(&h->pdev->dev, "strip_size = %u\n",
3012                         le16_to_cpu(map_buff->strip_size));
3013         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3014                         le64_to_cpu(map_buff->disk_starting_blk));
3015         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3016                         le64_to_cpu(map_buff->disk_blk_cnt));
3017         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3018                         le16_to_cpu(map_buff->data_disks_per_row));
3019         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3020                         le16_to_cpu(map_buff->metadata_disks_per_row));
3021         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3022                         le16_to_cpu(map_buff->row_cnt));
3023         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3024                         le16_to_cpu(map_buff->layout_map_count));
3025         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3026                         le16_to_cpu(map_buff->flags));
3027         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3028                         le16_to_cpu(map_buff->flags) &
3029                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3030         dev_info(&h->pdev->dev, "dekindex = %u\n",
3031                         le16_to_cpu(map_buff->dekindex));
3032         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3033         for (map = 0; map < map_cnt; map++) {
3034                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3035                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3036                 for (row = 0; row < row_cnt; row++) {
3037                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3038                         disks_per_row =
3039                                 le16_to_cpu(map_buff->data_disks_per_row);
3040                         for (col = 0; col < disks_per_row; col++, dd++)
3041                                 dev_info(&h->pdev->dev,
3042                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3043                                         col, dd->ioaccel_handle,
3044                                         dd->xor_mult[0], dd->xor_mult[1]);
3045                         disks_per_row =
3046                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3047                         for (col = 0; col < disks_per_row; col++, dd++)
3048                                 dev_info(&h->pdev->dev,
3049                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3050                                         col, dd->ioaccel_handle,
3051                                         dd->xor_mult[0], dd->xor_mult[1]);
3052                 }
3053         }
3054 }
3055 #else
3056 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3057                         __attribute__((unused)) int rc,
3058                         __attribute__((unused)) struct raid_map_data *map_buff)
3059 {
3060 }
3061 #endif
3062
3063 static int hpsa_get_raid_map(struct ctlr_info *h,
3064         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3065 {
3066         int rc = 0;
3067         struct CommandList *c;
3068         struct ErrorInfo *ei;
3069
3070         c = cmd_alloc(h);
3071
3072         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3073                         sizeof(this_device->raid_map), 0,
3074                         scsi3addr, TYPE_CMD)) {
3075                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3076                 cmd_free(h, c);
3077                 return -1;
3078         }
3079         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3080                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3081         if (rc)
3082                 goto out;
3083         ei = c->err_info;
3084         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3085                 hpsa_scsi_interpret_error(h, c);
3086                 rc = -1;
3087                 goto out;
3088         }
3089         cmd_free(h, c);
3090
3091         /* @todo in the future, dynamically allocate RAID map memory */
3092         if (le32_to_cpu(this_device->raid_map.structure_size) >
3093                                 sizeof(this_device->raid_map)) {
3094                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3095                 rc = -1;
3096         }
3097         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3098         return rc;
3099 out:
3100         cmd_free(h, c);
3101         return rc;
3102 }
3103
3104 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3105                 unsigned char scsi3addr[], u16 bmic_device_index,
3106                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3107 {
3108         int rc = IO_OK;
3109         struct CommandList *c;
3110         struct ErrorInfo *ei;
3111
3112         c = cmd_alloc(h);
3113
3114         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3115                 0, RAID_CTLR_LUNID, TYPE_CMD);
3116         if (rc)
3117                 goto out;
3118
3119         c->Request.CDB[2] = bmic_device_index & 0xff;
3120         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3121
3122         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3123                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3124         if (rc)
3125                 goto out;
3126         ei = c->err_info;
3127         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3128                 hpsa_scsi_interpret_error(h, c);
3129                 rc = -1;
3130         }
3131 out:
3132         cmd_free(h, c);
3133         return rc;
3134 }
3135
3136 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3137         struct bmic_identify_controller *buf, size_t bufsize)
3138 {
3139         int rc = IO_OK;
3140         struct CommandList *c;
3141         struct ErrorInfo *ei;
3142
3143         c = cmd_alloc(h);
3144
3145         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3146                 0, RAID_CTLR_LUNID, TYPE_CMD);
3147         if (rc)
3148                 goto out;
3149
3150         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3151                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3152         if (rc)
3153                 goto out;
3154         ei = c->err_info;
3155         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3156                 hpsa_scsi_interpret_error(h, c);
3157                 rc = -1;
3158         }
3159 out:
3160         cmd_free(h, c);
3161         return rc;
3162 }
3163
3164 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3165                 unsigned char scsi3addr[], u16 bmic_device_index,
3166                 struct bmic_identify_physical_device *buf, size_t bufsize)
3167 {
3168         int rc = IO_OK;
3169         struct CommandList *c;
3170         struct ErrorInfo *ei;
3171
3172         c = cmd_alloc(h);
3173         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3174                 0, RAID_CTLR_LUNID, TYPE_CMD);
3175         if (rc)
3176                 goto out;
3177
3178         c->Request.CDB[2] = bmic_device_index & 0xff;
3179         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3180
3181         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3182                                                 NO_TIMEOUT);
3183         ei = c->err_info;
3184         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3185                 hpsa_scsi_interpret_error(h, c);
3186                 rc = -1;
3187         }
3188 out:
3189         cmd_free(h, c);
3190
3191         return rc;
3192 }
3193
3194 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3195                                                 unsigned char *scsi3addr)
3196 {
3197         struct ReportExtendedLUNdata *physdev;
3198         u32 nphysicals;
3199         u64 sa = 0;
3200         int i;
3201
3202         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3203         if (!physdev)
3204                 return 0;
3205
3206         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3207                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3208                 kfree(physdev);
3209                 return 0;
3210         }
3211         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3212
3213         for (i = 0; i < nphysicals; i++)
3214                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3215                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3216                         break;
3217                 }
3218
3219         kfree(physdev);
3220
3221         return sa;
3222 }
3223
3224 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3225                                         struct hpsa_scsi_dev_t *dev)
3226 {
3227         int rc;
3228         u64 sa = 0;
3229
3230         if (is_hba_lunid(scsi3addr)) {
3231                 struct bmic_sense_subsystem_info *ssi;
3232
3233                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3234                 if (ssi == NULL) {
3235                         dev_warn(&h->pdev->dev,
3236                                 "%s: out of memory\n", __func__);
3237                         return;
3238                 }
3239
3240                 rc = hpsa_bmic_sense_subsystem_information(h,
3241                                         scsi3addr, 0, ssi, sizeof(*ssi));
3242                 if (rc == 0) {
3243                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3244                         h->sas_address = sa;
3245                 }
3246
3247                 kfree(ssi);
3248         } else
3249                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3250
3251         dev->sas_address = sa;
3252 }
3253
3254 /* Get a device id from inquiry page 0x83 */
3255 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3256         unsigned char scsi3addr[], u8 page)
3257 {
3258         int rc;
3259         int i;
3260         int pages;
3261         unsigned char *buf, bufsize;
3262
3263         buf = kzalloc(256, GFP_KERNEL);
3264         if (!buf)
3265                 return 0;
3266
3267         /* Get the size of the page list first */
3268         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3269                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3270                                 buf, HPSA_VPD_HEADER_SZ);
3271         if (rc != 0)
3272                 goto exit_unsupported;
3273         pages = buf[3];
3274         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3275                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3276         else
3277                 bufsize = 255;
3278
3279         /* Get the whole VPD page list */
3280         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3281                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3282                                 buf, bufsize);
3283         if (rc != 0)
3284                 goto exit_unsupported;
3285
3286         pages = buf[3];
3287         for (i = 1; i <= pages; i++)
3288                 if (buf[3 + i] == page)
3289                         goto exit_supported;
3290 exit_unsupported:
3291         kfree(buf);
3292         return 0;
3293 exit_supported:
3294         kfree(buf);
3295         return 1;
3296 }
3297
3298 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3299         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3300 {
3301         int rc;
3302         unsigned char *buf;
3303         u8 ioaccel_status;
3304
3305         this_device->offload_config = 0;
3306         this_device->offload_enabled = 0;
3307         this_device->offload_to_be_enabled = 0;
3308
3309         buf = kzalloc(64, GFP_KERNEL);
3310         if (!buf)
3311                 return;
3312         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3313                 goto out;
3314         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3315                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3316         if (rc != 0)
3317                 goto out;
3318
3319 #define IOACCEL_STATUS_BYTE 4
3320 #define OFFLOAD_CONFIGURED_BIT 0x01
3321 #define OFFLOAD_ENABLED_BIT 0x02
3322         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3323         this_device->offload_config =
3324                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3325         if (this_device->offload_config) {
3326                 this_device->offload_enabled =
3327                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3328                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3329                         this_device->offload_enabled = 0;
3330         }
3331         this_device->offload_to_be_enabled = this_device->offload_enabled;
3332 out:
3333         kfree(buf);
3334         return;
3335 }
3336
3337 /* Get the device id from inquiry page 0x83 */
3338 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3339         unsigned char *device_id, int index, int buflen)
3340 {
3341         int rc;
3342         unsigned char *buf;
3343
3344         if (buflen > 16)
3345                 buflen = 16;
3346         buf = kzalloc(64, GFP_KERNEL);
3347         if (!buf)
3348                 return -ENOMEM;
3349         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3350         if (rc == 0)
3351                 memcpy(device_id, &buf[index], buflen);
3352
3353         kfree(buf);
3354
3355         return rc != 0;
3356 }
3357
3358 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3359                 void *buf, int bufsize,
3360                 int extended_response)
3361 {
3362         int rc = IO_OK;
3363         struct CommandList *c;
3364         unsigned char scsi3addr[8];
3365         struct ErrorInfo *ei;
3366
3367         c = cmd_alloc(h);
3368
3369         /* address the controller */
3370         memset(scsi3addr, 0, sizeof(scsi3addr));
3371         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3372                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3373                 rc = -1;
3374                 goto out;
3375         }
3376         if (extended_response)
3377                 c->Request.CDB[1] = extended_response;
3378         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380         if (rc)
3381                 goto out;
3382         ei = c->err_info;
3383         if (ei->CommandStatus != 0 &&
3384             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385                 hpsa_scsi_interpret_error(h, c);
3386                 rc = -1;
3387         } else {
3388                 struct ReportLUNdata *rld = buf;
3389
3390                 if (rld->extended_response_flag != extended_response) {
3391                         dev_err(&h->pdev->dev,
3392                                 "report luns requested format %u, got %u\n",
3393                                 extended_response,
3394                                 rld->extended_response_flag);
3395                         rc = -1;
3396                 }
3397         }
3398 out:
3399         cmd_free(h, c);
3400         return rc;
3401 }
3402
3403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3404                 struct ReportExtendedLUNdata *buf, int bufsize)
3405 {
3406         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3407                                                 HPSA_REPORT_PHYS_EXTENDED);
3408 }
3409
3410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3411                 struct ReportLUNdata *buf, int bufsize)
3412 {
3413         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3414 }
3415
3416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3417         int bus, int target, int lun)
3418 {
3419         device->bus = bus;
3420         device->target = target;
3421         device->lun = lun;
3422 }
3423
3424 /* Use VPD inquiry to get details of volume status */
3425 static int hpsa_get_volume_status(struct ctlr_info *h,
3426                                         unsigned char scsi3addr[])
3427 {
3428         int rc;
3429         int status;
3430         int size;
3431         unsigned char *buf;
3432
3433         buf = kzalloc(64, GFP_KERNEL);
3434         if (!buf)
3435                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3436
3437         /* Does controller have VPD for logical volume status? */
3438         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3439                 goto exit_failed;
3440
3441         /* Get the size of the VPD return buffer */
3442         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3443                                         buf, HPSA_VPD_HEADER_SZ);
3444         if (rc != 0)
3445                 goto exit_failed;
3446         size = buf[3];
3447
3448         /* Now get the whole VPD buffer */
3449         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3450                                         buf, size + HPSA_VPD_HEADER_SZ);
3451         if (rc != 0)
3452                 goto exit_failed;
3453         status = buf[4]; /* status byte */
3454
3455         kfree(buf);
3456         return status;
3457 exit_failed:
3458         kfree(buf);
3459         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3460 }
3461
3462 /* Determine offline status of a volume.
3463  * Return either:
3464  *  0 (not offline)
3465  *  0xff (offline for unknown reasons)
3466  *  # (integer code indicating one of several NOT READY states
3467  *     describing why a volume is to be kept offline)
3468  */
3469 static int hpsa_volume_offline(struct ctlr_info *h,
3470                                         unsigned char scsi3addr[])
3471 {
3472         struct CommandList *c;
3473         unsigned char *sense;
3474         u8 sense_key, asc, ascq;
3475         int sense_len;
3476         int rc, ldstat = 0;
3477         u16 cmd_status;
3478         u8 scsi_status;
3479 #define ASC_LUN_NOT_READY 0x04
3480 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3481 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3482
3483         c = cmd_alloc(h);
3484
3485         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3486         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3487         if (rc) {
3488                 cmd_free(h, c);
3489                 return 0;
3490         }
3491         sense = c->err_info->SenseInfo;
3492         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3493                 sense_len = sizeof(c->err_info->SenseInfo);
3494         else
3495                 sense_len = c->err_info->SenseLen;
3496         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3497         cmd_status = c->err_info->CommandStatus;
3498         scsi_status = c->err_info->ScsiStatus;
3499         cmd_free(h, c);
3500         /* Is the volume 'not ready'? */
3501         if (cmd_status != CMD_TARGET_STATUS ||
3502                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3503                 sense_key != NOT_READY ||
3504                 asc != ASC_LUN_NOT_READY)  {
3505                 return 0;
3506         }
3507
3508         /* Determine the reason for not ready state */
3509         ldstat = hpsa_get_volume_status(h, scsi3addr);
3510
3511         /* Keep volume offline in certain cases: */
3512         switch (ldstat) {
3513         case HPSA_LV_UNDERGOING_ERASE:
3514         case HPSA_LV_NOT_AVAILABLE:
3515         case HPSA_LV_UNDERGOING_RPI:
3516         case HPSA_LV_PENDING_RPI:
3517         case HPSA_LV_ENCRYPTED_NO_KEY:
3518         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3519         case HPSA_LV_UNDERGOING_ENCRYPTION:
3520         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3521         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3522                 return ldstat;
3523         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3524                 /* If VPD status page isn't available,
3525                  * use ASC/ASCQ to determine state
3526                  */
3527                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3528                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3529                         return ldstat;
3530                 break;
3531         default:
3532                 break;
3533         }
3534         return 0;
3535 }
3536
3537 /*
3538  * Find out if a logical device supports aborts by simply trying one.
3539  * Smart Array may claim not to support aborts on logical drives, but
3540  * if a MSA2000 * is connected, the drives on that will be presented
3541  * by the Smart Array as logical drives, and aborts may be sent to
3542  * those devices successfully.  So the simplest way to find out is
3543  * to simply try an abort and see how the device responds.
3544  */
3545 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3546                                         unsigned char *scsi3addr)
3547 {
3548         struct CommandList *c;
3549         struct ErrorInfo *ei;
3550         int rc = 0;
3551
3552         u64 tag = (u64) -1; /* bogus tag */
3553
3554         /* Assume that physical devices support aborts */
3555         if (!is_logical_dev_addr_mode(scsi3addr))
3556                 return 1;
3557
3558         c = cmd_alloc(h);
3559
3560         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3561         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3562         /* no unmap needed here because no data xfer. */
3563         ei = c->err_info;
3564         switch (ei->CommandStatus) {
3565         case CMD_INVALID:
3566                 rc = 0;
3567                 break;
3568         case CMD_UNABORTABLE:
3569         case CMD_ABORT_FAILED:
3570                 rc = 1;
3571                 break;
3572         case CMD_TMF_STATUS:
3573                 rc = hpsa_evaluate_tmf_status(h, c);
3574                 break;
3575         default:
3576                 rc = 0;
3577                 break;
3578         }
3579         cmd_free(h, c);
3580         return rc;
3581 }
3582
3583 static void sanitize_inquiry_string(unsigned char *s, int len)
3584 {
3585         bool terminated = false;
3586
3587         for (; len > 0; (--len, ++s)) {
3588                 if (*s == 0)
3589                         terminated = true;
3590                 if (terminated || *s < 0x20 || *s > 0x7e)
3591                         *s = ' ';
3592         }
3593 }
3594
3595 static int hpsa_update_device_info(struct ctlr_info *h,
3596         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3597         unsigned char *is_OBDR_device)
3598 {
3599
3600 #define OBDR_SIG_OFFSET 43
3601 #define OBDR_TAPE_SIG "$DR-10"
3602 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3603 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3604
3605         unsigned char *inq_buff;
3606         unsigned char *obdr_sig;
3607         int rc = 0;
3608
3609         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3610         if (!inq_buff) {
3611                 rc = -ENOMEM;
3612                 goto bail_out;
3613         }
3614
3615         /* Do an inquiry to the device to see what it is. */
3616         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3617                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3618                 /* Inquiry failed (msg printed already) */
3619                 dev_err(&h->pdev->dev,
3620                         "hpsa_update_device_info: inquiry failed\n");
3621                 rc = -EIO;
3622                 goto bail_out;
3623         }
3624
3625         sanitize_inquiry_string(&inq_buff[8], 8);
3626         sanitize_inquiry_string(&inq_buff[16], 16);
3627
3628         this_device->devtype = (inq_buff[0] & 0x1f);
3629         memcpy(this_device->scsi3addr, scsi3addr, 8);
3630         memcpy(this_device->vendor, &inq_buff[8],
3631                 sizeof(this_device->vendor));
3632         memcpy(this_device->model, &inq_buff[16],
3633                 sizeof(this_device->model));
3634         memset(this_device->device_id, 0,
3635                 sizeof(this_device->device_id));
3636         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3637                 sizeof(this_device->device_id));
3638
3639         if (this_device->devtype == TYPE_DISK &&
3640                 is_logical_dev_addr_mode(scsi3addr)) {
3641                 int volume_offline;
3642
3643                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3644                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3645                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3646                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3647                 if (volume_offline < 0 || volume_offline > 0xff)
3648                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3649                 this_device->volume_offline = volume_offline & 0xff;
3650         } else {
3651                 this_device->raid_level = RAID_UNKNOWN;
3652                 this_device->offload_config = 0;
3653                 this_device->offload_enabled = 0;
3654                 this_device->offload_to_be_enabled = 0;
3655                 this_device->hba_ioaccel_enabled = 0;
3656                 this_device->volume_offline = 0;
3657                 this_device->queue_depth = h->nr_cmds;
3658         }
3659
3660         if (is_OBDR_device) {
3661                 /* See if this is a One-Button-Disaster-Recovery device
3662                  * by looking for "$DR-10" at offset 43 in inquiry data.
3663                  */
3664                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3665                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3666                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3667                                                 OBDR_SIG_LEN) == 0);
3668         }
3669         kfree(inq_buff);
3670         return 0;
3671
3672 bail_out:
3673         kfree(inq_buff);
3674         return rc;
3675 }
3676
3677 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3678                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3679 {
3680         unsigned long flags;
3681         int rc, entry;
3682         /*
3683          * See if this device supports aborts.  If we already know
3684          * the device, we already know if it supports aborts, otherwise
3685          * we have to find out if it supports aborts by trying one.
3686          */
3687         spin_lock_irqsave(&h->devlock, flags);
3688         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3689         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3690                 entry >= 0 && entry < h->ndevices) {
3691                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3692                 spin_unlock_irqrestore(&h->devlock, flags);
3693         } else {
3694                 spin_unlock_irqrestore(&h->devlock, flags);
3695                 dev->supports_aborts =
3696                                 hpsa_device_supports_aborts(h, scsi3addr);
3697                 if (dev->supports_aborts < 0)
3698                         dev->supports_aborts = 0;
3699         }
3700 }
3701
3702 /*
3703  * Helper function to assign bus, target, lun mapping of devices.
3704  * Logical drive target and lun are assigned at this time, but
3705  * physical device lun and target assignment are deferred (assigned
3706  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3707 */
3708 static void figure_bus_target_lun(struct ctlr_info *h,
3709         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3710 {
3711         u32 lunid = get_unaligned_le32(lunaddrbytes);
3712
3713         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3714                 /* physical device, target and lun filled in later */
3715                 if (is_hba_lunid(lunaddrbytes))
3716                         hpsa_set_bus_target_lun(device,
3717                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3718                 else
3719                         /* defer target, lun assignment for physical devices */
3720                         hpsa_set_bus_target_lun(device,
3721                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3722                 return;
3723         }
3724         /* It's a logical device */
3725         if (device->external) {
3726                 hpsa_set_bus_target_lun(device,
3727                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3728                         lunid & 0x00ff);
3729                 return;
3730         }
3731         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3732                                 0, lunid & 0x3fff);
3733 }
3734
3735
3736 /*
3737  * Get address of physical disk used for an ioaccel2 mode command:
3738  *      1. Extract ioaccel2 handle from the command.
3739  *      2. Find a matching ioaccel2 handle from list of physical disks.
3740  *      3. Return:
3741  *              1 and set scsi3addr to address of matching physical
3742  *              0 if no matching physical disk was found.
3743  */
3744 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3745         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3746 {
3747         struct io_accel2_cmd *c2 =
3748                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3749         unsigned long flags;
3750         int i;
3751
3752         spin_lock_irqsave(&h->devlock, flags);
3753         for (i = 0; i < h->ndevices; i++)
3754                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3755                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3756                                 sizeof(h->dev[i]->scsi3addr));
3757                         spin_unlock_irqrestore(&h->devlock, flags);
3758                         return 1;
3759                 }
3760         spin_unlock_irqrestore(&h->devlock, flags);
3761         return 0;
3762 }
3763
3764 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3765         int i, int nphysicals, int nlocal_logicals)
3766 {
3767         /* In report logicals, local logicals are listed first,
3768         * then any externals.
3769         */
3770         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3771
3772         if (i == raid_ctlr_position)
3773                 return 0;
3774
3775         if (i < logicals_start)
3776                 return 0;
3777
3778         /* i is in logicals range, but still within local logicals */
3779         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3780                 return 0;
3781
3782         return 1; /* it's an external lun */
3783 }
3784
3785 /*
3786  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3787  * logdev.  The number of luns in physdev and logdev are returned in
3788  * *nphysicals and *nlogicals, respectively.
3789  * Returns 0 on success, -1 otherwise.
3790  */
3791 static int hpsa_gather_lun_info(struct ctlr_info *h,
3792         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3793         struct ReportLUNdata *logdev, u32 *nlogicals)
3794 {
3795         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3796                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3797                 return -1;
3798         }
3799         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3800         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3801                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3802                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3803                 *nphysicals = HPSA_MAX_PHYS_LUN;
3804         }
3805         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3806                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3807                 return -1;
3808         }
3809         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3810         /* Reject Logicals in excess of our max capability. */
3811         if (*nlogicals > HPSA_MAX_LUN) {
3812                 dev_warn(&h->pdev->dev,
3813                         "maximum logical LUNs (%d) exceeded.  "
3814                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3815                         *nlogicals - HPSA_MAX_LUN);
3816                         *nlogicals = HPSA_MAX_LUN;
3817         }
3818         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3819                 dev_warn(&h->pdev->dev,
3820                         "maximum logical + physical LUNs (%d) exceeded. "
3821                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3822                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3823                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3824         }
3825         return 0;
3826 }
3827
3828 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3829         int i, int nphysicals, int nlogicals,
3830         struct ReportExtendedLUNdata *physdev_list,
3831         struct ReportLUNdata *logdev_list)
3832 {
3833         /* Helper function, figure out where the LUN ID info is coming from
3834          * given index i, lists of physical and logical devices, where in
3835          * the list the raid controller is supposed to appear (first or last)
3836          */
3837
3838         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3839         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3840
3841         if (i == raid_ctlr_position)
3842                 return RAID_CTLR_LUNID;
3843
3844         if (i < logicals_start)
3845                 return &physdev_list->LUN[i -
3846                                 (raid_ctlr_position == 0)].lunid[0];
3847
3848         if (i < last_device)
3849                 return &logdev_list->LUN[i - nphysicals -
3850                         (raid_ctlr_position == 0)][0];
3851         BUG();
3852         return NULL;
3853 }
3854
3855 /* get physical drive ioaccel handle and queue depth */
3856 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3857                 struct hpsa_scsi_dev_t *dev,
3858                 struct ReportExtendedLUNdata *rlep, int rle_index,
3859                 struct bmic_identify_physical_device *id_phys)
3860 {
3861         int rc;
3862         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3863
3864         dev->ioaccel_handle = rle->ioaccel_handle;
3865         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3866                 dev->hba_ioaccel_enabled = 1;
3867         memset(id_phys, 0, sizeof(*id_phys));
3868         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3869                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3870                         sizeof(*id_phys));
3871         if (!rc)
3872                 /* Reserve space for FW operations */
3873 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3874 #define DRIVE_QUEUE_DEPTH 7
3875                 dev->queue_depth =
3876                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3877                                 DRIVE_CMDS_RESERVED_FOR_FW;
3878         else
3879                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3880 }
3881
3882 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3883         struct ReportExtendedLUNdata *rlep, int rle_index,
3884         struct bmic_identify_physical_device *id_phys)
3885 {
3886         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3887
3888         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3889                 this_device->hba_ioaccel_enabled = 1;
3890
3891         memcpy(&this_device->active_path_index,
3892                 &id_phys->active_path_number,
3893                 sizeof(this_device->active_path_index));
3894         memcpy(&this_device->path_map,
3895                 &id_phys->redundant_path_present_map,
3896                 sizeof(this_device->path_map));
3897         memcpy(&this_device->box,
3898                 &id_phys->alternate_paths_phys_box_on_port,
3899                 sizeof(this_device->box));
3900         memcpy(&this_device->phys_connector,
3901                 &id_phys->alternate_paths_phys_connector,
3902                 sizeof(this_device->phys_connector));
3903         memcpy(&this_device->bay,
3904                 &id_phys->phys_bay_in_box,
3905                 sizeof(this_device->bay));
3906 }
3907
3908 /* get number of local logical disks. */
3909 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3910         struct bmic_identify_controller *id_ctlr,
3911         u32 *nlocals)
3912 {
3913         int rc;
3914
3915         if (!id_ctlr) {
3916                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3917                         __func__);
3918                 return -ENOMEM;
3919         }
3920         memset(id_ctlr, 0, sizeof(*id_ctlr));
3921         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3922         if (!rc)
3923                 if (id_ctlr->configured_logical_drive_count < 256)
3924                         *nlocals = id_ctlr->configured_logical_drive_count;
3925                 else
3926                         *nlocals = le16_to_cpu(
3927                                         id_ctlr->extended_logical_unit_count);
3928         else
3929                 *nlocals = -1;
3930         return rc;
3931 }
3932
3933 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
3934 {
3935         struct bmic_identify_physical_device *id_phys;
3936         bool is_spare = false;
3937         int rc;
3938
3939         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3940         if (!id_phys)
3941                 return false;
3942
3943         rc = hpsa_bmic_id_physical_device(h,
3944                                         lunaddrbytes,
3945                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
3946                                         id_phys, sizeof(*id_phys));
3947         if (rc == 0)
3948                 is_spare = (id_phys->more_flags >> 6) & 0x01;
3949
3950         kfree(id_phys);
3951         return is_spare;
3952 }
3953
3954 #define RPL_DEV_FLAG_NON_DISK                           0x1
3955 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
3956 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
3957
3958 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
3959
3960 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
3961                                 struct ext_report_lun_entry *rle)
3962 {
3963         u8 device_flags;
3964         u8 device_type;
3965
3966         if (!MASKED_DEVICE(lunaddrbytes))
3967                 return false;
3968
3969         device_flags = rle->device_flags;
3970         device_type = rle->device_type;
3971
3972         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
3973                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
3974                         return false;
3975                 return true;
3976         }
3977
3978         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
3979                 return false;
3980
3981         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
3982                 return false;
3983
3984         /*
3985          * Spares may be spun down, we do not want to
3986          * do an Inquiry to a RAID set spare drive as
3987          * that would have them spun up, that is a
3988          * performance hit because I/O to the RAID device
3989          * stops while the spin up occurs which can take
3990          * over 50 seconds.
3991          */
3992         if (hpsa_is_disk_spare(h, lunaddrbytes))
3993                 return true;
3994
3995         return false;
3996 }
3997
3998 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3999 {
4000         /* the idea here is we could get notified
4001          * that some devices have changed, so we do a report
4002          * physical luns and report logical luns cmd, and adjust
4003          * our list of devices accordingly.
4004          *
4005          * The scsi3addr's of devices won't change so long as the
4006          * adapter is not reset.  That means we can rescan and
4007          * tell which devices we already know about, vs. new
4008          * devices, vs.  disappearing devices.
4009          */
4010         struct ReportExtendedLUNdata *physdev_list = NULL;
4011         struct ReportLUNdata *logdev_list = NULL;
4012         struct bmic_identify_physical_device *id_phys = NULL;
4013         struct bmic_identify_controller *id_ctlr = NULL;
4014         u32 nphysicals = 0;
4015         u32 nlogicals = 0;
4016         u32 nlocal_logicals = 0;
4017         u32 ndev_allocated = 0;
4018         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4019         int ncurrent = 0;
4020         int i, n_ext_target_devs, ndevs_to_allocate;
4021         int raid_ctlr_position;
4022         bool physical_device;
4023         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4024
4025         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4026         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4027         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4028         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4029         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4030         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4031
4032         if (!currentsd || !physdev_list || !logdev_list ||
4033                 !tmpdevice || !id_phys || !id_ctlr) {
4034                 dev_err(&h->pdev->dev, "out of memory\n");
4035                 goto out;
4036         }
4037         memset(lunzerobits, 0, sizeof(lunzerobits));
4038
4039         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4040
4041         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4042                         logdev_list, &nlogicals)) {
4043                 h->drv_req_rescan = 1;
4044                 goto out;
4045         }
4046
4047         /* Set number of local logicals (non PTRAID) */
4048         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4049                 dev_warn(&h->pdev->dev,
4050                         "%s: Can't determine number of local logical devices.\n",
4051                         __func__);
4052         }
4053
4054         /* We might see up to the maximum number of logical and physical disks
4055          * plus external target devices, and a device for the local RAID
4056          * controller.
4057          */
4058         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4059
4060         /* Allocate the per device structures */
4061         for (i = 0; i < ndevs_to_allocate; i++) {
4062                 if (i >= HPSA_MAX_DEVICES) {
4063                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4064                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4065                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4066                         break;
4067                 }
4068
4069                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4070                 if (!currentsd[i]) {
4071                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4072                                 __FILE__, __LINE__);
4073                         h->drv_req_rescan = 1;
4074                         goto out;
4075                 }
4076                 ndev_allocated++;
4077         }
4078
4079         if (is_scsi_rev_5(h))
4080                 raid_ctlr_position = 0;
4081         else
4082                 raid_ctlr_position = nphysicals + nlogicals;
4083
4084         /* adjust our table of devices */
4085         n_ext_target_devs = 0;
4086         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4087                 u8 *lunaddrbytes, is_OBDR = 0;
4088                 int rc = 0;
4089                 int phys_dev_index = i - (raid_ctlr_position == 0);
4090                 bool skip_device = false;
4091
4092                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4093
4094                 /* Figure out where the LUN ID info is coming from */
4095                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4096                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4097
4098                 /*
4099                  * Skip over some devices such as a spare.
4100                  */
4101                 if (!tmpdevice->external && physical_device) {
4102                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4103                                         &physdev_list->LUN[phys_dev_index]);
4104                         if (skip_device)
4105                                 continue;
4106                 }
4107
4108                 /* Get device type, vendor, model, device id */
4109                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4110                                                         &is_OBDR);
4111                 if (rc == -ENOMEM) {
4112                         dev_warn(&h->pdev->dev,
4113                                 "Out of memory, rescan deferred.\n");
4114                         h->drv_req_rescan = 1;
4115                         goto out;
4116                 }
4117                 if (rc) {
4118                         dev_warn(&h->pdev->dev,
4119                                 "Inquiry failed, skipping device.\n");
4120                         continue;
4121                 }
4122
4123                 /* Determine if this is a lun from an external target array */
4124                 tmpdevice->external =
4125                         figure_external_status(h, raid_ctlr_position, i,
4126                                                 nphysicals, nlocal_logicals);
4127
4128                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4129                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4130                 this_device = currentsd[ncurrent];
4131
4132                 /* Turn on discovery_polling if there are ext target devices.
4133                  * Event-based change notification is unreliable for those.
4134                  */
4135                 if (!h->discovery_polling) {
4136                         if (tmpdevice->external) {
4137                                 h->discovery_polling = 1;
4138                                 dev_info(&h->pdev->dev,
4139                                         "External target, activate discovery polling.\n");
4140                         }
4141                 }
4142
4143
4144                 *this_device = *tmpdevice;
4145                 this_device->physical_device = physical_device;
4146
4147                 /*
4148                  * Expose all devices except for physical devices that
4149                  * are masked.
4150                  */
4151                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4152                         this_device->expose_device = 0;
4153                 else
4154                         this_device->expose_device = 1;
4155
4156
4157                 /*
4158                  * Get the SAS address for physical devices that are exposed.
4159                  */
4160                 if (this_device->physical_device && this_device->expose_device)
4161                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4162
4163                 switch (this_device->devtype) {
4164                 case TYPE_ROM:
4165                         /* We don't *really* support actual CD-ROM devices,
4166                          * just "One Button Disaster Recovery" tape drive
4167                          * which temporarily pretends to be a CD-ROM drive.
4168                          * So we check that the device is really an OBDR tape
4169                          * device by checking for "$DR-10" in bytes 43-48 of
4170                          * the inquiry data.
4171                          */
4172                         if (is_OBDR)
4173                                 ncurrent++;
4174                         break;
4175                 case TYPE_DISK:
4176                         if (this_device->physical_device) {
4177                                 /* The disk is in HBA mode. */
4178                                 /* Never use RAID mapper in HBA mode. */
4179                                 this_device->offload_enabled = 0;
4180                                 hpsa_get_ioaccel_drive_info(h, this_device,
4181                                         physdev_list, phys_dev_index, id_phys);
4182                                 hpsa_get_path_info(this_device,
4183                                         physdev_list, phys_dev_index, id_phys);
4184                         }
4185                         ncurrent++;
4186                         break;
4187                 case TYPE_TAPE:
4188                 case TYPE_MEDIUM_CHANGER:
4189                 case TYPE_ENCLOSURE:
4190                         ncurrent++;
4191                         break;
4192                 case TYPE_RAID:
4193                         /* Only present the Smartarray HBA as a RAID controller.
4194                          * If it's a RAID controller other than the HBA itself
4195                          * (an external RAID controller, MSA500 or similar)
4196                          * don't present it.
4197                          */
4198                         if (!is_hba_lunid(lunaddrbytes))
4199                                 break;
4200                         ncurrent++;
4201                         break;
4202                 default:
4203                         break;
4204                 }
4205                 if (ncurrent >= HPSA_MAX_DEVICES)
4206                         break;
4207         }
4208
4209         if (h->sas_host == NULL) {
4210                 int rc = 0;
4211
4212                 rc = hpsa_add_sas_host(h);
4213                 if (rc) {
4214                         dev_warn(&h->pdev->dev,
4215                                 "Could not add sas host %d\n", rc);
4216                         goto out;
4217                 }
4218         }
4219
4220         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4221 out:
4222         kfree(tmpdevice);
4223         for (i = 0; i < ndev_allocated; i++)
4224                 kfree(currentsd[i]);
4225         kfree(currentsd);
4226         kfree(physdev_list);
4227         kfree(logdev_list);
4228         kfree(id_ctlr);
4229         kfree(id_phys);
4230 }
4231
4232 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4233                                    struct scatterlist *sg)
4234 {
4235         u64 addr64 = (u64) sg_dma_address(sg);
4236         unsigned int len = sg_dma_len(sg);
4237
4238         desc->Addr = cpu_to_le64(addr64);
4239         desc->Len = cpu_to_le32(len);
4240         desc->Ext = 0;
4241 }
4242
4243 /*
4244  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4245  * dma mapping  and fills in the scatter gather entries of the
4246  * hpsa command, cp.
4247  */
4248 static int hpsa_scatter_gather(struct ctlr_info *h,
4249                 struct CommandList *cp,
4250                 struct scsi_cmnd *cmd)
4251 {
4252         struct scatterlist *sg;
4253         int use_sg, i, sg_limit, chained, last_sg;
4254         struct SGDescriptor *curr_sg;
4255
4256         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4257
4258         use_sg = scsi_dma_map(cmd);
4259         if (use_sg < 0)
4260                 return use_sg;
4261
4262         if (!use_sg)
4263                 goto sglist_finished;
4264
4265         /*
4266          * If the number of entries is greater than the max for a single list,
4267          * then we have a chained list; we will set up all but one entry in the
4268          * first list (the last entry is saved for link information);
4269          * otherwise, we don't have a chained list and we'll set up at each of
4270          * the entries in the one list.
4271          */
4272         curr_sg = cp->SG;
4273         chained = use_sg > h->max_cmd_sg_entries;
4274         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4275         last_sg = scsi_sg_count(cmd) - 1;
4276         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4277                 hpsa_set_sg_descriptor(curr_sg, sg);
4278                 curr_sg++;
4279         }
4280
4281         if (chained) {
4282                 /*
4283                  * Continue with the chained list.  Set curr_sg to the chained
4284                  * list.  Modify the limit to the total count less the entries
4285                  * we've already set up.  Resume the scan at the list entry
4286                  * where the previous loop left off.
4287                  */
4288                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4289                 sg_limit = use_sg - sg_limit;
4290                 for_each_sg(sg, sg, sg_limit, i) {
4291                         hpsa_set_sg_descriptor(curr_sg, sg);
4292                         curr_sg++;
4293                 }
4294         }
4295
4296         /* Back the pointer up to the last entry and mark it as "last". */
4297         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4298
4299         if (use_sg + chained > h->maxSG)
4300                 h->maxSG = use_sg + chained;
4301
4302         if (chained) {
4303                 cp->Header.SGList = h->max_cmd_sg_entries;
4304                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4305                 if (hpsa_map_sg_chain_block(h, cp)) {
4306                         scsi_dma_unmap(cmd);
4307                         return -1;
4308                 }
4309                 return 0;
4310         }
4311
4312 sglist_finished:
4313
4314         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4315         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4316         return 0;
4317 }
4318
4319 #define IO_ACCEL_INELIGIBLE (1)
4320 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4321 {
4322         int is_write = 0;
4323         u32 block;
4324         u32 block_cnt;
4325
4326         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4327         switch (cdb[0]) {
4328         case WRITE_6:
4329         case WRITE_12:
4330                 is_write = 1;
4331         case READ_6:
4332         case READ_12:
4333                 if (*cdb_len == 6) {
4334                         block = get_unaligned_be16(&cdb[2]);
4335                         block_cnt = cdb[4];
4336                         if (block_cnt == 0)
4337                                 block_cnt = 256;
4338                 } else {
4339                         BUG_ON(*cdb_len != 12);
4340                         block = get_unaligned_be32(&cdb[2]);
4341                         block_cnt = get_unaligned_be32(&cdb[6]);
4342                 }
4343                 if (block_cnt > 0xffff)
4344                         return IO_ACCEL_INELIGIBLE;
4345
4346                 cdb[0] = is_write ? WRITE_10 : READ_10;
4347                 cdb[1] = 0;
4348                 cdb[2] = (u8) (block >> 24);
4349                 cdb[3] = (u8) (block >> 16);
4350                 cdb[4] = (u8) (block >> 8);
4351                 cdb[5] = (u8) (block);
4352                 cdb[6] = 0;
4353                 cdb[7] = (u8) (block_cnt >> 8);
4354                 cdb[8] = (u8) (block_cnt);
4355                 cdb[9] = 0;
4356                 *cdb_len = 10;
4357                 break;
4358         }
4359         return 0;
4360 }
4361
4362 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4363         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4364         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4365 {
4366         struct scsi_cmnd *cmd = c->scsi_cmd;
4367         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4368         unsigned int len;
4369         unsigned int total_len = 0;
4370         struct scatterlist *sg;
4371         u64 addr64;
4372         int use_sg, i;
4373         struct SGDescriptor *curr_sg;
4374         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4375
4376         /* TODO: implement chaining support */
4377         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4378                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4379                 return IO_ACCEL_INELIGIBLE;
4380         }
4381
4382         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4383
4384         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4385                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4386                 return IO_ACCEL_INELIGIBLE;
4387         }
4388
4389         c->cmd_type = CMD_IOACCEL1;
4390
4391         /* Adjust the DMA address to point to the accelerated command buffer */
4392         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4393                                 (c->cmdindex * sizeof(*cp));
4394         BUG_ON(c->busaddr & 0x0000007F);
4395
4396         use_sg = scsi_dma_map(cmd);
4397         if (use_sg < 0) {
4398                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4399                 return use_sg;
4400         }
4401
4402         if (use_sg) {
4403                 curr_sg = cp->SG;
4404                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4405                         addr64 = (u64) sg_dma_address(sg);
4406                         len  = sg_dma_len(sg);
4407                         total_len += len;
4408                         curr_sg->Addr = cpu_to_le64(addr64);
4409                         curr_sg->Len = cpu_to_le32(len);
4410                         curr_sg->Ext = cpu_to_le32(0);
4411                         curr_sg++;
4412                 }
4413                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4414
4415                 switch (cmd->sc_data_direction) {
4416                 case DMA_TO_DEVICE:
4417                         control |= IOACCEL1_CONTROL_DATA_OUT;
4418                         break;
4419                 case DMA_FROM_DEVICE:
4420                         control |= IOACCEL1_CONTROL_DATA_IN;
4421                         break;
4422                 case DMA_NONE:
4423                         control |= IOACCEL1_CONTROL_NODATAXFER;
4424                         break;
4425                 default:
4426                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4427                         cmd->sc_data_direction);
4428                         BUG();
4429                         break;
4430                 }
4431         } else {
4432                 control |= IOACCEL1_CONTROL_NODATAXFER;
4433         }
4434
4435         c->Header.SGList = use_sg;
4436         /* Fill out the command structure to submit */
4437         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4438         cp->transfer_len = cpu_to_le32(total_len);
4439         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4440                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4441         cp->control = cpu_to_le32(control);
4442         memcpy(cp->CDB, cdb, cdb_len);
4443         memcpy(cp->CISS_LUN, scsi3addr, 8);
4444         /* Tag was already set at init time. */
4445         enqueue_cmd_and_start_io(h, c);
4446         return 0;
4447 }
4448
4449 /*
4450  * Queue a command directly to a device behind the controller using the
4451  * I/O accelerator path.
4452  */
4453 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4454         struct CommandList *c)
4455 {
4456         struct scsi_cmnd *cmd = c->scsi_cmd;
4457         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4458
4459         c->phys_disk = dev;
4460
4461         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4462                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4463 }
4464
4465 /*
4466  * Set encryption parameters for the ioaccel2 request
4467  */
4468 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4469         struct CommandList *c, struct io_accel2_cmd *cp)
4470 {
4471         struct scsi_cmnd *cmd = c->scsi_cmd;
4472         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4473         struct raid_map_data *map = &dev->raid_map;
4474         u64 first_block;
4475
4476         /* Are we doing encryption on this device */
4477         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4478                 return;
4479         /* Set the data encryption key index. */
4480         cp->dekindex = map->dekindex;
4481
4482         /* Set the encryption enable flag, encoded into direction field. */
4483         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4484
4485         /* Set encryption tweak values based on logical block address
4486          * If block size is 512, tweak value is LBA.
4487          * For other block sizes, tweak is (LBA * block size)/ 512)
4488          */
4489         switch (cmd->cmnd[0]) {
4490         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4491         case WRITE_6:
4492         case READ_6:
4493                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4494                 break;
4495         case WRITE_10:
4496         case READ_10:
4497         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4498         case WRITE_12:
4499         case READ_12:
4500                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4501                 break;
4502         case WRITE_16:
4503         case READ_16:
4504                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4505                 break;
4506         default:
4507                 dev_err(&h->pdev->dev,
4508                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4509                         __func__, cmd->cmnd[0]);
4510                 BUG();
4511                 break;
4512         }
4513
4514         if (le32_to_cpu(map->volume_blk_size) != 512)
4515                 first_block = first_block *
4516                                 le32_to_cpu(map->volume_blk_size)/512;
4517
4518         cp->tweak_lower = cpu_to_le32(first_block);
4519         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4520 }
4521
4522 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4523         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4524         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4525 {
4526         struct scsi_cmnd *cmd = c->scsi_cmd;
4527         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4528         struct ioaccel2_sg_element *curr_sg;
4529         int use_sg, i;
4530         struct scatterlist *sg;
4531         u64 addr64;
4532         u32 len;
4533         u32 total_len = 0;
4534
4535         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4536
4537         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4538                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4539                 return IO_ACCEL_INELIGIBLE;
4540         }
4541
4542         c->cmd_type = CMD_IOACCEL2;
4543         /* Adjust the DMA address to point to the accelerated command buffer */
4544         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4545                                 (c->cmdindex * sizeof(*cp));
4546         BUG_ON(c->busaddr & 0x0000007F);
4547
4548         memset(cp, 0, sizeof(*cp));
4549         cp->IU_type = IOACCEL2_IU_TYPE;
4550
4551         use_sg = scsi_dma_map(cmd);
4552         if (use_sg < 0) {
4553                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4554                 return use_sg;
4555         }
4556
4557         if (use_sg) {
4558                 curr_sg = cp->sg;
4559                 if (use_sg > h->ioaccel_maxsg) {
4560                         addr64 = le64_to_cpu(
4561                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4562                         curr_sg->address = cpu_to_le64(addr64);
4563                         curr_sg->length = 0;
4564                         curr_sg->reserved[0] = 0;
4565                         curr_sg->reserved[1] = 0;
4566                         curr_sg->reserved[2] = 0;
4567                         curr_sg->chain_indicator = 0x80;
4568
4569                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4570                 }
4571                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4572                         addr64 = (u64) sg_dma_address(sg);
4573                         len  = sg_dma_len(sg);
4574                         total_len += len;
4575                         curr_sg->address = cpu_to_le64(addr64);
4576                         curr_sg->length = cpu_to_le32(len);
4577                         curr_sg->reserved[0] = 0;
4578                         curr_sg->reserved[1] = 0;
4579                         curr_sg->reserved[2] = 0;
4580                         curr_sg->chain_indicator = 0;
4581                         curr_sg++;
4582                 }
4583
4584                 switch (cmd->sc_data_direction) {
4585                 case DMA_TO_DEVICE:
4586                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4587                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4588                         break;
4589                 case DMA_FROM_DEVICE:
4590                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4591                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4592                         break;
4593                 case DMA_NONE:
4594                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4595                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4596                         break;
4597                 default:
4598                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4599                                 cmd->sc_data_direction);
4600                         BUG();
4601                         break;
4602                 }
4603         } else {
4604                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4605                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4606         }
4607
4608         /* Set encryption parameters, if necessary */
4609         set_encrypt_ioaccel2(h, c, cp);
4610
4611         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4612         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4613         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4614
4615         cp->data_len = cpu_to_le32(total_len);
4616         cp->err_ptr = cpu_to_le64(c->busaddr +
4617                         offsetof(struct io_accel2_cmd, error_data));
4618         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4619
4620         /* fill in sg elements */
4621         if (use_sg > h->ioaccel_maxsg) {
4622                 cp->sg_count = 1;
4623                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4624                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4625                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4626                         scsi_dma_unmap(cmd);
4627                         return -1;
4628                 }
4629         } else
4630                 cp->sg_count = (u8) use_sg;
4631
4632         enqueue_cmd_and_start_io(h, c);
4633         return 0;
4634 }
4635
4636 /*
4637  * Queue a command to the correct I/O accelerator path.
4638  */
4639 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4640         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4641         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4642 {
4643         /* Try to honor the device's queue depth */
4644         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4645                                         phys_disk->queue_depth) {
4646                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4647                 return IO_ACCEL_INELIGIBLE;
4648         }
4649         if (h->transMethod & CFGTBL_Trans_io_accel1)
4650                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4651                                                 cdb, cdb_len, scsi3addr,
4652                                                 phys_disk);
4653         else
4654                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4655                                                 cdb, cdb_len, scsi3addr,
4656                                                 phys_disk);
4657 }
4658
4659 static void raid_map_helper(struct raid_map_data *map,
4660                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4661 {
4662         if (offload_to_mirror == 0)  {
4663                 /* use physical disk in the first mirrored group. */
4664                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4665                 return;
4666         }
4667         do {
4668                 /* determine mirror group that *map_index indicates */
4669                 *current_group = *map_index /
4670                         le16_to_cpu(map->data_disks_per_row);
4671                 if (offload_to_mirror == *current_group)
4672                         continue;
4673                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4674                         /* select map index from next group */
4675                         *map_index += le16_to_cpu(map->data_disks_per_row);
4676                         (*current_group)++;
4677                 } else {
4678                         /* select map index from first group */
4679                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4680                         *current_group = 0;
4681                 }
4682         } while (offload_to_mirror != *current_group);
4683 }
4684
4685 /*
4686  * Attempt to perform offload RAID mapping for a logical volume I/O.
4687  */
4688 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4689         struct CommandList *c)
4690 {
4691         struct scsi_cmnd *cmd = c->scsi_cmd;
4692         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4693         struct raid_map_data *map = &dev->raid_map;
4694         struct raid_map_disk_data *dd = &map->data[0];
4695         int is_write = 0;
4696         u32 map_index;
4697         u64 first_block, last_block;
4698         u32 block_cnt;
4699         u32 blocks_per_row;
4700         u64 first_row, last_row;
4701         u32 first_row_offset, last_row_offset;
4702         u32 first_column, last_column;
4703         u64 r0_first_row, r0_last_row;
4704         u32 r5or6_blocks_per_row;
4705         u64 r5or6_first_row, r5or6_last_row;
4706         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4707         u32 r5or6_first_column, r5or6_last_column;
4708         u32 total_disks_per_row;
4709         u32 stripesize;
4710         u32 first_group, last_group, current_group;
4711         u32 map_row;
4712         u32 disk_handle;
4713         u64 disk_block;
4714         u32 disk_block_cnt;
4715         u8 cdb[16];
4716         u8 cdb_len;
4717         u16 strip_size;
4718 #if BITS_PER_LONG == 32
4719         u64 tmpdiv;
4720 #endif
4721         int offload_to_mirror;
4722
4723         /* check for valid opcode, get LBA and block count */
4724         switch (cmd->cmnd[0]) {
4725         case WRITE_6:
4726                 is_write = 1;
4727         case READ_6:
4728                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4729                 block_cnt = cmd->cmnd[4];
4730                 if (block_cnt == 0)
4731                         block_cnt = 256;
4732                 break;
4733         case WRITE_10:
4734                 is_write = 1;
4735         case READ_10:
4736                 first_block =
4737                         (((u64) cmd->cmnd[2]) << 24) |
4738                         (((u64) cmd->cmnd[3]) << 16) |
4739                         (((u64) cmd->cmnd[4]) << 8) |
4740                         cmd->cmnd[5];
4741                 block_cnt =
4742                         (((u32) cmd->cmnd[7]) << 8) |
4743                         cmd->cmnd[8];
4744                 break;
4745         case WRITE_12:
4746                 is_write = 1;
4747         case READ_12:
4748                 first_block =
4749                         (((u64) cmd->cmnd[2]) << 24) |
4750                         (((u64) cmd->cmnd[3]) << 16) |
4751                         (((u64) cmd->cmnd[4]) << 8) |
4752                         cmd->cmnd[5];
4753                 block_cnt =
4754                         (((u32) cmd->cmnd[6]) << 24) |
4755                         (((u32) cmd->cmnd[7]) << 16) |
4756                         (((u32) cmd->cmnd[8]) << 8) |
4757                 cmd->cmnd[9];
4758                 break;
4759         case WRITE_16:
4760                 is_write = 1;
4761         case READ_16:
4762                 first_block =
4763                         (((u64) cmd->cmnd[2]) << 56) |
4764                         (((u64) cmd->cmnd[3]) << 48) |
4765                         (((u64) cmd->cmnd[4]) << 40) |
4766                         (((u64) cmd->cmnd[5]) << 32) |
4767                         (((u64) cmd->cmnd[6]) << 24) |
4768                         (((u64) cmd->cmnd[7]) << 16) |
4769                         (((u64) cmd->cmnd[8]) << 8) |
4770                         cmd->cmnd[9];
4771                 block_cnt =
4772                         (((u32) cmd->cmnd[10]) << 24) |
4773                         (((u32) cmd->cmnd[11]) << 16) |
4774                         (((u32) cmd->cmnd[12]) << 8) |
4775                         cmd->cmnd[13];
4776                 break;
4777         default:
4778                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4779         }
4780         last_block = first_block + block_cnt - 1;
4781
4782         /* check for write to non-RAID-0 */
4783         if (is_write && dev->raid_level != 0)
4784                 return IO_ACCEL_INELIGIBLE;
4785
4786         /* check for invalid block or wraparound */
4787         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4788                 last_block < first_block)
4789                 return IO_ACCEL_INELIGIBLE;
4790
4791         /* calculate stripe information for the request */
4792         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4793                                 le16_to_cpu(map->strip_size);
4794         strip_size = le16_to_cpu(map->strip_size);
4795 #if BITS_PER_LONG == 32
4796         tmpdiv = first_block;
4797         (void) do_div(tmpdiv, blocks_per_row);
4798         first_row = tmpdiv;
4799         tmpdiv = last_block;
4800         (void) do_div(tmpdiv, blocks_per_row);
4801         last_row = tmpdiv;
4802         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4803         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4804         tmpdiv = first_row_offset;
4805         (void) do_div(tmpdiv, strip_size);
4806         first_column = tmpdiv;
4807         tmpdiv = last_row_offset;
4808         (void) do_div(tmpdiv, strip_size);
4809         last_column = tmpdiv;
4810 #else
4811         first_row = first_block / blocks_per_row;
4812         last_row = last_block / blocks_per_row;
4813         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4814         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4815         first_column = first_row_offset / strip_size;
4816         last_column = last_row_offset / strip_size;
4817 #endif
4818
4819         /* if this isn't a single row/column then give to the controller */
4820         if ((first_row != last_row) || (first_column != last_column))
4821                 return IO_ACCEL_INELIGIBLE;
4822
4823         /* proceeding with driver mapping */
4824         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4825                                 le16_to_cpu(map->metadata_disks_per_row);
4826         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4827                                 le16_to_cpu(map->row_cnt);
4828         map_index = (map_row * total_disks_per_row) + first_column;
4829
4830         switch (dev->raid_level) {
4831         case HPSA_RAID_0:
4832                 break; /* nothing special to do */
4833         case HPSA_RAID_1:
4834                 /* Handles load balance across RAID 1 members.
4835                  * (2-drive R1 and R10 with even # of drives.)
4836                  * Appropriate for SSDs, not optimal for HDDs
4837                  */
4838                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4839                 if (dev->offload_to_mirror)
4840                         map_index += le16_to_cpu(map->data_disks_per_row);
4841                 dev->offload_to_mirror = !dev->offload_to_mirror;
4842                 break;
4843         case HPSA_RAID_ADM:
4844                 /* Handles N-way mirrors  (R1-ADM)
4845                  * and R10 with # of drives divisible by 3.)
4846                  */
4847                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4848
4849                 offload_to_mirror = dev->offload_to_mirror;
4850                 raid_map_helper(map, offload_to_mirror,
4851                                 &map_index, &current_group);
4852                 /* set mirror group to use next time */
4853                 offload_to_mirror =
4854                         (offload_to_mirror >=
4855                         le16_to_cpu(map->layout_map_count) - 1)
4856                         ? 0 : offload_to_mirror + 1;
4857                 dev->offload_to_mirror = offload_to_mirror;
4858                 /* Avoid direct use of dev->offload_to_mirror within this
4859                  * function since multiple threads might simultaneously
4860                  * increment it beyond the range of dev->layout_map_count -1.
4861                  */
4862                 break;
4863         case HPSA_RAID_5:
4864         case HPSA_RAID_6:
4865                 if (le16_to_cpu(map->layout_map_count) <= 1)
4866                         break;
4867
4868                 /* Verify first and last block are in same RAID group */
4869                 r5or6_blocks_per_row =
4870                         le16_to_cpu(map->strip_size) *
4871                         le16_to_cpu(map->data_disks_per_row);
4872                 BUG_ON(r5or6_blocks_per_row == 0);
4873                 stripesize = r5or6_blocks_per_row *
4874                         le16_to_cpu(map->layout_map_count);
4875 #if BITS_PER_LONG == 32
4876                 tmpdiv = first_block;
4877                 first_group = do_div(tmpdiv, stripesize);
4878                 tmpdiv = first_group;
4879                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4880                 first_group = tmpdiv;
4881                 tmpdiv = last_block;
4882                 last_group = do_div(tmpdiv, stripesize);
4883                 tmpdiv = last_group;
4884                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4885                 last_group = tmpdiv;
4886 #else
4887                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4888                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4889 #endif
4890                 if (first_group != last_group)
4891                         return IO_ACCEL_INELIGIBLE;
4892
4893                 /* Verify request is in a single row of RAID 5/6 */
4894 #if BITS_PER_LONG == 32
4895                 tmpdiv = first_block;
4896                 (void) do_div(tmpdiv, stripesize);
4897                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4898                 tmpdiv = last_block;
4899                 (void) do_div(tmpdiv, stripesize);
4900                 r5or6_last_row = r0_last_row = tmpdiv;
4901 #else
4902                 first_row = r5or6_first_row = r0_first_row =
4903                                                 first_block / stripesize;
4904                 r5or6_last_row = r0_last_row = last_block / stripesize;
4905 #endif
4906                 if (r5or6_first_row != r5or6_last_row)
4907                         return IO_ACCEL_INELIGIBLE;
4908
4909
4910                 /* Verify request is in a single column */
4911 #if BITS_PER_LONG == 32
4912                 tmpdiv = first_block;
4913                 first_row_offset = do_div(tmpdiv, stripesize);
4914                 tmpdiv = first_row_offset;
4915                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4916                 r5or6_first_row_offset = first_row_offset;
4917                 tmpdiv = last_block;
4918                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4919                 tmpdiv = r5or6_last_row_offset;
4920                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4921                 tmpdiv = r5or6_first_row_offset;
4922                 (void) do_div(tmpdiv, map->strip_size);
4923                 first_column = r5or6_first_column = tmpdiv;
4924                 tmpdiv = r5or6_last_row_offset;
4925                 (void) do_div(tmpdiv, map->strip_size);
4926                 r5or6_last_column = tmpdiv;
4927 #else
4928                 first_row_offset = r5or6_first_row_offset =
4929                         (u32)((first_block % stripesize) %
4930                                                 r5or6_blocks_per_row);
4931
4932                 r5or6_last_row_offset =
4933                         (u32)((last_block % stripesize) %
4934                                                 r5or6_blocks_per_row);
4935
4936                 first_column = r5or6_first_column =
4937                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4938                 r5or6_last_column =
4939                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4940 #endif
4941                 if (r5or6_first_column != r5or6_last_column)
4942                         return IO_ACCEL_INELIGIBLE;
4943
4944                 /* Request is eligible */
4945                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4946                         le16_to_cpu(map->row_cnt);
4947
4948                 map_index = (first_group *
4949                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4950                         (map_row * total_disks_per_row) + first_column;
4951                 break;
4952         default:
4953                 return IO_ACCEL_INELIGIBLE;
4954         }
4955
4956         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4957                 return IO_ACCEL_INELIGIBLE;
4958
4959         c->phys_disk = dev->phys_disk[map_index];
4960
4961         disk_handle = dd[map_index].ioaccel_handle;
4962         disk_block = le64_to_cpu(map->disk_starting_blk) +
4963                         first_row * le16_to_cpu(map->strip_size) +
4964                         (first_row_offset - first_column *
4965                         le16_to_cpu(map->strip_size));
4966         disk_block_cnt = block_cnt;
4967
4968         /* handle differing logical/physical block sizes */
4969         if (map->phys_blk_shift) {
4970                 disk_block <<= map->phys_blk_shift;
4971                 disk_block_cnt <<= map->phys_blk_shift;
4972         }
4973         BUG_ON(disk_block_cnt > 0xffff);
4974
4975         /* build the new CDB for the physical disk I/O */
4976         if (disk_block > 0xffffffff) {
4977                 cdb[0] = is_write ? WRITE_16 : READ_16;
4978                 cdb[1] = 0;
4979                 cdb[2] = (u8) (disk_block >> 56);
4980                 cdb[3] = (u8) (disk_block >> 48);
4981                 cdb[4] = (u8) (disk_block >> 40);
4982                 cdb[5] = (u8) (disk_block >> 32);
4983                 cdb[6] = (u8) (disk_block >> 24);
4984                 cdb[7] = (u8) (disk_block >> 16);
4985                 cdb[8] = (u8) (disk_block >> 8);
4986                 cdb[9] = (u8) (disk_block);
4987                 cdb[10] = (u8) (disk_block_cnt >> 24);
4988                 cdb[11] = (u8) (disk_block_cnt >> 16);
4989                 cdb[12] = (u8) (disk_block_cnt >> 8);
4990                 cdb[13] = (u8) (disk_block_cnt);
4991                 cdb[14] = 0;
4992                 cdb[15] = 0;
4993                 cdb_len = 16;
4994         } else {
4995                 cdb[0] = is_write ? WRITE_10 : READ_10;
4996                 cdb[1] = 0;
4997                 cdb[2] = (u8) (disk_block >> 24);
4998                 cdb[3] = (u8) (disk_block >> 16);
4999                 cdb[4] = (u8) (disk_block >> 8);
5000                 cdb[5] = (u8) (disk_block);
5001                 cdb[6] = 0;
5002                 cdb[7] = (u8) (disk_block_cnt >> 8);
5003                 cdb[8] = (u8) (disk_block_cnt);
5004                 cdb[9] = 0;
5005                 cdb_len = 10;
5006         }
5007         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5008                                                 dev->scsi3addr,
5009                                                 dev->phys_disk[map_index]);
5010 }
5011
5012 /*
5013  * Submit commands down the "normal" RAID stack path
5014  * All callers to hpsa_ciss_submit must check lockup_detected
5015  * beforehand, before (opt.) and after calling cmd_alloc
5016  */
5017 static int hpsa_ciss_submit(struct ctlr_info *h,
5018         struct CommandList *c, struct scsi_cmnd *cmd,
5019         unsigned char scsi3addr[])
5020 {
5021         cmd->host_scribble = (unsigned char *) c;
5022         c->cmd_type = CMD_SCSI;
5023         c->scsi_cmd = cmd;
5024         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5025         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5026         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5027
5028         /* Fill in the request block... */
5029
5030         c->Request.Timeout = 0;
5031         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5032         c->Request.CDBLen = cmd->cmd_len;
5033         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5034         switch (cmd->sc_data_direction) {
5035         case DMA_TO_DEVICE:
5036                 c->Request.type_attr_dir =
5037                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5038                 break;
5039         case DMA_FROM_DEVICE:
5040                 c->Request.type_attr_dir =
5041                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5042                 break;
5043         case DMA_NONE:
5044                 c->Request.type_attr_dir =
5045                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5046                 break;
5047         case DMA_BIDIRECTIONAL:
5048                 /* This can happen if a buggy application does a scsi passthru
5049                  * and sets both inlen and outlen to non-zero. ( see
5050                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5051                  */
5052
5053                 c->Request.type_attr_dir =
5054                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5055                 /* This is technically wrong, and hpsa controllers should
5056                  * reject it with CMD_INVALID, which is the most correct
5057                  * response, but non-fibre backends appear to let it
5058                  * slide by, and give the same results as if this field
5059                  * were set correctly.  Either way is acceptable for
5060                  * our purposes here.
5061                  */
5062
5063                 break;
5064
5065         default:
5066                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5067                         cmd->sc_data_direction);
5068                 BUG();
5069                 break;
5070         }
5071
5072         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5073                 hpsa_cmd_resolve_and_free(h, c);
5074                 return SCSI_MLQUEUE_HOST_BUSY;
5075         }
5076         enqueue_cmd_and_start_io(h, c);
5077         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5078         return 0;
5079 }
5080
5081 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5082                                 struct CommandList *c)
5083 {
5084         dma_addr_t cmd_dma_handle, err_dma_handle;
5085
5086         /* Zero out all of commandlist except the last field, refcount */
5087         memset(c, 0, offsetof(struct CommandList, refcount));
5088         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5089         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5090         c->err_info = h->errinfo_pool + index;
5091         memset(c->err_info, 0, sizeof(*c->err_info));
5092         err_dma_handle = h->errinfo_pool_dhandle
5093             + index * sizeof(*c->err_info);
5094         c->cmdindex = index;
5095         c->busaddr = (u32) cmd_dma_handle;
5096         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5097         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5098         c->h = h;
5099         c->scsi_cmd = SCSI_CMD_IDLE;
5100 }
5101
5102 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5103 {
5104         int i;
5105
5106         for (i = 0; i < h->nr_cmds; i++) {
5107                 struct CommandList *c = h->cmd_pool + i;
5108
5109                 hpsa_cmd_init(h, i, c);
5110                 atomic_set(&c->refcount, 0);
5111         }
5112 }
5113
5114 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5115                                 struct CommandList *c)
5116 {
5117         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5118
5119         BUG_ON(c->cmdindex != index);
5120
5121         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5122         memset(c->err_info, 0, sizeof(*c->err_info));
5123         c->busaddr = (u32) cmd_dma_handle;
5124 }
5125
5126 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5127                 struct CommandList *c, struct scsi_cmnd *cmd,
5128                 unsigned char *scsi3addr)
5129 {
5130         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5131         int rc = IO_ACCEL_INELIGIBLE;
5132
5133         cmd->host_scribble = (unsigned char *) c;
5134
5135         if (dev->offload_enabled) {
5136                 hpsa_cmd_init(h, c->cmdindex, c);
5137                 c->cmd_type = CMD_SCSI;
5138                 c->scsi_cmd = cmd;
5139                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5140                 if (rc < 0)     /* scsi_dma_map failed. */
5141                         rc = SCSI_MLQUEUE_HOST_BUSY;
5142         } else if (dev->hba_ioaccel_enabled) {
5143                 hpsa_cmd_init(h, c->cmdindex, c);
5144                 c->cmd_type = CMD_SCSI;
5145                 c->scsi_cmd = cmd;
5146                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5147                 if (rc < 0)     /* scsi_dma_map failed. */
5148                         rc = SCSI_MLQUEUE_HOST_BUSY;
5149         }
5150         return rc;
5151 }
5152
5153 static void hpsa_command_resubmit_worker(struct work_struct *work)
5154 {
5155         struct scsi_cmnd *cmd;
5156         struct hpsa_scsi_dev_t *dev;
5157         struct CommandList *c = container_of(work, struct CommandList, work);
5158
5159         cmd = c->scsi_cmd;
5160         dev = cmd->device->hostdata;
5161         if (!dev) {
5162                 cmd->result = DID_NO_CONNECT << 16;
5163                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5164         }
5165         if (c->reset_pending)
5166                 return hpsa_cmd_resolve_and_free(c->h, c);
5167         if (c->abort_pending)
5168                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5169         if (c->cmd_type == CMD_IOACCEL2) {
5170                 struct ctlr_info *h = c->h;
5171                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5172                 int rc;
5173
5174                 if (c2->error_data.serv_response ==
5175                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5176                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5177                         if (rc == 0)
5178                                 return;
5179                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5180                                 /*
5181                                  * If we get here, it means dma mapping failed.
5182                                  * Try again via scsi mid layer, which will
5183                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5184                                  */
5185                                 cmd->result = DID_IMM_RETRY << 16;
5186                                 return hpsa_cmd_free_and_done(h, c, cmd);
5187                         }
5188                         /* else, fall thru and resubmit down CISS path */
5189                 }
5190         }
5191         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5192         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5193                 /*
5194                  * If we get here, it means dma mapping failed. Try
5195                  * again via scsi mid layer, which will then get
5196                  * SCSI_MLQUEUE_HOST_BUSY.
5197                  *
5198                  * hpsa_ciss_submit will have already freed c
5199                  * if it encountered a dma mapping failure.
5200                  */
5201                 cmd->result = DID_IMM_RETRY << 16;
5202                 cmd->scsi_done(cmd);
5203         }
5204 }
5205
5206 /* Running in struct Scsi_Host->host_lock less mode */
5207 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5208 {
5209         struct ctlr_info *h;
5210         struct hpsa_scsi_dev_t *dev;
5211         unsigned char scsi3addr[8];
5212         struct CommandList *c;
5213         int rc = 0;
5214
5215         /* Get the ptr to our adapter structure out of cmd->host. */
5216         h = sdev_to_hba(cmd->device);
5217
5218         BUG_ON(cmd->request->tag < 0);
5219
5220         dev = cmd->device->hostdata;
5221         if (!dev) {
5222                 cmd->result = DID_NO_CONNECT << 16;
5223                 cmd->scsi_done(cmd);
5224                 return 0;
5225         }
5226
5227         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5228
5229         if (unlikely(lockup_detected(h))) {
5230                 cmd->result = DID_NO_CONNECT << 16;
5231                 cmd->scsi_done(cmd);
5232                 return 0;
5233         }
5234         c = cmd_tagged_alloc(h, cmd);
5235
5236         /*
5237          * Call alternate submit routine for I/O accelerated commands.
5238          * Retries always go down the normal I/O path.
5239          */
5240         if (likely(cmd->retries == 0 &&
5241                 cmd->request->cmd_type == REQ_TYPE_FS &&
5242                 h->acciopath_status)) {
5243                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5244                 if (rc == 0)
5245                         return 0;
5246                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5247                         hpsa_cmd_resolve_and_free(h, c);
5248                         return SCSI_MLQUEUE_HOST_BUSY;
5249                 }
5250         }
5251         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5252 }
5253
5254 static void hpsa_scan_complete(struct ctlr_info *h)
5255 {
5256         unsigned long flags;
5257
5258         spin_lock_irqsave(&h->scan_lock, flags);
5259         h->scan_finished = 1;
5260         wake_up_all(&h->scan_wait_queue);
5261         spin_unlock_irqrestore(&h->scan_lock, flags);
5262 }
5263
5264 static void hpsa_scan_start(struct Scsi_Host *sh)
5265 {
5266         struct ctlr_info *h = shost_to_hba(sh);
5267         unsigned long flags;
5268
5269         /*
5270          * Don't let rescans be initiated on a controller known to be locked
5271          * up.  If the controller locks up *during* a rescan, that thread is
5272          * probably hosed, but at least we can prevent new rescan threads from
5273          * piling up on a locked up controller.
5274          */
5275         if (unlikely(lockup_detected(h)))
5276                 return hpsa_scan_complete(h);
5277
5278         /* wait until any scan already in progress is finished. */
5279         while (1) {
5280                 spin_lock_irqsave(&h->scan_lock, flags);
5281                 if (h->scan_finished)
5282                         break;
5283                 spin_unlock_irqrestore(&h->scan_lock, flags);
5284                 wait_event(h->scan_wait_queue, h->scan_finished);
5285                 /* Note: We don't need to worry about a race between this
5286                  * thread and driver unload because the midlayer will
5287                  * have incremented the reference count, so unload won't
5288                  * happen if we're in here.
5289                  */
5290         }
5291         h->scan_finished = 0; /* mark scan as in progress */
5292         spin_unlock_irqrestore(&h->scan_lock, flags);
5293
5294         if (unlikely(lockup_detected(h)))
5295                 return hpsa_scan_complete(h);
5296
5297         hpsa_update_scsi_devices(h);
5298
5299         hpsa_scan_complete(h);
5300 }
5301
5302 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5303 {
5304         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5305
5306         if (!logical_drive)
5307                 return -ENODEV;
5308
5309         if (qdepth < 1)
5310                 qdepth = 1;
5311         else if (qdepth > logical_drive->queue_depth)
5312                 qdepth = logical_drive->queue_depth;
5313
5314         return scsi_change_queue_depth(sdev, qdepth);
5315 }
5316
5317 static int hpsa_scan_finished(struct Scsi_Host *sh,
5318         unsigned long elapsed_time)
5319 {
5320         struct ctlr_info *h = shost_to_hba(sh);
5321         unsigned long flags;
5322         int finished;
5323
5324         spin_lock_irqsave(&h->scan_lock, flags);
5325         finished = h->scan_finished;
5326         spin_unlock_irqrestore(&h->scan_lock, flags);
5327         return finished;
5328 }
5329
5330 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5331 {
5332         struct Scsi_Host *sh;
5333
5334         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5335         if (sh == NULL) {
5336                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5337                 return -ENOMEM;
5338         }
5339
5340         sh->io_port = 0;
5341         sh->n_io_port = 0;
5342         sh->this_id = -1;
5343         sh->max_channel = 3;
5344         sh->max_cmd_len = MAX_COMMAND_SIZE;
5345         sh->max_lun = HPSA_MAX_LUN;
5346         sh->max_id = HPSA_MAX_LUN;
5347         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5348         sh->cmd_per_lun = sh->can_queue;
5349         sh->sg_tablesize = h->maxsgentries;
5350         sh->transportt = hpsa_sas_transport_template;
5351         sh->hostdata[0] = (unsigned long) h;
5352         sh->irq = h->intr[h->intr_mode];
5353         sh->unique_id = sh->irq;
5354
5355         h->scsi_host = sh;
5356         return 0;
5357 }
5358
5359 static int hpsa_scsi_add_host(struct ctlr_info *h)
5360 {
5361         int rv;
5362
5363         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5364         if (rv) {
5365                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5366                 return rv;
5367         }
5368         scsi_scan_host(h->scsi_host);
5369         return 0;
5370 }
5371
5372 /*
5373  * The block layer has already gone to the trouble of picking out a unique,
5374  * small-integer tag for this request.  We use an offset from that value as
5375  * an index to select our command block.  (The offset allows us to reserve the
5376  * low-numbered entries for our own uses.)
5377  */
5378 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5379 {
5380         int idx = scmd->request->tag;
5381
5382         if (idx < 0)
5383                 return idx;
5384
5385         /* Offset to leave space for internal cmds. */
5386         return idx += HPSA_NRESERVED_CMDS;
5387 }
5388
5389 /*
5390  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5391  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5392  */
5393 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5394                                 struct CommandList *c, unsigned char lunaddr[],
5395                                 int reply_queue)
5396 {
5397         int rc;
5398
5399         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5400         (void) fill_cmd(c, TEST_UNIT_READY, h,
5401                         NULL, 0, 0, lunaddr, TYPE_CMD);
5402         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5403         if (rc)
5404                 return rc;
5405         /* no unmap needed here because no data xfer. */
5406
5407         /* Check if the unit is already ready. */
5408         if (c->err_info->CommandStatus == CMD_SUCCESS)
5409                 return 0;
5410
5411         /*
5412          * The first command sent after reset will receive "unit attention" to
5413          * indicate that the LUN has been reset...this is actually what we're
5414          * looking for (but, success is good too).
5415          */
5416         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5417                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5418                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5419                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5420                 return 0;
5421
5422         return 1;
5423 }
5424
5425 /*
5426  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5427  * returns zero when the unit is ready, and non-zero when giving up.
5428  */
5429 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5430                                 struct CommandList *c,
5431                                 unsigned char lunaddr[], int reply_queue)
5432 {
5433         int rc;
5434         int count = 0;
5435         int waittime = 1; /* seconds */
5436
5437         /* Send test unit ready until device ready, or give up. */
5438         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5439
5440                 /*
5441                  * Wait for a bit.  do this first, because if we send
5442                  * the TUR right away, the reset will just abort it.
5443                  */
5444                 msleep(1000 * waittime);
5445
5446                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5447                 if (!rc)
5448                         break;
5449
5450                 /* Increase wait time with each try, up to a point. */
5451                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5452                         waittime *= 2;
5453
5454                 dev_warn(&h->pdev->dev,
5455                          "waiting %d secs for device to become ready.\n",
5456                          waittime);
5457         }
5458
5459         return rc;
5460 }
5461
5462 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5463                                            unsigned char lunaddr[],
5464                                            int reply_queue)
5465 {
5466         int first_queue;
5467         int last_queue;
5468         int rq;
5469         int rc = 0;
5470         struct CommandList *c;
5471
5472         c = cmd_alloc(h);
5473
5474         /*
5475          * If no specific reply queue was requested, then send the TUR
5476          * repeatedly, requesting a reply on each reply queue; otherwise execute
5477          * the loop exactly once using only the specified queue.
5478          */
5479         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5480                 first_queue = 0;
5481                 last_queue = h->nreply_queues - 1;
5482         } else {
5483                 first_queue = reply_queue;
5484                 last_queue = reply_queue;
5485         }
5486
5487         for (rq = first_queue; rq <= last_queue; rq++) {
5488                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5489                 if (rc)
5490                         break;
5491         }
5492
5493         if (rc)
5494                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5495         else
5496                 dev_warn(&h->pdev->dev, "device is ready.\n");
5497
5498         cmd_free(h, c);
5499         return rc;
5500 }
5501
5502 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5503  * complaining.  Doing a host- or bus-reset can't do anything good here.
5504  */
5505 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5506 {
5507         int rc;
5508         struct ctlr_info *h;
5509         struct hpsa_scsi_dev_t *dev;
5510         u8 reset_type;
5511         char msg[48];
5512
5513         /* find the controller to which the command to be aborted was sent */
5514         h = sdev_to_hba(scsicmd->device);
5515         if (h == NULL) /* paranoia */
5516                 return FAILED;
5517
5518         if (lockup_detected(h))
5519                 return FAILED;
5520
5521         dev = scsicmd->device->hostdata;
5522         if (!dev) {
5523                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5524                 return FAILED;
5525         }
5526
5527         /* if controller locked up, we can guarantee command won't complete */
5528         if (lockup_detected(h)) {
5529                 snprintf(msg, sizeof(msg),
5530                          "cmd %d RESET FAILED, lockup detected",
5531                          hpsa_get_cmd_index(scsicmd));
5532                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5533                 return FAILED;
5534         }
5535
5536         /* this reset request might be the result of a lockup; check */
5537         if (detect_controller_lockup(h)) {
5538                 snprintf(msg, sizeof(msg),
5539                          "cmd %d RESET FAILED, new lockup detected",
5540                          hpsa_get_cmd_index(scsicmd));
5541                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5542                 return FAILED;
5543         }
5544
5545         /* Do not attempt on controller */
5546         if (is_hba_lunid(dev->scsi3addr))
5547                 return SUCCESS;
5548
5549         if (is_logical_dev_addr_mode(dev->scsi3addr))
5550                 reset_type = HPSA_DEVICE_RESET_MSG;
5551         else
5552                 reset_type = HPSA_PHYS_TARGET_RESET;
5553
5554         sprintf(msg, "resetting %s",
5555                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5556         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5557
5558         h->reset_in_progress = 1;
5559
5560         /* send a reset to the SCSI LUN which the command was sent to */
5561         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5562                            DEFAULT_REPLY_QUEUE);
5563         sprintf(msg, "reset %s %s",
5564                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5565                 rc == 0 ? "completed successfully" : "failed");
5566         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5567         h->reset_in_progress = 0;
5568         return rc == 0 ? SUCCESS : FAILED;
5569 }
5570
5571 static void swizzle_abort_tag(u8 *tag)
5572 {
5573         u8 original_tag[8];
5574
5575         memcpy(original_tag, tag, 8);
5576         tag[0] = original_tag[3];
5577         tag[1] = original_tag[2];
5578         tag[2] = original_tag[1];
5579         tag[3] = original_tag[0];
5580         tag[4] = original_tag[7];
5581         tag[5] = original_tag[6];
5582         tag[6] = original_tag[5];
5583         tag[7] = original_tag[4];
5584 }
5585
5586 static void hpsa_get_tag(struct ctlr_info *h,
5587         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5588 {
5589         u64 tag;
5590         if (c->cmd_type == CMD_IOACCEL1) {
5591                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5592                         &h->ioaccel_cmd_pool[c->cmdindex];
5593                 tag = le64_to_cpu(cm1->tag);
5594                 *tagupper = cpu_to_le32(tag >> 32);
5595                 *taglower = cpu_to_le32(tag);
5596                 return;
5597         }
5598         if (c->cmd_type == CMD_IOACCEL2) {
5599                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5600                         &h->ioaccel2_cmd_pool[c->cmdindex];
5601                 /* upper tag not used in ioaccel2 mode */
5602                 memset(tagupper, 0, sizeof(*tagupper));
5603                 *taglower = cm2->Tag;
5604                 return;
5605         }
5606         tag = le64_to_cpu(c->Header.tag);
5607         *tagupper = cpu_to_le32(tag >> 32);
5608         *taglower = cpu_to_le32(tag);
5609 }
5610
5611 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5612         struct CommandList *abort, int reply_queue)
5613 {
5614         int rc = IO_OK;
5615         struct CommandList *c;
5616         struct ErrorInfo *ei;
5617         __le32 tagupper, taglower;
5618
5619         c = cmd_alloc(h);
5620
5621         /* fill_cmd can't fail here, no buffer to map */
5622         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5623                 0, 0, scsi3addr, TYPE_MSG);
5624         if (h->needs_abort_tags_swizzled)
5625                 swizzle_abort_tag(&c->Request.CDB[4]);
5626         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5627         hpsa_get_tag(h, abort, &taglower, &tagupper);
5628         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5629                 __func__, tagupper, taglower);
5630         /* no unmap needed here because no data xfer. */
5631
5632         ei = c->err_info;
5633         switch (ei->CommandStatus) {
5634         case CMD_SUCCESS:
5635                 break;
5636         case CMD_TMF_STATUS:
5637                 rc = hpsa_evaluate_tmf_status(h, c);
5638                 break;
5639         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5640                 rc = -1;
5641                 break;
5642         default:
5643                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5644                         __func__, tagupper, taglower);
5645                 hpsa_scsi_interpret_error(h, c);
5646                 rc = -1;
5647                 break;
5648         }
5649         cmd_free(h, c);
5650         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5651                 __func__, tagupper, taglower);
5652         return rc;
5653 }
5654
5655 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5656         struct CommandList *command_to_abort, int reply_queue)
5657 {
5658         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5659         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5660         struct io_accel2_cmd *c2a =
5661                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5662         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5663         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5664
5665         /*
5666          * We're overlaying struct hpsa_tmf_struct on top of something which
5667          * was allocated as a struct io_accel2_cmd, so we better be sure it
5668          * actually fits, and doesn't overrun the error info space.
5669          */
5670         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5671                         sizeof(struct io_accel2_cmd));
5672         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5673                         offsetof(struct hpsa_tmf_struct, error_len) +
5674                                 sizeof(ac->error_len));
5675
5676         c->cmd_type = IOACCEL2_TMF;
5677         c->scsi_cmd = SCSI_CMD_BUSY;
5678
5679         /* Adjust the DMA address to point to the accelerated command buffer */
5680         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5681                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5682         BUG_ON(c->busaddr & 0x0000007F);
5683
5684         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5685         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5686         ac->reply_queue = reply_queue;
5687         ac->tmf = IOACCEL2_TMF_ABORT;
5688         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5689         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5690         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5691         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5692         ac->error_ptr = cpu_to_le64(c->busaddr +
5693                         offsetof(struct io_accel2_cmd, error_data));
5694         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5695 }
5696
5697 /* ioaccel2 path firmware cannot handle abort task requests.
5698  * Change abort requests to physical target reset, and send to the
5699  * address of the physical disk used for the ioaccel 2 command.
5700  * Return 0 on success (IO_OK)
5701  *       -1 on failure
5702  */
5703
5704 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5705         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5706 {
5707         int rc = IO_OK;
5708         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5709         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5710         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5711         unsigned char *psa = &phys_scsi3addr[0];
5712
5713         /* Get a pointer to the hpsa logical device. */
5714         scmd = abort->scsi_cmd;
5715         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5716         if (dev == NULL) {
5717                 dev_warn(&h->pdev->dev,
5718                         "Cannot abort: no device pointer for command.\n");
5719                         return -1; /* not abortable */
5720         }
5721
5722         if (h->raid_offload_debug > 0)
5723                 dev_info(&h->pdev->dev,
5724                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5725                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5726                         "Reset as abort",
5727                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5728                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5729
5730         if (!dev->offload_enabled) {
5731                 dev_warn(&h->pdev->dev,
5732                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5733                 return -1; /* not abortable */
5734         }
5735
5736         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5737         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5738                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5739                 return -1; /* not abortable */
5740         }
5741
5742         /* send the reset */
5743         if (h->raid_offload_debug > 0)
5744                 dev_info(&h->pdev->dev,
5745                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5746                         psa[0], psa[1], psa[2], psa[3],
5747                         psa[4], psa[5], psa[6], psa[7]);
5748         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5749         if (rc != 0) {
5750                 dev_warn(&h->pdev->dev,
5751                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5752                         psa[0], psa[1], psa[2], psa[3],
5753                         psa[4], psa[5], psa[6], psa[7]);
5754                 return rc; /* failed to reset */
5755         }
5756
5757         /* wait for device to recover */
5758         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5759                 dev_warn(&h->pdev->dev,
5760                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5761                         psa[0], psa[1], psa[2], psa[3],
5762                         psa[4], psa[5], psa[6], psa[7]);
5763                 return -1;  /* failed to recover */
5764         }
5765
5766         /* device recovered */
5767         dev_info(&h->pdev->dev,
5768                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5769                 psa[0], psa[1], psa[2], psa[3],
5770                 psa[4], psa[5], psa[6], psa[7]);
5771
5772         return rc; /* success */
5773 }
5774
5775 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5776         struct CommandList *abort, int reply_queue)
5777 {
5778         int rc = IO_OK;
5779         struct CommandList *c;
5780         __le32 taglower, tagupper;
5781         struct hpsa_scsi_dev_t *dev;
5782         struct io_accel2_cmd *c2;
5783
5784         dev = abort->scsi_cmd->device->hostdata;
5785         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5786                 return -1;
5787
5788         c = cmd_alloc(h);
5789         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5790         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5791         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5792         hpsa_get_tag(h, abort, &taglower, &tagupper);
5793         dev_dbg(&h->pdev->dev,
5794                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5795                 __func__, tagupper, taglower);
5796         /* no unmap needed here because no data xfer. */
5797
5798         dev_dbg(&h->pdev->dev,
5799                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5800                 __func__, tagupper, taglower, c2->error_data.serv_response);
5801         switch (c2->error_data.serv_response) {
5802         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5803         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5804                 rc = 0;
5805                 break;
5806         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5807         case IOACCEL2_SERV_RESPONSE_FAILURE:
5808         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5809                 rc = -1;
5810                 break;
5811         default:
5812                 dev_warn(&h->pdev->dev,
5813                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5814                         __func__, tagupper, taglower,
5815                         c2->error_data.serv_response);
5816                 rc = -1;
5817         }
5818         cmd_free(h, c);
5819         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5820                 tagupper, taglower);
5821         return rc;
5822 }
5823
5824 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5825         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5826 {
5827         /*
5828          * ioccelerator mode 2 commands should be aborted via the
5829          * accelerated path, since RAID path is unaware of these commands,
5830          * but not all underlying firmware can handle abort TMF.
5831          * Change abort to physical device reset when abort TMF is unsupported.
5832          */
5833         if (abort->cmd_type == CMD_IOACCEL2) {
5834                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5835                         return hpsa_send_abort_ioaccel2(h, abort,
5836                                                 reply_queue);
5837                 else
5838                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5839                                                         abort, reply_queue);
5840         }
5841         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5842 }
5843
5844 /* Find out which reply queue a command was meant to return on */
5845 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5846                                         struct CommandList *c)
5847 {
5848         if (c->cmd_type == CMD_IOACCEL2)
5849                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5850         return c->Header.ReplyQueue;
5851 }
5852
5853 /*
5854  * Limit concurrency of abort commands to prevent
5855  * over-subscription of commands
5856  */
5857 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5858 {
5859 #define ABORT_CMD_WAIT_MSECS 5000
5860         return !wait_event_timeout(h->abort_cmd_wait_queue,
5861                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5862                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5863 }
5864
5865 /* Send an abort for the specified command.
5866  *      If the device and controller support it,
5867  *              send a task abort request.
5868  */
5869 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5870 {
5871
5872         int rc;
5873         struct ctlr_info *h;
5874         struct hpsa_scsi_dev_t *dev;
5875         struct CommandList *abort; /* pointer to command to be aborted */
5876         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5877         char msg[256];          /* For debug messaging. */
5878         int ml = 0;
5879         __le32 tagupper, taglower;
5880         int refcount, reply_queue;
5881
5882         if (sc == NULL)
5883                 return FAILED;
5884
5885         if (sc->device == NULL)
5886                 return FAILED;
5887
5888         /* Find the controller of the command to be aborted */
5889         h = sdev_to_hba(sc->device);
5890         if (h == NULL)
5891                 return FAILED;
5892
5893         /* Find the device of the command to be aborted */
5894         dev = sc->device->hostdata;
5895         if (!dev) {
5896                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5897                                 msg);
5898                 return FAILED;
5899         }
5900
5901         /* If controller locked up, we can guarantee command won't complete */
5902         if (lockup_detected(h)) {
5903                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5904                                         "ABORT FAILED, lockup detected");
5905                 return FAILED;
5906         }
5907
5908         /* This is a good time to check if controller lockup has occurred */
5909         if (detect_controller_lockup(h)) {
5910                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5911                                         "ABORT FAILED, new lockup detected");
5912                 return FAILED;
5913         }
5914
5915         /* Check that controller supports some kind of task abort */
5916         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5917                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5918                 return FAILED;
5919
5920         memset(msg, 0, sizeof(msg));
5921         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5922                 h->scsi_host->host_no, sc->device->channel,
5923                 sc->device->id, sc->device->lun,
5924                 "Aborting command", sc);
5925
5926         /* Get SCSI command to be aborted */
5927         abort = (struct CommandList *) sc->host_scribble;
5928         if (abort == NULL) {
5929                 /* This can happen if the command already completed. */
5930                 return SUCCESS;
5931         }
5932         refcount = atomic_inc_return(&abort->refcount);
5933         if (refcount == 1) { /* Command is done already. */
5934                 cmd_free(h, abort);
5935                 return SUCCESS;
5936         }
5937
5938         /* Don't bother trying the abort if we know it won't work. */
5939         if (abort->cmd_type != CMD_IOACCEL2 &&
5940                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5941                 cmd_free(h, abort);
5942                 return FAILED;
5943         }
5944
5945         /*
5946          * Check that we're aborting the right command.
5947          * It's possible the CommandList already completed and got re-used.
5948          */
5949         if (abort->scsi_cmd != sc) {
5950                 cmd_free(h, abort);
5951                 return SUCCESS;
5952         }
5953
5954         abort->abort_pending = true;
5955         hpsa_get_tag(h, abort, &taglower, &tagupper);
5956         reply_queue = hpsa_extract_reply_queue(h, abort);
5957         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5958         as  = abort->scsi_cmd;
5959         if (as != NULL)
5960                 ml += sprintf(msg+ml,
5961                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5962                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5963                         as->serial_number);
5964         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5965         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5966
5967         /*
5968          * Command is in flight, or possibly already completed
5969          * by the firmware (but not to the scsi mid layer) but we can't
5970          * distinguish which.  Send the abort down.
5971          */
5972         if (wait_for_available_abort_cmd(h)) {
5973                 dev_warn(&h->pdev->dev,
5974                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5975                         msg);
5976                 cmd_free(h, abort);
5977                 return FAILED;
5978         }
5979         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5980         atomic_inc(&h->abort_cmds_available);
5981         wake_up_all(&h->abort_cmd_wait_queue);
5982         if (rc != 0) {
5983                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5984                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5985                                 "FAILED to abort command");
5986                 cmd_free(h, abort);
5987                 return FAILED;
5988         }
5989         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5990         wait_event(h->event_sync_wait_queue,
5991                    abort->scsi_cmd != sc || lockup_detected(h));
5992         cmd_free(h, abort);
5993         return !lockup_detected(h) ? SUCCESS : FAILED;
5994 }
5995
5996 /*
5997  * For operations with an associated SCSI command, a command block is allocated
5998  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5999  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6000  * the complement, although cmd_free() may be called instead.
6001  */
6002 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6003                                             struct scsi_cmnd *scmd)
6004 {
6005         int idx = hpsa_get_cmd_index(scmd);
6006         struct CommandList *c = h->cmd_pool + idx;
6007
6008         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6009                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6010                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6011                 /* The index value comes from the block layer, so if it's out of
6012                  * bounds, it's probably not our bug.
6013                  */
6014                 BUG();
6015         }
6016
6017         atomic_inc(&c->refcount);
6018         if (unlikely(!hpsa_is_cmd_idle(c))) {
6019                 /*
6020                  * We expect that the SCSI layer will hand us a unique tag
6021                  * value.  Thus, there should never be a collision here between
6022                  * two requests...because if the selected command isn't idle
6023                  * then someone is going to be very disappointed.
6024                  */
6025                 dev_err(&h->pdev->dev,
6026                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6027                         idx);
6028                 if (c->scsi_cmd != NULL)
6029                         scsi_print_command(c->scsi_cmd);
6030                 scsi_print_command(scmd);
6031         }
6032
6033         hpsa_cmd_partial_init(h, idx, c);
6034         return c;
6035 }
6036
6037 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6038 {
6039         /*
6040          * Release our reference to the block.  We don't need to do anything
6041          * else to free it, because it is accessed by index.  (There's no point
6042          * in checking the result of the decrement, since we cannot guarantee
6043          * that there isn't a concurrent abort which is also accessing it.)
6044          */
6045         (void)atomic_dec(&c->refcount);
6046 }
6047
6048 /*
6049  * For operations that cannot sleep, a command block is allocated at init,
6050  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6051  * which ones are free or in use.  Lock must be held when calling this.
6052  * cmd_free() is the complement.
6053  * This function never gives up and returns NULL.  If it hangs,
6054  * another thread must call cmd_free() to free some tags.
6055  */
6056
6057 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6058 {
6059         struct CommandList *c;
6060         int refcount, i;
6061         int offset = 0;
6062
6063         /*
6064          * There is some *extremely* small but non-zero chance that that
6065          * multiple threads could get in here, and one thread could
6066          * be scanning through the list of bits looking for a free
6067          * one, but the free ones are always behind him, and other
6068          * threads sneak in behind him and eat them before he can
6069          * get to them, so that while there is always a free one, a
6070          * very unlucky thread might be starved anyway, never able to
6071          * beat the other threads.  In reality, this happens so
6072          * infrequently as to be indistinguishable from never.
6073          *
6074          * Note that we start allocating commands before the SCSI host structure
6075          * is initialized.  Since the search starts at bit zero, this
6076          * all works, since we have at least one command structure available;
6077          * however, it means that the structures with the low indexes have to be
6078          * reserved for driver-initiated requests, while requests from the block
6079          * layer will use the higher indexes.
6080          */
6081
6082         for (;;) {
6083                 i = find_next_zero_bit(h->cmd_pool_bits,
6084                                         HPSA_NRESERVED_CMDS,
6085                                         offset);
6086                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6087                         offset = 0;
6088                         continue;
6089                 }
6090                 c = h->cmd_pool + i;
6091                 refcount = atomic_inc_return(&c->refcount);
6092                 if (unlikely(refcount > 1)) {
6093                         cmd_free(h, c); /* already in use */
6094                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6095                         continue;
6096                 }
6097                 set_bit(i & (BITS_PER_LONG - 1),
6098                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6099                 break; /* it's ours now. */
6100         }
6101         hpsa_cmd_partial_init(h, i, c);
6102         return c;
6103 }
6104
6105 /*
6106  * This is the complementary operation to cmd_alloc().  Note, however, in some
6107  * corner cases it may also be used to free blocks allocated by
6108  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6109  * the clear-bit is harmless.
6110  */
6111 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6112 {
6113         if (atomic_dec_and_test(&c->refcount)) {
6114                 int i;
6115
6116                 i = c - h->cmd_pool;
6117                 clear_bit(i & (BITS_PER_LONG - 1),
6118                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6119         }
6120 }
6121
6122 #ifdef CONFIG_COMPAT
6123
6124 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6125         void __user *arg)
6126 {
6127         IOCTL32_Command_struct __user *arg32 =
6128             (IOCTL32_Command_struct __user *) arg;
6129         IOCTL_Command_struct arg64;
6130         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6131         int err;
6132         u32 cp;
6133
6134         memset(&arg64, 0, sizeof(arg64));
6135         err = 0;
6136         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6137                            sizeof(arg64.LUN_info));
6138         err |= copy_from_user(&arg64.Request, &arg32->Request,
6139                            sizeof(arg64.Request));
6140         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6141                            sizeof(arg64.error_info));
6142         err |= get_user(arg64.buf_size, &arg32->buf_size);
6143         err |= get_user(cp, &arg32->buf);
6144         arg64.buf = compat_ptr(cp);
6145         err |= copy_to_user(p, &arg64, sizeof(arg64));
6146
6147         if (err)
6148                 return -EFAULT;
6149
6150         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6151         if (err)
6152                 return err;
6153         err |= copy_in_user(&arg32->error_info, &p->error_info,
6154                          sizeof(arg32->error_info));
6155         if (err)
6156                 return -EFAULT;
6157         return err;
6158 }
6159
6160 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6161         int cmd, void __user *arg)
6162 {
6163         BIG_IOCTL32_Command_struct __user *arg32 =
6164             (BIG_IOCTL32_Command_struct __user *) arg;
6165         BIG_IOCTL_Command_struct arg64;
6166         BIG_IOCTL_Command_struct __user *p =
6167             compat_alloc_user_space(sizeof(arg64));
6168         int err;
6169         u32 cp;
6170
6171         memset(&arg64, 0, sizeof(arg64));
6172         err = 0;
6173         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6174                            sizeof(arg64.LUN_info));
6175         err |= copy_from_user(&arg64.Request, &arg32->Request,
6176                            sizeof(arg64.Request));
6177         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6178                            sizeof(arg64.error_info));
6179         err |= get_user(arg64.buf_size, &arg32->buf_size);
6180         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6181         err |= get_user(cp, &arg32->buf);
6182         arg64.buf = compat_ptr(cp);
6183         err |= copy_to_user(p, &arg64, sizeof(arg64));
6184
6185         if (err)
6186                 return -EFAULT;
6187
6188         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6189         if (err)
6190                 return err;
6191         err |= copy_in_user(&arg32->error_info, &p->error_info,
6192                          sizeof(arg32->error_info));
6193         if (err)
6194                 return -EFAULT;
6195         return err;
6196 }
6197
6198 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6199 {
6200         switch (cmd) {
6201         case CCISS_GETPCIINFO:
6202         case CCISS_GETINTINFO:
6203         case CCISS_SETINTINFO:
6204         case CCISS_GETNODENAME:
6205         case CCISS_SETNODENAME:
6206         case CCISS_GETHEARTBEAT:
6207         case CCISS_GETBUSTYPES:
6208         case CCISS_GETFIRMVER:
6209         case CCISS_GETDRIVVER:
6210         case CCISS_REVALIDVOLS:
6211         case CCISS_DEREGDISK:
6212         case CCISS_REGNEWDISK:
6213         case CCISS_REGNEWD:
6214         case CCISS_RESCANDISK:
6215         case CCISS_GETLUNINFO:
6216                 return hpsa_ioctl(dev, cmd, arg);
6217
6218         case CCISS_PASSTHRU32:
6219                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6220         case CCISS_BIG_PASSTHRU32:
6221                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6222
6223         default:
6224                 return -ENOIOCTLCMD;
6225         }
6226 }
6227 #endif
6228
6229 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6230 {
6231         struct hpsa_pci_info pciinfo;
6232
6233         if (!argp)
6234                 return -EINVAL;
6235         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6236         pciinfo.bus = h->pdev->bus->number;
6237         pciinfo.dev_fn = h->pdev->devfn;
6238         pciinfo.board_id = h->board_id;
6239         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6240                 return -EFAULT;
6241         return 0;
6242 }
6243
6244 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6245 {
6246         DriverVer_type DriverVer;
6247         unsigned char vmaj, vmin, vsubmin;
6248         int rc;
6249
6250         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6251                 &vmaj, &vmin, &vsubmin);
6252         if (rc != 3) {
6253                 dev_info(&h->pdev->dev, "driver version string '%s' "
6254                         "unrecognized.", HPSA_DRIVER_VERSION);
6255                 vmaj = 0;
6256                 vmin = 0;
6257                 vsubmin = 0;
6258         }
6259         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6260         if (!argp)
6261                 return -EINVAL;
6262         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6263                 return -EFAULT;
6264         return 0;
6265 }
6266
6267 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6268 {
6269         IOCTL_Command_struct iocommand;
6270         struct CommandList *c;
6271         char *buff = NULL;
6272         u64 temp64;
6273         int rc = 0;
6274
6275         if (!argp)
6276                 return -EINVAL;
6277         if (!capable(CAP_SYS_RAWIO))
6278                 return -EPERM;
6279         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6280                 return -EFAULT;
6281         if ((iocommand.buf_size < 1) &&
6282             (iocommand.Request.Type.Direction != XFER_NONE)) {
6283                 return -EINVAL;
6284         }
6285         if (iocommand.buf_size > 0) {
6286                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6287                 if (buff == NULL)
6288                         return -ENOMEM;
6289                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6290                         /* Copy the data into the buffer we created */
6291                         if (copy_from_user(buff, iocommand.buf,
6292                                 iocommand.buf_size)) {
6293                                 rc = -EFAULT;
6294                                 goto out_kfree;
6295                         }
6296                 } else {
6297                         memset(buff, 0, iocommand.buf_size);
6298                 }
6299         }
6300         c = cmd_alloc(h);
6301
6302         /* Fill in the command type */
6303         c->cmd_type = CMD_IOCTL_PEND;
6304         c->scsi_cmd = SCSI_CMD_BUSY;
6305         /* Fill in Command Header */
6306         c->Header.ReplyQueue = 0; /* unused in simple mode */
6307         if (iocommand.buf_size > 0) {   /* buffer to fill */
6308                 c->Header.SGList = 1;
6309                 c->Header.SGTotal = cpu_to_le16(1);
6310         } else  { /* no buffers to fill */
6311                 c->Header.SGList = 0;
6312                 c->Header.SGTotal = cpu_to_le16(0);
6313         }
6314         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6315
6316         /* Fill in Request block */
6317         memcpy(&c->Request, &iocommand.Request,
6318                 sizeof(c->Request));
6319
6320         /* Fill in the scatter gather information */
6321         if (iocommand.buf_size > 0) {
6322                 temp64 = pci_map_single(h->pdev, buff,
6323                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6324                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6325                         c->SG[0].Addr = cpu_to_le64(0);
6326                         c->SG[0].Len = cpu_to_le32(0);
6327                         rc = -ENOMEM;
6328                         goto out;
6329                 }
6330                 c->SG[0].Addr = cpu_to_le64(temp64);
6331                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6332                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6333         }
6334         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6335         if (iocommand.buf_size > 0)
6336                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6337         check_ioctl_unit_attention(h, c);
6338         if (rc) {
6339                 rc = -EIO;
6340                 goto out;
6341         }
6342
6343         /* Copy the error information out */
6344         memcpy(&iocommand.error_info, c->err_info,
6345                 sizeof(iocommand.error_info));
6346         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6347                 rc = -EFAULT;
6348                 goto out;
6349         }
6350         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6351                 iocommand.buf_size > 0) {
6352                 /* Copy the data out of the buffer we created */
6353                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6354                         rc = -EFAULT;
6355                         goto out;
6356                 }
6357         }
6358 out:
6359         cmd_free(h, c);
6360 out_kfree:
6361         kfree(buff);
6362         return rc;
6363 }
6364
6365 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6366 {
6367         BIG_IOCTL_Command_struct *ioc;
6368         struct CommandList *c;
6369         unsigned char **buff = NULL;
6370         int *buff_size = NULL;
6371         u64 temp64;
6372         BYTE sg_used = 0;
6373         int status = 0;
6374         u32 left;
6375         u32 sz;
6376         BYTE __user *data_ptr;
6377
6378         if (!argp)
6379                 return -EINVAL;
6380         if (!capable(CAP_SYS_RAWIO))
6381                 return -EPERM;
6382         ioc = (BIG_IOCTL_Command_struct *)
6383             kmalloc(sizeof(*ioc), GFP_KERNEL);
6384         if (!ioc) {
6385                 status = -ENOMEM;
6386                 goto cleanup1;
6387         }
6388         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6389                 status = -EFAULT;
6390                 goto cleanup1;
6391         }
6392         if ((ioc->buf_size < 1) &&
6393             (ioc->Request.Type.Direction != XFER_NONE)) {
6394                 status = -EINVAL;
6395                 goto cleanup1;
6396         }
6397         /* Check kmalloc limits  using all SGs */
6398         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6399                 status = -EINVAL;
6400                 goto cleanup1;
6401         }
6402         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6403                 status = -EINVAL;
6404                 goto cleanup1;
6405         }
6406         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6407         if (!buff) {
6408                 status = -ENOMEM;
6409                 goto cleanup1;
6410         }
6411         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6412         if (!buff_size) {
6413                 status = -ENOMEM;
6414                 goto cleanup1;
6415         }
6416         left = ioc->buf_size;
6417         data_ptr = ioc->buf;
6418         while (left) {
6419                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6420                 buff_size[sg_used] = sz;
6421                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6422                 if (buff[sg_used] == NULL) {
6423                         status = -ENOMEM;
6424                         goto cleanup1;
6425                 }
6426                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6427                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6428                                 status = -EFAULT;
6429                                 goto cleanup1;
6430                         }
6431                 } else
6432                         memset(buff[sg_used], 0, sz);
6433                 left -= sz;
6434                 data_ptr += sz;
6435                 sg_used++;
6436         }
6437         c = cmd_alloc(h);
6438
6439         c->cmd_type = CMD_IOCTL_PEND;
6440         c->scsi_cmd = SCSI_CMD_BUSY;
6441         c->Header.ReplyQueue = 0;
6442         c->Header.SGList = (u8) sg_used;
6443         c->Header.SGTotal = cpu_to_le16(sg_used);
6444         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6445         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6446         if (ioc->buf_size > 0) {
6447                 int i;
6448                 for (i = 0; i < sg_used; i++) {
6449                         temp64 = pci_map_single(h->pdev, buff[i],
6450                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6451                         if (dma_mapping_error(&h->pdev->dev,
6452                                                         (dma_addr_t) temp64)) {
6453                                 c->SG[i].Addr = cpu_to_le64(0);
6454                                 c->SG[i].Len = cpu_to_le32(0);
6455                                 hpsa_pci_unmap(h->pdev, c, i,
6456                                         PCI_DMA_BIDIRECTIONAL);
6457                                 status = -ENOMEM;
6458                                 goto cleanup0;
6459                         }
6460                         c->SG[i].Addr = cpu_to_le64(temp64);
6461                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6462                         c->SG[i].Ext = cpu_to_le32(0);
6463                 }
6464                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6465         }
6466         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6467         if (sg_used)
6468                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6469         check_ioctl_unit_attention(h, c);
6470         if (status) {
6471                 status = -EIO;
6472                 goto cleanup0;
6473         }
6474
6475         /* Copy the error information out */
6476         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6477         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6478                 status = -EFAULT;
6479                 goto cleanup0;
6480         }
6481         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6482                 int i;
6483
6484                 /* Copy the data out of the buffer we created */
6485                 BYTE __user *ptr = ioc->buf;
6486                 for (i = 0; i < sg_used; i++) {
6487                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6488                                 status = -EFAULT;
6489                                 goto cleanup0;
6490                         }
6491                         ptr += buff_size[i];
6492                 }
6493         }
6494         status = 0;
6495 cleanup0:
6496         cmd_free(h, c);
6497 cleanup1:
6498         if (buff) {
6499                 int i;
6500
6501                 for (i = 0; i < sg_used; i++)
6502                         kfree(buff[i]);
6503                 kfree(buff);
6504         }
6505         kfree(buff_size);
6506         kfree(ioc);
6507         return status;
6508 }
6509
6510 static void check_ioctl_unit_attention(struct ctlr_info *h,
6511         struct CommandList *c)
6512 {
6513         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6514                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6515                 (void) check_for_unit_attention(h, c);
6516 }
6517
6518 /*
6519  * ioctl
6520  */
6521 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6522 {
6523         struct ctlr_info *h;
6524         void __user *argp = (void __user *)arg;
6525         int rc;
6526
6527         h = sdev_to_hba(dev);
6528
6529         switch (cmd) {
6530         case CCISS_DEREGDISK:
6531         case CCISS_REGNEWDISK:
6532         case CCISS_REGNEWD:
6533                 hpsa_scan_start(h->scsi_host);
6534                 return 0;
6535         case CCISS_GETPCIINFO:
6536                 return hpsa_getpciinfo_ioctl(h, argp);
6537         case CCISS_GETDRIVVER:
6538                 return hpsa_getdrivver_ioctl(h, argp);
6539         case CCISS_PASSTHRU:
6540                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6541                         return -EAGAIN;
6542                 rc = hpsa_passthru_ioctl(h, argp);
6543                 atomic_inc(&h->passthru_cmds_avail);
6544                 return rc;
6545         case CCISS_BIG_PASSTHRU:
6546                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547                         return -EAGAIN;
6548                 rc = hpsa_big_passthru_ioctl(h, argp);
6549                 atomic_inc(&h->passthru_cmds_avail);
6550                 return rc;
6551         default:
6552                 return -ENOTTY;
6553         }
6554 }
6555
6556 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6557                                 u8 reset_type)
6558 {
6559         struct CommandList *c;
6560
6561         c = cmd_alloc(h);
6562
6563         /* fill_cmd can't fail here, no data buffer to map */
6564         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6565                 RAID_CTLR_LUNID, TYPE_MSG);
6566         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6567         c->waiting = NULL;
6568         enqueue_cmd_and_start_io(h, c);
6569         /* Don't wait for completion, the reset won't complete.  Don't free
6570          * the command either.  This is the last command we will send before
6571          * re-initializing everything, so it doesn't matter and won't leak.
6572          */
6573         return;
6574 }
6575
6576 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6577         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6578         int cmd_type)
6579 {
6580         int pci_dir = XFER_NONE;
6581         u64 tag; /* for commands to be aborted */
6582
6583         c->cmd_type = CMD_IOCTL_PEND;
6584         c->scsi_cmd = SCSI_CMD_BUSY;
6585         c->Header.ReplyQueue = 0;
6586         if (buff != NULL && size > 0) {
6587                 c->Header.SGList = 1;
6588                 c->Header.SGTotal = cpu_to_le16(1);
6589         } else {
6590                 c->Header.SGList = 0;
6591                 c->Header.SGTotal = cpu_to_le16(0);
6592         }
6593         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6594
6595         if (cmd_type == TYPE_CMD) {
6596                 switch (cmd) {
6597                 case HPSA_INQUIRY:
6598                         /* are we trying to read a vital product page */
6599                         if (page_code & VPD_PAGE) {
6600                                 c->Request.CDB[1] = 0x01;
6601                                 c->Request.CDB[2] = (page_code & 0xff);
6602                         }
6603                         c->Request.CDBLen = 6;
6604                         c->Request.type_attr_dir =
6605                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6606                         c->Request.Timeout = 0;
6607                         c->Request.CDB[0] = HPSA_INQUIRY;
6608                         c->Request.CDB[4] = size & 0xFF;
6609                         break;
6610                 case HPSA_REPORT_LOG:
6611                 case HPSA_REPORT_PHYS:
6612                         /* Talking to controller so It's a physical command
6613                            mode = 00 target = 0.  Nothing to write.
6614                          */
6615                         c->Request.CDBLen = 12;
6616                         c->Request.type_attr_dir =
6617                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6618                         c->Request.Timeout = 0;
6619                         c->Request.CDB[0] = cmd;
6620                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6621                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6622                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6623                         c->Request.CDB[9] = size & 0xFF;
6624                         break;
6625                 case BMIC_SENSE_DIAG_OPTIONS:
6626                         c->Request.CDBLen = 16;
6627                         c->Request.type_attr_dir =
6628                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6629                         c->Request.Timeout = 0;
6630                         /* Spec says this should be BMIC_WRITE */
6631                         c->Request.CDB[0] = BMIC_READ;
6632                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6633                         break;
6634                 case BMIC_SET_DIAG_OPTIONS:
6635                         c->Request.CDBLen = 16;
6636                         c->Request.type_attr_dir =
6637                                         TYPE_ATTR_DIR(cmd_type,
6638                                                 ATTR_SIMPLE, XFER_WRITE);
6639                         c->Request.Timeout = 0;
6640                         c->Request.CDB[0] = BMIC_WRITE;
6641                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6642                         break;
6643                 case HPSA_CACHE_FLUSH:
6644                         c->Request.CDBLen = 12;
6645                         c->Request.type_attr_dir =
6646                                         TYPE_ATTR_DIR(cmd_type,
6647                                                 ATTR_SIMPLE, XFER_WRITE);
6648                         c->Request.Timeout = 0;
6649                         c->Request.CDB[0] = BMIC_WRITE;
6650                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6651                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6652                         c->Request.CDB[8] = size & 0xFF;
6653                         break;
6654                 case TEST_UNIT_READY:
6655                         c->Request.CDBLen = 6;
6656                         c->Request.type_attr_dir =
6657                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6658                         c->Request.Timeout = 0;
6659                         break;
6660                 case HPSA_GET_RAID_MAP:
6661                         c->Request.CDBLen = 12;
6662                         c->Request.type_attr_dir =
6663                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6664                         c->Request.Timeout = 0;
6665                         c->Request.CDB[0] = HPSA_CISS_READ;
6666                         c->Request.CDB[1] = cmd;
6667                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6668                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6669                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6670                         c->Request.CDB[9] = size & 0xFF;
6671                         break;
6672                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6673                         c->Request.CDBLen = 10;
6674                         c->Request.type_attr_dir =
6675                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6676                         c->Request.Timeout = 0;
6677                         c->Request.CDB[0] = BMIC_READ;
6678                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6679                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6680                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6681                         break;
6682                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6683                         c->Request.CDBLen = 10;
6684                         c->Request.type_attr_dir =
6685                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6686                         c->Request.Timeout = 0;
6687                         c->Request.CDB[0] = BMIC_READ;
6688                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6689                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6690                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6691                         break;
6692                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6693                         c->Request.CDBLen = 10;
6694                         c->Request.type_attr_dir =
6695                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696                         c->Request.Timeout = 0;
6697                         c->Request.CDB[0] = BMIC_READ;
6698                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6699                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6700                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6701                         break;
6702                 case BMIC_IDENTIFY_CONTROLLER:
6703                         c->Request.CDBLen = 10;
6704                         c->Request.type_attr_dir =
6705                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706                         c->Request.Timeout = 0;
6707                         c->Request.CDB[0] = BMIC_READ;
6708                         c->Request.CDB[1] = 0;
6709                         c->Request.CDB[2] = 0;
6710                         c->Request.CDB[3] = 0;
6711                         c->Request.CDB[4] = 0;
6712                         c->Request.CDB[5] = 0;
6713                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6714                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6715                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6716                         c->Request.CDB[9] = 0;
6717                         break;
6718                 default:
6719                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6720                         BUG();
6721                         return -1;
6722                 }
6723         } else if (cmd_type == TYPE_MSG) {
6724                 switch (cmd) {
6725
6726                 case  HPSA_PHYS_TARGET_RESET:
6727                         c->Request.CDBLen = 16;
6728                         c->Request.type_attr_dir =
6729                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6730                         c->Request.Timeout = 0; /* Don't time out */
6731                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6732                         c->Request.CDB[0] = HPSA_RESET;
6733                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6734                         /* Physical target reset needs no control bytes 4-7*/
6735                         c->Request.CDB[4] = 0x00;
6736                         c->Request.CDB[5] = 0x00;
6737                         c->Request.CDB[6] = 0x00;
6738                         c->Request.CDB[7] = 0x00;
6739                         break;
6740                 case  HPSA_DEVICE_RESET_MSG:
6741                         c->Request.CDBLen = 16;
6742                         c->Request.type_attr_dir =
6743                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6744                         c->Request.Timeout = 0; /* Don't time out */
6745                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6746                         c->Request.CDB[0] =  cmd;
6747                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6748                         /* If bytes 4-7 are zero, it means reset the */
6749                         /* LunID device */
6750                         c->Request.CDB[4] = 0x00;
6751                         c->Request.CDB[5] = 0x00;
6752                         c->Request.CDB[6] = 0x00;
6753                         c->Request.CDB[7] = 0x00;
6754                         break;
6755                 case  HPSA_ABORT_MSG:
6756                         memcpy(&tag, buff, sizeof(tag));
6757                         dev_dbg(&h->pdev->dev,
6758                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6759                                 tag, c->Header.tag);
6760                         c->Request.CDBLen = 16;
6761                         c->Request.type_attr_dir =
6762                                         TYPE_ATTR_DIR(cmd_type,
6763                                                 ATTR_SIMPLE, XFER_WRITE);
6764                         c->Request.Timeout = 0; /* Don't time out */
6765                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6766                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6767                         c->Request.CDB[2] = 0x00; /* reserved */
6768                         c->Request.CDB[3] = 0x00; /* reserved */
6769                         /* Tag to abort goes in CDB[4]-CDB[11] */
6770                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6771                         c->Request.CDB[12] = 0x00; /* reserved */
6772                         c->Request.CDB[13] = 0x00; /* reserved */
6773                         c->Request.CDB[14] = 0x00; /* reserved */
6774                         c->Request.CDB[15] = 0x00; /* reserved */
6775                 break;
6776                 default:
6777                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6778                                 cmd);
6779                         BUG();
6780                 }
6781         } else {
6782                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6783                 BUG();
6784         }
6785
6786         switch (GET_DIR(c->Request.type_attr_dir)) {
6787         case XFER_READ:
6788                 pci_dir = PCI_DMA_FROMDEVICE;
6789                 break;
6790         case XFER_WRITE:
6791                 pci_dir = PCI_DMA_TODEVICE;
6792                 break;
6793         case XFER_NONE:
6794                 pci_dir = PCI_DMA_NONE;
6795                 break;
6796         default:
6797                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6798         }
6799         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6800                 return -1;
6801         return 0;
6802 }
6803
6804 /*
6805  * Map (physical) PCI mem into (virtual) kernel space
6806  */
6807 static void __iomem *remap_pci_mem(ulong base, ulong size)
6808 {
6809         ulong page_base = ((ulong) base) & PAGE_MASK;
6810         ulong page_offs = ((ulong) base) - page_base;
6811         void __iomem *page_remapped = ioremap_nocache(page_base,
6812                 page_offs + size);
6813
6814         return page_remapped ? (page_remapped + page_offs) : NULL;
6815 }
6816
6817 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6818 {
6819         return h->access.command_completed(h, q);
6820 }
6821
6822 static inline bool interrupt_pending(struct ctlr_info *h)
6823 {
6824         return h->access.intr_pending(h);
6825 }
6826
6827 static inline long interrupt_not_for_us(struct ctlr_info *h)
6828 {
6829         return (h->access.intr_pending(h) == 0) ||
6830                 (h->interrupts_enabled == 0);
6831 }
6832
6833 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6834         u32 raw_tag)
6835 {
6836         if (unlikely(tag_index >= h->nr_cmds)) {
6837                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6838                 return 1;
6839         }
6840         return 0;
6841 }
6842
6843 static inline void finish_cmd(struct CommandList *c)
6844 {
6845         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6846         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6847                         || c->cmd_type == CMD_IOACCEL2))
6848                 complete_scsi_command(c);
6849         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6850                 complete(c->waiting);
6851 }
6852
6853 /* process completion of an indexed ("direct lookup") command */
6854 static inline void process_indexed_cmd(struct ctlr_info *h,
6855         u32 raw_tag)
6856 {
6857         u32 tag_index;
6858         struct CommandList *c;
6859
6860         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6861         if (!bad_tag(h, tag_index, raw_tag)) {
6862                 c = h->cmd_pool + tag_index;
6863                 finish_cmd(c);
6864         }
6865 }
6866
6867 /* Some controllers, like p400, will give us one interrupt
6868  * after a soft reset, even if we turned interrupts off.
6869  * Only need to check for this in the hpsa_xxx_discard_completions
6870  * functions.
6871  */
6872 static int ignore_bogus_interrupt(struct ctlr_info *h)
6873 {
6874         if (likely(!reset_devices))
6875                 return 0;
6876
6877         if (likely(h->interrupts_enabled))
6878                 return 0;
6879
6880         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6881                 "(known firmware bug.)  Ignoring.\n");
6882
6883         return 1;
6884 }
6885
6886 /*
6887  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6888  * Relies on (h-q[x] == x) being true for x such that
6889  * 0 <= x < MAX_REPLY_QUEUES.
6890  */
6891 static struct ctlr_info *queue_to_hba(u8 *queue)
6892 {
6893         return container_of((queue - *queue), struct ctlr_info, q[0]);
6894 }
6895
6896 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6897 {
6898         struct ctlr_info *h = queue_to_hba(queue);
6899         u8 q = *(u8 *) queue;
6900         u32 raw_tag;
6901
6902         if (ignore_bogus_interrupt(h))
6903                 return IRQ_NONE;
6904
6905         if (interrupt_not_for_us(h))
6906                 return IRQ_NONE;
6907         h->last_intr_timestamp = get_jiffies_64();
6908         while (interrupt_pending(h)) {
6909                 raw_tag = get_next_completion(h, q);
6910                 while (raw_tag != FIFO_EMPTY)
6911                         raw_tag = next_command(h, q);
6912         }
6913         return IRQ_HANDLED;
6914 }
6915
6916 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6917 {
6918         struct ctlr_info *h = queue_to_hba(queue);
6919         u32 raw_tag;
6920         u8 q = *(u8 *) queue;
6921
6922         if (ignore_bogus_interrupt(h))
6923                 return IRQ_NONE;
6924
6925         h->last_intr_timestamp = get_jiffies_64();
6926         raw_tag = get_next_completion(h, q);
6927         while (raw_tag != FIFO_EMPTY)
6928                 raw_tag = next_command(h, q);
6929         return IRQ_HANDLED;
6930 }
6931
6932 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6933 {
6934         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6935         u32 raw_tag;
6936         u8 q = *(u8 *) queue;
6937
6938         if (interrupt_not_for_us(h))
6939                 return IRQ_NONE;
6940         h->last_intr_timestamp = get_jiffies_64();
6941         while (interrupt_pending(h)) {
6942                 raw_tag = get_next_completion(h, q);
6943                 while (raw_tag != FIFO_EMPTY) {
6944                         process_indexed_cmd(h, raw_tag);
6945                         raw_tag = next_command(h, q);
6946                 }
6947         }
6948         return IRQ_HANDLED;
6949 }
6950
6951 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6952 {
6953         struct ctlr_info *h = queue_to_hba(queue);
6954         u32 raw_tag;
6955         u8 q = *(u8 *) queue;
6956
6957         h->last_intr_timestamp = get_jiffies_64();
6958         raw_tag = get_next_completion(h, q);
6959         while (raw_tag != FIFO_EMPTY) {
6960                 process_indexed_cmd(h, raw_tag);
6961                 raw_tag = next_command(h, q);
6962         }
6963         return IRQ_HANDLED;
6964 }
6965
6966 /* Send a message CDB to the firmware. Careful, this only works
6967  * in simple mode, not performant mode due to the tag lookup.
6968  * We only ever use this immediately after a controller reset.
6969  */
6970 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6971                         unsigned char type)
6972 {
6973         struct Command {
6974                 struct CommandListHeader CommandHeader;
6975                 struct RequestBlock Request;
6976                 struct ErrDescriptor ErrorDescriptor;
6977         };
6978         struct Command *cmd;
6979         static const size_t cmd_sz = sizeof(*cmd) +
6980                                         sizeof(cmd->ErrorDescriptor);
6981         dma_addr_t paddr64;
6982         __le32 paddr32;
6983         u32 tag;
6984         void __iomem *vaddr;
6985         int i, err;
6986
6987         vaddr = pci_ioremap_bar(pdev, 0);
6988         if (vaddr == NULL)
6989                 return -ENOMEM;
6990
6991         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6992          * CCISS commands, so they must be allocated from the lower 4GiB of
6993          * memory.
6994          */
6995         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6996         if (err) {
6997                 iounmap(vaddr);
6998                 return err;
6999         }
7000
7001         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7002         if (cmd == NULL) {
7003                 iounmap(vaddr);
7004                 return -ENOMEM;
7005         }
7006
7007         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7008          * although there's no guarantee, we assume that the address is at
7009          * least 4-byte aligned (most likely, it's page-aligned).
7010          */
7011         paddr32 = cpu_to_le32(paddr64);
7012
7013         cmd->CommandHeader.ReplyQueue = 0;
7014         cmd->CommandHeader.SGList = 0;
7015         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7016         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7017         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7018
7019         cmd->Request.CDBLen = 16;
7020         cmd->Request.type_attr_dir =
7021                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7022         cmd->Request.Timeout = 0; /* Don't time out */
7023         cmd->Request.CDB[0] = opcode;
7024         cmd->Request.CDB[1] = type;
7025         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7026         cmd->ErrorDescriptor.Addr =
7027                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7028         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7029
7030         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7031
7032         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7033                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7034                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7035                         break;
7036                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7037         }
7038
7039         iounmap(vaddr);
7040
7041         /* we leak the DMA buffer here ... no choice since the controller could
7042          *  still complete the command.
7043          */
7044         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7045                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7046                         opcode, type);
7047                 return -ETIMEDOUT;
7048         }
7049
7050         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7051
7052         if (tag & HPSA_ERROR_BIT) {
7053                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7054                         opcode, type);
7055                 return -EIO;
7056         }
7057
7058         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7059                 opcode, type);
7060         return 0;
7061 }
7062
7063 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7064
7065 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7066         void __iomem *vaddr, u32 use_doorbell)
7067 {
7068
7069         if (use_doorbell) {
7070                 /* For everything after the P600, the PCI power state method
7071                  * of resetting the controller doesn't work, so we have this
7072                  * other way using the doorbell register.
7073                  */
7074                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7075                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7076
7077                 /* PMC hardware guys tell us we need a 10 second delay after
7078                  * doorbell reset and before any attempt to talk to the board
7079                  * at all to ensure that this actually works and doesn't fall
7080                  * over in some weird corner cases.
7081                  */
7082                 msleep(10000);
7083         } else { /* Try to do it the PCI power state way */
7084
7085                 /* Quoting from the Open CISS Specification: "The Power
7086                  * Management Control/Status Register (CSR) controls the power
7087                  * state of the device.  The normal operating state is D0,
7088                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7089                  * the controller, place the interface device in D3 then to D0,
7090                  * this causes a secondary PCI reset which will reset the
7091                  * controller." */
7092
7093                 int rc = 0;
7094
7095                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7096
7097                 /* enter the D3hot power management state */
7098                 rc = pci_set_power_state(pdev, PCI_D3hot);
7099                 if (rc)
7100                         return rc;
7101
7102                 msleep(500);
7103
7104                 /* enter the D0 power management state */
7105                 rc = pci_set_power_state(pdev, PCI_D0);
7106                 if (rc)
7107                         return rc;
7108
7109                 /*
7110                  * The P600 requires a small delay when changing states.
7111                  * Otherwise we may think the board did not reset and we bail.
7112                  * This for kdump only and is particular to the P600.
7113                  */
7114                 msleep(500);
7115         }
7116         return 0;
7117 }
7118
7119 static void init_driver_version(char *driver_version, int len)
7120 {
7121         memset(driver_version, 0, len);
7122         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7123 }
7124
7125 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7126 {
7127         char *driver_version;
7128         int i, size = sizeof(cfgtable->driver_version);
7129
7130         driver_version = kmalloc(size, GFP_KERNEL);
7131         if (!driver_version)
7132                 return -ENOMEM;
7133
7134         init_driver_version(driver_version, size);
7135         for (i = 0; i < size; i++)
7136                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7137         kfree(driver_version);
7138         return 0;
7139 }
7140
7141 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7142                                           unsigned char *driver_ver)
7143 {
7144         int i;
7145
7146         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7147                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7148 }
7149
7150 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7151 {
7152
7153         char *driver_ver, *old_driver_ver;
7154         int rc, size = sizeof(cfgtable->driver_version);
7155
7156         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7157         if (!old_driver_ver)
7158                 return -ENOMEM;
7159         driver_ver = old_driver_ver + size;
7160
7161         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7162          * should have been changed, otherwise we know the reset failed.
7163          */
7164         init_driver_version(old_driver_ver, size);
7165         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7166         rc = !memcmp(driver_ver, old_driver_ver, size);
7167         kfree(old_driver_ver);
7168         return rc;
7169 }
7170 /* This does a hard reset of the controller using PCI power management
7171  * states or the using the doorbell register.
7172  */
7173 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7174 {
7175         u64 cfg_offset;
7176         u32 cfg_base_addr;
7177         u64 cfg_base_addr_index;
7178         void __iomem *vaddr;
7179         unsigned long paddr;
7180         u32 misc_fw_support;
7181         int rc;
7182         struct CfgTable __iomem *cfgtable;
7183         u32 use_doorbell;
7184         u16 command_register;
7185
7186         /* For controllers as old as the P600, this is very nearly
7187          * the same thing as
7188          *
7189          * pci_save_state(pci_dev);
7190          * pci_set_power_state(pci_dev, PCI_D3hot);
7191          * pci_set_power_state(pci_dev, PCI_D0);
7192          * pci_restore_state(pci_dev);
7193          *
7194          * For controllers newer than the P600, the pci power state
7195          * method of resetting doesn't work so we have another way
7196          * using the doorbell register.
7197          */
7198
7199         if (!ctlr_is_resettable(board_id)) {
7200                 dev_warn(&pdev->dev, "Controller not resettable\n");
7201                 return -ENODEV;
7202         }
7203
7204         /* if controller is soft- but not hard resettable... */
7205         if (!ctlr_is_hard_resettable(board_id))
7206                 return -ENOTSUPP; /* try soft reset later. */
7207
7208         /* Save the PCI command register */
7209         pci_read_config_word(pdev, 4, &command_register);
7210         pci_save_state(pdev);
7211
7212         /* find the first memory BAR, so we can find the cfg table */
7213         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7214         if (rc)
7215                 return rc;
7216         vaddr = remap_pci_mem(paddr, 0x250);
7217         if (!vaddr)
7218                 return -ENOMEM;
7219
7220         /* find cfgtable in order to check if reset via doorbell is supported */
7221         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7222                                         &cfg_base_addr_index, &cfg_offset);
7223         if (rc)
7224                 goto unmap_vaddr;
7225         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7226                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7227         if (!cfgtable) {
7228                 rc = -ENOMEM;
7229                 goto unmap_vaddr;
7230         }
7231         rc = write_driver_ver_to_cfgtable(cfgtable);
7232         if (rc)
7233                 goto unmap_cfgtable;
7234
7235         /* If reset via doorbell register is supported, use that.
7236          * There are two such methods.  Favor the newest method.
7237          */
7238         misc_fw_support = readl(&cfgtable->misc_fw_support);
7239         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7240         if (use_doorbell) {
7241                 use_doorbell = DOORBELL_CTLR_RESET2;
7242         } else {
7243                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7244                 if (use_doorbell) {
7245                         dev_warn(&pdev->dev,
7246                                 "Soft reset not supported. Firmware update is required.\n");
7247                         rc = -ENOTSUPP; /* try soft reset */
7248                         goto unmap_cfgtable;
7249                 }
7250         }
7251
7252         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7253         if (rc)
7254                 goto unmap_cfgtable;
7255
7256         pci_restore_state(pdev);
7257         pci_write_config_word(pdev, 4, command_register);
7258
7259         /* Some devices (notably the HP Smart Array 5i Controller)
7260            need a little pause here */
7261         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7262
7263         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7264         if (rc) {
7265                 dev_warn(&pdev->dev,
7266                         "Failed waiting for board to become ready after hard reset\n");
7267                 goto unmap_cfgtable;
7268         }
7269
7270         rc = controller_reset_failed(vaddr);
7271         if (rc < 0)
7272                 goto unmap_cfgtable;
7273         if (rc) {
7274                 dev_warn(&pdev->dev, "Unable to successfully reset "
7275                         "controller. Will try soft reset.\n");
7276                 rc = -ENOTSUPP;
7277         } else {
7278                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7279         }
7280
7281 unmap_cfgtable:
7282         iounmap(cfgtable);
7283
7284 unmap_vaddr:
7285         iounmap(vaddr);
7286         return rc;
7287 }
7288
7289 /*
7290  *  We cannot read the structure directly, for portability we must use
7291  *   the io functions.
7292  *   This is for debug only.
7293  */
7294 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7295 {
7296 #ifdef HPSA_DEBUG
7297         int i;
7298         char temp_name[17];
7299
7300         dev_info(dev, "Controller Configuration information\n");
7301         dev_info(dev, "------------------------------------\n");
7302         for (i = 0; i < 4; i++)
7303                 temp_name[i] = readb(&(tb->Signature[i]));
7304         temp_name[4] = '\0';
7305         dev_info(dev, "   Signature = %s\n", temp_name);
7306         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7307         dev_info(dev, "   Transport methods supported = 0x%x\n",
7308                readl(&(tb->TransportSupport)));
7309         dev_info(dev, "   Transport methods active = 0x%x\n",
7310                readl(&(tb->TransportActive)));
7311         dev_info(dev, "   Requested transport Method = 0x%x\n",
7312                readl(&(tb->HostWrite.TransportRequest)));
7313         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7314                readl(&(tb->HostWrite.CoalIntDelay)));
7315         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7316                readl(&(tb->HostWrite.CoalIntCount)));
7317         dev_info(dev, "   Max outstanding commands = %d\n",
7318                readl(&(tb->CmdsOutMax)));
7319         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7320         for (i = 0; i < 16; i++)
7321                 temp_name[i] = readb(&(tb->ServerName[i]));
7322         temp_name[16] = '\0';
7323         dev_info(dev, "   Server Name = %s\n", temp_name);
7324         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7325                 readl(&(tb->HeartBeat)));
7326 #endif                          /* HPSA_DEBUG */
7327 }
7328
7329 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7330 {
7331         int i, offset, mem_type, bar_type;
7332
7333         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7334                 return 0;
7335         offset = 0;
7336         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7337                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7338                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7339                         offset += 4;
7340                 else {
7341                         mem_type = pci_resource_flags(pdev, i) &
7342                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7343                         switch (mem_type) {
7344                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7345                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7346                                 offset += 4;    /* 32 bit */
7347                                 break;
7348                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7349                                 offset += 8;
7350                                 break;
7351                         default:        /* reserved in PCI 2.2 */
7352                                 dev_warn(&pdev->dev,
7353                                        "base address is invalid\n");
7354                                 return -1;
7355                                 break;
7356                         }
7357                 }
7358                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7359                         return i + 1;
7360         }
7361         return -1;
7362 }
7363
7364 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7365 {
7366         if (h->msix_vector) {
7367                 if (h->pdev->msix_enabled)
7368                         pci_disable_msix(h->pdev);
7369                 h->msix_vector = 0;
7370         } else if (h->msi_vector) {
7371                 if (h->pdev->msi_enabled)
7372                         pci_disable_msi(h->pdev);
7373                 h->msi_vector = 0;
7374         }
7375 }
7376
7377 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7378  * controllers that are capable. If not, we use legacy INTx mode.
7379  */
7380 static void hpsa_interrupt_mode(struct ctlr_info *h)
7381 {
7382 #ifdef CONFIG_PCI_MSI
7383         int err, i;
7384         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7385
7386         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7387                 hpsa_msix_entries[i].vector = 0;
7388                 hpsa_msix_entries[i].entry = i;
7389         }
7390
7391         /* Some boards advertise MSI but don't really support it */
7392         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7393             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7394                 goto default_int_mode;
7395         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7396                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7397                 h->msix_vector = MAX_REPLY_QUEUES;
7398                 if (h->msix_vector > num_online_cpus())
7399                         h->msix_vector = num_online_cpus();
7400                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7401                                             1, h->msix_vector);
7402                 if (err < 0) {
7403                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7404                         h->msix_vector = 0;
7405                         goto single_msi_mode;
7406                 } else if (err < h->msix_vector) {
7407                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7408                                "available\n", err);
7409                 }
7410                 h->msix_vector = err;
7411                 for (i = 0; i < h->msix_vector; i++)
7412                         h->intr[i] = hpsa_msix_entries[i].vector;
7413                 return;
7414         }
7415 single_msi_mode:
7416         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7417                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7418                 if (!pci_enable_msi(h->pdev))
7419                         h->msi_vector = 1;
7420                 else
7421                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7422         }
7423 default_int_mode:
7424 #endif                          /* CONFIG_PCI_MSI */
7425         /* if we get here we're going to use the default interrupt mode */
7426         h->intr[h->intr_mode] = h->pdev->irq;
7427 }
7428
7429 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7430 {
7431         int i;
7432         u32 subsystem_vendor_id, subsystem_device_id;
7433
7434         subsystem_vendor_id = pdev->subsystem_vendor;
7435         subsystem_device_id = pdev->subsystem_device;
7436         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7437                     subsystem_vendor_id;
7438
7439         for (i = 0; i < ARRAY_SIZE(products); i++)
7440                 if (*board_id == products[i].board_id)
7441                         return i;
7442
7443         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7444                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7445                 !hpsa_allow_any) {
7446                 dev_warn(&pdev->dev, "unrecognized board ID: "
7447                         "0x%08x, ignoring.\n", *board_id);
7448                         return -ENODEV;
7449         }
7450         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7451 }
7452
7453 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7454                                     unsigned long *memory_bar)
7455 {
7456         int i;
7457
7458         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7459                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7460                         /* addressing mode bits already removed */
7461                         *memory_bar = pci_resource_start(pdev, i);
7462                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7463                                 *memory_bar);
7464                         return 0;
7465                 }
7466         dev_warn(&pdev->dev, "no memory BAR found\n");
7467         return -ENODEV;
7468 }
7469
7470 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7471                                      int wait_for_ready)
7472 {
7473         int i, iterations;
7474         u32 scratchpad;
7475         if (wait_for_ready)
7476                 iterations = HPSA_BOARD_READY_ITERATIONS;
7477         else
7478                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7479
7480         for (i = 0; i < iterations; i++) {
7481                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7482                 if (wait_for_ready) {
7483                         if (scratchpad == HPSA_FIRMWARE_READY)
7484                                 return 0;
7485                 } else {
7486                         if (scratchpad != HPSA_FIRMWARE_READY)
7487                                 return 0;
7488                 }
7489                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7490         }
7491         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7492         return -ENODEV;
7493 }
7494
7495 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7496                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7497                                u64 *cfg_offset)
7498 {
7499         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7500         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7501         *cfg_base_addr &= (u32) 0x0000ffff;
7502         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7503         if (*cfg_base_addr_index == -1) {
7504                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7505                 return -ENODEV;
7506         }
7507         return 0;
7508 }
7509
7510 static void hpsa_free_cfgtables(struct ctlr_info *h)
7511 {
7512         if (h->transtable) {
7513                 iounmap(h->transtable);
7514                 h->transtable = NULL;
7515         }
7516         if (h->cfgtable) {
7517                 iounmap(h->cfgtable);
7518                 h->cfgtable = NULL;
7519         }
7520 }
7521
7522 /* Find and map CISS config table and transfer table
7523 + * several items must be unmapped (freed) later
7524 + * */
7525 static int hpsa_find_cfgtables(struct ctlr_info *h)
7526 {
7527         u64 cfg_offset;
7528         u32 cfg_base_addr;
7529         u64 cfg_base_addr_index;
7530         u32 trans_offset;
7531         int rc;
7532
7533         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7534                 &cfg_base_addr_index, &cfg_offset);
7535         if (rc)
7536                 return rc;
7537         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7538                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7539         if (!h->cfgtable) {
7540                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7541                 return -ENOMEM;
7542         }
7543         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7544         if (rc)
7545                 return rc;
7546         /* Find performant mode table. */
7547         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7548         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7549                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7550                                 sizeof(*h->transtable));
7551         if (!h->transtable) {
7552                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7553                 hpsa_free_cfgtables(h);
7554                 return -ENOMEM;
7555         }
7556         return 0;
7557 }
7558
7559 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7560 {
7561 #define MIN_MAX_COMMANDS 16
7562         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7563
7564         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7565
7566         /* Limit commands in memory limited kdump scenario. */
7567         if (reset_devices && h->max_commands > 32)
7568                 h->max_commands = 32;
7569
7570         if (h->max_commands < MIN_MAX_COMMANDS) {
7571                 dev_warn(&h->pdev->dev,
7572                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7573                         h->max_commands,
7574                         MIN_MAX_COMMANDS);
7575                 h->max_commands = MIN_MAX_COMMANDS;
7576         }
7577 }
7578
7579 /* If the controller reports that the total max sg entries is greater than 512,
7580  * then we know that chained SG blocks work.  (Original smart arrays did not
7581  * support chained SG blocks and would return zero for max sg entries.)
7582  */
7583 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7584 {
7585         return h->maxsgentries > 512;
7586 }
7587
7588 /* Interrogate the hardware for some limits:
7589  * max commands, max SG elements without chaining, and with chaining,
7590  * SG chain block size, etc.
7591  */
7592 static void hpsa_find_board_params(struct ctlr_info *h)
7593 {
7594         hpsa_get_max_perf_mode_cmds(h);
7595         h->nr_cmds = h->max_commands;
7596         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7597         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7598         if (hpsa_supports_chained_sg_blocks(h)) {
7599                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7600                 h->max_cmd_sg_entries = 32;
7601                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7602                 h->maxsgentries--; /* save one for chain pointer */
7603         } else {
7604                 /*
7605                  * Original smart arrays supported at most 31 s/g entries
7606                  * embedded inline in the command (trying to use more
7607                  * would lock up the controller)
7608                  */
7609                 h->max_cmd_sg_entries = 31;
7610                 h->maxsgentries = 31; /* default to traditional values */
7611                 h->chainsize = 0;
7612         }
7613
7614         /* Find out what task management functions are supported and cache */
7615         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7616         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7617                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7618         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7619                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7620         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7621                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7622 }
7623
7624 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7625 {
7626         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7627                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7628                 return false;
7629         }
7630         return true;
7631 }
7632
7633 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7634 {
7635         u32 driver_support;
7636
7637         driver_support = readl(&(h->cfgtable->driver_support));
7638         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7639 #ifdef CONFIG_X86
7640         driver_support |= ENABLE_SCSI_PREFETCH;
7641 #endif
7642         driver_support |= ENABLE_UNIT_ATTN;
7643         writel(driver_support, &(h->cfgtable->driver_support));
7644 }
7645
7646 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7647  * in a prefetch beyond physical memory.
7648  */
7649 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7650 {
7651         u32 dma_prefetch;
7652
7653         if (h->board_id != 0x3225103C)
7654                 return;
7655         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7656         dma_prefetch |= 0x8000;
7657         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7658 }
7659
7660 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7661 {
7662         int i;
7663         u32 doorbell_value;
7664         unsigned long flags;
7665         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7666         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7667                 spin_lock_irqsave(&h->lock, flags);
7668                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7669                 spin_unlock_irqrestore(&h->lock, flags);
7670                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7671                         goto done;
7672                 /* delay and try again */
7673                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7674         }
7675         return -ENODEV;
7676 done:
7677         return 0;
7678 }
7679
7680 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7681 {
7682         int i;
7683         u32 doorbell_value;
7684         unsigned long flags;
7685
7686         /* under certain very rare conditions, this can take awhile.
7687          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7688          * as we enter this code.)
7689          */
7690         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7691                 if (h->remove_in_progress)
7692                         goto done;
7693                 spin_lock_irqsave(&h->lock, flags);
7694                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695                 spin_unlock_irqrestore(&h->lock, flags);
7696                 if (!(doorbell_value & CFGTBL_ChangeReq))
7697                         goto done;
7698                 /* delay and try again */
7699                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7700         }
7701         return -ENODEV;
7702 done:
7703         return 0;
7704 }
7705
7706 /* return -ENODEV or other reason on error, 0 on success */
7707 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7708 {
7709         u32 trans_support;
7710
7711         trans_support = readl(&(h->cfgtable->TransportSupport));
7712         if (!(trans_support & SIMPLE_MODE))
7713                 return -ENOTSUPP;
7714
7715         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7716
7717         /* Update the field, and then ring the doorbell */
7718         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7719         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7720         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7721         if (hpsa_wait_for_mode_change_ack(h))
7722                 goto error;
7723         print_cfg_table(&h->pdev->dev, h->cfgtable);
7724         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7725                 goto error;
7726         h->transMethod = CFGTBL_Trans_Simple;
7727         return 0;
7728 error:
7729         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7730         return -ENODEV;
7731 }
7732
7733 /* free items allocated or mapped by hpsa_pci_init */
7734 static void hpsa_free_pci_init(struct ctlr_info *h)
7735 {
7736         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7737         iounmap(h->vaddr);                      /* pci_init 3 */
7738         h->vaddr = NULL;
7739         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7740         /*
7741          * call pci_disable_device before pci_release_regions per
7742          * Documentation/PCI/pci.txt
7743          */
7744         pci_disable_device(h->pdev);            /* pci_init 1 */
7745         pci_release_regions(h->pdev);           /* pci_init 2 */
7746 }
7747
7748 /* several items must be freed later */
7749 static int hpsa_pci_init(struct ctlr_info *h)
7750 {
7751         int prod_index, err;
7752
7753         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7754         if (prod_index < 0)
7755                 return prod_index;
7756         h->product_name = products[prod_index].product_name;
7757         h->access = *(products[prod_index].access);
7758
7759         h->needs_abort_tags_swizzled =
7760                 ctlr_needs_abort_tags_swizzled(h->board_id);
7761
7762         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7763                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7764
7765         err = pci_enable_device(h->pdev);
7766         if (err) {
7767                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7768                 pci_disable_device(h->pdev);
7769                 return err;
7770         }
7771
7772         err = pci_request_regions(h->pdev, HPSA);
7773         if (err) {
7774                 dev_err(&h->pdev->dev,
7775                         "failed to obtain PCI resources\n");
7776                 pci_disable_device(h->pdev);
7777                 return err;
7778         }
7779
7780         pci_set_master(h->pdev);
7781
7782         hpsa_interrupt_mode(h);
7783         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7784         if (err)
7785                 goto clean2;    /* intmode+region, pci */
7786         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7787         if (!h->vaddr) {
7788                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7789                 err = -ENOMEM;
7790                 goto clean2;    /* intmode+region, pci */
7791         }
7792         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7793         if (err)
7794                 goto clean3;    /* vaddr, intmode+region, pci */
7795         err = hpsa_find_cfgtables(h);
7796         if (err)
7797                 goto clean3;    /* vaddr, intmode+region, pci */
7798         hpsa_find_board_params(h);
7799
7800         if (!hpsa_CISS_signature_present(h)) {
7801                 err = -ENODEV;
7802                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7803         }
7804         hpsa_set_driver_support_bits(h);
7805         hpsa_p600_dma_prefetch_quirk(h);
7806         err = hpsa_enter_simple_mode(h);
7807         if (err)
7808                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7809         return 0;
7810
7811 clean4: /* cfgtables, vaddr, intmode+region, pci */
7812         hpsa_free_cfgtables(h);
7813 clean3: /* vaddr, intmode+region, pci */
7814         iounmap(h->vaddr);
7815         h->vaddr = NULL;
7816 clean2: /* intmode+region, pci */
7817         hpsa_disable_interrupt_mode(h);
7818         /*
7819          * call pci_disable_device before pci_release_regions per
7820          * Documentation/PCI/pci.txt
7821          */
7822         pci_disable_device(h->pdev);
7823         pci_release_regions(h->pdev);
7824         return err;
7825 }
7826
7827 static void hpsa_hba_inquiry(struct ctlr_info *h)
7828 {
7829         int rc;
7830
7831 #define HBA_INQUIRY_BYTE_COUNT 64
7832         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7833         if (!h->hba_inquiry_data)
7834                 return;
7835         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7836                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7837         if (rc != 0) {
7838                 kfree(h->hba_inquiry_data);
7839                 h->hba_inquiry_data = NULL;
7840         }
7841 }
7842
7843 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7844 {
7845         int rc, i;
7846         void __iomem *vaddr;
7847
7848         if (!reset_devices)
7849                 return 0;
7850
7851         /* kdump kernel is loading, we don't know in which state is
7852          * the pci interface. The dev->enable_cnt is equal zero
7853          * so we call enable+disable, wait a while and switch it on.
7854          */
7855         rc = pci_enable_device(pdev);
7856         if (rc) {
7857                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7858                 return -ENODEV;
7859         }
7860         pci_disable_device(pdev);
7861         msleep(260);                    /* a randomly chosen number */
7862         rc = pci_enable_device(pdev);
7863         if (rc) {
7864                 dev_warn(&pdev->dev, "failed to enable device.\n");
7865                 return -ENODEV;
7866         }
7867
7868         pci_set_master(pdev);
7869
7870         vaddr = pci_ioremap_bar(pdev, 0);
7871         if (vaddr == NULL) {
7872                 rc = -ENOMEM;
7873                 goto out_disable;
7874         }
7875         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7876         iounmap(vaddr);
7877
7878         /* Reset the controller with a PCI power-cycle or via doorbell */
7879         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7880
7881         /* -ENOTSUPP here means we cannot reset the controller
7882          * but it's already (and still) up and running in
7883          * "performant mode".  Or, it might be 640x, which can't reset
7884          * due to concerns about shared bbwc between 6402/6404 pair.
7885          */
7886         if (rc)
7887                 goto out_disable;
7888
7889         /* Now try to get the controller to respond to a no-op */
7890         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7891         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7892                 if (hpsa_noop(pdev) == 0)
7893                         break;
7894                 else
7895                         dev_warn(&pdev->dev, "no-op failed%s\n",
7896                                         (i < 11 ? "; re-trying" : ""));
7897         }
7898
7899 out_disable:
7900
7901         pci_disable_device(pdev);
7902         return rc;
7903 }
7904
7905 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7906 {
7907         kfree(h->cmd_pool_bits);
7908         h->cmd_pool_bits = NULL;
7909         if (h->cmd_pool) {
7910                 pci_free_consistent(h->pdev,
7911                                 h->nr_cmds * sizeof(struct CommandList),
7912                                 h->cmd_pool,
7913                                 h->cmd_pool_dhandle);
7914                 h->cmd_pool = NULL;
7915                 h->cmd_pool_dhandle = 0;
7916         }
7917         if (h->errinfo_pool) {
7918                 pci_free_consistent(h->pdev,
7919                                 h->nr_cmds * sizeof(struct ErrorInfo),
7920                                 h->errinfo_pool,
7921                                 h->errinfo_pool_dhandle);
7922                 h->errinfo_pool = NULL;
7923                 h->errinfo_pool_dhandle = 0;
7924         }
7925 }
7926
7927 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7928 {
7929         h->cmd_pool_bits = kzalloc(
7930                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7931                 sizeof(unsigned long), GFP_KERNEL);
7932         h->cmd_pool = pci_alloc_consistent(h->pdev,
7933                     h->nr_cmds * sizeof(*h->cmd_pool),
7934                     &(h->cmd_pool_dhandle));
7935         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7936                     h->nr_cmds * sizeof(*h->errinfo_pool),
7937                     &(h->errinfo_pool_dhandle));
7938         if ((h->cmd_pool_bits == NULL)
7939             || (h->cmd_pool == NULL)
7940             || (h->errinfo_pool == NULL)) {
7941                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7942                 goto clean_up;
7943         }
7944         hpsa_preinitialize_commands(h);
7945         return 0;
7946 clean_up:
7947         hpsa_free_cmd_pool(h);
7948         return -ENOMEM;
7949 }
7950
7951 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7952 {
7953         int i, cpu;
7954
7955         cpu = cpumask_first(cpu_online_mask);
7956         for (i = 0; i < h->msix_vector; i++) {
7957                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7958                 cpu = cpumask_next(cpu, cpu_online_mask);
7959         }
7960 }
7961
7962 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7963 static void hpsa_free_irqs(struct ctlr_info *h)
7964 {
7965         int i;
7966
7967         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7968                 /* Single reply queue, only one irq to free */
7969                 i = h->intr_mode;
7970                 irq_set_affinity_hint(h->intr[i], NULL);
7971                 free_irq(h->intr[i], &h->q[i]);
7972                 h->q[i] = 0;
7973                 return;
7974         }
7975
7976         for (i = 0; i < h->msix_vector; i++) {
7977                 irq_set_affinity_hint(h->intr[i], NULL);
7978                 free_irq(h->intr[i], &h->q[i]);
7979                 h->q[i] = 0;
7980         }
7981         for (; i < MAX_REPLY_QUEUES; i++)
7982                 h->q[i] = 0;
7983 }
7984
7985 /* returns 0 on success; cleans up and returns -Enn on error */
7986 static int hpsa_request_irqs(struct ctlr_info *h,
7987         irqreturn_t (*msixhandler)(int, void *),
7988         irqreturn_t (*intxhandler)(int, void *))
7989 {
7990         int rc, i;
7991
7992         /*
7993          * initialize h->q[x] = x so that interrupt handlers know which
7994          * queue to process.
7995          */
7996         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7997                 h->q[i] = (u8) i;
7998
7999         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8000                 /* If performant mode and MSI-X, use multiple reply queues */
8001                 for (i = 0; i < h->msix_vector; i++) {
8002                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8003                         rc = request_irq(h->intr[i], msixhandler,
8004                                         0, h->intrname[i],
8005                                         &h->q[i]);
8006                         if (rc) {
8007                                 int j;
8008
8009                                 dev_err(&h->pdev->dev,
8010                                         "failed to get irq %d for %s\n",
8011                                        h->intr[i], h->devname);
8012                                 for (j = 0; j < i; j++) {
8013                                         free_irq(h->intr[j], &h->q[j]);
8014                                         h->q[j] = 0;
8015                                 }
8016                                 for (; j < MAX_REPLY_QUEUES; j++)
8017                                         h->q[j] = 0;
8018                                 return rc;
8019                         }
8020                 }
8021                 hpsa_irq_affinity_hints(h);
8022         } else {
8023                 /* Use single reply pool */
8024                 if (h->msix_vector > 0 || h->msi_vector) {
8025                         if (h->msix_vector)
8026                                 sprintf(h->intrname[h->intr_mode],
8027                                         "%s-msix", h->devname);
8028                         else
8029                                 sprintf(h->intrname[h->intr_mode],
8030                                         "%s-msi", h->devname);
8031                         rc = request_irq(h->intr[h->intr_mode],
8032                                 msixhandler, 0,
8033                                 h->intrname[h->intr_mode],
8034                                 &h->q[h->intr_mode]);
8035                 } else {
8036                         sprintf(h->intrname[h->intr_mode],
8037                                 "%s-intx", h->devname);
8038                         rc = request_irq(h->intr[h->intr_mode],
8039                                 intxhandler, IRQF_SHARED,
8040                                 h->intrname[h->intr_mode],
8041                                 &h->q[h->intr_mode]);
8042                 }
8043                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8044         }
8045         if (rc) {
8046                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8047                        h->intr[h->intr_mode], h->devname);
8048                 hpsa_free_irqs(h);
8049                 return -ENODEV;
8050         }
8051         return 0;
8052 }
8053
8054 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8055 {
8056         int rc;
8057         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8058
8059         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8060         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8061         if (rc) {
8062                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8063                 return rc;
8064         }
8065
8066         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8067         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8068         if (rc) {
8069                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8070                         "after soft reset.\n");
8071                 return rc;
8072         }
8073
8074         return 0;
8075 }
8076
8077 static void hpsa_free_reply_queues(struct ctlr_info *h)
8078 {
8079         int i;
8080
8081         for (i = 0; i < h->nreply_queues; i++) {
8082                 if (!h->reply_queue[i].head)
8083                         continue;
8084                 pci_free_consistent(h->pdev,
8085                                         h->reply_queue_size,
8086                                         h->reply_queue[i].head,
8087                                         h->reply_queue[i].busaddr);
8088                 h->reply_queue[i].head = NULL;
8089                 h->reply_queue[i].busaddr = 0;
8090         }
8091         h->reply_queue_size = 0;
8092 }
8093
8094 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8095 {
8096         hpsa_free_performant_mode(h);           /* init_one 7 */
8097         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8098         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8099         hpsa_free_irqs(h);                      /* init_one 4 */
8100         scsi_host_put(h->scsi_host);            /* init_one 3 */
8101         h->scsi_host = NULL;                    /* init_one 3 */
8102         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8103         free_percpu(h->lockup_detected);        /* init_one 2 */
8104         h->lockup_detected = NULL;              /* init_one 2 */
8105         if (h->resubmit_wq) {
8106                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8107                 h->resubmit_wq = NULL;
8108         }
8109         if (h->rescan_ctlr_wq) {
8110                 destroy_workqueue(h->rescan_ctlr_wq);
8111                 h->rescan_ctlr_wq = NULL;
8112         }
8113         kfree(h);                               /* init_one 1 */
8114 }
8115
8116 /* Called when controller lockup detected. */
8117 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8118 {
8119         int i, refcount;
8120         struct CommandList *c;
8121         int failcount = 0;
8122
8123         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8124         for (i = 0; i < h->nr_cmds; i++) {
8125                 c = h->cmd_pool + i;
8126                 refcount = atomic_inc_return(&c->refcount);
8127                 if (refcount > 1) {
8128                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8129                         finish_cmd(c);
8130                         atomic_dec(&h->commands_outstanding);
8131                         failcount++;
8132                 }
8133                 cmd_free(h, c);
8134         }
8135         dev_warn(&h->pdev->dev,
8136                 "failed %d commands in fail_all\n", failcount);
8137 }
8138
8139 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8140 {
8141         int cpu;
8142
8143         for_each_online_cpu(cpu) {
8144                 u32 *lockup_detected;
8145                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8146                 *lockup_detected = value;
8147         }
8148         wmb(); /* be sure the per-cpu variables are out to memory */
8149 }
8150
8151 static void controller_lockup_detected(struct ctlr_info *h)
8152 {
8153         unsigned long flags;
8154         u32 lockup_detected;
8155
8156         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8157         spin_lock_irqsave(&h->lock, flags);
8158         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8159         if (!lockup_detected) {
8160                 /* no heartbeat, but controller gave us a zero. */
8161                 dev_warn(&h->pdev->dev,
8162                         "lockup detected after %d but scratchpad register is zero\n",
8163                         h->heartbeat_sample_interval / HZ);
8164                 lockup_detected = 0xffffffff;
8165         }
8166         set_lockup_detected_for_all_cpus(h, lockup_detected);
8167         spin_unlock_irqrestore(&h->lock, flags);
8168         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8169                         lockup_detected, h->heartbeat_sample_interval / HZ);
8170         pci_disable_device(h->pdev);
8171         fail_all_outstanding_cmds(h);
8172 }
8173
8174 static int detect_controller_lockup(struct ctlr_info *h)
8175 {
8176         u64 now;
8177         u32 heartbeat;
8178         unsigned long flags;
8179
8180         now = get_jiffies_64();
8181         /* If we've received an interrupt recently, we're ok. */
8182         if (time_after64(h->last_intr_timestamp +
8183                                 (h->heartbeat_sample_interval), now))
8184                 return false;
8185
8186         /*
8187          * If we've already checked the heartbeat recently, we're ok.
8188          * This could happen if someone sends us a signal. We
8189          * otherwise don't care about signals in this thread.
8190          */
8191         if (time_after64(h->last_heartbeat_timestamp +
8192                                 (h->heartbeat_sample_interval), now))
8193                 return false;
8194
8195         /* If heartbeat has not changed since we last looked, we're not ok. */
8196         spin_lock_irqsave(&h->lock, flags);
8197         heartbeat = readl(&h->cfgtable->HeartBeat);
8198         spin_unlock_irqrestore(&h->lock, flags);
8199         if (h->last_heartbeat == heartbeat) {
8200                 controller_lockup_detected(h);
8201                 return true;
8202         }
8203
8204         /* We're ok. */
8205         h->last_heartbeat = heartbeat;
8206         h->last_heartbeat_timestamp = now;
8207         return false;
8208 }
8209
8210 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8211 {
8212         int i;
8213         char *event_type;
8214
8215         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8216                 return;
8217
8218         /* Ask the controller to clear the events we're handling. */
8219         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8220                         | CFGTBL_Trans_io_accel2)) &&
8221                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8222                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8223
8224                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8225                         event_type = "state change";
8226                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8227                         event_type = "configuration change";
8228                 /* Stop sending new RAID offload reqs via the IO accelerator */
8229                 scsi_block_requests(h->scsi_host);
8230                 for (i = 0; i < h->ndevices; i++)
8231                         h->dev[i]->offload_enabled = 0;
8232                 hpsa_drain_accel_commands(h);
8233                 /* Set 'accelerator path config change' bit */
8234                 dev_warn(&h->pdev->dev,
8235                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8236                         h->events, event_type);
8237                 writel(h->events, &(h->cfgtable->clear_event_notify));
8238                 /* Set the "clear event notify field update" bit 6 */
8239                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8240                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8241                 hpsa_wait_for_clear_event_notify_ack(h);
8242                 scsi_unblock_requests(h->scsi_host);
8243         } else {
8244                 /* Acknowledge controller notification events. */
8245                 writel(h->events, &(h->cfgtable->clear_event_notify));
8246                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8247                 hpsa_wait_for_clear_event_notify_ack(h);
8248 #if 0
8249                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8250                 hpsa_wait_for_mode_change_ack(h);
8251 #endif
8252         }
8253         return;
8254 }
8255
8256 /* Check a register on the controller to see if there are configuration
8257  * changes (added/changed/removed logical drives, etc.) which mean that
8258  * we should rescan the controller for devices.
8259  * Also check flag for driver-initiated rescan.
8260  */
8261 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8262 {
8263         if (h->drv_req_rescan) {
8264                 h->drv_req_rescan = 0;
8265                 return 1;
8266         }
8267
8268         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8269                 return 0;
8270
8271         h->events = readl(&(h->cfgtable->event_notify));
8272         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8273 }
8274
8275 /*
8276  * Check if any of the offline devices have become ready
8277  */
8278 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8279 {
8280         unsigned long flags;
8281         struct offline_device_entry *d;
8282         struct list_head *this, *tmp;
8283
8284         spin_lock_irqsave(&h->offline_device_lock, flags);
8285         list_for_each_safe(this, tmp, &h->offline_device_list) {
8286                 d = list_entry(this, struct offline_device_entry,
8287                                 offline_list);
8288                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8289                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8290                         spin_lock_irqsave(&h->offline_device_lock, flags);
8291                         list_del(&d->offline_list);
8292                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8293                         return 1;
8294                 }
8295                 spin_lock_irqsave(&h->offline_device_lock, flags);
8296         }
8297         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8298         return 0;
8299 }
8300
8301 static int hpsa_luns_changed(struct ctlr_info *h)
8302 {
8303         int rc = 1; /* assume there are changes */
8304         struct ReportLUNdata *logdev = NULL;
8305
8306         /* if we can't find out if lun data has changed,
8307          * assume that it has.
8308          */
8309
8310         if (!h->lastlogicals)
8311                 goto out;
8312
8313         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8314         if (!logdev) {
8315                 dev_warn(&h->pdev->dev,
8316                         "Out of memory, can't track lun changes.\n");
8317                 goto out;
8318         }
8319         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8320                 dev_warn(&h->pdev->dev,
8321                         "report luns failed, can't track lun changes.\n");
8322                 goto out;
8323         }
8324         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8325                 dev_info(&h->pdev->dev,
8326                         "Lun changes detected.\n");
8327                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8328                 goto out;
8329         } else
8330                 rc = 0; /* no changes detected. */
8331 out:
8332         kfree(logdev);
8333         return rc;
8334 }
8335
8336 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8337 {
8338         unsigned long flags;
8339         struct ctlr_info *h = container_of(to_delayed_work(work),
8340                                         struct ctlr_info, rescan_ctlr_work);
8341
8342
8343         if (h->remove_in_progress)
8344                 return;
8345
8346         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8347                 scsi_host_get(h->scsi_host);
8348                 hpsa_ack_ctlr_events(h);
8349                 hpsa_scan_start(h->scsi_host);
8350                 scsi_host_put(h->scsi_host);
8351         } else if (h->discovery_polling) {
8352                 hpsa_disable_rld_caching(h);
8353                 if (hpsa_luns_changed(h)) {
8354                         struct Scsi_Host *sh = NULL;
8355
8356                         dev_info(&h->pdev->dev,
8357                                 "driver discovery polling rescan.\n");
8358                         sh = scsi_host_get(h->scsi_host);
8359                         if (sh != NULL) {
8360                                 hpsa_scan_start(sh);
8361                                 scsi_host_put(sh);
8362                         }
8363                 }
8364         }
8365         spin_lock_irqsave(&h->lock, flags);
8366         if (!h->remove_in_progress)
8367                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8368                                 h->heartbeat_sample_interval);
8369         spin_unlock_irqrestore(&h->lock, flags);
8370 }
8371
8372 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8373 {
8374         unsigned long flags;
8375         struct ctlr_info *h = container_of(to_delayed_work(work),
8376                                         struct ctlr_info, monitor_ctlr_work);
8377
8378         detect_controller_lockup(h);
8379         if (lockup_detected(h))
8380                 return;
8381
8382         spin_lock_irqsave(&h->lock, flags);
8383         if (!h->remove_in_progress)
8384                 schedule_delayed_work(&h->monitor_ctlr_work,
8385                                 h->heartbeat_sample_interval);
8386         spin_unlock_irqrestore(&h->lock, flags);
8387 }
8388
8389 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8390                                                 char *name)
8391 {
8392         struct workqueue_struct *wq = NULL;
8393
8394         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8395         if (!wq)
8396                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8397
8398         return wq;
8399 }
8400
8401 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8402 {
8403         int dac, rc;
8404         struct ctlr_info *h;
8405         int try_soft_reset = 0;
8406         unsigned long flags;
8407         u32 board_id;
8408
8409         if (number_of_controllers == 0)
8410                 printk(KERN_INFO DRIVER_NAME "\n");
8411
8412         rc = hpsa_lookup_board_id(pdev, &board_id);
8413         if (rc < 0) {
8414                 dev_warn(&pdev->dev, "Board ID not found\n");
8415                 return rc;
8416         }
8417
8418         rc = hpsa_init_reset_devices(pdev, board_id);
8419         if (rc) {
8420                 if (rc != -ENOTSUPP)
8421                         return rc;
8422                 /* If the reset fails in a particular way (it has no way to do
8423                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8424                  * a soft reset once we get the controller configured up to the
8425                  * point that it can accept a command.
8426                  */
8427                 try_soft_reset = 1;
8428                 rc = 0;
8429         }
8430
8431 reinit_after_soft_reset:
8432
8433         /* Command structures must be aligned on a 32-byte boundary because
8434          * the 5 lower bits of the address are used by the hardware. and by
8435          * the driver.  See comments in hpsa.h for more info.
8436          */
8437         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8438         h = kzalloc(sizeof(*h), GFP_KERNEL);
8439         if (!h) {
8440                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8441                 return -ENOMEM;
8442         }
8443
8444         h->pdev = pdev;
8445
8446         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8447         INIT_LIST_HEAD(&h->offline_device_list);
8448         spin_lock_init(&h->lock);
8449         spin_lock_init(&h->offline_device_lock);
8450         spin_lock_init(&h->scan_lock);
8451         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8452         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8453
8454         /* Allocate and clear per-cpu variable lockup_detected */
8455         h->lockup_detected = alloc_percpu(u32);
8456         if (!h->lockup_detected) {
8457                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8458                 rc = -ENOMEM;
8459                 goto clean1;    /* aer/h */
8460         }
8461         set_lockup_detected_for_all_cpus(h, 0);
8462
8463         rc = hpsa_pci_init(h);
8464         if (rc)
8465                 goto clean2;    /* lu, aer/h */
8466
8467         /* relies on h-> settings made by hpsa_pci_init, including
8468          * interrupt_mode h->intr */
8469         rc = hpsa_scsi_host_alloc(h);
8470         if (rc)
8471                 goto clean2_5;  /* pci, lu, aer/h */
8472
8473         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8474         h->ctlr = number_of_controllers;
8475         number_of_controllers++;
8476
8477         /* configure PCI DMA stuff */
8478         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8479         if (rc == 0) {
8480                 dac = 1;
8481         } else {
8482                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8483                 if (rc == 0) {
8484                         dac = 0;
8485                 } else {
8486                         dev_err(&pdev->dev, "no suitable DMA available\n");
8487                         goto clean3;    /* shost, pci, lu, aer/h */
8488                 }
8489         }
8490
8491         /* make sure the board interrupts are off */
8492         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8493
8494         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8495         if (rc)
8496                 goto clean3;    /* shost, pci, lu, aer/h */
8497         rc = hpsa_alloc_cmd_pool(h);
8498         if (rc)
8499                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8500         rc = hpsa_alloc_sg_chain_blocks(h);
8501         if (rc)
8502                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8503         init_waitqueue_head(&h->scan_wait_queue);
8504         init_waitqueue_head(&h->abort_cmd_wait_queue);
8505         init_waitqueue_head(&h->event_sync_wait_queue);
8506         mutex_init(&h->reset_mutex);
8507         h->scan_finished = 1; /* no scan currently in progress */
8508
8509         pci_set_drvdata(pdev, h);
8510         h->ndevices = 0;
8511
8512         spin_lock_init(&h->devlock);
8513         rc = hpsa_put_ctlr_into_performant_mode(h);
8514         if (rc)
8515                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8516
8517         /* hook into SCSI subsystem */
8518         rc = hpsa_scsi_add_host(h);
8519         if (rc)
8520                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8521
8522         /* create the resubmit workqueue */
8523         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8524         if (!h->rescan_ctlr_wq) {
8525                 rc = -ENOMEM;
8526                 goto clean7;
8527         }
8528
8529         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8530         if (!h->resubmit_wq) {
8531                 rc = -ENOMEM;
8532                 goto clean7;    /* aer/h */
8533         }
8534
8535         /*
8536          * At this point, the controller is ready to take commands.
8537          * Now, if reset_devices and the hard reset didn't work, try
8538          * the soft reset and see if that works.
8539          */
8540         if (try_soft_reset) {
8541
8542                 /* This is kind of gross.  We may or may not get a completion
8543                  * from the soft reset command, and if we do, then the value
8544                  * from the fifo may or may not be valid.  So, we wait 10 secs
8545                  * after the reset throwing away any completions we get during
8546                  * that time.  Unregister the interrupt handler and register
8547                  * fake ones to scoop up any residual completions.
8548                  */
8549                 spin_lock_irqsave(&h->lock, flags);
8550                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8551                 spin_unlock_irqrestore(&h->lock, flags);
8552                 hpsa_free_irqs(h);
8553                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8554                                         hpsa_intx_discard_completions);
8555                 if (rc) {
8556                         dev_warn(&h->pdev->dev,
8557                                 "Failed to request_irq after soft reset.\n");
8558                         /*
8559                          * cannot goto clean7 or free_irqs will be called
8560                          * again. Instead, do its work
8561                          */
8562                         hpsa_free_performant_mode(h);   /* clean7 */
8563                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8564                         hpsa_free_cmd_pool(h);          /* clean5 */
8565                         /*
8566                          * skip hpsa_free_irqs(h) clean4 since that
8567                          * was just called before request_irqs failed
8568                          */
8569                         goto clean3;
8570                 }
8571
8572                 rc = hpsa_kdump_soft_reset(h);
8573                 if (rc)
8574                         /* Neither hard nor soft reset worked, we're hosed. */
8575                         goto clean7;
8576
8577                 dev_info(&h->pdev->dev, "Board READY.\n");
8578                 dev_info(&h->pdev->dev,
8579                         "Waiting for stale completions to drain.\n");
8580                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8581                 msleep(10000);
8582                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8583
8584                 rc = controller_reset_failed(h->cfgtable);
8585                 if (rc)
8586                         dev_info(&h->pdev->dev,
8587                                 "Soft reset appears to have failed.\n");
8588
8589                 /* since the controller's reset, we have to go back and re-init
8590                  * everything.  Easiest to just forget what we've done and do it
8591                  * all over again.
8592                  */
8593                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8594                 try_soft_reset = 0;
8595                 if (rc)
8596                         /* don't goto clean, we already unallocated */
8597                         return -ENODEV;
8598
8599                 goto reinit_after_soft_reset;
8600         }
8601
8602         /* Enable Accelerated IO path at driver layer */
8603         h->acciopath_status = 1;
8604         /* Disable discovery polling.*/
8605         h->discovery_polling = 0;
8606
8607
8608         /* Turn the interrupts on so we can service requests */
8609         h->access.set_intr_mask(h, HPSA_INTR_ON);
8610
8611         hpsa_hba_inquiry(h);
8612
8613         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8614         if (!h->lastlogicals)
8615                 dev_info(&h->pdev->dev,
8616                         "Can't track change to report lun data\n");
8617
8618         /* Monitor the controller for firmware lockups */
8619         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8620         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8621         schedule_delayed_work(&h->monitor_ctlr_work,
8622                                 h->heartbeat_sample_interval);
8623         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8624         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8625                                 h->heartbeat_sample_interval);
8626         return 0;
8627
8628 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8629         hpsa_free_performant_mode(h);
8630         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8631 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8632         hpsa_free_sg_chain_blocks(h);
8633 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8634         hpsa_free_cmd_pool(h);
8635 clean4: /* irq, shost, pci, lu, aer/h */
8636         hpsa_free_irqs(h);
8637 clean3: /* shost, pci, lu, aer/h */
8638         scsi_host_put(h->scsi_host);
8639         h->scsi_host = NULL;
8640 clean2_5: /* pci, lu, aer/h */
8641         hpsa_free_pci_init(h);
8642 clean2: /* lu, aer/h */
8643         if (h->lockup_detected) {
8644                 free_percpu(h->lockup_detected);
8645                 h->lockup_detected = NULL;
8646         }
8647 clean1: /* wq/aer/h */
8648         if (h->resubmit_wq) {
8649                 destroy_workqueue(h->resubmit_wq);
8650                 h->resubmit_wq = NULL;
8651         }
8652         if (h->rescan_ctlr_wq) {
8653                 destroy_workqueue(h->rescan_ctlr_wq);
8654                 h->rescan_ctlr_wq = NULL;
8655         }
8656         kfree(h);
8657         return rc;
8658 }
8659
8660 static void hpsa_flush_cache(struct ctlr_info *h)
8661 {
8662         char *flush_buf;
8663         struct CommandList *c;
8664         int rc;
8665
8666         if (unlikely(lockup_detected(h)))
8667                 return;
8668         flush_buf = kzalloc(4, GFP_KERNEL);
8669         if (!flush_buf)
8670                 return;
8671
8672         c = cmd_alloc(h);
8673
8674         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8675                 RAID_CTLR_LUNID, TYPE_CMD)) {
8676                 goto out;
8677         }
8678         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8679                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8680         if (rc)
8681                 goto out;
8682         if (c->err_info->CommandStatus != 0)
8683 out:
8684                 dev_warn(&h->pdev->dev,
8685                         "error flushing cache on controller\n");
8686         cmd_free(h, c);
8687         kfree(flush_buf);
8688 }
8689
8690 /* Make controller gather fresh report lun data each time we
8691  * send down a report luns request
8692  */
8693 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8694 {
8695         u32 *options;
8696         struct CommandList *c;
8697         int rc;
8698
8699         /* Don't bother trying to set diag options if locked up */
8700         if (unlikely(h->lockup_detected))
8701                 return;
8702
8703         options = kzalloc(sizeof(*options), GFP_KERNEL);
8704         if (!options) {
8705                 dev_err(&h->pdev->dev,
8706                         "Error: failed to disable rld caching, during alloc.\n");
8707                 return;
8708         }
8709
8710         c = cmd_alloc(h);
8711
8712         /* first, get the current diag options settings */
8713         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8714                 RAID_CTLR_LUNID, TYPE_CMD))
8715                 goto errout;
8716
8717         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8718                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8719         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8720                 goto errout;
8721
8722         /* Now, set the bit for disabling the RLD caching */
8723         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8724
8725         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8726                 RAID_CTLR_LUNID, TYPE_CMD))
8727                 goto errout;
8728
8729         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8730                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8731         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8732                 goto errout;
8733
8734         /* Now verify that it got set: */
8735         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8736                 RAID_CTLR_LUNID, TYPE_CMD))
8737                 goto errout;
8738
8739         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8740                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8741         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8742                 goto errout;
8743
8744         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8745                 goto out;
8746
8747 errout:
8748         dev_err(&h->pdev->dev,
8749                         "Error: failed to disable report lun data caching.\n");
8750 out:
8751         cmd_free(h, c);
8752         kfree(options);
8753 }
8754
8755 static void hpsa_shutdown(struct pci_dev *pdev)
8756 {
8757         struct ctlr_info *h;
8758
8759         h = pci_get_drvdata(pdev);
8760         /* Turn board interrupts off  and send the flush cache command
8761          * sendcmd will turn off interrupt, and send the flush...
8762          * To write all data in the battery backed cache to disks
8763          */
8764         hpsa_flush_cache(h);
8765         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8766         hpsa_free_irqs(h);                      /* init_one 4 */
8767         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8768 }
8769
8770 static void hpsa_free_device_info(struct ctlr_info *h)
8771 {
8772         int i;
8773
8774         for (i = 0; i < h->ndevices; i++) {
8775                 kfree(h->dev[i]);
8776                 h->dev[i] = NULL;
8777         }
8778 }
8779
8780 static void hpsa_remove_one(struct pci_dev *pdev)
8781 {
8782         struct ctlr_info *h;
8783         unsigned long flags;
8784
8785         if (pci_get_drvdata(pdev) == NULL) {
8786                 dev_err(&pdev->dev, "unable to remove device\n");
8787                 return;
8788         }
8789         h = pci_get_drvdata(pdev);
8790
8791         /* Get rid of any controller monitoring work items */
8792         spin_lock_irqsave(&h->lock, flags);
8793         h->remove_in_progress = 1;
8794         spin_unlock_irqrestore(&h->lock, flags);
8795         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8796         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8797         destroy_workqueue(h->rescan_ctlr_wq);
8798         destroy_workqueue(h->resubmit_wq);
8799
8800         /*
8801          * Call before disabling interrupts.
8802          * scsi_remove_host can trigger I/O operations especially
8803          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8804          * operations which cannot complete and will hang the system.
8805          */
8806         if (h->scsi_host)
8807                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8808         /* includes hpsa_free_irqs - init_one 4 */
8809         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8810         hpsa_shutdown(pdev);
8811
8812         hpsa_free_device_info(h);               /* scan */
8813
8814         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8815         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8816         hpsa_free_ioaccel2_sg_chain_blocks(h);
8817         hpsa_free_performant_mode(h);                   /* init_one 7 */
8818         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8819         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8820         kfree(h->lastlogicals);
8821
8822         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8823
8824         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8825         h->scsi_host = NULL;                            /* init_one 3 */
8826
8827         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8828         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8829
8830         free_percpu(h->lockup_detected);                /* init_one 2 */
8831         h->lockup_detected = NULL;                      /* init_one 2 */
8832         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8833
8834         hpsa_delete_sas_host(h);
8835
8836         kfree(h);                                       /* init_one 1 */
8837 }
8838
8839 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8840         __attribute__((unused)) pm_message_t state)
8841 {
8842         return -ENOSYS;
8843 }
8844
8845 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8846 {
8847         return -ENOSYS;
8848 }
8849
8850 static struct pci_driver hpsa_pci_driver = {
8851         .name = HPSA,
8852         .probe = hpsa_init_one,
8853         .remove = hpsa_remove_one,
8854         .id_table = hpsa_pci_device_id, /* id_table */
8855         .shutdown = hpsa_shutdown,
8856         .suspend = hpsa_suspend,
8857         .resume = hpsa_resume,
8858 };
8859
8860 /* Fill in bucket_map[], given nsgs (the max number of
8861  * scatter gather elements supported) and bucket[],
8862  * which is an array of 8 integers.  The bucket[] array
8863  * contains 8 different DMA transfer sizes (in 16
8864  * byte increments) which the controller uses to fetch
8865  * commands.  This function fills in bucket_map[], which
8866  * maps a given number of scatter gather elements to one of
8867  * the 8 DMA transfer sizes.  The point of it is to allow the
8868  * controller to only do as much DMA as needed to fetch the
8869  * command, with the DMA transfer size encoded in the lower
8870  * bits of the command address.
8871  */
8872 static void  calc_bucket_map(int bucket[], int num_buckets,
8873         int nsgs, int min_blocks, u32 *bucket_map)
8874 {
8875         int i, j, b, size;
8876
8877         /* Note, bucket_map must have nsgs+1 entries. */
8878         for (i = 0; i <= nsgs; i++) {
8879                 /* Compute size of a command with i SG entries */
8880                 size = i + min_blocks;
8881                 b = num_buckets; /* Assume the biggest bucket */
8882                 /* Find the bucket that is just big enough */
8883                 for (j = 0; j < num_buckets; j++) {
8884                         if (bucket[j] >= size) {
8885                                 b = j;
8886                                 break;
8887                         }
8888                 }
8889                 /* for a command with i SG entries, use bucket b. */
8890                 bucket_map[i] = b;
8891         }
8892 }
8893
8894 /*
8895  * return -ENODEV on err, 0 on success (or no action)
8896  * allocates numerous items that must be freed later
8897  */
8898 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8899 {
8900         int i;
8901         unsigned long register_value;
8902         unsigned long transMethod = CFGTBL_Trans_Performant |
8903                         (trans_support & CFGTBL_Trans_use_short_tags) |
8904                                 CFGTBL_Trans_enable_directed_msix |
8905                         (trans_support & (CFGTBL_Trans_io_accel1 |
8906                                 CFGTBL_Trans_io_accel2));
8907         struct access_method access = SA5_performant_access;
8908
8909         /* This is a bit complicated.  There are 8 registers on
8910          * the controller which we write to to tell it 8 different
8911          * sizes of commands which there may be.  It's a way of
8912          * reducing the DMA done to fetch each command.  Encoded into
8913          * each command's tag are 3 bits which communicate to the controller
8914          * which of the eight sizes that command fits within.  The size of
8915          * each command depends on how many scatter gather entries there are.
8916          * Each SG entry requires 16 bytes.  The eight registers are programmed
8917          * with the number of 16-byte blocks a command of that size requires.
8918          * The smallest command possible requires 5 such 16 byte blocks.
8919          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8920          * blocks.  Note, this only extends to the SG entries contained
8921          * within the command block, and does not extend to chained blocks
8922          * of SG elements.   bft[] contains the eight values we write to
8923          * the registers.  They are not evenly distributed, but have more
8924          * sizes for small commands, and fewer sizes for larger commands.
8925          */
8926         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8927 #define MIN_IOACCEL2_BFT_ENTRY 5
8928 #define HPSA_IOACCEL2_HEADER_SZ 4
8929         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8930                         13, 14, 15, 16, 17, 18, 19,
8931                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8932         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8933         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8934         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8935                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8936         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8937         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8938         /*  5 = 1 s/g entry or 4k
8939          *  6 = 2 s/g entry or 8k
8940          *  8 = 4 s/g entry or 16k
8941          * 10 = 6 s/g entry or 24k
8942          */
8943
8944         /* If the controller supports either ioaccel method then
8945          * we can also use the RAID stack submit path that does not
8946          * perform the superfluous readl() after each command submission.
8947          */
8948         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8949                 access = SA5_performant_access_no_read;
8950
8951         /* Controller spec: zero out this buffer. */
8952         for (i = 0; i < h->nreply_queues; i++)
8953                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8954
8955         bft[7] = SG_ENTRIES_IN_CMD + 4;
8956         calc_bucket_map(bft, ARRAY_SIZE(bft),
8957                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8958         for (i = 0; i < 8; i++)
8959                 writel(bft[i], &h->transtable->BlockFetch[i]);
8960
8961         /* size of controller ring buffer */
8962         writel(h->max_commands, &h->transtable->RepQSize);
8963         writel(h->nreply_queues, &h->transtable->RepQCount);
8964         writel(0, &h->transtable->RepQCtrAddrLow32);
8965         writel(0, &h->transtable->RepQCtrAddrHigh32);
8966
8967         for (i = 0; i < h->nreply_queues; i++) {
8968                 writel(0, &h->transtable->RepQAddr[i].upper);
8969                 writel(h->reply_queue[i].busaddr,
8970                         &h->transtable->RepQAddr[i].lower);
8971         }
8972
8973         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8974         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8975         /*
8976          * enable outbound interrupt coalescing in accelerator mode;
8977          */
8978         if (trans_support & CFGTBL_Trans_io_accel1) {
8979                 access = SA5_ioaccel_mode1_access;
8980                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8981                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8982         } else {
8983                 if (trans_support & CFGTBL_Trans_io_accel2) {
8984                         access = SA5_ioaccel_mode2_access;
8985                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8986                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8987                 }
8988         }
8989         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8990         if (hpsa_wait_for_mode_change_ack(h)) {
8991                 dev_err(&h->pdev->dev,
8992                         "performant mode problem - doorbell timeout\n");
8993                 return -ENODEV;
8994         }
8995         register_value = readl(&(h->cfgtable->TransportActive));
8996         if (!(register_value & CFGTBL_Trans_Performant)) {
8997                 dev_err(&h->pdev->dev,
8998                         "performant mode problem - transport not active\n");
8999                 return -ENODEV;
9000         }
9001         /* Change the access methods to the performant access methods */
9002         h->access = access;
9003         h->transMethod = transMethod;
9004
9005         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9006                 (trans_support & CFGTBL_Trans_io_accel2)))
9007                 return 0;
9008
9009         if (trans_support & CFGTBL_Trans_io_accel1) {
9010                 /* Set up I/O accelerator mode */
9011                 for (i = 0; i < h->nreply_queues; i++) {
9012                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9013                         h->reply_queue[i].current_entry =
9014                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9015                 }
9016                 bft[7] = h->ioaccel_maxsg + 8;
9017                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9018                                 h->ioaccel1_blockFetchTable);
9019
9020                 /* initialize all reply queue entries to unused */
9021                 for (i = 0; i < h->nreply_queues; i++)
9022                         memset(h->reply_queue[i].head,
9023                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9024                                 h->reply_queue_size);
9025
9026                 /* set all the constant fields in the accelerator command
9027                  * frames once at init time to save CPU cycles later.
9028                  */
9029                 for (i = 0; i < h->nr_cmds; i++) {
9030                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9031
9032                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9033                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9034                                         (i * sizeof(struct ErrorInfo)));
9035                         cp->err_info_len = sizeof(struct ErrorInfo);
9036                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9037                         cp->host_context_flags =
9038                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9039                         cp->timeout_sec = 0;
9040                         cp->ReplyQueue = 0;
9041                         cp->tag =
9042                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9043                         cp->host_addr =
9044                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9045                                         (i * sizeof(struct io_accel1_cmd)));
9046                 }
9047         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9048                 u64 cfg_offset, cfg_base_addr_index;
9049                 u32 bft2_offset, cfg_base_addr;
9050                 int rc;
9051
9052                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9053                         &cfg_base_addr_index, &cfg_offset);
9054                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9055                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9056                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9057                                 4, h->ioaccel2_blockFetchTable);
9058                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9059                 BUILD_BUG_ON(offsetof(struct CfgTable,
9060                                 io_accel_request_size_offset) != 0xb8);
9061                 h->ioaccel2_bft2_regs =
9062                         remap_pci_mem(pci_resource_start(h->pdev,
9063                                         cfg_base_addr_index) +
9064                                         cfg_offset + bft2_offset,
9065                                         ARRAY_SIZE(bft2) *
9066                                         sizeof(*h->ioaccel2_bft2_regs));
9067                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9068                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9069         }
9070         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9071         if (hpsa_wait_for_mode_change_ack(h)) {
9072                 dev_err(&h->pdev->dev,
9073                         "performant mode problem - enabling ioaccel mode\n");
9074                 return -ENODEV;
9075         }
9076         return 0;
9077 }
9078
9079 /* Free ioaccel1 mode command blocks and block fetch table */
9080 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9081 {
9082         if (h->ioaccel_cmd_pool) {
9083                 pci_free_consistent(h->pdev,
9084                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9085                         h->ioaccel_cmd_pool,
9086                         h->ioaccel_cmd_pool_dhandle);
9087                 h->ioaccel_cmd_pool = NULL;
9088                 h->ioaccel_cmd_pool_dhandle = 0;
9089         }
9090         kfree(h->ioaccel1_blockFetchTable);
9091         h->ioaccel1_blockFetchTable = NULL;
9092 }
9093
9094 /* Allocate ioaccel1 mode command blocks and block fetch table */
9095 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9096 {
9097         h->ioaccel_maxsg =
9098                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9099         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9100                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9101
9102         /* Command structures must be aligned on a 128-byte boundary
9103          * because the 7 lower bits of the address are used by the
9104          * hardware.
9105          */
9106         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9107                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9108         h->ioaccel_cmd_pool =
9109                 pci_alloc_consistent(h->pdev,
9110                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9111                         &(h->ioaccel_cmd_pool_dhandle));
9112
9113         h->ioaccel1_blockFetchTable =
9114                 kmalloc(((h->ioaccel_maxsg + 1) *
9115                                 sizeof(u32)), GFP_KERNEL);
9116
9117         if ((h->ioaccel_cmd_pool == NULL) ||
9118                 (h->ioaccel1_blockFetchTable == NULL))
9119                 goto clean_up;
9120
9121         memset(h->ioaccel_cmd_pool, 0,
9122                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9123         return 0;
9124
9125 clean_up:
9126         hpsa_free_ioaccel1_cmd_and_bft(h);
9127         return -ENOMEM;
9128 }
9129
9130 /* Free ioaccel2 mode command blocks and block fetch table */
9131 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9132 {
9133         hpsa_free_ioaccel2_sg_chain_blocks(h);
9134
9135         if (h->ioaccel2_cmd_pool) {
9136                 pci_free_consistent(h->pdev,
9137                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9138                         h->ioaccel2_cmd_pool,
9139                         h->ioaccel2_cmd_pool_dhandle);
9140                 h->ioaccel2_cmd_pool = NULL;
9141                 h->ioaccel2_cmd_pool_dhandle = 0;
9142         }
9143         kfree(h->ioaccel2_blockFetchTable);
9144         h->ioaccel2_blockFetchTable = NULL;
9145 }
9146
9147 /* Allocate ioaccel2 mode command blocks and block fetch table */
9148 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9149 {
9150         int rc;
9151
9152         /* Allocate ioaccel2 mode command blocks and block fetch table */
9153
9154         h->ioaccel_maxsg =
9155                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9156         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9157                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9158
9159         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9160                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9161         h->ioaccel2_cmd_pool =
9162                 pci_alloc_consistent(h->pdev,
9163                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9164                         &(h->ioaccel2_cmd_pool_dhandle));
9165
9166         h->ioaccel2_blockFetchTable =
9167                 kmalloc(((h->ioaccel_maxsg + 1) *
9168                                 sizeof(u32)), GFP_KERNEL);
9169
9170         if ((h->ioaccel2_cmd_pool == NULL) ||
9171                 (h->ioaccel2_blockFetchTable == NULL)) {
9172                 rc = -ENOMEM;
9173                 goto clean_up;
9174         }
9175
9176         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9177         if (rc)
9178                 goto clean_up;
9179
9180         memset(h->ioaccel2_cmd_pool, 0,
9181                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9182         return 0;
9183
9184 clean_up:
9185         hpsa_free_ioaccel2_cmd_and_bft(h);
9186         return rc;
9187 }
9188
9189 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9190 static void hpsa_free_performant_mode(struct ctlr_info *h)
9191 {
9192         kfree(h->blockFetchTable);
9193         h->blockFetchTable = NULL;
9194         hpsa_free_reply_queues(h);
9195         hpsa_free_ioaccel1_cmd_and_bft(h);
9196         hpsa_free_ioaccel2_cmd_and_bft(h);
9197 }
9198
9199 /* return -ENODEV on error, 0 on success (or no action)
9200  * allocates numerous items that must be freed later
9201  */
9202 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9203 {
9204         u32 trans_support;
9205         unsigned long transMethod = CFGTBL_Trans_Performant |
9206                                         CFGTBL_Trans_use_short_tags;
9207         int i, rc;
9208
9209         if (hpsa_simple_mode)
9210                 return 0;
9211
9212         trans_support = readl(&(h->cfgtable->TransportSupport));
9213         if (!(trans_support & PERFORMANT_MODE))
9214                 return 0;
9215
9216         /* Check for I/O accelerator mode support */
9217         if (trans_support & CFGTBL_Trans_io_accel1) {
9218                 transMethod |= CFGTBL_Trans_io_accel1 |
9219                                 CFGTBL_Trans_enable_directed_msix;
9220                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9221                 if (rc)
9222                         return rc;
9223         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9224                 transMethod |= CFGTBL_Trans_io_accel2 |
9225                                 CFGTBL_Trans_enable_directed_msix;
9226                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9227                 if (rc)
9228                         return rc;
9229         }
9230
9231         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9232         hpsa_get_max_perf_mode_cmds(h);
9233         /* Performant mode ring buffer and supporting data structures */
9234         h->reply_queue_size = h->max_commands * sizeof(u64);
9235
9236         for (i = 0; i < h->nreply_queues; i++) {
9237                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9238                                                 h->reply_queue_size,
9239                                                 &(h->reply_queue[i].busaddr));
9240                 if (!h->reply_queue[i].head) {
9241                         rc = -ENOMEM;
9242                         goto clean1;    /* rq, ioaccel */
9243                 }
9244                 h->reply_queue[i].size = h->max_commands;
9245                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9246                 h->reply_queue[i].current_entry = 0;
9247         }
9248
9249         /* Need a block fetch table for performant mode */
9250         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9251                                 sizeof(u32)), GFP_KERNEL);
9252         if (!h->blockFetchTable) {
9253                 rc = -ENOMEM;
9254                 goto clean1;    /* rq, ioaccel */
9255         }
9256
9257         rc = hpsa_enter_performant_mode(h, trans_support);
9258         if (rc)
9259                 goto clean2;    /* bft, rq, ioaccel */
9260         return 0;
9261
9262 clean2: /* bft, rq, ioaccel */
9263         kfree(h->blockFetchTable);
9264         h->blockFetchTable = NULL;
9265 clean1: /* rq, ioaccel */
9266         hpsa_free_reply_queues(h);
9267         hpsa_free_ioaccel1_cmd_and_bft(h);
9268         hpsa_free_ioaccel2_cmd_and_bft(h);
9269         return rc;
9270 }
9271
9272 static int is_accelerated_cmd(struct CommandList *c)
9273 {
9274         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9275 }
9276
9277 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9278 {
9279         struct CommandList *c = NULL;
9280         int i, accel_cmds_out;
9281         int refcount;
9282
9283         do { /* wait for all outstanding ioaccel commands to drain out */
9284                 accel_cmds_out = 0;
9285                 for (i = 0; i < h->nr_cmds; i++) {
9286                         c = h->cmd_pool + i;
9287                         refcount = atomic_inc_return(&c->refcount);
9288                         if (refcount > 1) /* Command is allocated */
9289                                 accel_cmds_out += is_accelerated_cmd(c);
9290                         cmd_free(h, c);
9291                 }
9292                 if (accel_cmds_out <= 0)
9293                         break;
9294                 msleep(100);
9295         } while (1);
9296 }
9297
9298 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9299                                 struct hpsa_sas_port *hpsa_sas_port)
9300 {
9301         struct hpsa_sas_phy *hpsa_sas_phy;
9302         struct sas_phy *phy;
9303
9304         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9305         if (!hpsa_sas_phy)
9306                 return NULL;
9307
9308         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9309                 hpsa_sas_port->next_phy_index);
9310         if (!phy) {
9311                 kfree(hpsa_sas_phy);
9312                 return NULL;
9313         }
9314
9315         hpsa_sas_port->next_phy_index++;
9316         hpsa_sas_phy->phy = phy;
9317         hpsa_sas_phy->parent_port = hpsa_sas_port;
9318
9319         return hpsa_sas_phy;
9320 }
9321
9322 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9323 {
9324         struct sas_phy *phy = hpsa_sas_phy->phy;
9325
9326         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9327         sas_phy_free(phy);
9328         if (hpsa_sas_phy->added_to_port)
9329                 list_del(&hpsa_sas_phy->phy_list_entry);
9330         kfree(hpsa_sas_phy);
9331 }
9332
9333 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9334 {
9335         int rc;
9336         struct hpsa_sas_port *hpsa_sas_port;
9337         struct sas_phy *phy;
9338         struct sas_identify *identify;
9339
9340         hpsa_sas_port = hpsa_sas_phy->parent_port;
9341         phy = hpsa_sas_phy->phy;
9342
9343         identify = &phy->identify;
9344         memset(identify, 0, sizeof(*identify));
9345         identify->sas_address = hpsa_sas_port->sas_address;
9346         identify->device_type = SAS_END_DEVICE;
9347         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9348         identify->target_port_protocols = SAS_PROTOCOL_STP;
9349         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9350         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9351         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9352         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9353         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9354
9355         rc = sas_phy_add(hpsa_sas_phy->phy);
9356         if (rc)
9357                 return rc;
9358
9359         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9360         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9361                         &hpsa_sas_port->phy_list_head);
9362         hpsa_sas_phy->added_to_port = true;
9363
9364         return 0;
9365 }
9366
9367 static int
9368         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9369                                 struct sas_rphy *rphy)
9370 {
9371         struct sas_identify *identify;
9372
9373         identify = &rphy->identify;
9374         identify->sas_address = hpsa_sas_port->sas_address;
9375         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9376         identify->target_port_protocols = SAS_PROTOCOL_STP;
9377
9378         return sas_rphy_add(rphy);
9379 }
9380
9381 static struct hpsa_sas_port
9382         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9383                                 u64 sas_address)
9384 {
9385         int rc;
9386         struct hpsa_sas_port *hpsa_sas_port;
9387         struct sas_port *port;
9388
9389         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9390         if (!hpsa_sas_port)
9391                 return NULL;
9392
9393         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9394         hpsa_sas_port->parent_node = hpsa_sas_node;
9395
9396         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9397         if (!port)
9398                 goto free_hpsa_port;
9399
9400         rc = sas_port_add(port);
9401         if (rc)
9402                 goto free_sas_port;
9403
9404         hpsa_sas_port->port = port;
9405         hpsa_sas_port->sas_address = sas_address;
9406         list_add_tail(&hpsa_sas_port->port_list_entry,
9407                         &hpsa_sas_node->port_list_head);
9408
9409         return hpsa_sas_port;
9410
9411 free_sas_port:
9412         sas_port_free(port);
9413 free_hpsa_port:
9414         kfree(hpsa_sas_port);
9415
9416         return NULL;
9417 }
9418
9419 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9420 {
9421         struct hpsa_sas_phy *hpsa_sas_phy;
9422         struct hpsa_sas_phy *next;
9423
9424         list_for_each_entry_safe(hpsa_sas_phy, next,
9425                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9426                 hpsa_free_sas_phy(hpsa_sas_phy);
9427
9428         sas_port_delete(hpsa_sas_port->port);
9429         list_del(&hpsa_sas_port->port_list_entry);
9430         kfree(hpsa_sas_port);
9431 }
9432
9433 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9434 {
9435         struct hpsa_sas_node *hpsa_sas_node;
9436
9437         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9438         if (hpsa_sas_node) {
9439                 hpsa_sas_node->parent_dev = parent_dev;
9440                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9441         }
9442
9443         return hpsa_sas_node;
9444 }
9445
9446 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9447 {
9448         struct hpsa_sas_port *hpsa_sas_port;
9449         struct hpsa_sas_port *next;
9450
9451         if (!hpsa_sas_node)
9452                 return;
9453
9454         list_for_each_entry_safe(hpsa_sas_port, next,
9455                         &hpsa_sas_node->port_list_head, port_list_entry)
9456                 hpsa_free_sas_port(hpsa_sas_port);
9457
9458         kfree(hpsa_sas_node);
9459 }
9460
9461 static struct hpsa_scsi_dev_t
9462         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9463                                         struct sas_rphy *rphy)
9464 {
9465         int i;
9466         struct hpsa_scsi_dev_t *device;
9467
9468         for (i = 0; i < h->ndevices; i++) {
9469                 device = h->dev[i];
9470                 if (!device->sas_port)
9471                         continue;
9472                 if (device->sas_port->rphy == rphy)
9473                         return device;
9474         }
9475
9476         return NULL;
9477 }
9478
9479 static int hpsa_add_sas_host(struct ctlr_info *h)
9480 {
9481         int rc;
9482         struct device *parent_dev;
9483         struct hpsa_sas_node *hpsa_sas_node;
9484         struct hpsa_sas_port *hpsa_sas_port;
9485         struct hpsa_sas_phy *hpsa_sas_phy;
9486
9487         parent_dev = &h->scsi_host->shost_gendev;
9488
9489         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9490         if (!hpsa_sas_node)
9491                 return -ENOMEM;
9492
9493         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9494         if (!hpsa_sas_port) {
9495                 rc = -ENODEV;
9496                 goto free_sas_node;
9497         }
9498
9499         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9500         if (!hpsa_sas_phy) {
9501                 rc = -ENODEV;
9502                 goto free_sas_port;
9503         }
9504
9505         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9506         if (rc)
9507                 goto free_sas_phy;
9508
9509         h->sas_host = hpsa_sas_node;
9510
9511         return 0;
9512
9513 free_sas_phy:
9514         hpsa_free_sas_phy(hpsa_sas_phy);
9515 free_sas_port:
9516         hpsa_free_sas_port(hpsa_sas_port);
9517 free_sas_node:
9518         hpsa_free_sas_node(hpsa_sas_node);
9519
9520         return rc;
9521 }
9522
9523 static void hpsa_delete_sas_host(struct ctlr_info *h)
9524 {
9525         hpsa_free_sas_node(h->sas_host);
9526 }
9527
9528 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9529                                 struct hpsa_scsi_dev_t *device)
9530 {
9531         int rc;
9532         struct hpsa_sas_port *hpsa_sas_port;
9533         struct sas_rphy *rphy;
9534
9535         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9536         if (!hpsa_sas_port)
9537                 return -ENOMEM;
9538
9539         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9540         if (!rphy) {
9541                 rc = -ENODEV;
9542                 goto free_sas_port;
9543         }
9544
9545         hpsa_sas_port->rphy = rphy;
9546         device->sas_port = hpsa_sas_port;
9547
9548         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9549         if (rc)
9550                 goto free_sas_port;
9551
9552         return 0;
9553
9554 free_sas_port:
9555         hpsa_free_sas_port(hpsa_sas_port);
9556         device->sas_port = NULL;
9557
9558         return rc;
9559 }
9560
9561 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9562 {
9563         if (device->sas_port) {
9564                 hpsa_free_sas_port(device->sas_port);
9565                 device->sas_port = NULL;
9566         }
9567 }
9568
9569 static int
9570 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9571 {
9572         return 0;
9573 }
9574
9575 static int
9576 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9577 {
9578         return 0;
9579 }
9580
9581 static int
9582 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9583 {
9584         return -ENXIO;
9585 }
9586
9587 static int
9588 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9589 {
9590         return 0;
9591 }
9592
9593 static int
9594 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9595 {
9596         return 0;
9597 }
9598
9599 static int
9600 hpsa_sas_phy_setup(struct sas_phy *phy)
9601 {
9602         return 0;
9603 }
9604
9605 static void
9606 hpsa_sas_phy_release(struct sas_phy *phy)
9607 {
9608 }
9609
9610 static int
9611 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9612 {
9613         return -EINVAL;
9614 }
9615
9616 /* SMP = Serial Management Protocol */
9617 static int
9618 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9619 struct request *req)
9620 {
9621         return -EINVAL;
9622 }
9623
9624 static struct sas_function_template hpsa_sas_transport_functions = {
9625         .get_linkerrors = hpsa_sas_get_linkerrors,
9626         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9627         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9628         .phy_reset = hpsa_sas_phy_reset,
9629         .phy_enable = hpsa_sas_phy_enable,
9630         .phy_setup = hpsa_sas_phy_setup,
9631         .phy_release = hpsa_sas_phy_release,
9632         .set_phy_speed = hpsa_sas_phy_speed,
9633         .smp_handler = hpsa_sas_smp_handler,
9634 };
9635
9636 /*
9637  *  This is it.  Register the PCI driver information for the cards we control
9638  *  the OS will call our registered routines when it finds one of our cards.
9639  */
9640 static int __init hpsa_init(void)
9641 {
9642         int rc;
9643
9644         hpsa_sas_transport_template =
9645                 sas_attach_transport(&hpsa_sas_transport_functions);
9646         if (!hpsa_sas_transport_template)
9647                 return -ENODEV;
9648
9649         rc = pci_register_driver(&hpsa_pci_driver);
9650
9651         if (rc)
9652                 sas_release_transport(hpsa_sas_transport_template);
9653
9654         return rc;
9655 }
9656
9657 static void __exit hpsa_cleanup(void)
9658 {
9659         pci_unregister_driver(&hpsa_pci_driver);
9660         sas_release_transport(hpsa_sas_transport_template);
9661 }
9662
9663 static void __attribute__((unused)) verify_offsets(void)
9664 {
9665 #define VERIFY_OFFSET(member, offset) \
9666         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9667
9668         VERIFY_OFFSET(structure_size, 0);
9669         VERIFY_OFFSET(volume_blk_size, 4);
9670         VERIFY_OFFSET(volume_blk_cnt, 8);
9671         VERIFY_OFFSET(phys_blk_shift, 16);
9672         VERIFY_OFFSET(parity_rotation_shift, 17);
9673         VERIFY_OFFSET(strip_size, 18);
9674         VERIFY_OFFSET(disk_starting_blk, 20);
9675         VERIFY_OFFSET(disk_blk_cnt, 28);
9676         VERIFY_OFFSET(data_disks_per_row, 36);
9677         VERIFY_OFFSET(metadata_disks_per_row, 38);
9678         VERIFY_OFFSET(row_cnt, 40);
9679         VERIFY_OFFSET(layout_map_count, 42);
9680         VERIFY_OFFSET(flags, 44);
9681         VERIFY_OFFSET(dekindex, 46);
9682         /* VERIFY_OFFSET(reserved, 48 */
9683         VERIFY_OFFSET(data, 64);
9684
9685 #undef VERIFY_OFFSET
9686
9687 #define VERIFY_OFFSET(member, offset) \
9688         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9689
9690         VERIFY_OFFSET(IU_type, 0);
9691         VERIFY_OFFSET(direction, 1);
9692         VERIFY_OFFSET(reply_queue, 2);
9693         /* VERIFY_OFFSET(reserved1, 3);  */
9694         VERIFY_OFFSET(scsi_nexus, 4);
9695         VERIFY_OFFSET(Tag, 8);
9696         VERIFY_OFFSET(cdb, 16);
9697         VERIFY_OFFSET(cciss_lun, 32);
9698         VERIFY_OFFSET(data_len, 40);
9699         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9700         VERIFY_OFFSET(sg_count, 45);
9701         /* VERIFY_OFFSET(reserved3 */
9702         VERIFY_OFFSET(err_ptr, 48);
9703         VERIFY_OFFSET(err_len, 56);
9704         /* VERIFY_OFFSET(reserved4  */
9705         VERIFY_OFFSET(sg, 64);
9706
9707 #undef VERIFY_OFFSET
9708
9709 #define VERIFY_OFFSET(member, offset) \
9710         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9711
9712         VERIFY_OFFSET(dev_handle, 0x00);
9713         VERIFY_OFFSET(reserved1, 0x02);
9714         VERIFY_OFFSET(function, 0x03);
9715         VERIFY_OFFSET(reserved2, 0x04);
9716         VERIFY_OFFSET(err_info, 0x0C);
9717         VERIFY_OFFSET(reserved3, 0x10);
9718         VERIFY_OFFSET(err_info_len, 0x12);
9719         VERIFY_OFFSET(reserved4, 0x13);
9720         VERIFY_OFFSET(sgl_offset, 0x14);
9721         VERIFY_OFFSET(reserved5, 0x15);
9722         VERIFY_OFFSET(transfer_len, 0x1C);
9723         VERIFY_OFFSET(reserved6, 0x20);
9724         VERIFY_OFFSET(io_flags, 0x24);
9725         VERIFY_OFFSET(reserved7, 0x26);
9726         VERIFY_OFFSET(LUN, 0x34);
9727         VERIFY_OFFSET(control, 0x3C);
9728         VERIFY_OFFSET(CDB, 0x40);
9729         VERIFY_OFFSET(reserved8, 0x50);
9730         VERIFY_OFFSET(host_context_flags, 0x60);
9731         VERIFY_OFFSET(timeout_sec, 0x62);
9732         VERIFY_OFFSET(ReplyQueue, 0x64);
9733         VERIFY_OFFSET(reserved9, 0x65);
9734         VERIFY_OFFSET(tag, 0x68);
9735         VERIFY_OFFSET(host_addr, 0x70);
9736         VERIFY_OFFSET(CISS_LUN, 0x78);
9737         VERIFY_OFFSET(SG, 0x78 + 8);
9738 #undef VERIFY_OFFSET
9739 }
9740
9741 module_init(hpsa_init);
9742 module_exit(hpsa_cleanup);