1 //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Loop unrolling may create many similar GEPs for array accesses.
11 // e.g., a 2-level loop
13 // float a[32][32]; // global variable
15 // for (int i = 0; i < 2; ++i) {
16 // for (int j = 0; j < 2; ++j) {
18 // ... = a[x + i][y + j];
23 // will probably be unrolled to:
25 // gep %a, 0, %x, %y; load
26 // gep %a, 0, %x, %y + 1; load
27 // gep %a, 0, %x + 1, %y; load
28 // gep %a, 0, %x + 1, %y + 1; load
30 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
31 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32 // significant slowdown in targets with limited addressing modes. For instance,
33 // because the PTX target does not support the reg+reg addressing mode, the
34 // NVPTX backend emits PTX code that literally computes the pointer address of
35 // each GEP, wasting tons of registers. It emits the following PTX for the
36 // first load and similar PTX for other loads.
40 // mul.wide.u32 %rl2, %r1, 128;
42 // add.s64 %rl4, %rl3, %rl2;
43 // mul.wide.u32 %rl5, %r2, 4;
44 // add.s64 %rl6, %rl4, %rl5;
45 // ld.global.f32 %f1, [%rl6];
47 // To reduce the register pressure, the optimization implemented in this file
48 // merges the common part of a group of GEPs, so we can compute each pointer
49 // address by adding a simple offset to the common part, saving many registers.
51 // It works by splitting each GEP into a variadic base and a constant offset.
52 // The variadic base can be computed once and reused by multiple GEPs, and the
53 // constant offsets can be nicely folded into the reg+immediate addressing mode
54 // (supported by most targets) without using any extra register.
56 // For instance, we transform the four GEPs and four loads in the above example
59 // base = gep a, 0, x, y
61 // laod base + 1 * sizeof(float)
62 // load base + 32 * sizeof(float)
63 // load base + 33 * sizeof(float)
65 // Given the transformed IR, a backend that supports the reg+immediate
66 // addressing mode can easily fold the pointer arithmetics into the loads. For
67 // example, the NVPTX backend can easily fold the pointer arithmetics into the
68 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
70 // mov.u32 %r1, %tid.x;
71 // mov.u32 %r2, %tid.y;
72 // mul.wide.u32 %rl2, %r1, 128;
74 // add.s64 %rl4, %rl3, %rl2;
75 // mul.wide.u32 %rl5, %r2, 4;
76 // add.s64 %rl6, %rl4, %rl5;
77 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
78 // ld.global.f32 %f2, [%rl6+4]; // much better
79 // ld.global.f32 %f3, [%rl6+128]; // much better
80 // ld.global.f32 %f4, [%rl6+132]; // much better
82 //===----------------------------------------------------------------------===//
84 #include "llvm/Analysis/TargetTransformInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/IR/Constants.h"
87 #include "llvm/IR/DataLayout.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/Operator.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Transforms/Scalar.h"
98 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
99 "disable-separate-const-offset-from-gep", cl::init(false),
100 cl::desc("Do not separate the constant offset from a GEP instruction"),
105 /// \brief A helper class for separating a constant offset from a GEP index.
107 /// In real programs, a GEP index may be more complicated than a simple addition
108 /// of something and a constant integer which can be trivially splitted. For
109 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
110 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
112 /// Therefore, this class looks into the expression that computes a given GEP
113 /// index, and tries to find a constant integer that can be hoisted to the
114 /// outermost level of the expression as an addition. Not every constant in an
115 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
116 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
117 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
118 class ConstantOffsetExtractor {
120 /// Extracts a constant offset from the given GEP index. It outputs the
121 /// numeric value of the extracted constant offset (0 if failed), and a
122 /// new index representing the remainder (equal to the original index minus
123 /// the constant offset).
124 /// \p Idx The given GEP index
125 /// \p NewIdx The new index to replace (output)
126 /// \p DL The datalayout of the module
127 /// \p GEP The given GEP
128 static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
129 GetElementPtrInst *GEP);
130 /// Looks for a constant offset without extracting it. The meaning of the
131 /// arguments and the return value are the same as Extract.
132 static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
135 ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
136 : DL(Layout), IP(InsertionPt) {}
137 /// Searches the expression that computes V for a non-zero constant C s.t.
138 /// V can be reassociated into the form V' + C. If the searching is
139 /// successful, returns C and update UserChain as a def-use chain from C to V;
140 /// otherwise, UserChain is empty.
142 /// \p V The given expression
143 /// \p SignExtended Whether V will be sign-extended in the computation of the
145 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
147 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
148 /// an index of an inbounds GEP is guaranteed to be
149 /// non-negative. Levaraging this, we can better split
151 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
152 /// A helper function to look into both operands of a binary operator.
153 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
155 /// After finding the constant offset C from the GEP index I, we build a new
156 /// index I' s.t. I' + C = I. This function builds and returns the new
157 /// index I' according to UserChain produced by function "find".
159 /// The building conceptually takes two steps:
160 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
162 /// 2) reassociate the expression tree to the form I' + C.
164 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
165 /// sext to a, b and 5 so that we have
166 /// sext(a) + (sext(b) + 5).
167 /// Then, we reassociate it to
168 /// (sext(a) + sext(b)) + 5.
169 /// Given this form, we know I' is sext(a) + sext(b).
170 Value *rebuildWithoutConstOffset();
171 /// After the first step of rebuilding the GEP index without the constant
172 /// offset, distribute s/zext to the operands of all operators in UserChain.
173 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
174 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
176 /// The function also updates UserChain to point to new subexpressions after
177 /// distributing s/zext. e.g., the old UserChain of the above example is
178 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
179 /// and the new UserChain is
180 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
181 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
183 /// \p ChainIndex The index to UserChain. ChainIndex is initially
184 /// UserChain.size() - 1, and is decremented during
186 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
187 /// Reassociates the GEP index to the form I' + C and returns I'.
188 Value *removeConstOffset(unsigned ChainIndex);
189 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
190 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
191 /// returns "sext i32 (zext i16 V to i32) to i64".
192 Value *applyExts(Value *V);
194 /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
195 bool NoCommonBits(Value *LHS, Value *RHS) const;
196 /// Computes which bits are known to be one or zero.
197 /// \p KnownOne Mask of all bits that are known to be one.
198 /// \p KnownZero Mask of all bits that are known to be zero.
199 void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
200 /// A helper function that returns whether we can trace into the operands
201 /// of binary operator BO for a constant offset.
203 /// \p SignExtended Whether BO is surrounded by sext
204 /// \p ZeroExtended Whether BO is surrounded by zext
205 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
207 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
210 /// The path from the constant offset to the old GEP index. e.g., if the GEP
211 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
212 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
213 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
215 /// This path helps to rebuild the new GEP index.
216 SmallVector<User *, 8> UserChain;
217 /// A data structure used in rebuildWithoutConstOffset. Contains all
218 /// sext/zext instructions along UserChain.
219 SmallVector<CastInst *, 16> ExtInsts;
220 /// The data layout of the module. Used in ComputeKnownBits.
221 const DataLayout *DL;
222 Instruction *IP; /// Insertion position of cloned instructions.
225 /// \brief A pass that tries to split every GEP in the function into a variadic
226 /// base and a constant offset. It is a FunctionPass because searching for the
227 /// constant offset may inspect other basic blocks.
228 class SeparateConstOffsetFromGEP : public FunctionPass {
231 SeparateConstOffsetFromGEP() : FunctionPass(ID) {
232 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
235 void getAnalysisUsage(AnalysisUsage &AU) const override {
236 AU.addRequired<DataLayoutPass>();
237 AU.addRequired<TargetTransformInfo>();
240 bool doInitialization(Module &M) override {
241 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
243 report_fatal_error("data layout missing");
244 DL = &DLP->getDataLayout();
248 bool runOnFunction(Function &F) override;
251 /// Tries to split the given GEP into a variadic base and a constant offset,
252 /// and returns true if the splitting succeeds.
253 bool splitGEP(GetElementPtrInst *GEP);
254 /// Finds the constant offset within each index, and accumulates them. This
255 /// function only inspects the GEP without changing it. The output
256 /// NeedsExtraction indicates whether we can extract a non-zero constant
257 /// offset from any index.
258 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
259 /// Canonicalize array indices to pointer-size integers. This helps to
260 /// simplify the logic of splitting a GEP. For example, if a + b is a
261 /// pointer-size integer, we have
262 /// gep base, a + b = gep (gep base, a), b
263 /// However, this equality may not hold if the size of a + b is smaller than
264 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
265 /// pointer size before computing the address
266 /// (http://llvm.org/docs/LangRef.html#id181).
268 /// This canonicalization is very likely already done in clang and
269 /// instcombine. Therefore, the program will probably remain the same.
271 /// Returns true if the module changes.
273 /// Verified in @i32_add in split-gep.ll
274 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
276 const DataLayout *DL;
278 } // anonymous namespace
280 char SeparateConstOffsetFromGEP::ID = 0;
281 INITIALIZE_PASS_BEGIN(
282 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
283 "Split GEPs to a variadic base and a constant offset for better CSE", false,
285 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
286 INITIALIZE_PASS_DEPENDENCY(DataLayoutPass)
288 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
289 "Split GEPs to a variadic base and a constant offset for better CSE", false,
292 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
293 return new SeparateConstOffsetFromGEP();
296 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
300 // We only consider ADD, SUB and OR, because a non-zero constant found in
301 // expressions composed of these operations can be easily hoisted as a
302 // constant offset by reassociation.
303 if (BO->getOpcode() != Instruction::Add &&
304 BO->getOpcode() != Instruction::Sub &&
305 BO->getOpcode() != Instruction::Or) {
309 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
310 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
311 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
312 if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
315 // In addition, tracing into BO requires that its surrounding s/zext (if
316 // any) is distributable to both operands.
318 // Suppose BO = A op B.
319 // SignExtended | ZeroExtended | Distributable?
320 // --------------+--------------+----------------------------------
321 // 0 | 0 | true because no s/zext exists
322 // 0 | 1 | zext(BO) == zext(A) op zext(B)
323 // 1 | 0 | sext(BO) == sext(A) op sext(B)
324 // 1 | 1 | zext(sext(BO)) ==
325 // | | zext(sext(A)) op zext(sext(B))
326 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
327 // If a + b >= 0 and (a >= 0 or b >= 0), then
328 // sext(a + b) = sext(a) + sext(b)
329 // even if the addition is not marked nsw.
331 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
332 // index if the constant offset is non-negative.
334 // Verified in @sext_add in split-gep.ll.
335 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
336 if (!ConstLHS->isNegative())
339 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
340 if (!ConstRHS->isNegative())
345 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
346 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
347 if (BO->getOpcode() == Instruction::Add ||
348 BO->getOpcode() == Instruction::Sub) {
349 if (SignExtended && !BO->hasNoSignedWrap())
351 if (ZeroExtended && !BO->hasNoUnsignedWrap())
358 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
361 // BO being non-negative does not shed light on whether its operands are
362 // non-negative. Clear the NonNegative flag here.
363 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
364 /* NonNegative */ false);
365 // If we found a constant offset in the left operand, stop and return that.
366 // This shortcut might cause us to miss opportunities of combining the
367 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
368 // However, such cases are probably already handled by -instcombine,
369 // given this pass runs after the standard optimizations.
370 if (ConstantOffset != 0) return ConstantOffset;
371 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
372 /* NonNegative */ false);
373 // If U is a sub operator, negate the constant offset found in the right
375 if (BO->getOpcode() == Instruction::Sub)
376 ConstantOffset = -ConstantOffset;
377 return ConstantOffset;
380 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
381 bool ZeroExtended, bool NonNegative) {
382 // TODO(jingyue): We could trace into integer/pointer casts, such as
383 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
384 // integers because it gives good enough results for our benchmarks.
385 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
387 // We cannot do much with Values that are not a User, such as an Argument.
388 User *U = dyn_cast<User>(V);
389 if (U == nullptr) return APInt(BitWidth, 0);
391 APInt ConstantOffset(BitWidth, 0);
392 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
393 // Hooray, we found it!
394 ConstantOffset = CI->getValue();
395 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
396 // Trace into subexpressions for more hoisting opportunities.
397 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
398 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
400 } else if (isa<SExtInst>(V)) {
401 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
402 ZeroExtended, NonNegative).sext(BitWidth);
403 } else if (isa<ZExtInst>(V)) {
404 // As an optimization, we can clear the SignExtended flag because
405 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
407 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
409 find(U->getOperand(0), /* SignExtended */ false,
410 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
413 // If we found a non-zero constant offset, add it to the path for
414 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
415 // help this optimization.
416 if (ConstantOffset != 0)
417 UserChain.push_back(U);
418 return ConstantOffset;
421 Value *ConstantOffsetExtractor::applyExts(Value *V) {
423 // ExtInsts is built in the use-def order. Therefore, we apply them to V
424 // in the reversed order.
425 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
426 if (Constant *C = dyn_cast<Constant>(Current)) {
427 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
428 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
429 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
431 Instruction *Ext = (*I)->clone();
432 Ext->setOperand(0, Current);
433 Ext->insertBefore(IP);
440 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
441 distributeExtsAndCloneChain(UserChain.size() - 1);
442 // Remove all nullptrs (used to be s/zext) from UserChain.
443 unsigned NewSize = 0;
444 for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
446 UserChain[NewSize] = *I;
450 UserChain.resize(NewSize);
451 return removeConstOffset(UserChain.size() - 1);
455 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
456 User *U = UserChain[ChainIndex];
457 if (ChainIndex == 0) {
458 assert(isa<ConstantInt>(U));
459 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
460 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
463 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
464 assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
465 "We only traced into two types of CastInst: sext and zext");
466 ExtInsts.push_back(Cast);
467 UserChain[ChainIndex] = nullptr;
468 return distributeExtsAndCloneChain(ChainIndex - 1);
471 // Function find only trace into BinaryOperator and CastInst.
472 BinaryOperator *BO = cast<BinaryOperator>(U);
473 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
474 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
475 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
476 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
478 BinaryOperator *NewBO = nullptr;
480 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
483 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
486 return UserChain[ChainIndex] = NewBO;
489 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
490 if (ChainIndex == 0) {
491 assert(isa<ConstantInt>(UserChain[ChainIndex]));
492 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
495 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
496 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
497 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
498 Value *NextInChain = removeConstOffset(ChainIndex - 1);
499 Value *TheOther = BO->getOperand(1 - OpNo);
501 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
502 // sub-expression to be just TheOther.
503 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
504 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
508 if (BO->getOpcode() == Instruction::Or) {
509 // Rebuild "or" as "add", because "or" may be invalid for the new
512 // For instance, given
513 // a | (b + 5) where a and b + 5 have no common bits,
514 // we can extract 5 as the constant offset.
516 // However, reusing the "or" in the new index would give us
518 // which does not equal a | (b + 5).
520 // Replacing the "or" with "add" is fine, because
521 // a | (b + 5) = a + (b + 5) = (a + b) + 5
522 return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1),
526 // We can reuse BO in this case, because the new expression shares the same
527 // instruction type and BO is used at most once.
528 assert(BO->getNumUses() <= 1 &&
529 "distributeExtsAndCloneChain clones each BinaryOperator in "
530 "UserChain, so no one should be used more than "
532 BO->setOperand(OpNo, NextInChain);
533 BO->setHasNoSignedWrap(false);
534 BO->setHasNoUnsignedWrap(false);
535 // Make sure it appears after all instructions we've inserted so far.
540 int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
541 const DataLayout *DL,
542 GetElementPtrInst *GEP) {
543 ConstantOffsetExtractor Extractor(DL, GEP);
544 // Find a non-zero constant offset first.
545 APInt ConstantOffset =
546 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
548 if (ConstantOffset != 0) {
549 // Separates the constant offset from the GEP index.
550 NewIdx = Extractor.rebuildWithoutConstOffset();
552 return ConstantOffset.getSExtValue();
555 int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
556 GetElementPtrInst *GEP) {
557 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
558 return ConstantOffsetExtractor(DL, GEP)
559 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
564 void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
565 APInt &KnownZero) const {
566 IntegerType *IT = cast<IntegerType>(V->getType());
567 KnownOne = APInt(IT->getBitWidth(), 0);
568 KnownZero = APInt(IT->getBitWidth(), 0);
569 llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
572 bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
573 assert(LHS->getType() == RHS->getType() &&
574 "LHS and RHS should have the same type");
575 APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
576 ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
577 ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
578 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
581 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
582 GetElementPtrInst *GEP) {
583 bool Changed = false;
584 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
585 gep_type_iterator GTI = gep_type_begin(*GEP);
586 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
587 I != E; ++I, ++GTI) {
588 // Skip struct member indices which must be i32.
589 if (isa<SequentialType>(*GTI)) {
590 if ((*I)->getType() != IntPtrTy) {
591 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
600 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
601 bool &NeedsExtraction) {
602 NeedsExtraction = false;
603 int64_t AccumulativeByteOffset = 0;
604 gep_type_iterator GTI = gep_type_begin(*GEP);
605 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
606 if (isa<SequentialType>(*GTI)) {
607 // Tries to extract a constant offset from this GEP index.
608 int64_t ConstantOffset =
609 ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
610 if (ConstantOffset != 0) {
611 NeedsExtraction = true;
612 // A GEP may have multiple indices. We accumulate the extracted
613 // constant offset to a byte offset, and later offset the remainder of
614 // the original GEP with this byte offset.
615 AccumulativeByteOffset +=
616 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
620 return AccumulativeByteOffset;
623 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
625 if (GEP->getType()->isVectorTy())
628 // The backend can already nicely handle the case where all indices are
630 if (GEP->hasAllConstantIndices())
633 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
635 bool NeedsExtraction;
636 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
638 if (!NeedsExtraction)
640 // Before really splitting the GEP, check whether the backend supports the
641 // addressing mode we are about to produce. If no, this splitting probably
642 // won't be beneficial.
643 TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
644 if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
645 /*BaseGV=*/nullptr, AccumulativeByteOffset,
646 /*HasBaseReg=*/true, /*Scale=*/0)) {
650 // Remove the constant offset in each GEP index. The resultant GEP computes
651 // the variadic base.
652 gep_type_iterator GTI = gep_type_begin(*GEP);
653 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
654 if (isa<SequentialType>(*GTI)) {
655 Value *NewIdx = nullptr;
656 // Tries to extract a constant offset from this GEP index.
657 int64_t ConstantOffset =
658 ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP);
659 if (ConstantOffset != 0) {
660 assert(NewIdx != nullptr &&
661 "ConstantOffset != 0 implies NewIdx is set");
662 GEP->setOperand(I, NewIdx);
666 // Clear the inbounds attribute because the new index may be off-bound.
670 // addr = gep inbounds float* p, i64 b
672 // is transformed to:
674 // addr2 = gep float* p, i64 a
675 // addr = gep float* addr2, i64 5
677 // If a is -4, although the old index b is in bounds, the new index a is
678 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
679 // inbounds keyword is not present, the offsets are added to the base
680 // address with silently-wrapping two's complement arithmetic".
681 // Therefore, the final code will be a semantically equivalent.
683 // TODO(jingyue): do some range analysis to keep as many inbounds as
684 // possible. GEPs with inbounds are more friendly to alias analysis.
685 GEP->setIsInBounds(false);
687 // Offsets the base with the accumulative byte offset.
694 // %gep2 ; clone of %gep
695 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
696 // %gep ; will be removed
699 // => replace all uses of %gep with %new.gep and remove %gep
701 // %gep2 ; clone of %gep
702 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
705 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
706 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
707 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
710 // %gep2 ; clone of %gep
711 // %0 = bitcast %gep2 to i8*
712 // %uglygep = gep %0, <offset>
713 // %new.gep = bitcast %uglygep to <type of %gep>
715 Instruction *NewGEP = GEP->clone();
716 NewGEP->insertBefore(GEP);
718 uint64_t ElementTypeSizeOfGEP =
719 DL->getTypeAllocSize(GEP->getType()->getElementType());
720 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
721 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
722 // Very likely. As long as %gep is natually aligned, the byte offset we
723 // extracted should be a multiple of sizeof(*%gep).
724 // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we
725 // cast ElementTypeSizeOfGEP to signed.
727 AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP);
728 NewGEP = GetElementPtrInst::Create(
729 NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
731 // Unlikely but possible. For example,
739 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
740 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
741 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
744 // Emit an uglygep in this case.
745 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
746 GEP->getPointerAddressSpace());
747 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
748 NewGEP = GetElementPtrInst::Create(
749 NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true),
751 if (GEP->getType() != I8PtrTy)
752 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
755 GEP->replaceAllUsesWith(NewGEP);
756 GEP->eraseFromParent();
761 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
762 if (DisableSeparateConstOffsetFromGEP)
765 bool Changed = false;
766 for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
767 for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
768 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
769 Changed |= splitGEP(GEP);
771 // No need to split GEP ConstantExprs because all its indices are constant