Partially revert r210444 due to performance regression
authorJingyue Wu <jingyue@google.com>
Wed, 16 Jul 2014 23:25:00 +0000 (23:25 +0000)
committerJingyue Wu <jingyue@google.com>
Wed, 16 Jul 2014 23:25:00 +0000 (23:25 +0000)
Summary:
Converting outermost zext(a) to sext(a) causes worse code when the
computation of zext(a) could be reused. For example, after converting

... = array[zext(a)]
... = array[zext(a) + 1]

to

... = array[sext(a)]
... = array[zext(a) + 1],

the program computes sext(a), which is actually unnecessary. I added one
test in split-gep-and-gvn.ll to illustrate this scenario.

Also, with r211281 and r211084, we annotate more "nuw" tags to
computation involving CUDA intrinsics such as threadIdx.x. These
annotations help with splitting GEP a lot, rendering the benefit we get
from this reverted optimization only marginal.

Test Plan: make check-all

Reviewers: eliben, meheff

Reviewed By: meheff

Subscribers: jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D4542

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213209 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep-and-gvn.ll
test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep.ll

index 62f2026..6557ce4 100644 (file)
@@ -272,23 +272,6 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
   ///
   /// Verified in @i32_add in split-gep.ll
   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
-  /// For each array index that is in the form of zext(a), convert it to sext(a)
-  /// if we can prove zext(a) <= max signed value of typeof(a). We prefer
-  /// sext(a) to zext(a), because in the special case where x + y >= 0 and
-  /// (x >= 0 or y >= 0), function CanTraceInto can split sext(x + y),
-  /// while no such case exists for zext(x + y).
-  ///
-  /// Note that
-  ///   zext(x + y) = zext(x) + zext(y)
-  /// is wrong, e.g.,
-  ///   zext i32(UINT_MAX + 1) to i64 !=
-  ///   (zext i32 UINT_MAX to i64) + (zext i32 1 to i64)
-  ///
-  /// Returns true if the module changes.
-  ///
-  /// Verified in @inbounds_zext_add in split-gep.ll and @sum_of_array3 in
-  /// split-gep-and-gvn.ll
-  bool convertInBoundsZExtToSExt(GetElementPtrInst *GEP);
 
   const DataLayout *DL;
 };
@@ -613,43 +596,6 @@ bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
   return Changed;
 }
 
-bool
-SeparateConstOffsetFromGEP::convertInBoundsZExtToSExt(GetElementPtrInst *GEP) {
-  if (!GEP->isInBounds())
-    return false;
-
-  // TODO: consider alloca
-  GlobalVariable *UnderlyingObject =
-      dyn_cast<GlobalVariable>(GEP->getPointerOperand());
-  if (UnderlyingObject == nullptr)
-    return false;
-
-  uint64_t ObjectSize =
-      DL->getTypeAllocSize(UnderlyingObject->getType()->getElementType());
-  gep_type_iterator GTI = gep_type_begin(*GEP);
-  bool Changed = false;
-  for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
-       ++I, ++GTI) {
-    if (isa<SequentialType>(*GTI)) {
-      if (ZExtInst *Extended = dyn_cast<ZExtInst>(*I)) {
-        unsigned SrcBitWidth =
-            cast<IntegerType>(Extended->getSrcTy())->getBitWidth();
-        // For GEP operand zext(a), if a <= max signed value of typeof(a), then
-        // the sign bit of a is zero and sext(a) = zext(a). Because the GEP is
-        // in bounds, we know a <= ObjectSize, so the condition can be reduced
-        // to ObjectSize <= max signed value of typeof(a).
-        if (ObjectSize <=
-            APInt::getSignedMaxValue(SrcBitWidth).getZExtValue()) {
-          *I = new SExtInst(Extended->getOperand(0), Extended->getType(),
-                            Extended->getName(), GEP);
-          Changed = true;
-        }
-      }
-    }
-  }
-  return Changed;
-}
-
 int64_t
 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
                                                  bool &NeedsExtraction) {
@@ -684,9 +630,7 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
   if (GEP->hasAllConstantIndices())
     return false;
 
-  bool Changed = false;
-  Changed |= canonicalizeArrayIndicesToPointerSize(GEP);
-  Changed |= convertInBoundsZExtToSExt(GEP);
+  bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
 
   bool NeedsExtraction;
   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
index 6b3cb5a..d054a3b 100644 (file)
@@ -99,8 +99,17 @@ define void @sum_of_array2(i32 %x, i32 %y, float* nocapture %output) {
 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
 
-; Similar to @sum_of_array3, but extends array indices using zext instead of
-; sext. e.g., array[zext(x + 1)][zext(y + 1)].
+
+; This function loads
+;   array[zext(x)][zext(y)]
+;   array[zext(x)][zext(y +nuw 1)]
+;   array[zext(x +nuw 1)][zext(y)]
+;   array[zext(x +nuw 1)][zext(y +nuw 1)].
+;
+; This function is similar to @sum_of_array, but it
+; 1) extends array indices using zext instead of sext;
+; 2) annotates the addition with "nuw"; otherwise, zext(x + 1) => zext(x) + 1
+;    may be invalid.
 define void @sum_of_array3(i32 %x, i32 %y, float* nocapture %output) {
 .preheader:
   %0 = zext i32 %y to i64
@@ -109,13 +118,13 @@ define void @sum_of_array3(i32 %x, i32 %y, float* nocapture %output) {
   %3 = addrspacecast float addrspace(3)* %2 to float*
   %4 = load float* %3, align 4
   %5 = fadd float %4, 0.000000e+00
-  %6 = add i32 %y, 1
+  %6 = add nuw i32 %y, 1
   %7 = zext i32 %6 to i64
   %8 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %7
   %9 = addrspacecast float addrspace(3)* %8 to float*
   %10 = load float* %9, align 4
   %11 = fadd float %5, %10
-  %12 = add i32 %x, 1
+  %12 = add nuw i32 %x, 1
   %13 = zext i32 %12 to i64
   %14 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %0
   %15 = addrspacecast float addrspace(3)* %14 to float*
@@ -139,3 +148,49 @@ define void @sum_of_array3(i32 %x, i32 %y, float* nocapture %output) {
 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1
 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
+
+
+; This function loads
+;   array[zext(x)][zext(y)]
+;   array[zext(x)][zext(y)]
+;   array[zext(x) + 1][zext(y) + 1]
+;   array[zext(x) + 1][zext(y) + 1].
+;
+; We expect the generated code to reuse the computation of
+; &array[zext(x)][zext(y)]. See the expected IR and PTX for details.
+define void @sum_of_array4(i32 %x, i32 %y, float* nocapture %output) {
+.preheader:
+  %0 = zext i32 %y to i64
+  %1 = zext i32 %x to i64
+  %2 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
+  %3 = addrspacecast float addrspace(3)* %2 to float*
+  %4 = load float* %3, align 4
+  %5 = fadd float %4, 0.000000e+00
+  %6 = add i64 %0, 1
+  %7 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %6
+  %8 = addrspacecast float addrspace(3)* %7 to float*
+  %9 = load float* %8, align 4
+  %10 = fadd float %5, %9
+  %11 = add i64 %1, 1
+  %12 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %0
+  %13 = addrspacecast float addrspace(3)* %12 to float*
+  %14 = load float* %13, align 4
+  %15 = fadd float %10, %14
+  %16 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %6
+  %17 = addrspacecast float addrspace(3)* %16 to float*
+  %18 = load float* %17, align 4
+  %19 = fadd float %15, %18
+  store float %19, float* %output, align 4
+  ret void
+}
+; PTX-LABEL: sum_of_array4(
+; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rd|r)[0-9]+]]{{\]}}
+; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
+; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+128{{\]}}
+; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
+
+; IR-LABEL: @sum_of_array4(
+; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
+; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1
+; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
+; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
index ed40c7e..1784171 100644 (file)
@@ -234,28 +234,3 @@ entry:
 ; CHECK-LABEL: @and(
 ; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array
 ; CHECK-NOT: getelementptr
-
-; if zext(a + b) <= max signed value of typeof(a + b), then we can prove
-; a + b >= 0 and zext(a + b) == sext(a + b). If we can prove further a or b is
-; non-negative, we have zext(a + b) == sext(a) + sext(b).
-define float* @inbounds_zext_add(i32 %i, i4 %j) {
-entry:
-  %0 = add i32 %i, 1
-  %1 = zext i32 %0 to i64
-  ; Because zext(i + 1) is an index of an in bounds GEP based on
-  ; float_2d_array, zext(i + 1) <= sizeof(float_2d_array) = 4096.
-  ; Furthermore, since typeof(i + 1) is i32 and 4096 < 2^31, we are sure the
-  ; sign bit of i + 1 is 0. This implies zext(i + 1) = sext(i + 1).
-  %2 = add i4 %j, 2
-  %3 = zext i4 %2 to i64
-  ; In this case, typeof(j + 2) is i4, so zext(j + 2) <= 4096 does not imply
-  ; the sign bit of j + 2 is 0.
-  %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3
-  ret float* %p
-}
-; CHECK-LABEL: @inbounds_zext_add(
-; CHECK-NOT: add
-; CHECK: add i4 %j, 2
-; CHECK: sext
-; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
-; CHECK: getelementptr float* %{{[a-zA-Z0-9]+}}, i64 32