R600: Use masked read sel for texture instructions
[oota-llvm.git] / lib / IR / Constants.cpp
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42
43 void Constant::anchor() { }
44
45 bool Constant::isNegativeZeroValue() const {
46   // Floating point values have an explicit -0.0 value.
47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48     return CFP->isZero() && CFP->isNegative();
49
50   // Equivalent for a vector of -0.0's.
51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55
56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
57   if (getType()->isFPOrFPVectorTy())
58     return false;
59
60   // Otherwise, just use +0.0.
61   return isNullValue();
62 }
63
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67   // Floating point values have an explicit -0.0 value.
68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69     return CFP->isZero();
70
71   // Otherwise, just use +0.0.
72   return isNullValue();
73 }
74
75 bool Constant::isNullValue() const {
76   // 0 is null.
77   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78     return CI->isZero();
79
80   // +0.0 is null.
81   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82     return CFP->isZero() && !CFP->isNegative();
83
84   // constant zero is zero for aggregates and cpnull is null for pointers.
85   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87
88 bool Constant::isAllOnesValue() const {
89   // Check for -1 integers
90   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91     return CI->isMinusOne();
92
93   // Check for FP which are bitcasted from -1 integers
94   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97   // Check for constant vectors which are splats of -1 values.
98   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99     if (Constant *Splat = CV->getSplatValue())
100       return Splat->isAllOnesValue();
101
102   // Check for constant vectors which are splats of -1 values.
103   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104     if (Constant *Splat = CV->getSplatValue())
105       return Splat->isAllOnesValue();
106
107   return false;
108 }
109
110 // Constructor to create a '0' constant of arbitrary type...
111 Constant *Constant::getNullValue(Type *Ty) {
112   switch (Ty->getTypeID()) {
113   case Type::IntegerTyID:
114     return ConstantInt::get(Ty, 0);
115   case Type::HalfTyID:
116     return ConstantFP::get(Ty->getContext(),
117                            APFloat::getZero(APFloat::IEEEhalf));
118   case Type::FloatTyID:
119     return ConstantFP::get(Ty->getContext(),
120                            APFloat::getZero(APFloat::IEEEsingle));
121   case Type::DoubleTyID:
122     return ConstantFP::get(Ty->getContext(),
123                            APFloat::getZero(APFloat::IEEEdouble));
124   case Type::X86_FP80TyID:
125     return ConstantFP::get(Ty->getContext(),
126                            APFloat::getZero(APFloat::x87DoubleExtended));
127   case Type::FP128TyID:
128     return ConstantFP::get(Ty->getContext(),
129                            APFloat::getZero(APFloat::IEEEquad));
130   case Type::PPC_FP128TyID:
131     return ConstantFP::get(Ty->getContext(),
132                            APFloat(APFloat::PPCDoubleDouble,
133                                    APInt::getNullValue(128)));
134   case Type::PointerTyID:
135     return ConstantPointerNull::get(cast<PointerType>(Ty));
136   case Type::StructTyID:
137   case Type::ArrayTyID:
138   case Type::VectorTyID:
139     return ConstantAggregateZero::get(Ty);
140   default:
141     // Function, Label, or Opaque type?
142     llvm_unreachable("Cannot create a null constant of that type!");
143   }
144 }
145
146 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
147   Type *ScalarTy = Ty->getScalarType();
148
149   // Create the base integer constant.
150   Constant *C = ConstantInt::get(Ty->getContext(), V);
151
152   // Convert an integer to a pointer, if necessary.
153   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
154     C = ConstantExpr::getIntToPtr(C, PTy);
155
156   // Broadcast a scalar to a vector, if necessary.
157   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
158     C = ConstantVector::getSplat(VTy->getNumElements(), C);
159
160   return C;
161 }
162
163 Constant *Constant::getAllOnesValue(Type *Ty) {
164   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
165     return ConstantInt::get(Ty->getContext(),
166                             APInt::getAllOnesValue(ITy->getBitWidth()));
167
168   if (Ty->isFloatingPointTy()) {
169     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
170                                           !Ty->isPPC_FP128Ty());
171     return ConstantFP::get(Ty->getContext(), FL);
172   }
173
174   VectorType *VTy = cast<VectorType>(Ty);
175   return ConstantVector::getSplat(VTy->getNumElements(),
176                                   getAllOnesValue(VTy->getElementType()));
177 }
178
179 /// getAggregateElement - For aggregates (struct/array/vector) return the
180 /// constant that corresponds to the specified element if possible, or null if
181 /// not.  This can return null if the element index is a ConstantExpr, or if
182 /// 'this' is a constant expr.
183 Constant *Constant::getAggregateElement(unsigned Elt) const {
184   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
185     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
186
187   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
188     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
189
190   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
191     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
192
193   if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
194     return CAZ->getElementValue(Elt);
195
196   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
197     return UV->getElementValue(Elt);
198
199   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
200     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
201   return 0;
202 }
203
204 Constant *Constant::getAggregateElement(Constant *Elt) const {
205   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
206   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
207     return getAggregateElement(CI->getZExtValue());
208   return 0;
209 }
210
211
212 void Constant::destroyConstantImpl() {
213   // When a Constant is destroyed, there may be lingering
214   // references to the constant by other constants in the constant pool.  These
215   // constants are implicitly dependent on the module that is being deleted,
216   // but they don't know that.  Because we only find out when the CPV is
217   // deleted, we must now notify all of our users (that should only be
218   // Constants) that they are, in fact, invalid now and should be deleted.
219   //
220   while (!use_empty()) {
221     Value *V = use_back();
222 #ifndef NDEBUG      // Only in -g mode...
223     if (!isa<Constant>(V)) {
224       dbgs() << "While deleting: " << *this
225              << "\n\nUse still stuck around after Def is destroyed: "
226              << *V << "\n\n";
227     }
228 #endif
229     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
230     cast<Constant>(V)->destroyConstant();
231
232     // The constant should remove itself from our use list...
233     assert((use_empty() || use_back() != V) && "Constant not removed!");
234   }
235
236   // Value has no outstanding references it is safe to delete it now...
237   delete this;
238 }
239
240 static bool canTrapImpl(const Constant *C,
241                         SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
242   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
243   // The only thing that could possibly trap are constant exprs.
244   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
245   if (!CE)
246     return false;
247
248   // ConstantExpr traps if any operands can trap.
249   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
250     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
251       if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
252         return true;
253     }
254   }
255
256   // Otherwise, only specific operations can trap.
257   switch (CE->getOpcode()) {
258   default:
259     return false;
260   case Instruction::UDiv:
261   case Instruction::SDiv:
262   case Instruction::FDiv:
263   case Instruction::URem:
264   case Instruction::SRem:
265   case Instruction::FRem:
266     // Div and rem can trap if the RHS is not known to be non-zero.
267     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
268       return true;
269     return false;
270   }
271 }
272
273 /// canTrap - Return true if evaluation of this constant could trap.  This is
274 /// true for things like constant expressions that could divide by zero.
275 bool Constant::canTrap() const {
276   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
277   return canTrapImpl(this, NonTrappingOps);
278 }
279
280 /// isThreadDependent - Return true if the value can vary between threads.
281 bool Constant::isThreadDependent() const {
282   SmallPtrSet<const Constant*, 64> Visited;
283   SmallVector<const Constant*, 64> WorkList;
284   WorkList.push_back(this);
285   Visited.insert(this);
286
287   while (!WorkList.empty()) {
288     const Constant *C = WorkList.pop_back_val();
289
290     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
291       if (GV->isThreadLocal())
292         return true;
293     }
294
295     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
296       const Constant *D = dyn_cast<Constant>(C->getOperand(I));
297       if (!D)
298         continue;
299       if (Visited.insert(D))
300         WorkList.push_back(D);
301     }
302   }
303
304   return false;
305 }
306
307 /// isConstantUsed - Return true if the constant has users other than constant
308 /// exprs and other dangling things.
309 bool Constant::isConstantUsed() const {
310   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
311     const Constant *UC = dyn_cast<Constant>(*UI);
312     if (UC == 0 || isa<GlobalValue>(UC))
313       return true;
314
315     if (UC->isConstantUsed())
316       return true;
317   }
318   return false;
319 }
320
321
322
323 /// getRelocationInfo - This method classifies the entry according to
324 /// whether or not it may generate a relocation entry.  This must be
325 /// conservative, so if it might codegen to a relocatable entry, it should say
326 /// so.  The return values are:
327 /// 
328 ///  NoRelocation: This constant pool entry is guaranteed to never have a
329 ///     relocation applied to it (because it holds a simple constant like
330 ///     '4').
331 ///  LocalRelocation: This entry has relocations, but the entries are
332 ///     guaranteed to be resolvable by the static linker, so the dynamic
333 ///     linker will never see them.
334 ///  GlobalRelocations: This entry may have arbitrary relocations.
335 ///
336 /// FIXME: This really should not be in IR.
337 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
338   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
339     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
340       return LocalRelocation;  // Local to this file/library.
341     return GlobalRelocations;    // Global reference.
342   }
343   
344   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
345     return BA->getFunction()->getRelocationInfo();
346   
347   // While raw uses of blockaddress need to be relocated, differences between
348   // two of them don't when they are for labels in the same function.  This is a
349   // common idiom when creating a table for the indirect goto extension, so we
350   // handle it efficiently here.
351   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
352     if (CE->getOpcode() == Instruction::Sub) {
353       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
354       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
355       if (LHS && RHS &&
356           LHS->getOpcode() == Instruction::PtrToInt &&
357           RHS->getOpcode() == Instruction::PtrToInt &&
358           isa<BlockAddress>(LHS->getOperand(0)) &&
359           isa<BlockAddress>(RHS->getOperand(0)) &&
360           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
361             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
362         return NoRelocation;
363     }
364
365   PossibleRelocationsTy Result = NoRelocation;
366   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
367     Result = std::max(Result,
368                       cast<Constant>(getOperand(i))->getRelocationInfo());
369
370   return Result;
371 }
372
373 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
374 /// it.  This involves recursively eliminating any dead users of the
375 /// constantexpr.
376 static bool removeDeadUsersOfConstant(const Constant *C) {
377   if (isa<GlobalValue>(C)) return false; // Cannot remove this
378
379   while (!C->use_empty()) {
380     const Constant *User = dyn_cast<Constant>(C->use_back());
381     if (!User) return false; // Non-constant usage;
382     if (!removeDeadUsersOfConstant(User))
383       return false; // Constant wasn't dead
384   }
385
386   const_cast<Constant*>(C)->destroyConstant();
387   return true;
388 }
389
390
391 /// removeDeadConstantUsers - If there are any dead constant users dangling
392 /// off of this constant, remove them.  This method is useful for clients
393 /// that want to check to see if a global is unused, but don't want to deal
394 /// with potentially dead constants hanging off of the globals.
395 void Constant::removeDeadConstantUsers() const {
396   Value::const_use_iterator I = use_begin(), E = use_end();
397   Value::const_use_iterator LastNonDeadUser = E;
398   while (I != E) {
399     const Constant *User = dyn_cast<Constant>(*I);
400     if (User == 0) {
401       LastNonDeadUser = I;
402       ++I;
403       continue;
404     }
405
406     if (!removeDeadUsersOfConstant(User)) {
407       // If the constant wasn't dead, remember that this was the last live use
408       // and move on to the next constant.
409       LastNonDeadUser = I;
410       ++I;
411       continue;
412     }
413
414     // If the constant was dead, then the iterator is invalidated.
415     if (LastNonDeadUser == E) {
416       I = use_begin();
417       if (I == E) break;
418     } else {
419       I = LastNonDeadUser;
420       ++I;
421     }
422   }
423 }
424
425
426
427 //===----------------------------------------------------------------------===//
428 //                                ConstantInt
429 //===----------------------------------------------------------------------===//
430
431 void ConstantInt::anchor() { }
432
433 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
434   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
435   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
436 }
437
438 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
439   LLVMContextImpl *pImpl = Context.pImpl;
440   if (!pImpl->TheTrueVal)
441     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
442   return pImpl->TheTrueVal;
443 }
444
445 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
446   LLVMContextImpl *pImpl = Context.pImpl;
447   if (!pImpl->TheFalseVal)
448     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
449   return pImpl->TheFalseVal;
450 }
451
452 Constant *ConstantInt::getTrue(Type *Ty) {
453   VectorType *VTy = dyn_cast<VectorType>(Ty);
454   if (!VTy) {
455     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
456     return ConstantInt::getTrue(Ty->getContext());
457   }
458   assert(VTy->getElementType()->isIntegerTy(1) &&
459          "True must be vector of i1 or i1.");
460   return ConstantVector::getSplat(VTy->getNumElements(),
461                                   ConstantInt::getTrue(Ty->getContext()));
462 }
463
464 Constant *ConstantInt::getFalse(Type *Ty) {
465   VectorType *VTy = dyn_cast<VectorType>(Ty);
466   if (!VTy) {
467     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
468     return ConstantInt::getFalse(Ty->getContext());
469   }
470   assert(VTy->getElementType()->isIntegerTy(1) &&
471          "False must be vector of i1 or i1.");
472   return ConstantVector::getSplat(VTy->getNumElements(),
473                                   ConstantInt::getFalse(Ty->getContext()));
474 }
475
476
477 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
478 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
479 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
480 // compare APInt's of different widths, which would violate an APInt class
481 // invariant which generates an assertion.
482 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
483   // Get the corresponding integer type for the bit width of the value.
484   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
485   // get an existing value or the insertion position
486   LLVMContextImpl *pImpl = Context.pImpl;
487   ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
488   if (!Slot) Slot = new ConstantInt(ITy, V);
489   return Slot;
490 }
491
492 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
493   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
494
495   // For vectors, broadcast the value.
496   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
497     return ConstantVector::getSplat(VTy->getNumElements(), C);
498
499   return C;
500 }
501
502 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
503                               bool isSigned) {
504   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
505 }
506
507 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
508   return get(Ty, V, true);
509 }
510
511 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
512   return get(Ty, V, true);
513 }
514
515 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
516   ConstantInt *C = get(Ty->getContext(), V);
517   assert(C->getType() == Ty->getScalarType() &&
518          "ConstantInt type doesn't match the type implied by its value!");
519
520   // For vectors, broadcast the value.
521   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
522     return ConstantVector::getSplat(VTy->getNumElements(), C);
523
524   return C;
525 }
526
527 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
528                               uint8_t radix) {
529   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
530 }
531
532 //===----------------------------------------------------------------------===//
533 //                                ConstantFP
534 //===----------------------------------------------------------------------===//
535
536 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
537   if (Ty->isHalfTy())
538     return &APFloat::IEEEhalf;
539   if (Ty->isFloatTy())
540     return &APFloat::IEEEsingle;
541   if (Ty->isDoubleTy())
542     return &APFloat::IEEEdouble;
543   if (Ty->isX86_FP80Ty())
544     return &APFloat::x87DoubleExtended;
545   else if (Ty->isFP128Ty())
546     return &APFloat::IEEEquad;
547
548   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
549   return &APFloat::PPCDoubleDouble;
550 }
551
552 void ConstantFP::anchor() { }
553
554 /// get() - This returns a constant fp for the specified value in the
555 /// specified type.  This should only be used for simple constant values like
556 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
557 Constant *ConstantFP::get(Type *Ty, double V) {
558   LLVMContext &Context = Ty->getContext();
559
560   APFloat FV(V);
561   bool ignored;
562   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
563              APFloat::rmNearestTiesToEven, &ignored);
564   Constant *C = get(Context, FV);
565
566   // For vectors, broadcast the value.
567   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
568     return ConstantVector::getSplat(VTy->getNumElements(), C);
569
570   return C;
571 }
572
573
574 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
575   LLVMContext &Context = Ty->getContext();
576
577   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
578   Constant *C = get(Context, FV);
579
580   // For vectors, broadcast the value.
581   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
582     return ConstantVector::getSplat(VTy->getNumElements(), C);
583
584   return C; 
585 }
586
587
588 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
589   LLVMContext &Context = Ty->getContext();
590   APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
591   apf.changeSign();
592   return get(Context, apf);
593 }
594
595
596 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
597   Type *ScalarTy = Ty->getScalarType();
598   if (ScalarTy->isFloatingPointTy()) {
599     Constant *C = getNegativeZero(ScalarTy);
600     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601       return ConstantVector::getSplat(VTy->getNumElements(), C);
602     return C;
603   }
604
605   return Constant::getNullValue(Ty);
606 }
607
608
609 // ConstantFP accessors.
610 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
611   LLVMContextImpl* pImpl = Context.pImpl;
612
613   ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
614
615   if (!Slot) {
616     Type *Ty;
617     if (&V.getSemantics() == &APFloat::IEEEhalf)
618       Ty = Type::getHalfTy(Context);
619     else if (&V.getSemantics() == &APFloat::IEEEsingle)
620       Ty = Type::getFloatTy(Context);
621     else if (&V.getSemantics() == &APFloat::IEEEdouble)
622       Ty = Type::getDoubleTy(Context);
623     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
624       Ty = Type::getX86_FP80Ty(Context);
625     else if (&V.getSemantics() == &APFloat::IEEEquad)
626       Ty = Type::getFP128Ty(Context);
627     else {
628       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
629              "Unknown FP format");
630       Ty = Type::getPPC_FP128Ty(Context);
631     }
632     Slot = new ConstantFP(Ty, V);
633   }
634
635   return Slot;
636 }
637
638 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
639   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
640   return ConstantFP::get(Ty->getContext(),
641                          APFloat::getInf(Semantics, Negative));
642 }
643
644 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
645   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
646   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
647          "FP type Mismatch");
648 }
649
650 bool ConstantFP::isExactlyValue(const APFloat &V) const {
651   return Val.bitwiseIsEqual(V);
652 }
653
654 //===----------------------------------------------------------------------===//
655 //                   ConstantAggregateZero Implementation
656 //===----------------------------------------------------------------------===//
657
658 /// getSequentialElement - If this CAZ has array or vector type, return a zero
659 /// with the right element type.
660 Constant *ConstantAggregateZero::getSequentialElement() const {
661   return Constant::getNullValue(getType()->getSequentialElementType());
662 }
663
664 /// getStructElement - If this CAZ has struct type, return a zero with the
665 /// right element type for the specified element.
666 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
667   return Constant::getNullValue(getType()->getStructElementType(Elt));
668 }
669
670 /// getElementValue - Return a zero of the right value for the specified GEP
671 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
672 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
673   if (isa<SequentialType>(getType()))
674     return getSequentialElement();
675   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
676 }
677
678 /// getElementValue - Return a zero of the right value for the specified GEP
679 /// index.
680 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
681   if (isa<SequentialType>(getType()))
682     return getSequentialElement();
683   return getStructElement(Idx);
684 }
685
686
687 //===----------------------------------------------------------------------===//
688 //                         UndefValue Implementation
689 //===----------------------------------------------------------------------===//
690
691 /// getSequentialElement - If this undef has array or vector type, return an
692 /// undef with the right element type.
693 UndefValue *UndefValue::getSequentialElement() const {
694   return UndefValue::get(getType()->getSequentialElementType());
695 }
696
697 /// getStructElement - If this undef has struct type, return a zero with the
698 /// right element type for the specified element.
699 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
700   return UndefValue::get(getType()->getStructElementType(Elt));
701 }
702
703 /// getElementValue - Return an undef of the right value for the specified GEP
704 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
705 UndefValue *UndefValue::getElementValue(Constant *C) const {
706   if (isa<SequentialType>(getType()))
707     return getSequentialElement();
708   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
709 }
710
711 /// getElementValue - Return an undef of the right value for the specified GEP
712 /// index.
713 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
714   if (isa<SequentialType>(getType()))
715     return getSequentialElement();
716   return getStructElement(Idx);
717 }
718
719
720
721 //===----------------------------------------------------------------------===//
722 //                            ConstantXXX Classes
723 //===----------------------------------------------------------------------===//
724
725 template <typename ItTy, typename EltTy>
726 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
727   for (; Start != End; ++Start)
728     if (*Start != Elt)
729       return false;
730   return true;
731 }
732
733 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
734   : Constant(T, ConstantArrayVal,
735              OperandTraits<ConstantArray>::op_end(this) - V.size(),
736              V.size()) {
737   assert(V.size() == T->getNumElements() &&
738          "Invalid initializer vector for constant array");
739   for (unsigned i = 0, e = V.size(); i != e; ++i)
740     assert(V[i]->getType() == T->getElementType() &&
741            "Initializer for array element doesn't match array element type!");
742   std::copy(V.begin(), V.end(), op_begin());
743 }
744
745 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
746   // Empty arrays are canonicalized to ConstantAggregateZero.
747   if (V.empty())
748     return ConstantAggregateZero::get(Ty);
749
750   for (unsigned i = 0, e = V.size(); i != e; ++i) {
751     assert(V[i]->getType() == Ty->getElementType() &&
752            "Wrong type in array element initializer");
753   }
754   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
755
756   // If this is an all-zero array, return a ConstantAggregateZero object.  If
757   // all undef, return an UndefValue, if "all simple", then return a
758   // ConstantDataArray.
759   Constant *C = V[0];
760   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
761     return UndefValue::get(Ty);
762
763   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
764     return ConstantAggregateZero::get(Ty);
765
766   // Check to see if all of the elements are ConstantFP or ConstantInt and if
767   // the element type is compatible with ConstantDataVector.  If so, use it.
768   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
769     // We speculatively build the elements here even if it turns out that there
770     // is a constantexpr or something else weird in the array, since it is so
771     // uncommon for that to happen.
772     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
773       if (CI->getType()->isIntegerTy(8)) {
774         SmallVector<uint8_t, 16> Elts;
775         for (unsigned i = 0, e = V.size(); i != e; ++i)
776           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
777             Elts.push_back(CI->getZExtValue());
778           else
779             break;
780         if (Elts.size() == V.size())
781           return ConstantDataArray::get(C->getContext(), Elts);
782       } else if (CI->getType()->isIntegerTy(16)) {
783         SmallVector<uint16_t, 16> Elts;
784         for (unsigned i = 0, e = V.size(); i != e; ++i)
785           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
786             Elts.push_back(CI->getZExtValue());
787           else
788             break;
789         if (Elts.size() == V.size())
790           return ConstantDataArray::get(C->getContext(), Elts);
791       } else if (CI->getType()->isIntegerTy(32)) {
792         SmallVector<uint32_t, 16> Elts;
793         for (unsigned i = 0, e = V.size(); i != e; ++i)
794           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
795             Elts.push_back(CI->getZExtValue());
796           else
797             break;
798         if (Elts.size() == V.size())
799           return ConstantDataArray::get(C->getContext(), Elts);
800       } else if (CI->getType()->isIntegerTy(64)) {
801         SmallVector<uint64_t, 16> Elts;
802         for (unsigned i = 0, e = V.size(); i != e; ++i)
803           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
804             Elts.push_back(CI->getZExtValue());
805           else
806             break;
807         if (Elts.size() == V.size())
808           return ConstantDataArray::get(C->getContext(), Elts);
809       }
810     }
811
812     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
813       if (CFP->getType()->isFloatTy()) {
814         SmallVector<float, 16> Elts;
815         for (unsigned i = 0, e = V.size(); i != e; ++i)
816           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
817             Elts.push_back(CFP->getValueAPF().convertToFloat());
818           else
819             break;
820         if (Elts.size() == V.size())
821           return ConstantDataArray::get(C->getContext(), Elts);
822       } else if (CFP->getType()->isDoubleTy()) {
823         SmallVector<double, 16> Elts;
824         for (unsigned i = 0, e = V.size(); i != e; ++i)
825           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
826             Elts.push_back(CFP->getValueAPF().convertToDouble());
827           else
828             break;
829         if (Elts.size() == V.size())
830           return ConstantDataArray::get(C->getContext(), Elts);
831       }
832     }
833   }
834
835   // Otherwise, we really do want to create a ConstantArray.
836   return pImpl->ArrayConstants.getOrCreate(Ty, V);
837 }
838
839 /// getTypeForElements - Return an anonymous struct type to use for a constant
840 /// with the specified set of elements.  The list must not be empty.
841 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
842                                                ArrayRef<Constant*> V,
843                                                bool Packed) {
844   unsigned VecSize = V.size();
845   SmallVector<Type*, 16> EltTypes(VecSize);
846   for (unsigned i = 0; i != VecSize; ++i)
847     EltTypes[i] = V[i]->getType();
848
849   return StructType::get(Context, EltTypes, Packed);
850 }
851
852
853 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
854                                                bool Packed) {
855   assert(!V.empty() &&
856          "ConstantStruct::getTypeForElements cannot be called on empty list");
857   return getTypeForElements(V[0]->getContext(), V, Packed);
858 }
859
860
861 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
862   : Constant(T, ConstantStructVal,
863              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
864              V.size()) {
865   assert(V.size() == T->getNumElements() &&
866          "Invalid initializer vector for constant structure");
867   for (unsigned i = 0, e = V.size(); i != e; ++i)
868     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
869            "Initializer for struct element doesn't match struct element type!");
870   std::copy(V.begin(), V.end(), op_begin());
871 }
872
873 // ConstantStruct accessors.
874 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
875   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
876          "Incorrect # elements specified to ConstantStruct::get");
877
878   // Create a ConstantAggregateZero value if all elements are zeros.
879   bool isZero = true;
880   bool isUndef = false;
881   
882   if (!V.empty()) {
883     isUndef = isa<UndefValue>(V[0]);
884     isZero = V[0]->isNullValue();
885     if (isUndef || isZero) {
886       for (unsigned i = 0, e = V.size(); i != e; ++i) {
887         if (!V[i]->isNullValue())
888           isZero = false;
889         if (!isa<UndefValue>(V[i]))
890           isUndef = false;
891       }
892     }
893   }
894   if (isZero)
895     return ConstantAggregateZero::get(ST);
896   if (isUndef)
897     return UndefValue::get(ST);
898
899   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
900 }
901
902 Constant *ConstantStruct::get(StructType *T, ...) {
903   va_list ap;
904   SmallVector<Constant*, 8> Values;
905   va_start(ap, T);
906   while (Constant *Val = va_arg(ap, llvm::Constant*))
907     Values.push_back(Val);
908   va_end(ap);
909   return get(T, Values);
910 }
911
912 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
913   : Constant(T, ConstantVectorVal,
914              OperandTraits<ConstantVector>::op_end(this) - V.size(),
915              V.size()) {
916   for (size_t i = 0, e = V.size(); i != e; i++)
917     assert(V[i]->getType() == T->getElementType() &&
918            "Initializer for vector element doesn't match vector element type!");
919   std::copy(V.begin(), V.end(), op_begin());
920 }
921
922 // ConstantVector accessors.
923 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
924   assert(!V.empty() && "Vectors can't be empty");
925   VectorType *T = VectorType::get(V.front()->getType(), V.size());
926   LLVMContextImpl *pImpl = T->getContext().pImpl;
927
928   // If this is an all-undef or all-zero vector, return a
929   // ConstantAggregateZero or UndefValue.
930   Constant *C = V[0];
931   bool isZero = C->isNullValue();
932   bool isUndef = isa<UndefValue>(C);
933
934   if (isZero || isUndef) {
935     for (unsigned i = 1, e = V.size(); i != e; ++i)
936       if (V[i] != C) {
937         isZero = isUndef = false;
938         break;
939       }
940   }
941
942   if (isZero)
943     return ConstantAggregateZero::get(T);
944   if (isUndef)
945     return UndefValue::get(T);
946
947   // Check to see if all of the elements are ConstantFP or ConstantInt and if
948   // the element type is compatible with ConstantDataVector.  If so, use it.
949   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
950     // We speculatively build the elements here even if it turns out that there
951     // is a constantexpr or something else weird in the array, since it is so
952     // uncommon for that to happen.
953     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
954       if (CI->getType()->isIntegerTy(8)) {
955         SmallVector<uint8_t, 16> Elts;
956         for (unsigned i = 0, e = V.size(); i != e; ++i)
957           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
958             Elts.push_back(CI->getZExtValue());
959           else
960             break;
961         if (Elts.size() == V.size())
962           return ConstantDataVector::get(C->getContext(), Elts);
963       } else if (CI->getType()->isIntegerTy(16)) {
964         SmallVector<uint16_t, 16> Elts;
965         for (unsigned i = 0, e = V.size(); i != e; ++i)
966           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
967             Elts.push_back(CI->getZExtValue());
968           else
969             break;
970         if (Elts.size() == V.size())
971           return ConstantDataVector::get(C->getContext(), Elts);
972       } else if (CI->getType()->isIntegerTy(32)) {
973         SmallVector<uint32_t, 16> Elts;
974         for (unsigned i = 0, e = V.size(); i != e; ++i)
975           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
976             Elts.push_back(CI->getZExtValue());
977           else
978             break;
979         if (Elts.size() == V.size())
980           return ConstantDataVector::get(C->getContext(), Elts);
981       } else if (CI->getType()->isIntegerTy(64)) {
982         SmallVector<uint64_t, 16> Elts;
983         for (unsigned i = 0, e = V.size(); i != e; ++i)
984           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
985             Elts.push_back(CI->getZExtValue());
986           else
987             break;
988         if (Elts.size() == V.size())
989           return ConstantDataVector::get(C->getContext(), Elts);
990       }
991     }
992
993     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
994       if (CFP->getType()->isFloatTy()) {
995         SmallVector<float, 16> Elts;
996         for (unsigned i = 0, e = V.size(); i != e; ++i)
997           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
998             Elts.push_back(CFP->getValueAPF().convertToFloat());
999           else
1000             break;
1001         if (Elts.size() == V.size())
1002           return ConstantDataVector::get(C->getContext(), Elts);
1003       } else if (CFP->getType()->isDoubleTy()) {
1004         SmallVector<double, 16> Elts;
1005         for (unsigned i = 0, e = V.size(); i != e; ++i)
1006           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1007             Elts.push_back(CFP->getValueAPF().convertToDouble());
1008           else
1009             break;
1010         if (Elts.size() == V.size())
1011           return ConstantDataVector::get(C->getContext(), Elts);
1012       }
1013     }
1014   }
1015
1016   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1017   // the operand list constants a ConstantExpr or something else strange.
1018   return pImpl->VectorConstants.getOrCreate(T, V);
1019 }
1020
1021 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1022   // If this splat is compatible with ConstantDataVector, use it instead of
1023   // ConstantVector.
1024   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1025       ConstantDataSequential::isElementTypeCompatible(V->getType()))
1026     return ConstantDataVector::getSplat(NumElts, V);
1027
1028   SmallVector<Constant*, 32> Elts(NumElts, V);
1029   return get(Elts);
1030 }
1031
1032
1033 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1034 // can't be inline because we don't want to #include Instruction.h into
1035 // Constant.h
1036 bool ConstantExpr::isCast() const {
1037   return Instruction::isCast(getOpcode());
1038 }
1039
1040 bool ConstantExpr::isCompare() const {
1041   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1042 }
1043
1044 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1045   if (getOpcode() != Instruction::GetElementPtr) return false;
1046
1047   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1048   User::const_op_iterator OI = llvm::next(this->op_begin());
1049
1050   // Skip the first index, as it has no static limit.
1051   ++GEPI;
1052   ++OI;
1053
1054   // The remaining indices must be compile-time known integers within the
1055   // bounds of the corresponding notional static array types.
1056   for (; GEPI != E; ++GEPI, ++OI) {
1057     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1058     if (!CI) return false;
1059     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1060       if (CI->getValue().getActiveBits() > 64 ||
1061           CI->getZExtValue() >= ATy->getNumElements())
1062         return false;
1063   }
1064
1065   // All the indices checked out.
1066   return true;
1067 }
1068
1069 bool ConstantExpr::hasIndices() const {
1070   return getOpcode() == Instruction::ExtractValue ||
1071          getOpcode() == Instruction::InsertValue;
1072 }
1073
1074 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1075   if (const ExtractValueConstantExpr *EVCE =
1076         dyn_cast<ExtractValueConstantExpr>(this))
1077     return EVCE->Indices;
1078
1079   return cast<InsertValueConstantExpr>(this)->Indices;
1080 }
1081
1082 unsigned ConstantExpr::getPredicate() const {
1083   assert(isCompare());
1084   return ((const CompareConstantExpr*)this)->predicate;
1085 }
1086
1087 /// getWithOperandReplaced - Return a constant expression identical to this
1088 /// one, but with the specified operand set to the specified value.
1089 Constant *
1090 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1091   assert(Op->getType() == getOperand(OpNo)->getType() &&
1092          "Replacing operand with value of different type!");
1093   if (getOperand(OpNo) == Op)
1094     return const_cast<ConstantExpr*>(this);
1095
1096   SmallVector<Constant*, 8> NewOps;
1097   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1099
1100   return getWithOperands(NewOps);
1101 }
1102
1103 /// getWithOperands - This returns the current constant expression with the
1104 /// operands replaced with the specified values.  The specified array must
1105 /// have the same number of operands as our current one.
1106 Constant *ConstantExpr::
1107 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1108   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1109   bool AnyChange = Ty != getType();
1110   for (unsigned i = 0; i != Ops.size(); ++i)
1111     AnyChange |= Ops[i] != getOperand(i);
1112
1113   if (!AnyChange)  // No operands changed, return self.
1114     return const_cast<ConstantExpr*>(this);
1115
1116   switch (getOpcode()) {
1117   case Instruction::Trunc:
1118   case Instruction::ZExt:
1119   case Instruction::SExt:
1120   case Instruction::FPTrunc:
1121   case Instruction::FPExt:
1122   case Instruction::UIToFP:
1123   case Instruction::SIToFP:
1124   case Instruction::FPToUI:
1125   case Instruction::FPToSI:
1126   case Instruction::PtrToInt:
1127   case Instruction::IntToPtr:
1128   case Instruction::BitCast:
1129     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1130   case Instruction::Select:
1131     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1132   case Instruction::InsertElement:
1133     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1134   case Instruction::ExtractElement:
1135     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1136   case Instruction::InsertValue:
1137     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1138   case Instruction::ExtractValue:
1139     return ConstantExpr::getExtractValue(Ops[0], getIndices());
1140   case Instruction::ShuffleVector:
1141     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1142   case Instruction::GetElementPtr:
1143     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1144                                       cast<GEPOperator>(this)->isInBounds());
1145   case Instruction::ICmp:
1146   case Instruction::FCmp:
1147     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1148   default:
1149     assert(getNumOperands() == 2 && "Must be binary operator?");
1150     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1151   }
1152 }
1153
1154
1155 //===----------------------------------------------------------------------===//
1156 //                      isValueValidForType implementations
1157
1158 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1159   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1160   if (Ty->isIntegerTy(1))
1161     return Val == 0 || Val == 1;
1162   if (NumBits >= 64)
1163     return true; // always true, has to fit in largest type
1164   uint64_t Max = (1ll << NumBits) - 1;
1165   return Val <= Max;
1166 }
1167
1168 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1169   unsigned NumBits = Ty->getIntegerBitWidth();
1170   if (Ty->isIntegerTy(1))
1171     return Val == 0 || Val == 1 || Val == -1;
1172   if (NumBits >= 64)
1173     return true; // always true, has to fit in largest type
1174   int64_t Min = -(1ll << (NumBits-1));
1175   int64_t Max = (1ll << (NumBits-1)) - 1;
1176   return (Val >= Min && Val <= Max);
1177 }
1178
1179 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1180   // convert modifies in place, so make a copy.
1181   APFloat Val2 = APFloat(Val);
1182   bool losesInfo;
1183   switch (Ty->getTypeID()) {
1184   default:
1185     return false;         // These can't be represented as floating point!
1186
1187   // FIXME rounding mode needs to be more flexible
1188   case Type::HalfTyID: {
1189     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1190       return true;
1191     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1192     return !losesInfo;
1193   }
1194   case Type::FloatTyID: {
1195     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1196       return true;
1197     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1198     return !losesInfo;
1199   }
1200   case Type::DoubleTyID: {
1201     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1202         &Val2.getSemantics() == &APFloat::IEEEsingle ||
1203         &Val2.getSemantics() == &APFloat::IEEEdouble)
1204       return true;
1205     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1206     return !losesInfo;
1207   }
1208   case Type::X86_FP80TyID:
1209     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1210            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1211            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1212            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1213   case Type::FP128TyID:
1214     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1215            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1216            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1217            &Val2.getSemantics() == &APFloat::IEEEquad;
1218   case Type::PPC_FP128TyID:
1219     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1220            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1221            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1222            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1223   }
1224 }
1225
1226
1227 //===----------------------------------------------------------------------===//
1228 //                      Factory Function Implementation
1229
1230 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1231   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1232          "Cannot create an aggregate zero of non-aggregate type!");
1233   
1234   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1235   if (Entry == 0)
1236     Entry = new ConstantAggregateZero(Ty);
1237
1238   return Entry;
1239 }
1240
1241 /// destroyConstant - Remove the constant from the constant table.
1242 ///
1243 void ConstantAggregateZero::destroyConstant() {
1244   getContext().pImpl->CAZConstants.erase(getType());
1245   destroyConstantImpl();
1246 }
1247
1248 /// destroyConstant - Remove the constant from the constant table...
1249 ///
1250 void ConstantArray::destroyConstant() {
1251   getType()->getContext().pImpl->ArrayConstants.remove(this);
1252   destroyConstantImpl();
1253 }
1254
1255
1256 //---- ConstantStruct::get() implementation...
1257 //
1258
1259 // destroyConstant - Remove the constant from the constant table...
1260 //
1261 void ConstantStruct::destroyConstant() {
1262   getType()->getContext().pImpl->StructConstants.remove(this);
1263   destroyConstantImpl();
1264 }
1265
1266 // destroyConstant - Remove the constant from the constant table...
1267 //
1268 void ConstantVector::destroyConstant() {
1269   getType()->getContext().pImpl->VectorConstants.remove(this);
1270   destroyConstantImpl();
1271 }
1272
1273 /// getSplatValue - If this is a splat vector constant, meaning that all of
1274 /// the elements have the same value, return that value. Otherwise return 0.
1275 Constant *Constant::getSplatValue() const {
1276   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1277   if (isa<ConstantAggregateZero>(this))
1278     return getNullValue(this->getType()->getVectorElementType());
1279   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1280     return CV->getSplatValue();
1281   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1282     return CV->getSplatValue();
1283   return 0;
1284 }
1285
1286 /// getSplatValue - If this is a splat constant, where all of the
1287 /// elements have the same value, return that value. Otherwise return null.
1288 Constant *ConstantVector::getSplatValue() const {
1289   // Check out first element.
1290   Constant *Elt = getOperand(0);
1291   // Then make sure all remaining elements point to the same value.
1292   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1293     if (getOperand(I) != Elt)
1294       return 0;
1295   return Elt;
1296 }
1297
1298 /// If C is a constant integer then return its value, otherwise C must be a
1299 /// vector of constant integers, all equal, and the common value is returned.
1300 const APInt &Constant::getUniqueInteger() const {
1301   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1302     return CI->getValue();
1303   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1304   const Constant *C = this->getAggregateElement(0U);
1305   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1306   return cast<ConstantInt>(C)->getValue();
1307 }
1308
1309
1310 //---- ConstantPointerNull::get() implementation.
1311 //
1312
1313 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1314   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1315   if (Entry == 0)
1316     Entry = new ConstantPointerNull(Ty);
1317
1318   return Entry;
1319 }
1320
1321 // destroyConstant - Remove the constant from the constant table...
1322 //
1323 void ConstantPointerNull::destroyConstant() {
1324   getContext().pImpl->CPNConstants.erase(getType());
1325   // Free the constant and any dangling references to it.
1326   destroyConstantImpl();
1327 }
1328
1329
1330 //---- UndefValue::get() implementation.
1331 //
1332
1333 UndefValue *UndefValue::get(Type *Ty) {
1334   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1335   if (Entry == 0)
1336     Entry = new UndefValue(Ty);
1337
1338   return Entry;
1339 }
1340
1341 // destroyConstant - Remove the constant from the constant table.
1342 //
1343 void UndefValue::destroyConstant() {
1344   // Free the constant and any dangling references to it.
1345   getContext().pImpl->UVConstants.erase(getType());
1346   destroyConstantImpl();
1347 }
1348
1349 //---- BlockAddress::get() implementation.
1350 //
1351
1352 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1353   assert(BB->getParent() != 0 && "Block must have a parent");
1354   return get(BB->getParent(), BB);
1355 }
1356
1357 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1358   BlockAddress *&BA =
1359     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1360   if (BA == 0)
1361     BA = new BlockAddress(F, BB);
1362
1363   assert(BA->getFunction() == F && "Basic block moved between functions");
1364   return BA;
1365 }
1366
1367 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1368 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1369            &Op<0>(), 2) {
1370   setOperand(0, F);
1371   setOperand(1, BB);
1372   BB->AdjustBlockAddressRefCount(1);
1373 }
1374
1375
1376 // destroyConstant - Remove the constant from the constant table.
1377 //
1378 void BlockAddress::destroyConstant() {
1379   getFunction()->getType()->getContext().pImpl
1380     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1381   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1382   destroyConstantImpl();
1383 }
1384
1385 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1386   // This could be replacing either the Basic Block or the Function.  In either
1387   // case, we have to remove the map entry.
1388   Function *NewF = getFunction();
1389   BasicBlock *NewBB = getBasicBlock();
1390
1391   if (U == &Op<0>())
1392     NewF = cast<Function>(To->stripPointerCasts());
1393   else
1394     NewBB = cast<BasicBlock>(To);
1395
1396   // See if the 'new' entry already exists, if not, just update this in place
1397   // and return early.
1398   BlockAddress *&NewBA =
1399     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1400   if (NewBA == 0) {
1401     getBasicBlock()->AdjustBlockAddressRefCount(-1);
1402
1403     // Remove the old entry, this can't cause the map to rehash (just a
1404     // tombstone will get added).
1405     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1406                                                             getBasicBlock()));
1407     NewBA = this;
1408     setOperand(0, NewF);
1409     setOperand(1, NewBB);
1410     getBasicBlock()->AdjustBlockAddressRefCount(1);
1411     return;
1412   }
1413
1414   // Otherwise, I do need to replace this with an existing value.
1415   assert(NewBA != this && "I didn't contain From!");
1416
1417   // Everyone using this now uses the replacement.
1418   replaceAllUsesWith(NewBA);
1419
1420   destroyConstant();
1421 }
1422
1423 //---- ConstantExpr::get() implementations.
1424 //
1425
1426 /// This is a utility function to handle folding of casts and lookup of the
1427 /// cast in the ExprConstants map. It is used by the various get* methods below.
1428 static inline Constant *getFoldedCast(
1429   Instruction::CastOps opc, Constant *C, Type *Ty) {
1430   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1431   // Fold a few common cases
1432   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1433     return FC;
1434
1435   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1436
1437   // Look up the constant in the table first to ensure uniqueness.
1438   ExprMapKeyType Key(opc, C);
1439
1440   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1441 }
1442
1443 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1444   Instruction::CastOps opc = Instruction::CastOps(oc);
1445   assert(Instruction::isCast(opc) && "opcode out of range");
1446   assert(C && Ty && "Null arguments to getCast");
1447   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1448
1449   switch (opc) {
1450   default:
1451     llvm_unreachable("Invalid cast opcode");
1452   case Instruction::Trunc:    return getTrunc(C, Ty);
1453   case Instruction::ZExt:     return getZExt(C, Ty);
1454   case Instruction::SExt:     return getSExt(C, Ty);
1455   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1456   case Instruction::FPExt:    return getFPExtend(C, Ty);
1457   case Instruction::UIToFP:   return getUIToFP(C, Ty);
1458   case Instruction::SIToFP:   return getSIToFP(C, Ty);
1459   case Instruction::FPToUI:   return getFPToUI(C, Ty);
1460   case Instruction::FPToSI:   return getFPToSI(C, Ty);
1461   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1462   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1463   case Instruction::BitCast:  return getBitCast(C, Ty);
1464   }
1465 }
1466
1467 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1468   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1469     return getBitCast(C, Ty);
1470   return getZExt(C, Ty);
1471 }
1472
1473 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1474   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1475     return getBitCast(C, Ty);
1476   return getSExt(C, Ty);
1477 }
1478
1479 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1480   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1481     return getBitCast(C, Ty);
1482   return getTrunc(C, Ty);
1483 }
1484
1485 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1486   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1487   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1488           "Invalid cast");
1489
1490   if (Ty->isIntOrIntVectorTy())
1491     return getPtrToInt(S, Ty);
1492   return getBitCast(S, Ty);
1493 }
1494
1495 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, 
1496                                        bool isSigned) {
1497   assert(C->getType()->isIntOrIntVectorTy() &&
1498          Ty->isIntOrIntVectorTy() && "Invalid cast");
1499   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1500   unsigned DstBits = Ty->getScalarSizeInBits();
1501   Instruction::CastOps opcode =
1502     (SrcBits == DstBits ? Instruction::BitCast :
1503      (SrcBits > DstBits ? Instruction::Trunc :
1504       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1505   return getCast(opcode, C, Ty);
1506 }
1507
1508 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1509   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1510          "Invalid cast");
1511   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1512   unsigned DstBits = Ty->getScalarSizeInBits();
1513   if (SrcBits == DstBits)
1514     return C; // Avoid a useless cast
1515   Instruction::CastOps opcode =
1516     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1517   return getCast(opcode, C, Ty);
1518 }
1519
1520 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1521 #ifndef NDEBUG
1522   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1523   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1524 #endif
1525   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1526   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1527   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1528   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1529          "SrcTy must be larger than DestTy for Trunc!");
1530
1531   return getFoldedCast(Instruction::Trunc, C, Ty);
1532 }
1533
1534 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1535 #ifndef NDEBUG
1536   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1537   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1538 #endif
1539   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1540   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1541   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1542   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1543          "SrcTy must be smaller than DestTy for SExt!");
1544
1545   return getFoldedCast(Instruction::SExt, C, Ty);
1546 }
1547
1548 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1549 #ifndef NDEBUG
1550   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1551   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1552 #endif
1553   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1554   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1555   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1556   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1557          "SrcTy must be smaller than DestTy for ZExt!");
1558
1559   return getFoldedCast(Instruction::ZExt, C, Ty);
1560 }
1561
1562 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1563 #ifndef NDEBUG
1564   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1565   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1566 #endif
1567   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1568   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1569          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1570          "This is an illegal floating point truncation!");
1571   return getFoldedCast(Instruction::FPTrunc, C, Ty);
1572 }
1573
1574 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1575 #ifndef NDEBUG
1576   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1577   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1578 #endif
1579   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1580   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1581          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1582          "This is an illegal floating point extension!");
1583   return getFoldedCast(Instruction::FPExt, C, Ty);
1584 }
1585
1586 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1587 #ifndef NDEBUG
1588   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1589   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1590 #endif
1591   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1592   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1593          "This is an illegal uint to floating point cast!");
1594   return getFoldedCast(Instruction::UIToFP, C, Ty);
1595 }
1596
1597 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1598 #ifndef NDEBUG
1599   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1600   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1601 #endif
1602   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1603   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1604          "This is an illegal sint to floating point cast!");
1605   return getFoldedCast(Instruction::SIToFP, C, Ty);
1606 }
1607
1608 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1609 #ifndef NDEBUG
1610   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1611   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1612 #endif
1613   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1614   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1615          "This is an illegal floating point to uint cast!");
1616   return getFoldedCast(Instruction::FPToUI, C, Ty);
1617 }
1618
1619 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1620 #ifndef NDEBUG
1621   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1622   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1623 #endif
1624   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1625   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1626          "This is an illegal floating point to sint cast!");
1627   return getFoldedCast(Instruction::FPToSI, C, Ty);
1628 }
1629
1630 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1631   assert(C->getType()->getScalarType()->isPointerTy() &&
1632          "PtrToInt source must be pointer or pointer vector");
1633   assert(DstTy->getScalarType()->isIntegerTy() && 
1634          "PtrToInt destination must be integer or integer vector");
1635   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1636   if (isa<VectorType>(C->getType()))
1637     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1638            "Invalid cast between a different number of vector elements");
1639   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1640 }
1641
1642 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1643   assert(C->getType()->getScalarType()->isIntegerTy() &&
1644          "IntToPtr source must be integer or integer vector");
1645   assert(DstTy->getScalarType()->isPointerTy() &&
1646          "IntToPtr destination must be a pointer or pointer vector");
1647   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1648   if (isa<VectorType>(C->getType()))
1649     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1650            "Invalid cast between a different number of vector elements");
1651   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1652 }
1653
1654 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1655   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1656          "Invalid constantexpr bitcast!");
1657
1658   // It is common to ask for a bitcast of a value to its own type, handle this
1659   // speedily.
1660   if (C->getType() == DstTy) return C;
1661
1662   return getFoldedCast(Instruction::BitCast, C, DstTy);
1663 }
1664
1665 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1666                             unsigned Flags) {
1667   // Check the operands for consistency first.
1668   assert(Opcode >= Instruction::BinaryOpsBegin &&
1669          Opcode <  Instruction::BinaryOpsEnd   &&
1670          "Invalid opcode in binary constant expression");
1671   assert(C1->getType() == C2->getType() &&
1672          "Operand types in binary constant expression should match");
1673
1674 #ifndef NDEBUG
1675   switch (Opcode) {
1676   case Instruction::Add:
1677   case Instruction::Sub:
1678   case Instruction::Mul:
1679     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1680     assert(C1->getType()->isIntOrIntVectorTy() &&
1681            "Tried to create an integer operation on a non-integer type!");
1682     break;
1683   case Instruction::FAdd:
1684   case Instruction::FSub:
1685   case Instruction::FMul:
1686     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1687     assert(C1->getType()->isFPOrFPVectorTy() &&
1688            "Tried to create a floating-point operation on a "
1689            "non-floating-point type!");
1690     break;
1691   case Instruction::UDiv: 
1692   case Instruction::SDiv: 
1693     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1694     assert(C1->getType()->isIntOrIntVectorTy() &&
1695            "Tried to create an arithmetic operation on a non-arithmetic type!");
1696     break;
1697   case Instruction::FDiv:
1698     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1699     assert(C1->getType()->isFPOrFPVectorTy() &&
1700            "Tried to create an arithmetic operation on a non-arithmetic type!");
1701     break;
1702   case Instruction::URem: 
1703   case Instruction::SRem: 
1704     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1705     assert(C1->getType()->isIntOrIntVectorTy() &&
1706            "Tried to create an arithmetic operation on a non-arithmetic type!");
1707     break;
1708   case Instruction::FRem:
1709     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1710     assert(C1->getType()->isFPOrFPVectorTy() &&
1711            "Tried to create an arithmetic operation on a non-arithmetic type!");
1712     break;
1713   case Instruction::And:
1714   case Instruction::Or:
1715   case Instruction::Xor:
1716     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1717     assert(C1->getType()->isIntOrIntVectorTy() &&
1718            "Tried to create a logical operation on a non-integral type!");
1719     break;
1720   case Instruction::Shl:
1721   case Instruction::LShr:
1722   case Instruction::AShr:
1723     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1724     assert(C1->getType()->isIntOrIntVectorTy() &&
1725            "Tried to create a shift operation on a non-integer type!");
1726     break;
1727   default:
1728     break;
1729   }
1730 #endif
1731
1732   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1733     return FC;          // Fold a few common cases.
1734
1735   Constant *ArgVec[] = { C1, C2 };
1736   ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1737
1738   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1739   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1740 }
1741
1742 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1743   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1744   // Note that a non-inbounds gep is used, as null isn't within any object.
1745   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1746   Constant *GEP = getGetElementPtr(
1747                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1748   return getPtrToInt(GEP, 
1749                      Type::getInt64Ty(Ty->getContext()));
1750 }
1751
1752 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1753   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1754   // Note that a non-inbounds gep is used, as null isn't within any object.
1755   Type *AligningTy = 
1756     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1757   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1758   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1759   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1760   Constant *Indices[2] = { Zero, One };
1761   Constant *GEP = getGetElementPtr(NullPtr, Indices);
1762   return getPtrToInt(GEP,
1763                      Type::getInt64Ty(Ty->getContext()));
1764 }
1765
1766 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1767   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1768                                            FieldNo));
1769 }
1770
1771 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1772   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1773   // Note that a non-inbounds gep is used, as null isn't within any object.
1774   Constant *GEPIdx[] = {
1775     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1776     FieldNo
1777   };
1778   Constant *GEP = getGetElementPtr(
1779                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1780   return getPtrToInt(GEP,
1781                      Type::getInt64Ty(Ty->getContext()));
1782 }
1783
1784 Constant *ConstantExpr::getCompare(unsigned short Predicate, 
1785                                    Constant *C1, Constant *C2) {
1786   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1787
1788   switch (Predicate) {
1789   default: llvm_unreachable("Invalid CmpInst predicate");
1790   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1791   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1792   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1793   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1794   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1795   case CmpInst::FCMP_TRUE:
1796     return getFCmp(Predicate, C1, C2);
1797
1798   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1799   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1800   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1801   case CmpInst::ICMP_SLE:
1802     return getICmp(Predicate, C1, C2);
1803   }
1804 }
1805
1806 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1807   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1808
1809   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1810     return SC;        // Fold common cases
1811
1812   Constant *ArgVec[] = { C, V1, V2 };
1813   ExprMapKeyType Key(Instruction::Select, ArgVec);
1814
1815   LLVMContextImpl *pImpl = C->getContext().pImpl;
1816   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1817 }
1818
1819 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1820                                          bool InBounds) {
1821   assert(C->getType()->isPtrOrPtrVectorTy() &&
1822          "Non-pointer type for constant GetElementPtr expression");
1823
1824   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1825     return FC;          // Fold a few common cases.
1826
1827   // Get the result type of the getelementptr!
1828   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1829   assert(Ty && "GEP indices invalid!");
1830   unsigned AS = C->getType()->getPointerAddressSpace();
1831   Type *ReqTy = Ty->getPointerTo(AS);
1832   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1833     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1834
1835   // Look up the constant in the table first to ensure uniqueness
1836   std::vector<Constant*> ArgVec;
1837   ArgVec.reserve(1 + Idxs.size());
1838   ArgVec.push_back(C);
1839   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1840     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1841            "getelementptr index type missmatch");
1842     assert((!Idxs[i]->getType()->isVectorTy() ||
1843             ReqTy->getVectorNumElements() ==
1844             Idxs[i]->getType()->getVectorNumElements()) &&
1845            "getelementptr index type missmatch");
1846     ArgVec.push_back(cast<Constant>(Idxs[i]));
1847   }
1848   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1849                            InBounds ? GEPOperator::IsInBounds : 0);
1850
1851   LLVMContextImpl *pImpl = C->getContext().pImpl;
1852   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1853 }
1854
1855 Constant *
1856 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1857   assert(LHS->getType() == RHS->getType());
1858   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
1859          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1860
1861   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1862     return FC;          // Fold a few common cases...
1863
1864   // Look up the constant in the table first to ensure uniqueness
1865   Constant *ArgVec[] = { LHS, RHS };
1866   // Get the key type with both the opcode and predicate
1867   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1868
1869   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1870   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1871     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1872
1873   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1874   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1875 }
1876
1877 Constant *
1878 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1879   assert(LHS->getType() == RHS->getType());
1880   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1881
1882   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1883     return FC;          // Fold a few common cases...
1884
1885   // Look up the constant in the table first to ensure uniqueness
1886   Constant *ArgVec[] = { LHS, RHS };
1887   // Get the key type with both the opcode and predicate
1888   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1889
1890   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1891   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1892     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1893
1894   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1895   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1896 }
1897
1898 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1899   assert(Val->getType()->isVectorTy() &&
1900          "Tried to create extractelement operation on non-vector type!");
1901   assert(Idx->getType()->isIntegerTy(32) &&
1902          "Extractelement index must be i32 type!");
1903
1904   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1905     return FC;          // Fold a few common cases.
1906
1907   // Look up the constant in the table first to ensure uniqueness
1908   Constant *ArgVec[] = { Val, Idx };
1909   const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1910
1911   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1912   Type *ReqTy = Val->getType()->getVectorElementType();
1913   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1914 }
1915
1916 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
1917                                          Constant *Idx) {
1918   assert(Val->getType()->isVectorTy() &&
1919          "Tried to create insertelement operation on non-vector type!");
1920   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1921          "Insertelement types must match!");
1922   assert(Idx->getType()->isIntegerTy(32) &&
1923          "Insertelement index must be i32 type!");
1924
1925   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1926     return FC;          // Fold a few common cases.
1927   // Look up the constant in the table first to ensure uniqueness
1928   Constant *ArgVec[] = { Val, Elt, Idx };
1929   const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1930
1931   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1932   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1933 }
1934
1935 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
1936                                          Constant *Mask) {
1937   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1938          "Invalid shuffle vector constant expr operands!");
1939
1940   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1941     return FC;          // Fold a few common cases.
1942
1943   unsigned NElts = Mask->getType()->getVectorNumElements();
1944   Type *EltTy = V1->getType()->getVectorElementType();
1945   Type *ShufTy = VectorType::get(EltTy, NElts);
1946
1947   // Look up the constant in the table first to ensure uniqueness
1948   Constant *ArgVec[] = { V1, V2, Mask };
1949   const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1950
1951   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1952   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1953 }
1954
1955 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1956                                        ArrayRef<unsigned> Idxs) {
1957   assert(Agg->getType()->isFirstClassType() &&
1958          "Non-first-class type for constant insertvalue expression");
1959
1960   assert(ExtractValueInst::getIndexedType(Agg->getType(),
1961                                           Idxs) == Val->getType() &&
1962          "insertvalue indices invalid!");
1963   Type *ReqTy = Val->getType();
1964
1965   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
1966     return FC;
1967
1968   Constant *ArgVec[] = { Agg, Val };
1969   const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
1970
1971   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
1972   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1973 }
1974
1975 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1976                                         ArrayRef<unsigned> Idxs) {
1977   assert(Agg->getType()->isFirstClassType() &&
1978          "Tried to create extractelement operation on non-first-class type!");
1979
1980   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1981   (void)ReqTy;
1982   assert(ReqTy && "extractvalue indices invalid!");
1983
1984   assert(Agg->getType()->isFirstClassType() &&
1985          "Non-first-class type for constant extractvalue expression");
1986   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
1987     return FC;
1988
1989   Constant *ArgVec[] = { Agg };
1990   const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
1991
1992   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
1993   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1994 }
1995
1996 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1997   assert(C->getType()->isIntOrIntVectorTy() &&
1998          "Cannot NEG a nonintegral value!");
1999   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2000                 C, HasNUW, HasNSW);
2001 }
2002
2003 Constant *ConstantExpr::getFNeg(Constant *C) {
2004   assert(C->getType()->isFPOrFPVectorTy() &&
2005          "Cannot FNEG a non-floating-point value!");
2006   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2007 }
2008
2009 Constant *ConstantExpr::getNot(Constant *C) {
2010   assert(C->getType()->isIntOrIntVectorTy() &&
2011          "Cannot NOT a nonintegral value!");
2012   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2013 }
2014
2015 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2016                                bool HasNUW, bool HasNSW) {
2017   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2018                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2019   return get(Instruction::Add, C1, C2, Flags);
2020 }
2021
2022 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2023   return get(Instruction::FAdd, C1, C2);
2024 }
2025
2026 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2027                                bool HasNUW, bool HasNSW) {
2028   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2029                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2030   return get(Instruction::Sub, C1, C2, Flags);
2031 }
2032
2033 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2034   return get(Instruction::FSub, C1, C2);
2035 }
2036
2037 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2038                                bool HasNUW, bool HasNSW) {
2039   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2040                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2041   return get(Instruction::Mul, C1, C2, Flags);
2042 }
2043
2044 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2045   return get(Instruction::FMul, C1, C2);
2046 }
2047
2048 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2049   return get(Instruction::UDiv, C1, C2,
2050              isExact ? PossiblyExactOperator::IsExact : 0);
2051 }
2052
2053 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2054   return get(Instruction::SDiv, C1, C2,
2055              isExact ? PossiblyExactOperator::IsExact : 0);
2056 }
2057
2058 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2059   return get(Instruction::FDiv, C1, C2);
2060 }
2061
2062 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2063   return get(Instruction::URem, C1, C2);
2064 }
2065
2066 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2067   return get(Instruction::SRem, C1, C2);
2068 }
2069
2070 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2071   return get(Instruction::FRem, C1, C2);
2072 }
2073
2074 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2075   return get(Instruction::And, C1, C2);
2076 }
2077
2078 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2079   return get(Instruction::Or, C1, C2);
2080 }
2081
2082 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2083   return get(Instruction::Xor, C1, C2);
2084 }
2085
2086 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2087                                bool HasNUW, bool HasNSW) {
2088   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2089                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2090   return get(Instruction::Shl, C1, C2, Flags);
2091 }
2092
2093 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2094   return get(Instruction::LShr, C1, C2,
2095              isExact ? PossiblyExactOperator::IsExact : 0);
2096 }
2097
2098 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2099   return get(Instruction::AShr, C1, C2,
2100              isExact ? PossiblyExactOperator::IsExact : 0);
2101 }
2102
2103 /// getBinOpIdentity - Return the identity for the given binary operation,
2104 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2105 /// returns null if the operator doesn't have an identity.
2106 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2107   switch (Opcode) {
2108   default:
2109     // Doesn't have an identity.
2110     return 0;
2111
2112   case Instruction::Add:
2113   case Instruction::Or:
2114   case Instruction::Xor:
2115     return Constant::getNullValue(Ty);
2116
2117   case Instruction::Mul:
2118     return ConstantInt::get(Ty, 1);
2119
2120   case Instruction::And:
2121     return Constant::getAllOnesValue(Ty);
2122   }
2123 }
2124
2125 /// getBinOpAbsorber - Return the absorbing element for the given binary
2126 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2127 /// every X.  For example, this returns zero for integer multiplication.
2128 /// It returns null if the operator doesn't have an absorbing element.
2129 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2130   switch (Opcode) {
2131   default:
2132     // Doesn't have an absorber.
2133     return 0;
2134
2135   case Instruction::Or:
2136     return Constant::getAllOnesValue(Ty);
2137
2138   case Instruction::And:
2139   case Instruction::Mul:
2140     return Constant::getNullValue(Ty);
2141   }
2142 }
2143
2144 // destroyConstant - Remove the constant from the constant table...
2145 //
2146 void ConstantExpr::destroyConstant() {
2147   getType()->getContext().pImpl->ExprConstants.remove(this);
2148   destroyConstantImpl();
2149 }
2150
2151 const char *ConstantExpr::getOpcodeName() const {
2152   return Instruction::getOpcodeName(getOpcode());
2153 }
2154
2155
2156
2157 GetElementPtrConstantExpr::
2158 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2159                           Type *DestTy)
2160   : ConstantExpr(DestTy, Instruction::GetElementPtr,
2161                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2162                  - (IdxList.size()+1), IdxList.size()+1) {
2163   OperandList[0] = C;
2164   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2165     OperandList[i+1] = IdxList[i];
2166 }
2167
2168 //===----------------------------------------------------------------------===//
2169 //                       ConstantData* implementations
2170
2171 void ConstantDataArray::anchor() {}
2172 void ConstantDataVector::anchor() {}
2173
2174 /// getElementType - Return the element type of the array/vector.
2175 Type *ConstantDataSequential::getElementType() const {
2176   return getType()->getElementType();
2177 }
2178
2179 StringRef ConstantDataSequential::getRawDataValues() const {
2180   return StringRef(DataElements, getNumElements()*getElementByteSize());
2181 }
2182
2183 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2184 /// formed with a vector or array of the specified element type.
2185 /// ConstantDataArray only works with normal float and int types that are
2186 /// stored densely in memory, not with things like i42 or x86_f80.
2187 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2188   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2189   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2190     switch (IT->getBitWidth()) {
2191     case 8:
2192     case 16:
2193     case 32:
2194     case 64:
2195       return true;
2196     default: break;
2197     }
2198   }
2199   return false;
2200 }
2201
2202 /// getNumElements - Return the number of elements in the array or vector.
2203 unsigned ConstantDataSequential::getNumElements() const {
2204   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2205     return AT->getNumElements();
2206   return getType()->getVectorNumElements();
2207 }
2208
2209
2210 /// getElementByteSize - Return the size in bytes of the elements in the data.
2211 uint64_t ConstantDataSequential::getElementByteSize() const {
2212   return getElementType()->getPrimitiveSizeInBits()/8;
2213 }
2214
2215 /// getElementPointer - Return the start of the specified element.
2216 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2217   assert(Elt < getNumElements() && "Invalid Elt");
2218   return DataElements+Elt*getElementByteSize();
2219 }
2220
2221
2222 /// isAllZeros - return true if the array is empty or all zeros.
2223 static bool isAllZeros(StringRef Arr) {
2224   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2225     if (*I != 0)
2226       return false;
2227   return true;
2228 }
2229
2230 /// getImpl - This is the underlying implementation of all of the
2231 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2232 /// the correct element type.  We take the bytes in as a StringRef because
2233 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2234 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2235   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2236   // If the elements are all zero or there are no elements, return a CAZ, which
2237   // is more dense and canonical.
2238   if (isAllZeros(Elements))
2239     return ConstantAggregateZero::get(Ty);
2240
2241   // Do a lookup to see if we have already formed one of these.
2242   StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2243     Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2244
2245   // The bucket can point to a linked list of different CDS's that have the same
2246   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2247   // of i8, or a 1-element array of i32.  They'll both end up in the same
2248   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2249   ConstantDataSequential **Entry = &Slot.getValue();
2250   for (ConstantDataSequential *Node = *Entry; Node != 0;
2251        Entry = &Node->Next, Node = *Entry)
2252     if (Node->getType() == Ty)
2253       return Node;
2254
2255   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2256   // and return it.
2257   if (isa<ArrayType>(Ty))
2258     return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2259
2260   assert(isa<VectorType>(Ty));
2261   return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2262 }
2263
2264 void ConstantDataSequential::destroyConstant() {
2265   // Remove the constant from the StringMap.
2266   StringMap<ConstantDataSequential*> &CDSConstants = 
2267     getType()->getContext().pImpl->CDSConstants;
2268
2269   StringMap<ConstantDataSequential*>::iterator Slot =
2270     CDSConstants.find(getRawDataValues());
2271
2272   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2273
2274   ConstantDataSequential **Entry = &Slot->getValue();
2275
2276   // Remove the entry from the hash table.
2277   if ((*Entry)->Next == 0) {
2278     // If there is only one value in the bucket (common case) it must be this
2279     // entry, and removing the entry should remove the bucket completely.
2280     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2281     getContext().pImpl->CDSConstants.erase(Slot);
2282   } else {
2283     // Otherwise, there are multiple entries linked off the bucket, unlink the 
2284     // node we care about but keep the bucket around.
2285     for (ConstantDataSequential *Node = *Entry; ;
2286          Entry = &Node->Next, Node = *Entry) {
2287       assert(Node && "Didn't find entry in its uniquing hash table!");
2288       // If we found our entry, unlink it from the list and we're done.
2289       if (Node == this) {
2290         *Entry = Node->Next;
2291         break;
2292       }
2293     }
2294   }
2295
2296   // If we were part of a list, make sure that we don't delete the list that is
2297   // still owned by the uniquing map.
2298   Next = 0;
2299
2300   // Finally, actually delete it.
2301   destroyConstantImpl();
2302 }
2303
2304 /// get() constructors - Return a constant with array type with an element
2305 /// count and element type matching the ArrayRef passed in.  Note that this
2306 /// can return a ConstantAggregateZero object.
2307 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2308   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2309   const char *Data = reinterpret_cast<const char *>(Elts.data());
2310   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2311 }
2312 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2313   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2314   const char *Data = reinterpret_cast<const char *>(Elts.data());
2315   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2316 }
2317 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2318   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2319   const char *Data = reinterpret_cast<const char *>(Elts.data());
2320   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2321 }
2322 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2323   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2324   const char *Data = reinterpret_cast<const char *>(Elts.data());
2325   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2326 }
2327 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2328   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2329   const char *Data = reinterpret_cast<const char *>(Elts.data());
2330   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2331 }
2332 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2333   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2334   const char *Data = reinterpret_cast<const char *>(Elts.data());
2335   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2336 }
2337
2338 /// getString - This method constructs a CDS and initializes it with a text
2339 /// string. The default behavior (AddNull==true) causes a null terminator to
2340 /// be placed at the end of the array (increasing the length of the string by
2341 /// one more than the StringRef would normally indicate.  Pass AddNull=false
2342 /// to disable this behavior.
2343 Constant *ConstantDataArray::getString(LLVMContext &Context,
2344                                        StringRef Str, bool AddNull) {
2345   if (!AddNull) {
2346     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2347     return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2348                Str.size()));
2349   }
2350
2351   SmallVector<uint8_t, 64> ElementVals;
2352   ElementVals.append(Str.begin(), Str.end());
2353   ElementVals.push_back(0);
2354   return get(Context, ElementVals);
2355 }
2356
2357 /// get() constructors - Return a constant with vector type with an element
2358 /// count and element type matching the ArrayRef passed in.  Note that this
2359 /// can return a ConstantAggregateZero object.
2360 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2361   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2362   const char *Data = reinterpret_cast<const char *>(Elts.data());
2363   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2364 }
2365 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2366   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2367   const char *Data = reinterpret_cast<const char *>(Elts.data());
2368   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2369 }
2370 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2371   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2372   const char *Data = reinterpret_cast<const char *>(Elts.data());
2373   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2374 }
2375 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2376   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2377   const char *Data = reinterpret_cast<const char *>(Elts.data());
2378   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2379 }
2380 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2381   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2382   const char *Data = reinterpret_cast<const char *>(Elts.data());
2383   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2384 }
2385 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2386   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2387   const char *Data = reinterpret_cast<const char *>(Elts.data());
2388   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2389 }
2390
2391 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2392   assert(isElementTypeCompatible(V->getType()) &&
2393          "Element type not compatible with ConstantData");
2394   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2395     if (CI->getType()->isIntegerTy(8)) {
2396       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2397       return get(V->getContext(), Elts);
2398     }
2399     if (CI->getType()->isIntegerTy(16)) {
2400       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2401       return get(V->getContext(), Elts);
2402     }
2403     if (CI->getType()->isIntegerTy(32)) {
2404       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2405       return get(V->getContext(), Elts);
2406     }
2407     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2408     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2409     return get(V->getContext(), Elts);
2410   }
2411
2412   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2413     if (CFP->getType()->isFloatTy()) {
2414       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2415       return get(V->getContext(), Elts);
2416     }
2417     if (CFP->getType()->isDoubleTy()) {
2418       SmallVector<double, 16> Elts(NumElts,
2419                                    CFP->getValueAPF().convertToDouble());
2420       return get(V->getContext(), Elts);
2421     }
2422   }
2423   return ConstantVector::getSplat(NumElts, V);
2424 }
2425
2426
2427 /// getElementAsInteger - If this is a sequential container of integers (of
2428 /// any size), return the specified element in the low bits of a uint64_t.
2429 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2430   assert(isa<IntegerType>(getElementType()) &&
2431          "Accessor can only be used when element is an integer");
2432   const char *EltPtr = getElementPointer(Elt);
2433
2434   // The data is stored in host byte order, make sure to cast back to the right
2435   // type to load with the right endianness.
2436   switch (getElementType()->getIntegerBitWidth()) {
2437   default: llvm_unreachable("Invalid bitwidth for CDS");
2438   case 8:
2439     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2440   case 16:
2441     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2442   case 32:
2443     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2444   case 64:
2445     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2446   }
2447 }
2448
2449 /// getElementAsAPFloat - If this is a sequential container of floating point
2450 /// type, return the specified element as an APFloat.
2451 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2452   const char *EltPtr = getElementPointer(Elt);
2453
2454   switch (getElementType()->getTypeID()) {
2455   default:
2456     llvm_unreachable("Accessor can only be used when element is float/double!");
2457   case Type::FloatTyID: {
2458       const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2459       return APFloat(*const_cast<float *>(FloatPrt));
2460     }
2461   case Type::DoubleTyID: {
2462       const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2463       return APFloat(*const_cast<double *>(DoublePtr));
2464     }
2465   }
2466 }
2467
2468 /// getElementAsFloat - If this is an sequential container of floats, return
2469 /// the specified element as a float.
2470 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2471   assert(getElementType()->isFloatTy() &&
2472          "Accessor can only be used when element is a 'float'");
2473   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2474   return *const_cast<float *>(EltPtr);
2475 }
2476
2477 /// getElementAsDouble - If this is an sequential container of doubles, return
2478 /// the specified element as a float.
2479 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2480   assert(getElementType()->isDoubleTy() &&
2481          "Accessor can only be used when element is a 'float'");
2482   const double *EltPtr =
2483       reinterpret_cast<const double *>(getElementPointer(Elt));
2484   return *const_cast<double *>(EltPtr);
2485 }
2486
2487 /// getElementAsConstant - Return a Constant for a specified index's element.
2488 /// Note that this has to compute a new constant to return, so it isn't as
2489 /// efficient as getElementAsInteger/Float/Double.
2490 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2491   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2492     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2493
2494   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2495 }
2496
2497 /// isString - This method returns true if this is an array of i8.
2498 bool ConstantDataSequential::isString() const {
2499   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2500 }
2501
2502 /// isCString - This method returns true if the array "isString", ends with a
2503 /// nul byte, and does not contains any other nul bytes.
2504 bool ConstantDataSequential::isCString() const {
2505   if (!isString())
2506     return false;
2507
2508   StringRef Str = getAsString();
2509
2510   // The last value must be nul.
2511   if (Str.back() != 0) return false;
2512
2513   // Other elements must be non-nul.
2514   return Str.drop_back().find(0) == StringRef::npos;
2515 }
2516
2517 /// getSplatValue - If this is a splat constant, meaning that all of the
2518 /// elements have the same value, return that value. Otherwise return NULL.
2519 Constant *ConstantDataVector::getSplatValue() const {
2520   const char *Base = getRawDataValues().data();
2521
2522   // Compare elements 1+ to the 0'th element.
2523   unsigned EltSize = getElementByteSize();
2524   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2525     if (memcmp(Base, Base+i*EltSize, EltSize))
2526       return 0;
2527
2528   // If they're all the same, return the 0th one as a representative.
2529   return getElementAsConstant(0);
2530 }
2531
2532 //===----------------------------------------------------------------------===//
2533 //                replaceUsesOfWithOnConstant implementations
2534
2535 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2536 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2537 /// etc.
2538 ///
2539 /// Note that we intentionally replace all uses of From with To here.  Consider
2540 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2541 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2542 /// single invocation handles all 1000 uses.  Handling them one at a time would
2543 /// work, but would be really slow because it would have to unique each updated
2544 /// array instance.
2545 ///
2546 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2547                                                 Use *U) {
2548   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2549   Constant *ToC = cast<Constant>(To);
2550
2551   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2552
2553   SmallVector<Constant*, 8> Values;
2554   LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2555   Lookup.first = cast<ArrayType>(getType());
2556   Values.reserve(getNumOperands());  // Build replacement array.
2557
2558   // Fill values with the modified operands of the constant array.  Also,
2559   // compute whether this turns into an all-zeros array.
2560   unsigned NumUpdated = 0;
2561
2562   // Keep track of whether all the values in the array are "ToC".
2563   bool AllSame = true;
2564   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2565     Constant *Val = cast<Constant>(O->get());
2566     if (Val == From) {
2567       Val = ToC;
2568       ++NumUpdated;
2569     }
2570     Values.push_back(Val);
2571     AllSame &= Val == ToC;
2572   }
2573
2574   Constant *Replacement = 0;
2575   if (AllSame && ToC->isNullValue()) {
2576     Replacement = ConstantAggregateZero::get(getType());
2577   } else if (AllSame && isa<UndefValue>(ToC)) {
2578     Replacement = UndefValue::get(getType());
2579   } else {
2580     // Check to see if we have this array type already.
2581     Lookup.second = makeArrayRef(Values);
2582     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2583       pImpl->ArrayConstants.find(Lookup);
2584
2585     if (I != pImpl->ArrayConstants.map_end()) {
2586       Replacement = I->first;
2587     } else {
2588       // Okay, the new shape doesn't exist in the system yet.  Instead of
2589       // creating a new constant array, inserting it, replaceallusesof'ing the
2590       // old with the new, then deleting the old... just update the current one
2591       // in place!
2592       pImpl->ArrayConstants.remove(this);
2593
2594       // Update to the new value.  Optimize for the case when we have a single
2595       // operand that we're changing, but handle bulk updates efficiently.
2596       if (NumUpdated == 1) {
2597         unsigned OperandToUpdate = U - OperandList;
2598         assert(getOperand(OperandToUpdate) == From &&
2599                "ReplaceAllUsesWith broken!");
2600         setOperand(OperandToUpdate, ToC);
2601       } else {
2602         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2603           if (getOperand(i) == From)
2604             setOperand(i, ToC);
2605       }
2606       pImpl->ArrayConstants.insert(this);
2607       return;
2608     }
2609   }
2610
2611   // Otherwise, I do need to replace this with an existing value.
2612   assert(Replacement != this && "I didn't contain From!");
2613
2614   // Everyone using this now uses the replacement.
2615   replaceAllUsesWith(Replacement);
2616
2617   // Delete the old constant!
2618   destroyConstant();
2619 }
2620
2621 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2622                                                  Use *U) {
2623   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2624   Constant *ToC = cast<Constant>(To);
2625
2626   unsigned OperandToUpdate = U-OperandList;
2627   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2628
2629   SmallVector<Constant*, 8> Values;
2630   LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2631   Lookup.first = cast<StructType>(getType());
2632   Values.reserve(getNumOperands());  // Build replacement struct.
2633
2634   // Fill values with the modified operands of the constant struct.  Also,
2635   // compute whether this turns into an all-zeros struct.
2636   bool isAllZeros = false;
2637   bool isAllUndef = false;
2638   if (ToC->isNullValue()) {
2639     isAllZeros = true;
2640     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2641       Constant *Val = cast<Constant>(O->get());
2642       Values.push_back(Val);
2643       if (isAllZeros) isAllZeros = Val->isNullValue();
2644     }
2645   } else if (isa<UndefValue>(ToC)) {
2646     isAllUndef = true;
2647     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2648       Constant *Val = cast<Constant>(O->get());
2649       Values.push_back(Val);
2650       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2651     }
2652   } else {
2653     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2654       Values.push_back(cast<Constant>(O->get()));
2655   }
2656   Values[OperandToUpdate] = ToC;
2657
2658   LLVMContextImpl *pImpl = getContext().pImpl;
2659
2660   Constant *Replacement = 0;
2661   if (isAllZeros) {
2662     Replacement = ConstantAggregateZero::get(getType());
2663   } else if (isAllUndef) {
2664     Replacement = UndefValue::get(getType());
2665   } else {
2666     // Check to see if we have this struct type already.
2667     Lookup.second = makeArrayRef(Values);
2668     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2669       pImpl->StructConstants.find(Lookup);
2670
2671     if (I != pImpl->StructConstants.map_end()) {
2672       Replacement = I->first;
2673     } else {
2674       // Okay, the new shape doesn't exist in the system yet.  Instead of
2675       // creating a new constant struct, inserting it, replaceallusesof'ing the
2676       // old with the new, then deleting the old... just update the current one
2677       // in place!
2678       pImpl->StructConstants.remove(this);
2679
2680       // Update to the new value.
2681       setOperand(OperandToUpdate, ToC);
2682       pImpl->StructConstants.insert(this);
2683       return;
2684     }
2685   }
2686
2687   assert(Replacement != this && "I didn't contain From!");
2688
2689   // Everyone using this now uses the replacement.
2690   replaceAllUsesWith(Replacement);
2691
2692   // Delete the old constant!
2693   destroyConstant();
2694 }
2695
2696 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2697                                                  Use *U) {
2698   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2699
2700   SmallVector<Constant*, 8> Values;
2701   Values.reserve(getNumOperands());  // Build replacement array...
2702   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2703     Constant *Val = getOperand(i);
2704     if (Val == From) Val = cast<Constant>(To);
2705     Values.push_back(Val);
2706   }
2707
2708   Constant *Replacement = get(Values);
2709   assert(Replacement != this && "I didn't contain From!");
2710
2711   // Everyone using this now uses the replacement.
2712   replaceAllUsesWith(Replacement);
2713
2714   // Delete the old constant!
2715   destroyConstant();
2716 }
2717
2718 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2719                                                Use *U) {
2720   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2721   Constant *To = cast<Constant>(ToV);
2722
2723   SmallVector<Constant*, 8> NewOps;
2724   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2725     Constant *Op = getOperand(i);
2726     NewOps.push_back(Op == From ? To : Op);
2727   }
2728
2729   Constant *Replacement = getWithOperands(NewOps);
2730   assert(Replacement != this && "I didn't contain From!");
2731
2732   // Everyone using this now uses the replacement.
2733   replaceAllUsesWith(Replacement);
2734
2735   // Delete the old constant!
2736   destroyConstant();
2737 }
2738
2739 Instruction *ConstantExpr::getAsInstruction() {
2740   SmallVector<Value*,4> ValueOperands;
2741   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2742     ValueOperands.push_back(cast<Value>(I));
2743
2744   ArrayRef<Value*> Ops(ValueOperands);
2745
2746   switch (getOpcode()) {
2747   case Instruction::Trunc:
2748   case Instruction::ZExt:
2749   case Instruction::SExt:
2750   case Instruction::FPTrunc:
2751   case Instruction::FPExt:
2752   case Instruction::UIToFP:
2753   case Instruction::SIToFP:
2754   case Instruction::FPToUI:
2755   case Instruction::FPToSI:
2756   case Instruction::PtrToInt:
2757   case Instruction::IntToPtr:
2758   case Instruction::BitCast:
2759     return CastInst::Create((Instruction::CastOps)getOpcode(),
2760                             Ops[0], getType());
2761   case Instruction::Select:
2762     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2763   case Instruction::InsertElement:
2764     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2765   case Instruction::ExtractElement:
2766     return ExtractElementInst::Create(Ops[0], Ops[1]);
2767   case Instruction::InsertValue:
2768     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2769   case Instruction::ExtractValue:
2770     return ExtractValueInst::Create(Ops[0], getIndices());
2771   case Instruction::ShuffleVector:
2772     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2773
2774   case Instruction::GetElementPtr:
2775     if (cast<GEPOperator>(this)->isInBounds())
2776       return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2777     else
2778       return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2779
2780   case Instruction::ICmp:
2781   case Instruction::FCmp:
2782     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2783                            getPredicate(), Ops[0], Ops[1]);
2784
2785   default:
2786     assert(getNumOperands() == 2 && "Must be binary operator?");
2787     BinaryOperator *BO =
2788       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2789                              Ops[0], Ops[1]);
2790     if (isa<OverflowingBinaryOperator>(BO)) {
2791       BO->setHasNoUnsignedWrap(SubclassOptionalData &
2792                                OverflowingBinaryOperator::NoUnsignedWrap);
2793       BO->setHasNoSignedWrap(SubclassOptionalData &
2794                              OverflowingBinaryOperator::NoSignedWrap);
2795     }
2796     if (isa<PossiblyExactOperator>(BO))
2797       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2798     return BO;
2799   }
2800 }