Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / IR / Constants.cpp
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42
43 void Constant::anchor() { }
44
45 bool Constant::isNegativeZeroValue() const {
46   // Floating point values have an explicit -0.0 value.
47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48     return CFP->isZero() && CFP->isNegative();
49
50   // Equivalent for a vector of -0.0's.
51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55
56   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
57     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
58       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
59         return true;
60
61   // We've already handled true FP case; any other FP vectors can't represent -0.0.
62   if (getType()->isFPOrFPVectorTy())
63     return false;
64
65   // Otherwise, just use +0.0.
66   return isNullValue();
67 }
68
69 // Return true iff this constant is positive zero (floating point), negative
70 // zero (floating point), or a null value.
71 bool Constant::isZeroValue() const {
72   // Floating point values have an explicit -0.0 value.
73   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
74     return CFP->isZero();
75
76   // Equivalent for a vector of -0.0's.
77   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
78     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
79       if (SplatCFP && SplatCFP->isZero())
80         return true;
81
82   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
83     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
84       if (SplatCFP && SplatCFP->isZero())
85         return true;
86
87   // Otherwise, just use +0.0.
88   return isNullValue();
89 }
90
91 bool Constant::isNullValue() const {
92   // 0 is null.
93   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94     return CI->isZero();
95
96   // +0.0 is null.
97   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98     return CFP->isZero() && !CFP->isNegative();
99
100   // constant zero is zero for aggregates, cpnull is null for pointers, none for
101   // tokens.
102   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
103          isa<ConstantTokenNone>(this);
104 }
105
106 bool Constant::isAllOnesValue() const {
107   // Check for -1 integers
108   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
109     return CI->isMinusOne();
110
111   // Check for FP which are bitcasted from -1 integers
112   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
113     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
114
115   // Check for constant vectors which are splats of -1 values.
116   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
117     if (Constant *Splat = CV->getSplatValue())
118       return Splat->isAllOnesValue();
119
120   // Check for constant vectors which are splats of -1 values.
121   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
122     if (Constant *Splat = CV->getSplatValue())
123       return Splat->isAllOnesValue();
124
125   return false;
126 }
127
128 bool Constant::isOneValue() const {
129   // Check for 1 integers
130   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
131     return CI->isOne();
132
133   // Check for FP which are bitcasted from 1 integers
134   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
135     return CFP->getValueAPF().bitcastToAPInt() == 1;
136
137   // Check for constant vectors which are splats of 1 values.
138   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
139     if (Constant *Splat = CV->getSplatValue())
140       return Splat->isOneValue();
141
142   // Check for constant vectors which are splats of 1 values.
143   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
144     if (Constant *Splat = CV->getSplatValue())
145       return Splat->isOneValue();
146
147   return false;
148 }
149
150 bool Constant::isMinSignedValue() const {
151   // Check for INT_MIN integers
152   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
153     return CI->isMinValue(/*isSigned=*/true);
154
155   // Check for FP which are bitcasted from INT_MIN integers
156   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
157     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
158
159   // Check for constant vectors which are splats of INT_MIN values.
160   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
161     if (Constant *Splat = CV->getSplatValue())
162       return Splat->isMinSignedValue();
163
164   // Check for constant vectors which are splats of INT_MIN values.
165   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
166     if (Constant *Splat = CV->getSplatValue())
167       return Splat->isMinSignedValue();
168
169   return false;
170 }
171
172 bool Constant::isNotMinSignedValue() const {
173   // Check for INT_MIN integers
174   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
175     return !CI->isMinValue(/*isSigned=*/true);
176
177   // Check for FP which are bitcasted from INT_MIN integers
178   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
179     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
180
181   // Check for constant vectors which are splats of INT_MIN values.
182   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
183     if (Constant *Splat = CV->getSplatValue())
184       return Splat->isNotMinSignedValue();
185
186   // Check for constant vectors which are splats of INT_MIN values.
187   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
188     if (Constant *Splat = CV->getSplatValue())
189       return Splat->isNotMinSignedValue();
190
191   // It *may* contain INT_MIN, we can't tell.
192   return false;
193 }
194
195 // Constructor to create a '0' constant of arbitrary type...
196 Constant *Constant::getNullValue(Type *Ty) {
197   switch (Ty->getTypeID()) {
198   case Type::IntegerTyID:
199     return ConstantInt::get(Ty, 0);
200   case Type::HalfTyID:
201     return ConstantFP::get(Ty->getContext(),
202                            APFloat::getZero(APFloat::IEEEhalf));
203   case Type::FloatTyID:
204     return ConstantFP::get(Ty->getContext(),
205                            APFloat::getZero(APFloat::IEEEsingle));
206   case Type::DoubleTyID:
207     return ConstantFP::get(Ty->getContext(),
208                            APFloat::getZero(APFloat::IEEEdouble));
209   case Type::X86_FP80TyID:
210     return ConstantFP::get(Ty->getContext(),
211                            APFloat::getZero(APFloat::x87DoubleExtended));
212   case Type::FP128TyID:
213     return ConstantFP::get(Ty->getContext(),
214                            APFloat::getZero(APFloat::IEEEquad));
215   case Type::PPC_FP128TyID:
216     return ConstantFP::get(Ty->getContext(),
217                            APFloat(APFloat::PPCDoubleDouble,
218                                    APInt::getNullValue(128)));
219   case Type::PointerTyID:
220     return ConstantPointerNull::get(cast<PointerType>(Ty));
221   case Type::StructTyID:
222   case Type::ArrayTyID:
223   case Type::VectorTyID:
224     return ConstantAggregateZero::get(Ty);
225   case Type::TokenTyID:
226     return ConstantTokenNone::get(Ty->getContext());
227   default:
228     // Function, Label, or Opaque type?
229     llvm_unreachable("Cannot create a null constant of that type!");
230   }
231 }
232
233 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
234   Type *ScalarTy = Ty->getScalarType();
235
236   // Create the base integer constant.
237   Constant *C = ConstantInt::get(Ty->getContext(), V);
238
239   // Convert an integer to a pointer, if necessary.
240   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
241     C = ConstantExpr::getIntToPtr(C, PTy);
242
243   // Broadcast a scalar to a vector, if necessary.
244   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
245     C = ConstantVector::getSplat(VTy->getNumElements(), C);
246
247   return C;
248 }
249
250 Constant *Constant::getAllOnesValue(Type *Ty) {
251   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
252     return ConstantInt::get(Ty->getContext(),
253                             APInt::getAllOnesValue(ITy->getBitWidth()));
254
255   if (Ty->isFloatingPointTy()) {
256     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
257                                           !Ty->isPPC_FP128Ty());
258     return ConstantFP::get(Ty->getContext(), FL);
259   }
260
261   VectorType *VTy = cast<VectorType>(Ty);
262   return ConstantVector::getSplat(VTy->getNumElements(),
263                                   getAllOnesValue(VTy->getElementType()));
264 }
265
266 /// getAggregateElement - For aggregates (struct/array/vector) return the
267 /// constant that corresponds to the specified element if possible, or null if
268 /// not.  This can return null if the element index is a ConstantExpr, or if
269 /// 'this' is a constant expr.
270 Constant *Constant::getAggregateElement(unsigned Elt) const {
271   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
272     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
273
274   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
275     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
276
277   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
278     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
279
280   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
281     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
282
283   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
284     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
285
286   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
287     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
288                                        : nullptr;
289   return nullptr;
290 }
291
292 Constant *Constant::getAggregateElement(Constant *Elt) const {
293   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
294   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
295     return getAggregateElement(CI->getZExtValue());
296   return nullptr;
297 }
298
299 void Constant::destroyConstant() {
300   /// First call destroyConstantImpl on the subclass.  This gives the subclass
301   /// a chance to remove the constant from any maps/pools it's contained in.
302   switch (getValueID()) {
303   default:
304     llvm_unreachable("Not a constant!");
305 #define HANDLE_CONSTANT(Name)                                                  \
306   case Value::Name##Val:                                                       \
307     cast<Name>(this)->destroyConstantImpl();                                   \
308     break;
309 #include "llvm/IR/Value.def"
310   }
311
312   // When a Constant is destroyed, there may be lingering
313   // references to the constant by other constants in the constant pool.  These
314   // constants are implicitly dependent on the module that is being deleted,
315   // but they don't know that.  Because we only find out when the CPV is
316   // deleted, we must now notify all of our users (that should only be
317   // Constants) that they are, in fact, invalid now and should be deleted.
318   //
319   while (!use_empty()) {
320     Value *V = user_back();
321 #ifndef NDEBUG // Only in -g mode...
322     if (!isa<Constant>(V)) {
323       dbgs() << "While deleting: " << *this
324              << "\n\nUse still stuck around after Def is destroyed: " << *V
325              << "\n\n";
326     }
327 #endif
328     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
329     cast<Constant>(V)->destroyConstant();
330
331     // The constant should remove itself from our use list...
332     assert((use_empty() || user_back() != V) && "Constant not removed!");
333   }
334
335   // Value has no outstanding references it is safe to delete it now...
336   delete this;
337 }
338
339 static bool canTrapImpl(const Constant *C,
340                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
341   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
342   // The only thing that could possibly trap are constant exprs.
343   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
344   if (!CE)
345     return false;
346
347   // ConstantExpr traps if any operands can trap.
348   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
349     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
350       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
351         return true;
352     }
353   }
354
355   // Otherwise, only specific operations can trap.
356   switch (CE->getOpcode()) {
357   default:
358     return false;
359   case Instruction::UDiv:
360   case Instruction::SDiv:
361   case Instruction::FDiv:
362   case Instruction::URem:
363   case Instruction::SRem:
364   case Instruction::FRem:
365     // Div and rem can trap if the RHS is not known to be non-zero.
366     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
367       return true;
368     return false;
369   }
370 }
371
372 /// canTrap - Return true if evaluation of this constant could trap.  This is
373 /// true for things like constant expressions that could divide by zero.
374 bool Constant::canTrap() const {
375   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
376   return canTrapImpl(this, NonTrappingOps);
377 }
378
379 /// Check if C contains a GlobalValue for which Predicate is true.
380 static bool
381 ConstHasGlobalValuePredicate(const Constant *C,
382                              bool (*Predicate)(const GlobalValue *)) {
383   SmallPtrSet<const Constant *, 8> Visited;
384   SmallVector<const Constant *, 8> WorkList;
385   WorkList.push_back(C);
386   Visited.insert(C);
387
388   while (!WorkList.empty()) {
389     const Constant *WorkItem = WorkList.pop_back_val();
390     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
391       if (Predicate(GV))
392         return true;
393     for (const Value *Op : WorkItem->operands()) {
394       const Constant *ConstOp = dyn_cast<Constant>(Op);
395       if (!ConstOp)
396         continue;
397       if (Visited.insert(ConstOp).second)
398         WorkList.push_back(ConstOp);
399     }
400   }
401   return false;
402 }
403
404 /// Return true if the value can vary between threads.
405 bool Constant::isThreadDependent() const {
406   auto DLLImportPredicate = [](const GlobalValue *GV) {
407     return GV->isThreadLocal();
408   };
409   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
410 }
411
412 bool Constant::isDLLImportDependent() const {
413   auto DLLImportPredicate = [](const GlobalValue *GV) {
414     return GV->hasDLLImportStorageClass();
415   };
416   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
417 }
418
419 /// Return true if the constant has users other than constant exprs and other
420 /// dangling things.
421 bool Constant::isConstantUsed() const {
422   for (const User *U : users()) {
423     const Constant *UC = dyn_cast<Constant>(U);
424     if (!UC || isa<GlobalValue>(UC))
425       return true;
426
427     if (UC->isConstantUsed())
428       return true;
429   }
430   return false;
431 }
432
433 bool Constant::needsRelocation() const {
434   if (isa<GlobalValue>(this))
435     return true; // Global reference.
436
437   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
438     return BA->getFunction()->needsRelocation();
439
440   // While raw uses of blockaddress need to be relocated, differences between
441   // two of them don't when they are for labels in the same function.  This is a
442   // common idiom when creating a table for the indirect goto extension, so we
443   // handle it efficiently here.
444   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
445     if (CE->getOpcode() == Instruction::Sub) {
446       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
447       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
448       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
449           RHS->getOpcode() == Instruction::PtrToInt &&
450           isa<BlockAddress>(LHS->getOperand(0)) &&
451           isa<BlockAddress>(RHS->getOperand(0)) &&
452           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
453               cast<BlockAddress>(RHS->getOperand(0))->getFunction())
454         return false;
455     }
456
457   bool Result = false;
458   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
459     Result |= cast<Constant>(getOperand(i))->needsRelocation();
460
461   return Result;
462 }
463
464 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
465 /// it.  This involves recursively eliminating any dead users of the
466 /// constantexpr.
467 static bool removeDeadUsersOfConstant(const Constant *C) {
468   if (isa<GlobalValue>(C)) return false; // Cannot remove this
469
470   while (!C->use_empty()) {
471     const Constant *User = dyn_cast<Constant>(C->user_back());
472     if (!User) return false; // Non-constant usage;
473     if (!removeDeadUsersOfConstant(User))
474       return false; // Constant wasn't dead
475   }
476
477   const_cast<Constant*>(C)->destroyConstant();
478   return true;
479 }
480
481
482 /// removeDeadConstantUsers - If there are any dead constant users dangling
483 /// off of this constant, remove them.  This method is useful for clients
484 /// that want to check to see if a global is unused, but don't want to deal
485 /// with potentially dead constants hanging off of the globals.
486 void Constant::removeDeadConstantUsers() const {
487   Value::const_user_iterator I = user_begin(), E = user_end();
488   Value::const_user_iterator LastNonDeadUser = E;
489   while (I != E) {
490     const Constant *User = dyn_cast<Constant>(*I);
491     if (!User) {
492       LastNonDeadUser = I;
493       ++I;
494       continue;
495     }
496
497     if (!removeDeadUsersOfConstant(User)) {
498       // If the constant wasn't dead, remember that this was the last live use
499       // and move on to the next constant.
500       LastNonDeadUser = I;
501       ++I;
502       continue;
503     }
504
505     // If the constant was dead, then the iterator is invalidated.
506     if (LastNonDeadUser == E) {
507       I = user_begin();
508       if (I == E) break;
509     } else {
510       I = LastNonDeadUser;
511       ++I;
512     }
513   }
514 }
515
516
517
518 //===----------------------------------------------------------------------===//
519 //                                ConstantInt
520 //===----------------------------------------------------------------------===//
521
522 void ConstantInt::anchor() { }
523
524 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
525   : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
526   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
527 }
528
529 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
530   LLVMContextImpl *pImpl = Context.pImpl;
531   if (!pImpl->TheTrueVal)
532     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
533   return pImpl->TheTrueVal;
534 }
535
536 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
537   LLVMContextImpl *pImpl = Context.pImpl;
538   if (!pImpl->TheFalseVal)
539     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
540   return pImpl->TheFalseVal;
541 }
542
543 Constant *ConstantInt::getTrue(Type *Ty) {
544   VectorType *VTy = dyn_cast<VectorType>(Ty);
545   if (!VTy) {
546     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
547     return ConstantInt::getTrue(Ty->getContext());
548   }
549   assert(VTy->getElementType()->isIntegerTy(1) &&
550          "True must be vector of i1 or i1.");
551   return ConstantVector::getSplat(VTy->getNumElements(),
552                                   ConstantInt::getTrue(Ty->getContext()));
553 }
554
555 Constant *ConstantInt::getFalse(Type *Ty) {
556   VectorType *VTy = dyn_cast<VectorType>(Ty);
557   if (!VTy) {
558     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
559     return ConstantInt::getFalse(Ty->getContext());
560   }
561   assert(VTy->getElementType()->isIntegerTy(1) &&
562          "False must be vector of i1 or i1.");
563   return ConstantVector::getSplat(VTy->getNumElements(),
564                                   ConstantInt::getFalse(Ty->getContext()));
565 }
566
567 // Get a ConstantInt from an APInt.
568 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
569   // get an existing value or the insertion position
570   LLVMContextImpl *pImpl = Context.pImpl;
571   ConstantInt *&Slot = pImpl->IntConstants[V];
572   if (!Slot) {
573     // Get the corresponding integer type for the bit width of the value.
574     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
575     Slot = new ConstantInt(ITy, V);
576   }
577   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
578   return Slot;
579 }
580
581 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
582   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
583
584   // For vectors, broadcast the value.
585   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
586     return ConstantVector::getSplat(VTy->getNumElements(), C);
587
588   return C;
589 }
590
591 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
592                               bool isSigned) {
593   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
594 }
595
596 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
597   return get(Ty, V, true);
598 }
599
600 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
601   return get(Ty, V, true);
602 }
603
604 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
605   ConstantInt *C = get(Ty->getContext(), V);
606   assert(C->getType() == Ty->getScalarType() &&
607          "ConstantInt type doesn't match the type implied by its value!");
608
609   // For vectors, broadcast the value.
610   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
611     return ConstantVector::getSplat(VTy->getNumElements(), C);
612
613   return C;
614 }
615
616 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
617                               uint8_t radix) {
618   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
619 }
620
621 /// Remove the constant from the constant table.
622 void ConstantInt::destroyConstantImpl() {
623   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
624 }
625
626 //===----------------------------------------------------------------------===//
627 //                                ConstantFP
628 //===----------------------------------------------------------------------===//
629
630 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
631   if (Ty->isHalfTy())
632     return &APFloat::IEEEhalf;
633   if (Ty->isFloatTy())
634     return &APFloat::IEEEsingle;
635   if (Ty->isDoubleTy())
636     return &APFloat::IEEEdouble;
637   if (Ty->isX86_FP80Ty())
638     return &APFloat::x87DoubleExtended;
639   else if (Ty->isFP128Ty())
640     return &APFloat::IEEEquad;
641
642   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
643   return &APFloat::PPCDoubleDouble;
644 }
645
646 void ConstantFP::anchor() { }
647
648 /// get() - This returns a constant fp for the specified value in the
649 /// specified type.  This should only be used for simple constant values like
650 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
651 Constant *ConstantFP::get(Type *Ty, double V) {
652   LLVMContext &Context = Ty->getContext();
653
654   APFloat FV(V);
655   bool ignored;
656   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
657              APFloat::rmNearestTiesToEven, &ignored);
658   Constant *C = get(Context, FV);
659
660   // For vectors, broadcast the value.
661   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
662     return ConstantVector::getSplat(VTy->getNumElements(), C);
663
664   return C;
665 }
666
667
668 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
669   LLVMContext &Context = Ty->getContext();
670
671   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
672   Constant *C = get(Context, FV);
673
674   // For vectors, broadcast the value.
675   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
676     return ConstantVector::getSplat(VTy->getNumElements(), C);
677
678   return C; 
679 }
680
681 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
682   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
683   APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
684   Constant *C = get(Ty->getContext(), NaN);
685
686   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
687     return ConstantVector::getSplat(VTy->getNumElements(), C);
688
689   return C;
690 }
691
692 Constant *ConstantFP::getNegativeZero(Type *Ty) {
693   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
694   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
695   Constant *C = get(Ty->getContext(), NegZero);
696
697   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
698     return ConstantVector::getSplat(VTy->getNumElements(), C);
699
700   return C;
701 }
702
703
704 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
705   if (Ty->isFPOrFPVectorTy())
706     return getNegativeZero(Ty);
707
708   return Constant::getNullValue(Ty);
709 }
710
711
712 // ConstantFP accessors.
713 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
714   LLVMContextImpl* pImpl = Context.pImpl;
715
716   ConstantFP *&Slot = pImpl->FPConstants[V];
717
718   if (!Slot) {
719     Type *Ty;
720     if (&V.getSemantics() == &APFloat::IEEEhalf)
721       Ty = Type::getHalfTy(Context);
722     else if (&V.getSemantics() == &APFloat::IEEEsingle)
723       Ty = Type::getFloatTy(Context);
724     else if (&V.getSemantics() == &APFloat::IEEEdouble)
725       Ty = Type::getDoubleTy(Context);
726     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
727       Ty = Type::getX86_FP80Ty(Context);
728     else if (&V.getSemantics() == &APFloat::IEEEquad)
729       Ty = Type::getFP128Ty(Context);
730     else {
731       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
732              "Unknown FP format");
733       Ty = Type::getPPC_FP128Ty(Context);
734     }
735     Slot = new ConstantFP(Ty, V);
736   }
737
738   return Slot;
739 }
740
741 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
742   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
743   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
744
745   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
746     return ConstantVector::getSplat(VTy->getNumElements(), C);
747
748   return C;
749 }
750
751 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
752   : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
753   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
754          "FP type Mismatch");
755 }
756
757 bool ConstantFP::isExactlyValue(const APFloat &V) const {
758   return Val.bitwiseIsEqual(V);
759 }
760
761 /// Remove the constant from the constant table.
762 void ConstantFP::destroyConstantImpl() {
763   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
764 }
765
766 //===----------------------------------------------------------------------===//
767 //                   ConstantAggregateZero Implementation
768 //===----------------------------------------------------------------------===//
769
770 /// getSequentialElement - If this CAZ has array or vector type, return a zero
771 /// with the right element type.
772 Constant *ConstantAggregateZero::getSequentialElement() const {
773   return Constant::getNullValue(getType()->getSequentialElementType());
774 }
775
776 /// getStructElement - If this CAZ has struct type, return a zero with the
777 /// right element type for the specified element.
778 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
779   return Constant::getNullValue(getType()->getStructElementType(Elt));
780 }
781
782 /// getElementValue - Return a zero of the right value for the specified GEP
783 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
784 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
785   if (isa<SequentialType>(getType()))
786     return getSequentialElement();
787   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
788 }
789
790 /// getElementValue - Return a zero of the right value for the specified GEP
791 /// index.
792 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
793   if (isa<SequentialType>(getType()))
794     return getSequentialElement();
795   return getStructElement(Idx);
796 }
797
798 unsigned ConstantAggregateZero::getNumElements() const {
799   Type *Ty = getType();
800   if (auto *AT = dyn_cast<ArrayType>(Ty))
801     return AT->getNumElements();
802   if (auto *VT = dyn_cast<VectorType>(Ty))
803     return VT->getNumElements();
804   return Ty->getStructNumElements();
805 }
806
807 //===----------------------------------------------------------------------===//
808 //                         UndefValue Implementation
809 //===----------------------------------------------------------------------===//
810
811 /// getSequentialElement - If this undef has array or vector type, return an
812 /// undef with the right element type.
813 UndefValue *UndefValue::getSequentialElement() const {
814   return UndefValue::get(getType()->getSequentialElementType());
815 }
816
817 /// getStructElement - If this undef has struct type, return a zero with the
818 /// right element type for the specified element.
819 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
820   return UndefValue::get(getType()->getStructElementType(Elt));
821 }
822
823 /// getElementValue - Return an undef of the right value for the specified GEP
824 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
825 UndefValue *UndefValue::getElementValue(Constant *C) const {
826   if (isa<SequentialType>(getType()))
827     return getSequentialElement();
828   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
829 }
830
831 /// getElementValue - Return an undef of the right value for the specified GEP
832 /// index.
833 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
834   if (isa<SequentialType>(getType()))
835     return getSequentialElement();
836   return getStructElement(Idx);
837 }
838
839 unsigned UndefValue::getNumElements() const {
840   Type *Ty = getType();
841   if (auto *AT = dyn_cast<ArrayType>(Ty))
842     return AT->getNumElements();
843   if (auto *VT = dyn_cast<VectorType>(Ty))
844     return VT->getNumElements();
845   return Ty->getStructNumElements();
846 }
847
848 //===----------------------------------------------------------------------===//
849 //                            ConstantXXX Classes
850 //===----------------------------------------------------------------------===//
851
852 template <typename ItTy, typename EltTy>
853 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
854   for (; Start != End; ++Start)
855     if (*Start != Elt)
856       return false;
857   return true;
858 }
859
860 template <typename SequentialTy, typename ElementTy>
861 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
862   assert(!V.empty() && "Cannot get empty int sequence.");
863
864   SmallVector<ElementTy, 16> Elts;
865   for (Constant *C : V)
866     if (auto *CI = dyn_cast<ConstantInt>(C))
867       Elts.push_back(CI->getZExtValue());
868     else
869       return nullptr;
870   return SequentialTy::get(V[0]->getContext(), Elts);
871 }
872
873 template <typename SequentialTy, typename ElementTy>
874 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
875   assert(!V.empty() && "Cannot get empty FP sequence.");
876
877   SmallVector<ElementTy, 16> Elts;
878   for (Constant *C : V)
879     if (auto *CFP = dyn_cast<ConstantFP>(C))
880       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
881     else
882       return nullptr;
883   return SequentialTy::getFP(V[0]->getContext(), Elts);
884 }
885
886 template <typename SequenceTy>
887 static Constant *getSequenceIfElementsMatch(Constant *C,
888                                             ArrayRef<Constant *> V) {
889   // We speculatively build the elements here even if it turns out that there is
890   // a constantexpr or something else weird, since it is so uncommon for that to
891   // happen.
892   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
893     if (CI->getType()->isIntegerTy(8))
894       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
895     else if (CI->getType()->isIntegerTy(16))
896       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
897     else if (CI->getType()->isIntegerTy(32))
898       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
899     else if (CI->getType()->isIntegerTy(64))
900       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
901   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
902     if (CFP->getType()->isHalfTy())
903       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
904     else if (CFP->getType()->isFloatTy())
905       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
906     else if (CFP->getType()->isDoubleTy())
907       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
908   }
909
910   return nullptr;
911 }
912
913 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
914   : Constant(T, ConstantArrayVal,
915              OperandTraits<ConstantArray>::op_end(this) - V.size(),
916              V.size()) {
917   assert(V.size() == T->getNumElements() &&
918          "Invalid initializer vector for constant array");
919   for (unsigned i = 0, e = V.size(); i != e; ++i)
920     assert(V[i]->getType() == T->getElementType() &&
921            "Initializer for array element doesn't match array element type!");
922   std::copy(V.begin(), V.end(), op_begin());
923 }
924
925 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
926   if (Constant *C = getImpl(Ty, V))
927     return C;
928   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
929 }
930
931 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
932   // Empty arrays are canonicalized to ConstantAggregateZero.
933   if (V.empty())
934     return ConstantAggregateZero::get(Ty);
935
936   for (unsigned i = 0, e = V.size(); i != e; ++i) {
937     assert(V[i]->getType() == Ty->getElementType() &&
938            "Wrong type in array element initializer");
939   }
940
941   // If this is an all-zero array, return a ConstantAggregateZero object.  If
942   // all undef, return an UndefValue, if "all simple", then return a
943   // ConstantDataArray.
944   Constant *C = V[0];
945   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
946     return UndefValue::get(Ty);
947
948   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
949     return ConstantAggregateZero::get(Ty);
950
951   // Check to see if all of the elements are ConstantFP or ConstantInt and if
952   // the element type is compatible with ConstantDataVector.  If so, use it.
953   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
954     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
955
956   // Otherwise, we really do want to create a ConstantArray.
957   return nullptr;
958 }
959
960 /// getTypeForElements - Return an anonymous struct type to use for a constant
961 /// with the specified set of elements.  The list must not be empty.
962 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
963                                                ArrayRef<Constant*> V,
964                                                bool Packed) {
965   unsigned VecSize = V.size();
966   SmallVector<Type*, 16> EltTypes(VecSize);
967   for (unsigned i = 0; i != VecSize; ++i)
968     EltTypes[i] = V[i]->getType();
969
970   return StructType::get(Context, EltTypes, Packed);
971 }
972
973
974 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
975                                                bool Packed) {
976   assert(!V.empty() &&
977          "ConstantStruct::getTypeForElements cannot be called on empty list");
978   return getTypeForElements(V[0]->getContext(), V, Packed);
979 }
980
981
982 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
983   : Constant(T, ConstantStructVal,
984              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
985              V.size()) {
986   assert(V.size() == T->getNumElements() &&
987          "Invalid initializer vector for constant structure");
988   for (unsigned i = 0, e = V.size(); i != e; ++i)
989     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
990            "Initializer for struct element doesn't match struct element type!");
991   std::copy(V.begin(), V.end(), op_begin());
992 }
993
994 // ConstantStruct accessors.
995 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
996   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
997          "Incorrect # elements specified to ConstantStruct::get");
998
999   // Create a ConstantAggregateZero value if all elements are zeros.
1000   bool isZero = true;
1001   bool isUndef = false;
1002   
1003   if (!V.empty()) {
1004     isUndef = isa<UndefValue>(V[0]);
1005     isZero = V[0]->isNullValue();
1006     if (isUndef || isZero) {
1007       for (unsigned i = 0, e = V.size(); i != e; ++i) {
1008         if (!V[i]->isNullValue())
1009           isZero = false;
1010         if (!isa<UndefValue>(V[i]))
1011           isUndef = false;
1012       }
1013     }
1014   }
1015   if (isZero)
1016     return ConstantAggregateZero::get(ST);
1017   if (isUndef)
1018     return UndefValue::get(ST);
1019
1020   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1021 }
1022
1023 Constant *ConstantStruct::get(StructType *T, ...) {
1024   va_list ap;
1025   SmallVector<Constant*, 8> Values;
1026   va_start(ap, T);
1027   while (Constant *Val = va_arg(ap, llvm::Constant*))
1028     Values.push_back(Val);
1029   va_end(ap);
1030   return get(T, Values);
1031 }
1032
1033 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1034   : Constant(T, ConstantVectorVal,
1035              OperandTraits<ConstantVector>::op_end(this) - V.size(),
1036              V.size()) {
1037   for (size_t i = 0, e = V.size(); i != e; i++)
1038     assert(V[i]->getType() == T->getElementType() &&
1039            "Initializer for vector element doesn't match vector element type!");
1040   std::copy(V.begin(), V.end(), op_begin());
1041 }
1042
1043 // ConstantVector accessors.
1044 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1045   if (Constant *C = getImpl(V))
1046     return C;
1047   VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1048   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1049 }
1050
1051 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1052   assert(!V.empty() && "Vectors can't be empty");
1053   VectorType *T = VectorType::get(V.front()->getType(), V.size());
1054
1055   // If this is an all-undef or all-zero vector, return a
1056   // ConstantAggregateZero or UndefValue.
1057   Constant *C = V[0];
1058   bool isZero = C->isNullValue();
1059   bool isUndef = isa<UndefValue>(C);
1060
1061   if (isZero || isUndef) {
1062     for (unsigned i = 1, e = V.size(); i != e; ++i)
1063       if (V[i] != C) {
1064         isZero = isUndef = false;
1065         break;
1066       }
1067   }
1068
1069   if (isZero)
1070     return ConstantAggregateZero::get(T);
1071   if (isUndef)
1072     return UndefValue::get(T);
1073
1074   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1075   // the element type is compatible with ConstantDataVector.  If so, use it.
1076   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1077     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1078
1079   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1080   // the operand list constants a ConstantExpr or something else strange.
1081   return nullptr;
1082 }
1083
1084 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1085   // If this splat is compatible with ConstantDataVector, use it instead of
1086   // ConstantVector.
1087   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1088       ConstantDataSequential::isElementTypeCompatible(V->getType()))
1089     return ConstantDataVector::getSplat(NumElts, V);
1090
1091   SmallVector<Constant*, 32> Elts(NumElts, V);
1092   return get(Elts);
1093 }
1094
1095 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1096   LLVMContextImpl *pImpl = Context.pImpl;
1097   if (!pImpl->TheNoneToken)
1098     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1099   return pImpl->TheNoneToken.get();
1100 }
1101
1102 /// Remove the constant from the constant table.
1103 void ConstantTokenNone::destroyConstantImpl() {
1104   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1105 }
1106
1107 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1108 // can't be inline because we don't want to #include Instruction.h into
1109 // Constant.h
1110 bool ConstantExpr::isCast() const {
1111   return Instruction::isCast(getOpcode());
1112 }
1113
1114 bool ConstantExpr::isCompare() const {
1115   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1116 }
1117
1118 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1119   if (getOpcode() != Instruction::GetElementPtr) return false;
1120
1121   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1122   User::const_op_iterator OI = std::next(this->op_begin());
1123
1124   // Skip the first index, as it has no static limit.
1125   ++GEPI;
1126   ++OI;
1127
1128   // The remaining indices must be compile-time known integers within the
1129   // bounds of the corresponding notional static array types.
1130   for (; GEPI != E; ++GEPI, ++OI) {
1131     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1132     if (!CI) return false;
1133     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1134       if (CI->getValue().getActiveBits() > 64 ||
1135           CI->getZExtValue() >= ATy->getNumElements())
1136         return false;
1137   }
1138
1139   // All the indices checked out.
1140   return true;
1141 }
1142
1143 bool ConstantExpr::hasIndices() const {
1144   return getOpcode() == Instruction::ExtractValue ||
1145          getOpcode() == Instruction::InsertValue;
1146 }
1147
1148 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1149   if (const ExtractValueConstantExpr *EVCE =
1150         dyn_cast<ExtractValueConstantExpr>(this))
1151     return EVCE->Indices;
1152
1153   return cast<InsertValueConstantExpr>(this)->Indices;
1154 }
1155
1156 unsigned ConstantExpr::getPredicate() const {
1157   return cast<CompareConstantExpr>(this)->predicate;
1158 }
1159
1160 /// getWithOperandReplaced - Return a constant expression identical to this
1161 /// one, but with the specified operand set to the specified value.
1162 Constant *
1163 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1164   assert(Op->getType() == getOperand(OpNo)->getType() &&
1165          "Replacing operand with value of different type!");
1166   if (getOperand(OpNo) == Op)
1167     return const_cast<ConstantExpr*>(this);
1168
1169   SmallVector<Constant*, 8> NewOps;
1170   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1171     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1172
1173   return getWithOperands(NewOps);
1174 }
1175
1176 /// getWithOperands - This returns the current constant expression with the
1177 /// operands replaced with the specified values.  The specified array must
1178 /// have the same number of operands as our current one.
1179 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1180                                         bool OnlyIfReduced, Type *SrcTy) const {
1181   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1182
1183   // If no operands changed return self.
1184   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1185     return const_cast<ConstantExpr*>(this);
1186
1187   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1188   switch (getOpcode()) {
1189   case Instruction::Trunc:
1190   case Instruction::ZExt:
1191   case Instruction::SExt:
1192   case Instruction::FPTrunc:
1193   case Instruction::FPExt:
1194   case Instruction::UIToFP:
1195   case Instruction::SIToFP:
1196   case Instruction::FPToUI:
1197   case Instruction::FPToSI:
1198   case Instruction::PtrToInt:
1199   case Instruction::IntToPtr:
1200   case Instruction::BitCast:
1201   case Instruction::AddrSpaceCast:
1202     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1203   case Instruction::Select:
1204     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1205   case Instruction::InsertElement:
1206     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1207                                           OnlyIfReducedTy);
1208   case Instruction::ExtractElement:
1209     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1210   case Instruction::InsertValue:
1211     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1212                                         OnlyIfReducedTy);
1213   case Instruction::ExtractValue:
1214     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1215   case Instruction::ShuffleVector:
1216     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1217                                           OnlyIfReducedTy);
1218   case Instruction::GetElementPtr: {
1219     auto *GEPO = cast<GEPOperator>(this);
1220     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1221     return ConstantExpr::getGetElementPtr(
1222         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1223         GEPO->isInBounds(), OnlyIfReducedTy);
1224   }
1225   case Instruction::ICmp:
1226   case Instruction::FCmp:
1227     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1228                                     OnlyIfReducedTy);
1229   default:
1230     assert(getNumOperands() == 2 && "Must be binary operator?");
1231     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1232                              OnlyIfReducedTy);
1233   }
1234 }
1235
1236
1237 //===----------------------------------------------------------------------===//
1238 //                      isValueValidForType implementations
1239
1240 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1241   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1242   if (Ty->isIntegerTy(1))
1243     return Val == 0 || Val == 1;
1244   if (NumBits >= 64)
1245     return true; // always true, has to fit in largest type
1246   uint64_t Max = (1ll << NumBits) - 1;
1247   return Val <= Max;
1248 }
1249
1250 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1251   unsigned NumBits = Ty->getIntegerBitWidth();
1252   if (Ty->isIntegerTy(1))
1253     return Val == 0 || Val == 1 || Val == -1;
1254   if (NumBits >= 64)
1255     return true; // always true, has to fit in largest type
1256   int64_t Min = -(1ll << (NumBits-1));
1257   int64_t Max = (1ll << (NumBits-1)) - 1;
1258   return (Val >= Min && Val <= Max);
1259 }
1260
1261 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1262   // convert modifies in place, so make a copy.
1263   APFloat Val2 = APFloat(Val);
1264   bool losesInfo;
1265   switch (Ty->getTypeID()) {
1266   default:
1267     return false;         // These can't be represented as floating point!
1268
1269   // FIXME rounding mode needs to be more flexible
1270   case Type::HalfTyID: {
1271     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1272       return true;
1273     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1274     return !losesInfo;
1275   }
1276   case Type::FloatTyID: {
1277     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1278       return true;
1279     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1280     return !losesInfo;
1281   }
1282   case Type::DoubleTyID: {
1283     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1284         &Val2.getSemantics() == &APFloat::IEEEsingle ||
1285         &Val2.getSemantics() == &APFloat::IEEEdouble)
1286       return true;
1287     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1288     return !losesInfo;
1289   }
1290   case Type::X86_FP80TyID:
1291     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1292            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1293            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1294            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1295   case Type::FP128TyID:
1296     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1297            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1298            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1299            &Val2.getSemantics() == &APFloat::IEEEquad;
1300   case Type::PPC_FP128TyID:
1301     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1302            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1303            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1304            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1305   }
1306 }
1307
1308
1309 //===----------------------------------------------------------------------===//
1310 //                      Factory Function Implementation
1311
1312 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1313   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1314          "Cannot create an aggregate zero of non-aggregate type!");
1315   
1316   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1317   if (!Entry)
1318     Entry = new ConstantAggregateZero(Ty);
1319
1320   return Entry;
1321 }
1322
1323 /// destroyConstant - Remove the constant from the constant table.
1324 ///
1325 void ConstantAggregateZero::destroyConstantImpl() {
1326   getContext().pImpl->CAZConstants.erase(getType());
1327 }
1328
1329 /// destroyConstant - Remove the constant from the constant table...
1330 ///
1331 void ConstantArray::destroyConstantImpl() {
1332   getType()->getContext().pImpl->ArrayConstants.remove(this);
1333 }
1334
1335
1336 //---- ConstantStruct::get() implementation...
1337 //
1338
1339 // destroyConstant - Remove the constant from the constant table...
1340 //
1341 void ConstantStruct::destroyConstantImpl() {
1342   getType()->getContext().pImpl->StructConstants.remove(this);
1343 }
1344
1345 // destroyConstant - Remove the constant from the constant table...
1346 //
1347 void ConstantVector::destroyConstantImpl() {
1348   getType()->getContext().pImpl->VectorConstants.remove(this);
1349 }
1350
1351 /// getSplatValue - If this is a splat vector constant, meaning that all of
1352 /// the elements have the same value, return that value. Otherwise return 0.
1353 Constant *Constant::getSplatValue() const {
1354   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1355   if (isa<ConstantAggregateZero>(this))
1356     return getNullValue(this->getType()->getVectorElementType());
1357   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1358     return CV->getSplatValue();
1359   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1360     return CV->getSplatValue();
1361   return nullptr;
1362 }
1363
1364 /// getSplatValue - If this is a splat constant, where all of the
1365 /// elements have the same value, return that value. Otherwise return null.
1366 Constant *ConstantVector::getSplatValue() const {
1367   // Check out first element.
1368   Constant *Elt = getOperand(0);
1369   // Then make sure all remaining elements point to the same value.
1370   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1371     if (getOperand(I) != Elt)
1372       return nullptr;
1373   return Elt;
1374 }
1375
1376 /// If C is a constant integer then return its value, otherwise C must be a
1377 /// vector of constant integers, all equal, and the common value is returned.
1378 const APInt &Constant::getUniqueInteger() const {
1379   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1380     return CI->getValue();
1381   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1382   const Constant *C = this->getAggregateElement(0U);
1383   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1384   return cast<ConstantInt>(C)->getValue();
1385 }
1386
1387 //---- ConstantPointerNull::get() implementation.
1388 //
1389
1390 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1391   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1392   if (!Entry)
1393     Entry = new ConstantPointerNull(Ty);
1394
1395   return Entry;
1396 }
1397
1398 // destroyConstant - Remove the constant from the constant table...
1399 //
1400 void ConstantPointerNull::destroyConstantImpl() {
1401   getContext().pImpl->CPNConstants.erase(getType());
1402 }
1403
1404
1405 //---- UndefValue::get() implementation.
1406 //
1407
1408 UndefValue *UndefValue::get(Type *Ty) {
1409   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1410   if (!Entry)
1411     Entry = new UndefValue(Ty);
1412
1413   return Entry;
1414 }
1415
1416 // destroyConstant - Remove the constant from the constant table.
1417 //
1418 void UndefValue::destroyConstantImpl() {
1419   // Free the constant and any dangling references to it.
1420   getContext().pImpl->UVConstants.erase(getType());
1421 }
1422
1423 //---- BlockAddress::get() implementation.
1424 //
1425
1426 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1427   assert(BB->getParent() && "Block must have a parent");
1428   return get(BB->getParent(), BB);
1429 }
1430
1431 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1432   BlockAddress *&BA =
1433     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1434   if (!BA)
1435     BA = new BlockAddress(F, BB);
1436
1437   assert(BA->getFunction() == F && "Basic block moved between functions");
1438   return BA;
1439 }
1440
1441 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1442 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1443            &Op<0>(), 2) {
1444   setOperand(0, F);
1445   setOperand(1, BB);
1446   BB->AdjustBlockAddressRefCount(1);
1447 }
1448
1449 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1450   if (!BB->hasAddressTaken())
1451     return nullptr;
1452
1453   const Function *F = BB->getParent();
1454   assert(F && "Block must have a parent");
1455   BlockAddress *BA =
1456       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1457   assert(BA && "Refcount and block address map disagree!");
1458   return BA;
1459 }
1460
1461 // destroyConstant - Remove the constant from the constant table.
1462 //
1463 void BlockAddress::destroyConstantImpl() {
1464   getFunction()->getType()->getContext().pImpl
1465     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1466   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1467 }
1468
1469 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
1470   // This could be replacing either the Basic Block or the Function.  In either
1471   // case, we have to remove the map entry.
1472   Function *NewF = getFunction();
1473   BasicBlock *NewBB = getBasicBlock();
1474
1475   if (U == &Op<0>())
1476     NewF = cast<Function>(To->stripPointerCasts());
1477   else
1478     NewBB = cast<BasicBlock>(To);
1479
1480   // See if the 'new' entry already exists, if not, just update this in place
1481   // and return early.
1482   BlockAddress *&NewBA =
1483     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1484   if (NewBA)
1485     return NewBA;
1486
1487   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1488
1489   // Remove the old entry, this can't cause the map to rehash (just a
1490   // tombstone will get added).
1491   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1492                                                           getBasicBlock()));
1493   NewBA = this;
1494   setOperand(0, NewF);
1495   setOperand(1, NewBB);
1496   getBasicBlock()->AdjustBlockAddressRefCount(1);
1497
1498   // If we just want to keep the existing value, then return null.
1499   // Callers know that this means we shouldn't delete this value.
1500   return nullptr;
1501 }
1502
1503 //---- ConstantExpr::get() implementations.
1504 //
1505
1506 /// This is a utility function to handle folding of casts and lookup of the
1507 /// cast in the ExprConstants map. It is used by the various get* methods below.
1508 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1509                                bool OnlyIfReduced = false) {
1510   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1511   // Fold a few common cases
1512   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1513     return FC;
1514
1515   if (OnlyIfReduced)
1516     return nullptr;
1517
1518   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1519
1520   // Look up the constant in the table first to ensure uniqueness.
1521   ConstantExprKeyType Key(opc, C);
1522
1523   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1524 }
1525
1526 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1527                                 bool OnlyIfReduced) {
1528   Instruction::CastOps opc = Instruction::CastOps(oc);
1529   assert(Instruction::isCast(opc) && "opcode out of range");
1530   assert(C && Ty && "Null arguments to getCast");
1531   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1532
1533   switch (opc) {
1534   default:
1535     llvm_unreachable("Invalid cast opcode");
1536   case Instruction::Trunc:
1537     return getTrunc(C, Ty, OnlyIfReduced);
1538   case Instruction::ZExt:
1539     return getZExt(C, Ty, OnlyIfReduced);
1540   case Instruction::SExt:
1541     return getSExt(C, Ty, OnlyIfReduced);
1542   case Instruction::FPTrunc:
1543     return getFPTrunc(C, Ty, OnlyIfReduced);
1544   case Instruction::FPExt:
1545     return getFPExtend(C, Ty, OnlyIfReduced);
1546   case Instruction::UIToFP:
1547     return getUIToFP(C, Ty, OnlyIfReduced);
1548   case Instruction::SIToFP:
1549     return getSIToFP(C, Ty, OnlyIfReduced);
1550   case Instruction::FPToUI:
1551     return getFPToUI(C, Ty, OnlyIfReduced);
1552   case Instruction::FPToSI:
1553     return getFPToSI(C, Ty, OnlyIfReduced);
1554   case Instruction::PtrToInt:
1555     return getPtrToInt(C, Ty, OnlyIfReduced);
1556   case Instruction::IntToPtr:
1557     return getIntToPtr(C, Ty, OnlyIfReduced);
1558   case Instruction::BitCast:
1559     return getBitCast(C, Ty, OnlyIfReduced);
1560   case Instruction::AddrSpaceCast:
1561     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1562   }
1563 }
1564
1565 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1566   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1567     return getBitCast(C, Ty);
1568   return getZExt(C, Ty);
1569 }
1570
1571 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1572   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1573     return getBitCast(C, Ty);
1574   return getSExt(C, Ty);
1575 }
1576
1577 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1578   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1579     return getBitCast(C, Ty);
1580   return getTrunc(C, Ty);
1581 }
1582
1583 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1584   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1585   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1586           "Invalid cast");
1587
1588   if (Ty->isIntOrIntVectorTy())
1589     return getPtrToInt(S, Ty);
1590
1591   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1592   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1593     return getAddrSpaceCast(S, Ty);
1594
1595   return getBitCast(S, Ty);
1596 }
1597
1598 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1599                                                          Type *Ty) {
1600   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1601   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1602
1603   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1604     return getAddrSpaceCast(S, Ty);
1605
1606   return getBitCast(S, Ty);
1607 }
1608
1609 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1610                                        bool isSigned) {
1611   assert(C->getType()->isIntOrIntVectorTy() &&
1612          Ty->isIntOrIntVectorTy() && "Invalid cast");
1613   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1614   unsigned DstBits = Ty->getScalarSizeInBits();
1615   Instruction::CastOps opcode =
1616     (SrcBits == DstBits ? Instruction::BitCast :
1617      (SrcBits > DstBits ? Instruction::Trunc :
1618       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1619   return getCast(opcode, C, Ty);
1620 }
1621
1622 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1623   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1624          "Invalid cast");
1625   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1626   unsigned DstBits = Ty->getScalarSizeInBits();
1627   if (SrcBits == DstBits)
1628     return C; // Avoid a useless cast
1629   Instruction::CastOps opcode =
1630     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1631   return getCast(opcode, C, Ty);
1632 }
1633
1634 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1635 #ifndef NDEBUG
1636   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1637   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1638 #endif
1639   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1640   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1641   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1642   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1643          "SrcTy must be larger than DestTy for Trunc!");
1644
1645   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1646 }
1647
1648 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1649 #ifndef NDEBUG
1650   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1651   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1652 #endif
1653   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1654   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1655   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1656   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1657          "SrcTy must be smaller than DestTy for SExt!");
1658
1659   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1660 }
1661
1662 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1663 #ifndef NDEBUG
1664   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1665   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1666 #endif
1667   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1668   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1669   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1670   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1671          "SrcTy must be smaller than DestTy for ZExt!");
1672
1673   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1674 }
1675
1676 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1677 #ifndef NDEBUG
1678   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1679   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1680 #endif
1681   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1682   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1683          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1684          "This is an illegal floating point truncation!");
1685   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1686 }
1687
1688 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1689 #ifndef NDEBUG
1690   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1691   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1692 #endif
1693   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1694   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1695          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1696          "This is an illegal floating point extension!");
1697   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1698 }
1699
1700 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1701 #ifndef NDEBUG
1702   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1703   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1704 #endif
1705   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1706   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1707          "This is an illegal uint to floating point cast!");
1708   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1709 }
1710
1711 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1712 #ifndef NDEBUG
1713   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1714   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1715 #endif
1716   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1717   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1718          "This is an illegal sint to floating point cast!");
1719   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1720 }
1721
1722 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1723 #ifndef NDEBUG
1724   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1725   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1726 #endif
1727   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1728   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1729          "This is an illegal floating point to uint cast!");
1730   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1731 }
1732
1733 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1734 #ifndef NDEBUG
1735   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1736   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1737 #endif
1738   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1739   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1740          "This is an illegal floating point to sint cast!");
1741   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1742 }
1743
1744 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1745                                     bool OnlyIfReduced) {
1746   assert(C->getType()->getScalarType()->isPointerTy() &&
1747          "PtrToInt source must be pointer or pointer vector");
1748   assert(DstTy->getScalarType()->isIntegerTy() && 
1749          "PtrToInt destination must be integer or integer vector");
1750   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1751   if (isa<VectorType>(C->getType()))
1752     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1753            "Invalid cast between a different number of vector elements");
1754   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1755 }
1756
1757 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1758                                     bool OnlyIfReduced) {
1759   assert(C->getType()->getScalarType()->isIntegerTy() &&
1760          "IntToPtr source must be integer or integer vector");
1761   assert(DstTy->getScalarType()->isPointerTy() &&
1762          "IntToPtr destination must be a pointer or pointer vector");
1763   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1764   if (isa<VectorType>(C->getType()))
1765     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1766            "Invalid cast between a different number of vector elements");
1767   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1768 }
1769
1770 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1771                                    bool OnlyIfReduced) {
1772   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1773          "Invalid constantexpr bitcast!");
1774
1775   // It is common to ask for a bitcast of a value to its own type, handle this
1776   // speedily.
1777   if (C->getType() == DstTy) return C;
1778
1779   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1780 }
1781
1782 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1783                                          bool OnlyIfReduced) {
1784   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1785          "Invalid constantexpr addrspacecast!");
1786
1787   // Canonicalize addrspacecasts between different pointer types by first
1788   // bitcasting the pointer type and then converting the address space.
1789   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1790   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1791   Type *DstElemTy = DstScalarTy->getElementType();
1792   if (SrcScalarTy->getElementType() != DstElemTy) {
1793     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1794     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1795       // Handle vectors of pointers.
1796       MidTy = VectorType::get(MidTy, VT->getNumElements());
1797     }
1798     C = getBitCast(C, MidTy);
1799   }
1800   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1801 }
1802
1803 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1804                             unsigned Flags, Type *OnlyIfReducedTy) {
1805   // Check the operands for consistency first.
1806   assert(Opcode >= Instruction::BinaryOpsBegin &&
1807          Opcode <  Instruction::BinaryOpsEnd   &&
1808          "Invalid opcode in binary constant expression");
1809   assert(C1->getType() == C2->getType() &&
1810          "Operand types in binary constant expression should match");
1811
1812 #ifndef NDEBUG
1813   switch (Opcode) {
1814   case Instruction::Add:
1815   case Instruction::Sub:
1816   case Instruction::Mul:
1817     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1818     assert(C1->getType()->isIntOrIntVectorTy() &&
1819            "Tried to create an integer operation on a non-integer type!");
1820     break;
1821   case Instruction::FAdd:
1822   case Instruction::FSub:
1823   case Instruction::FMul:
1824     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1825     assert(C1->getType()->isFPOrFPVectorTy() &&
1826            "Tried to create a floating-point operation on a "
1827            "non-floating-point type!");
1828     break;
1829   case Instruction::UDiv: 
1830   case Instruction::SDiv: 
1831     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1832     assert(C1->getType()->isIntOrIntVectorTy() &&
1833            "Tried to create an arithmetic operation on a non-arithmetic type!");
1834     break;
1835   case Instruction::FDiv:
1836     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1837     assert(C1->getType()->isFPOrFPVectorTy() &&
1838            "Tried to create an arithmetic operation on a non-arithmetic type!");
1839     break;
1840   case Instruction::URem: 
1841   case Instruction::SRem: 
1842     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1843     assert(C1->getType()->isIntOrIntVectorTy() &&
1844            "Tried to create an arithmetic operation on a non-arithmetic type!");
1845     break;
1846   case Instruction::FRem:
1847     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1848     assert(C1->getType()->isFPOrFPVectorTy() &&
1849            "Tried to create an arithmetic operation on a non-arithmetic type!");
1850     break;
1851   case Instruction::And:
1852   case Instruction::Or:
1853   case Instruction::Xor:
1854     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1855     assert(C1->getType()->isIntOrIntVectorTy() &&
1856            "Tried to create a logical operation on a non-integral type!");
1857     break;
1858   case Instruction::Shl:
1859   case Instruction::LShr:
1860   case Instruction::AShr:
1861     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1862     assert(C1->getType()->isIntOrIntVectorTy() &&
1863            "Tried to create a shift operation on a non-integer type!");
1864     break;
1865   default:
1866     break;
1867   }
1868 #endif
1869
1870   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1871     return FC;          // Fold a few common cases.
1872
1873   if (OnlyIfReducedTy == C1->getType())
1874     return nullptr;
1875
1876   Constant *ArgVec[] = { C1, C2 };
1877   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1878
1879   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1880   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1881 }
1882
1883 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1884   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1885   // Note that a non-inbounds gep is used, as null isn't within any object.
1886   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1887   Constant *GEP = getGetElementPtr(
1888       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1889   return getPtrToInt(GEP, 
1890                      Type::getInt64Ty(Ty->getContext()));
1891 }
1892
1893 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1894   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1895   // Note that a non-inbounds gep is used, as null isn't within any object.
1896   Type *AligningTy = 
1897     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1898   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1899   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1900   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1901   Constant *Indices[2] = { Zero, One };
1902   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1903   return getPtrToInt(GEP,
1904                      Type::getInt64Ty(Ty->getContext()));
1905 }
1906
1907 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1908   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1909                                            FieldNo));
1910 }
1911
1912 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1913   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1914   // Note that a non-inbounds gep is used, as null isn't within any object.
1915   Constant *GEPIdx[] = {
1916     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1917     FieldNo
1918   };
1919   Constant *GEP = getGetElementPtr(
1920       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1921   return getPtrToInt(GEP,
1922                      Type::getInt64Ty(Ty->getContext()));
1923 }
1924
1925 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1926                                    Constant *C2, bool OnlyIfReduced) {
1927   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1928
1929   switch (Predicate) {
1930   default: llvm_unreachable("Invalid CmpInst predicate");
1931   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1932   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1933   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1934   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1935   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1936   case CmpInst::FCMP_TRUE:
1937     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1938
1939   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1940   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1941   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1942   case CmpInst::ICMP_SLE:
1943     return getICmp(Predicate, C1, C2, OnlyIfReduced);
1944   }
1945 }
1946
1947 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1948                                   Type *OnlyIfReducedTy) {
1949   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1950
1951   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1952     return SC;        // Fold common cases
1953
1954   if (OnlyIfReducedTy == V1->getType())
1955     return nullptr;
1956
1957   Constant *ArgVec[] = { C, V1, V2 };
1958   ConstantExprKeyType Key(Instruction::Select, ArgVec);
1959
1960   LLVMContextImpl *pImpl = C->getContext().pImpl;
1961   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1962 }
1963
1964 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
1965                                          ArrayRef<Value *> Idxs, bool InBounds,
1966                                          Type *OnlyIfReducedTy) {
1967   if (!Ty)
1968     Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
1969   else
1970     assert(
1971         Ty ==
1972         cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
1973
1974   if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs))
1975     return FC;          // Fold a few common cases.
1976
1977   // Get the result type of the getelementptr!
1978   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
1979   assert(DestTy && "GEP indices invalid!");
1980   unsigned AS = C->getType()->getPointerAddressSpace();
1981   Type *ReqTy = DestTy->getPointerTo(AS);
1982   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1983     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1984
1985   if (OnlyIfReducedTy == ReqTy)
1986     return nullptr;
1987
1988   // Look up the constant in the table first to ensure uniqueness
1989   std::vector<Constant*> ArgVec;
1990   ArgVec.reserve(1 + Idxs.size());
1991   ArgVec.push_back(C);
1992   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1993     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1994            "getelementptr index type missmatch");
1995     assert((!Idxs[i]->getType()->isVectorTy() ||
1996             ReqTy->getVectorNumElements() ==
1997             Idxs[i]->getType()->getVectorNumElements()) &&
1998            "getelementptr index type missmatch");
1999     ArgVec.push_back(cast<Constant>(Idxs[i]));
2000   }
2001   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2002                                 InBounds ? GEPOperator::IsInBounds : 0, None,
2003                                 Ty);
2004
2005   LLVMContextImpl *pImpl = C->getContext().pImpl;
2006   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2007 }
2008
2009 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2010                                 Constant *RHS, bool OnlyIfReduced) {
2011   assert(LHS->getType() == RHS->getType());
2012   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
2013          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2014
2015   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2016     return FC;          // Fold a few common cases...
2017
2018   if (OnlyIfReduced)
2019     return nullptr;
2020
2021   // Look up the constant in the table first to ensure uniqueness
2022   Constant *ArgVec[] = { LHS, RHS };
2023   // Get the key type with both the opcode and predicate
2024   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2025
2026   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2027   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2028     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2029
2030   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2031   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2032 }
2033
2034 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2035                                 Constant *RHS, bool OnlyIfReduced) {
2036   assert(LHS->getType() == RHS->getType());
2037   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2038
2039   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2040     return FC;          // Fold a few common cases...
2041
2042   if (OnlyIfReduced)
2043     return nullptr;
2044
2045   // Look up the constant in the table first to ensure uniqueness
2046   Constant *ArgVec[] = { LHS, RHS };
2047   // Get the key type with both the opcode and predicate
2048   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2049
2050   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2051   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2052     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2053
2054   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2055   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2056 }
2057
2058 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2059                                           Type *OnlyIfReducedTy) {
2060   assert(Val->getType()->isVectorTy() &&
2061          "Tried to create extractelement operation on non-vector type!");
2062   assert(Idx->getType()->isIntegerTy() &&
2063          "Extractelement index must be an integer type!");
2064
2065   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2066     return FC;          // Fold a few common cases.
2067
2068   Type *ReqTy = Val->getType()->getVectorElementType();
2069   if (OnlyIfReducedTy == ReqTy)
2070     return nullptr;
2071
2072   // Look up the constant in the table first to ensure uniqueness
2073   Constant *ArgVec[] = { Val, Idx };
2074   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2075
2076   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2077   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2078 }
2079
2080 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2081                                          Constant *Idx, Type *OnlyIfReducedTy) {
2082   assert(Val->getType()->isVectorTy() &&
2083          "Tried to create insertelement operation on non-vector type!");
2084   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2085          "Insertelement types must match!");
2086   assert(Idx->getType()->isIntegerTy() &&
2087          "Insertelement index must be i32 type!");
2088
2089   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2090     return FC;          // Fold a few common cases.
2091
2092   if (OnlyIfReducedTy == Val->getType())
2093     return nullptr;
2094
2095   // Look up the constant in the table first to ensure uniqueness
2096   Constant *ArgVec[] = { Val, Elt, Idx };
2097   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2098
2099   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2100   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2101 }
2102
2103 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2104                                          Constant *Mask, Type *OnlyIfReducedTy) {
2105   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2106          "Invalid shuffle vector constant expr operands!");
2107
2108   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2109     return FC;          // Fold a few common cases.
2110
2111   unsigned NElts = Mask->getType()->getVectorNumElements();
2112   Type *EltTy = V1->getType()->getVectorElementType();
2113   Type *ShufTy = VectorType::get(EltTy, NElts);
2114
2115   if (OnlyIfReducedTy == ShufTy)
2116     return nullptr;
2117
2118   // Look up the constant in the table first to ensure uniqueness
2119   Constant *ArgVec[] = { V1, V2, Mask };
2120   const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2121
2122   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2123   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2124 }
2125
2126 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2127                                        ArrayRef<unsigned> Idxs,
2128                                        Type *OnlyIfReducedTy) {
2129   assert(Agg->getType()->isFirstClassType() &&
2130          "Non-first-class type for constant insertvalue expression");
2131
2132   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2133                                           Idxs) == Val->getType() &&
2134          "insertvalue indices invalid!");
2135   Type *ReqTy = Val->getType();
2136
2137   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2138     return FC;
2139
2140   if (OnlyIfReducedTy == ReqTy)
2141     return nullptr;
2142
2143   Constant *ArgVec[] = { Agg, Val };
2144   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2145
2146   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2147   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2148 }
2149
2150 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2151                                         Type *OnlyIfReducedTy) {
2152   assert(Agg->getType()->isFirstClassType() &&
2153          "Tried to create extractelement operation on non-first-class type!");
2154
2155   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2156   (void)ReqTy;
2157   assert(ReqTy && "extractvalue indices invalid!");
2158
2159   assert(Agg->getType()->isFirstClassType() &&
2160          "Non-first-class type for constant extractvalue expression");
2161   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2162     return FC;
2163
2164   if (OnlyIfReducedTy == ReqTy)
2165     return nullptr;
2166
2167   Constant *ArgVec[] = { Agg };
2168   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2169
2170   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2171   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2172 }
2173
2174 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2175   assert(C->getType()->isIntOrIntVectorTy() &&
2176          "Cannot NEG a nonintegral value!");
2177   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2178                 C, HasNUW, HasNSW);
2179 }
2180
2181 Constant *ConstantExpr::getFNeg(Constant *C) {
2182   assert(C->getType()->isFPOrFPVectorTy() &&
2183          "Cannot FNEG a non-floating-point value!");
2184   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2185 }
2186
2187 Constant *ConstantExpr::getNot(Constant *C) {
2188   assert(C->getType()->isIntOrIntVectorTy() &&
2189          "Cannot NOT a nonintegral value!");
2190   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2191 }
2192
2193 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2194                                bool HasNUW, bool HasNSW) {
2195   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2196                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2197   return get(Instruction::Add, C1, C2, Flags);
2198 }
2199
2200 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2201   return get(Instruction::FAdd, C1, C2);
2202 }
2203
2204 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2205                                bool HasNUW, bool HasNSW) {
2206   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2207                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2208   return get(Instruction::Sub, C1, C2, Flags);
2209 }
2210
2211 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2212   return get(Instruction::FSub, C1, C2);
2213 }
2214
2215 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2216                                bool HasNUW, bool HasNSW) {
2217   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2218                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2219   return get(Instruction::Mul, C1, C2, Flags);
2220 }
2221
2222 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2223   return get(Instruction::FMul, C1, C2);
2224 }
2225
2226 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2227   return get(Instruction::UDiv, C1, C2,
2228              isExact ? PossiblyExactOperator::IsExact : 0);
2229 }
2230
2231 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2232   return get(Instruction::SDiv, C1, C2,
2233              isExact ? PossiblyExactOperator::IsExact : 0);
2234 }
2235
2236 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2237   return get(Instruction::FDiv, C1, C2);
2238 }
2239
2240 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2241   return get(Instruction::URem, C1, C2);
2242 }
2243
2244 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2245   return get(Instruction::SRem, C1, C2);
2246 }
2247
2248 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2249   return get(Instruction::FRem, C1, C2);
2250 }
2251
2252 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2253   return get(Instruction::And, C1, C2);
2254 }
2255
2256 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2257   return get(Instruction::Or, C1, C2);
2258 }
2259
2260 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2261   return get(Instruction::Xor, C1, C2);
2262 }
2263
2264 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2265                                bool HasNUW, bool HasNSW) {
2266   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2267                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2268   return get(Instruction::Shl, C1, C2, Flags);
2269 }
2270
2271 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2272   return get(Instruction::LShr, C1, C2,
2273              isExact ? PossiblyExactOperator::IsExact : 0);
2274 }
2275
2276 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2277   return get(Instruction::AShr, C1, C2,
2278              isExact ? PossiblyExactOperator::IsExact : 0);
2279 }
2280
2281 /// getBinOpIdentity - Return the identity for the given binary operation,
2282 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2283 /// returns null if the operator doesn't have an identity.
2284 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2285   switch (Opcode) {
2286   default:
2287     // Doesn't have an identity.
2288     return nullptr;
2289
2290   case Instruction::Add:
2291   case Instruction::Or:
2292   case Instruction::Xor:
2293     return Constant::getNullValue(Ty);
2294
2295   case Instruction::Mul:
2296     return ConstantInt::get(Ty, 1);
2297
2298   case Instruction::And:
2299     return Constant::getAllOnesValue(Ty);
2300   }
2301 }
2302
2303 /// getBinOpAbsorber - Return the absorbing element for the given binary
2304 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2305 /// every X.  For example, this returns zero for integer multiplication.
2306 /// It returns null if the operator doesn't have an absorbing element.
2307 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2308   switch (Opcode) {
2309   default:
2310     // Doesn't have an absorber.
2311     return nullptr;
2312
2313   case Instruction::Or:
2314     return Constant::getAllOnesValue(Ty);
2315
2316   case Instruction::And:
2317   case Instruction::Mul:
2318     return Constant::getNullValue(Ty);
2319   }
2320 }
2321
2322 // destroyConstant - Remove the constant from the constant table...
2323 //
2324 void ConstantExpr::destroyConstantImpl() {
2325   getType()->getContext().pImpl->ExprConstants.remove(this);
2326 }
2327
2328 const char *ConstantExpr::getOpcodeName() const {
2329   return Instruction::getOpcodeName(getOpcode());
2330 }
2331
2332 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2333     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2334     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2335                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2336                        (IdxList.size() + 1),
2337                    IdxList.size() + 1),
2338       SrcElementTy(SrcElementTy) {
2339   Op<0>() = C;
2340   Use *OperandList = getOperandList();
2341   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2342     OperandList[i+1] = IdxList[i];
2343 }
2344
2345 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2346   return SrcElementTy;
2347 }
2348
2349 //===----------------------------------------------------------------------===//
2350 //                       ConstantData* implementations
2351
2352 void ConstantDataArray::anchor() {}
2353 void ConstantDataVector::anchor() {}
2354
2355 /// getElementType - Return the element type of the array/vector.
2356 Type *ConstantDataSequential::getElementType() const {
2357   return getType()->getElementType();
2358 }
2359
2360 StringRef ConstantDataSequential::getRawDataValues() const {
2361   return StringRef(DataElements, getNumElements()*getElementByteSize());
2362 }
2363
2364 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2365 /// formed with a vector or array of the specified element type.
2366 /// ConstantDataArray only works with normal float and int types that are
2367 /// stored densely in memory, not with things like i42 or x86_f80.
2368 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2369   if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2370   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2371     switch (IT->getBitWidth()) {
2372     case 8:
2373     case 16:
2374     case 32:
2375     case 64:
2376       return true;
2377     default: break;
2378     }
2379   }
2380   return false;
2381 }
2382
2383 /// getNumElements - Return the number of elements in the array or vector.
2384 unsigned ConstantDataSequential::getNumElements() const {
2385   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2386     return AT->getNumElements();
2387   return getType()->getVectorNumElements();
2388 }
2389
2390
2391 /// getElementByteSize - Return the size in bytes of the elements in the data.
2392 uint64_t ConstantDataSequential::getElementByteSize() const {
2393   return getElementType()->getPrimitiveSizeInBits()/8;
2394 }
2395
2396 /// getElementPointer - Return the start of the specified element.
2397 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2398   assert(Elt < getNumElements() && "Invalid Elt");
2399   return DataElements+Elt*getElementByteSize();
2400 }
2401
2402
2403 /// isAllZeros - return true if the array is empty or all zeros.
2404 static bool isAllZeros(StringRef Arr) {
2405   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2406     if (*I != 0)
2407       return false;
2408   return true;
2409 }
2410
2411 /// getImpl - This is the underlying implementation of all of the
2412 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2413 /// the correct element type.  We take the bytes in as a StringRef because
2414 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2415 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2416   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2417   // If the elements are all zero or there are no elements, return a CAZ, which
2418   // is more dense and canonical.
2419   if (isAllZeros(Elements))
2420     return ConstantAggregateZero::get(Ty);
2421
2422   // Do a lookup to see if we have already formed one of these.
2423   auto &Slot =
2424       *Ty->getContext()
2425            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2426            .first;
2427
2428   // The bucket can point to a linked list of different CDS's that have the same
2429   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2430   // of i8, or a 1-element array of i32.  They'll both end up in the same
2431   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2432   ConstantDataSequential **Entry = &Slot.second;
2433   for (ConstantDataSequential *Node = *Entry; Node;
2434        Entry = &Node->Next, Node = *Entry)
2435     if (Node->getType() == Ty)
2436       return Node;
2437
2438   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2439   // and return it.
2440   if (isa<ArrayType>(Ty))
2441     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2442
2443   assert(isa<VectorType>(Ty));
2444   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2445 }
2446
2447 void ConstantDataSequential::destroyConstantImpl() {
2448   // Remove the constant from the StringMap.
2449   StringMap<ConstantDataSequential*> &CDSConstants = 
2450     getType()->getContext().pImpl->CDSConstants;
2451
2452   StringMap<ConstantDataSequential*>::iterator Slot =
2453     CDSConstants.find(getRawDataValues());
2454
2455   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2456
2457   ConstantDataSequential **Entry = &Slot->getValue();
2458
2459   // Remove the entry from the hash table.
2460   if (!(*Entry)->Next) {
2461     // If there is only one value in the bucket (common case) it must be this
2462     // entry, and removing the entry should remove the bucket completely.
2463     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2464     getContext().pImpl->CDSConstants.erase(Slot);
2465   } else {
2466     // Otherwise, there are multiple entries linked off the bucket, unlink the 
2467     // node we care about but keep the bucket around.
2468     for (ConstantDataSequential *Node = *Entry; ;
2469          Entry = &Node->Next, Node = *Entry) {
2470       assert(Node && "Didn't find entry in its uniquing hash table!");
2471       // If we found our entry, unlink it from the list and we're done.
2472       if (Node == this) {
2473         *Entry = Node->Next;
2474         break;
2475       }
2476     }
2477   }
2478
2479   // If we were part of a list, make sure that we don't delete the list that is
2480   // still owned by the uniquing map.
2481   Next = nullptr;
2482 }
2483
2484 /// get() constructors - Return a constant with array type with an element
2485 /// count and element type matching the ArrayRef passed in.  Note that this
2486 /// can return a ConstantAggregateZero object.
2487 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2488   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2489   const char *Data = reinterpret_cast<const char *>(Elts.data());
2490   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2491 }
2492 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2493   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2494   const char *Data = reinterpret_cast<const char *>(Elts.data());
2495   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2496 }
2497 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2498   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2499   const char *Data = reinterpret_cast<const char *>(Elts.data());
2500   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2501 }
2502 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2503   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2504   const char *Data = reinterpret_cast<const char *>(Elts.data());
2505   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2506 }
2507 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2508   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2509   const char *Data = reinterpret_cast<const char *>(Elts.data());
2510   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2511 }
2512 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2513   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2514   const char *Data = reinterpret_cast<const char *>(Elts.data());
2515   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2516 }
2517
2518 /// getFP() constructors - Return a constant with array type with an element
2519 /// count and element type of float with precision matching the number of
2520 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2521 /// double for 64bits) Note that this can return a ConstantAggregateZero
2522 /// object.
2523 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2524                                    ArrayRef<uint16_t> Elts) {
2525   Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2526   const char *Data = reinterpret_cast<const char *>(Elts.data());
2527   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2528 }
2529 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2530                                    ArrayRef<uint32_t> Elts) {
2531   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2532   const char *Data = reinterpret_cast<const char *>(Elts.data());
2533   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2534 }
2535 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2536                                    ArrayRef<uint64_t> Elts) {
2537   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2538   const char *Data = reinterpret_cast<const char *>(Elts.data());
2539   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2540 }
2541
2542 /// getString - This method constructs a CDS and initializes it with a text
2543 /// string. The default behavior (AddNull==true) causes a null terminator to
2544 /// be placed at the end of the array (increasing the length of the string by
2545 /// one more than the StringRef would normally indicate.  Pass AddNull=false
2546 /// to disable this behavior.
2547 Constant *ConstantDataArray::getString(LLVMContext &Context,
2548                                        StringRef Str, bool AddNull) {
2549   if (!AddNull) {
2550     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2551     return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2552                Str.size()));
2553   }
2554
2555   SmallVector<uint8_t, 64> ElementVals;
2556   ElementVals.append(Str.begin(), Str.end());
2557   ElementVals.push_back(0);
2558   return get(Context, ElementVals);
2559 }
2560
2561 /// get() constructors - Return a constant with vector type with an element
2562 /// count and element type matching the ArrayRef passed in.  Note that this
2563 /// can return a ConstantAggregateZero object.
2564 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2565   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2566   const char *Data = reinterpret_cast<const char *>(Elts.data());
2567   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2568 }
2569 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2570   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2571   const char *Data = reinterpret_cast<const char *>(Elts.data());
2572   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2573 }
2574 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2575   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2576   const char *Data = reinterpret_cast<const char *>(Elts.data());
2577   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2578 }
2579 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2580   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2581   const char *Data = reinterpret_cast<const char *>(Elts.data());
2582   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2583 }
2584 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2585   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2586   const char *Data = reinterpret_cast<const char *>(Elts.data());
2587   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2588 }
2589 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2590   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2591   const char *Data = reinterpret_cast<const char *>(Elts.data());
2592   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2593 }
2594
2595 /// getFP() constructors - Return a constant with vector type with an element
2596 /// count and element type of float with the precision matching the number of
2597 /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
2598 /// double for 64bits) Note that this can return a ConstantAggregateZero
2599 /// object.
2600 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2601                                     ArrayRef<uint16_t> Elts) {
2602   Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2603   const char *Data = reinterpret_cast<const char *>(Elts.data());
2604   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2605 }
2606 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2607                                     ArrayRef<uint32_t> Elts) {
2608   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2609   const char *Data = reinterpret_cast<const char *>(Elts.data());
2610   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2611 }
2612 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2613                                     ArrayRef<uint64_t> Elts) {
2614   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2615   const char *Data = reinterpret_cast<const char *>(Elts.data());
2616   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2617 }
2618
2619 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2620   assert(isElementTypeCompatible(V->getType()) &&
2621          "Element type not compatible with ConstantData");
2622   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2623     if (CI->getType()->isIntegerTy(8)) {
2624       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2625       return get(V->getContext(), Elts);
2626     }
2627     if (CI->getType()->isIntegerTy(16)) {
2628       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2629       return get(V->getContext(), Elts);
2630     }
2631     if (CI->getType()->isIntegerTy(32)) {
2632       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2633       return get(V->getContext(), Elts);
2634     }
2635     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2636     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2637     return get(V->getContext(), Elts);
2638   }
2639
2640   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2641     if (CFP->getType()->isHalfTy()) {
2642       SmallVector<uint16_t, 16> Elts(
2643           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2644       return getFP(V->getContext(), Elts);
2645     }
2646     if (CFP->getType()->isFloatTy()) {
2647       SmallVector<uint32_t, 16> Elts(
2648           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2649       return getFP(V->getContext(), Elts);
2650     }
2651     if (CFP->getType()->isDoubleTy()) {
2652       SmallVector<uint64_t, 16> Elts(
2653           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2654       return getFP(V->getContext(), Elts);
2655     }
2656   }
2657   return ConstantVector::getSplat(NumElts, V);
2658 }
2659
2660
2661 /// getElementAsInteger - If this is a sequential container of integers (of
2662 /// any size), return the specified element in the low bits of a uint64_t.
2663 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2664   assert(isa<IntegerType>(getElementType()) &&
2665          "Accessor can only be used when element is an integer");
2666   const char *EltPtr = getElementPointer(Elt);
2667
2668   // The data is stored in host byte order, make sure to cast back to the right
2669   // type to load with the right endianness.
2670   switch (getElementType()->getIntegerBitWidth()) {
2671   default: llvm_unreachable("Invalid bitwidth for CDS");
2672   case 8:
2673     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2674   case 16:
2675     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2676   case 32:
2677     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2678   case 64:
2679     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2680   }
2681 }
2682
2683 /// getElementAsAPFloat - If this is a sequential container of floating point
2684 /// type, return the specified element as an APFloat.
2685 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2686   const char *EltPtr = getElementPointer(Elt);
2687
2688   switch (getElementType()->getTypeID()) {
2689   default:
2690     llvm_unreachable("Accessor can only be used when element is float/double!");
2691   case Type::HalfTyID: {
2692     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2693     return APFloat(APFloat::IEEEhalf, APInt(16, EltVal));
2694   }
2695   case Type::FloatTyID: {
2696     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2697     return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2698   }
2699   case Type::DoubleTyID: {
2700     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2701     return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2702   }
2703   }
2704 }
2705
2706 /// getElementAsFloat - If this is an sequential container of floats, return
2707 /// the specified element as a float.
2708 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2709   assert(getElementType()->isFloatTy() &&
2710          "Accessor can only be used when element is a 'float'");
2711   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2712   return *const_cast<float *>(EltPtr);
2713 }
2714
2715 /// getElementAsDouble - If this is an sequential container of doubles, return
2716 /// the specified element as a float.
2717 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2718   assert(getElementType()->isDoubleTy() &&
2719          "Accessor can only be used when element is a 'float'");
2720   const double *EltPtr =
2721       reinterpret_cast<const double *>(getElementPointer(Elt));
2722   return *const_cast<double *>(EltPtr);
2723 }
2724
2725 /// getElementAsConstant - Return a Constant for a specified index's element.
2726 /// Note that this has to compute a new constant to return, so it isn't as
2727 /// efficient as getElementAsInteger/Float/Double.
2728 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2729   if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2730       getElementType()->isDoubleTy())
2731     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2732
2733   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2734 }
2735
2736 /// isString - This method returns true if this is an array of i8.
2737 bool ConstantDataSequential::isString() const {
2738   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2739 }
2740
2741 /// isCString - This method returns true if the array "isString", ends with a
2742 /// nul byte, and does not contains any other nul bytes.
2743 bool ConstantDataSequential::isCString() const {
2744   if (!isString())
2745     return false;
2746
2747   StringRef Str = getAsString();
2748
2749   // The last value must be nul.
2750   if (Str.back() != 0) return false;
2751
2752   // Other elements must be non-nul.
2753   return Str.drop_back().find(0) == StringRef::npos;
2754 }
2755
2756 /// getSplatValue - If this is a splat constant, meaning that all of the
2757 /// elements have the same value, return that value. Otherwise return nullptr.
2758 Constant *ConstantDataVector::getSplatValue() const {
2759   const char *Base = getRawDataValues().data();
2760
2761   // Compare elements 1+ to the 0'th element.
2762   unsigned EltSize = getElementByteSize();
2763   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2764     if (memcmp(Base, Base+i*EltSize, EltSize))
2765       return nullptr;
2766
2767   // If they're all the same, return the 0th one as a representative.
2768   return getElementAsConstant(0);
2769 }
2770
2771 //===----------------------------------------------------------------------===//
2772 //                handleOperandChange implementations
2773
2774 /// Update this constant array to change uses of
2775 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2776 /// etc.
2777 ///
2778 /// Note that we intentionally replace all uses of From with To here.  Consider
2779 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2780 /// ConstantArray::handleOperandChange is only invoked once, and that
2781 /// single invocation handles all 1000 uses.  Handling them one at a time would
2782 /// work, but would be really slow because it would have to unique each updated
2783 /// array instance.
2784 ///
2785 void Constant::handleOperandChange(Value *From, Value *To, Use *U) {
2786   Value *Replacement = nullptr;
2787   switch (getValueID()) {
2788   default:
2789     llvm_unreachable("Not a constant!");
2790 #define HANDLE_CONSTANT(Name)                                                  \
2791   case Value::Name##Val:                                                       \
2792     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To, U);      \
2793     break;
2794 #include "llvm/IR/Value.def"
2795   }
2796
2797   // If handleOperandChangeImpl returned nullptr, then it handled
2798   // replacing itself and we don't want to delete or replace anything else here.
2799   if (!Replacement)
2800     return;
2801
2802   // I do need to replace this with an existing value.
2803   assert(Replacement != this && "I didn't contain From!");
2804
2805   // Everyone using this now uses the replacement.
2806   replaceAllUsesWith(Replacement);
2807
2808   // Delete the old constant!
2809   destroyConstant();
2810 }
2811
2812 Value *ConstantInt::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2813   llvm_unreachable("Unsupported class for handleOperandChange()!");
2814 }
2815
2816 Value *ConstantFP::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2817   llvm_unreachable("Unsupported class for handleOperandChange()!");
2818 }
2819
2820 Value *ConstantTokenNone::handleOperandChangeImpl(Value *From, Value *To,
2821                                                   Use *U) {
2822   llvm_unreachable("Unsupported class for handleOperandChange()!");
2823 }
2824
2825 Value *UndefValue::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2826   llvm_unreachable("Unsupported class for handleOperandChange()!");
2827 }
2828
2829 Value *ConstantPointerNull::handleOperandChangeImpl(Value *From, Value *To,
2830                                                     Use *U) {
2831   llvm_unreachable("Unsupported class for handleOperandChange()!");
2832 }
2833
2834 Value *ConstantAggregateZero::handleOperandChangeImpl(Value *From, Value *To,
2835                                                       Use *U) {
2836   llvm_unreachable("Unsupported class for handleOperandChange()!");
2837 }
2838
2839 Value *ConstantDataSequential::handleOperandChangeImpl(Value *From, Value *To,
2840                                                        Use *U) {
2841   llvm_unreachable("Unsupported class for handleOperandChange()!");
2842 }
2843
2844 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2845   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2846   Constant *ToC = cast<Constant>(To);
2847
2848   SmallVector<Constant*, 8> Values;
2849   Values.reserve(getNumOperands());  // Build replacement array.
2850
2851   // Fill values with the modified operands of the constant array.  Also,
2852   // compute whether this turns into an all-zeros array.
2853   unsigned NumUpdated = 0;
2854
2855   // Keep track of whether all the values in the array are "ToC".
2856   bool AllSame = true;
2857   Use *OperandList = getOperandList();
2858   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2859     Constant *Val = cast<Constant>(O->get());
2860     if (Val == From) {
2861       Val = ToC;
2862       ++NumUpdated;
2863     }
2864     Values.push_back(Val);
2865     AllSame &= Val == ToC;
2866   }
2867
2868   if (AllSame && ToC->isNullValue())
2869     return ConstantAggregateZero::get(getType());
2870
2871   if (AllSame && isa<UndefValue>(ToC))
2872     return UndefValue::get(getType());
2873
2874   // Check for any other type of constant-folding.
2875   if (Constant *C = getImpl(getType(), Values))
2876     return C;
2877
2878   // Update to the new value.
2879   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2880       Values, this, From, ToC, NumUpdated, U - OperandList);
2881 }
2882
2883 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2884   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2885   Constant *ToC = cast<Constant>(To);
2886
2887   Use *OperandList = getOperandList();
2888   unsigned OperandToUpdate = U-OperandList;
2889   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2890
2891   SmallVector<Constant*, 8> Values;
2892   Values.reserve(getNumOperands());  // Build replacement struct.
2893
2894   // Fill values with the modified operands of the constant struct.  Also,
2895   // compute whether this turns into an all-zeros struct.
2896   bool isAllZeros = false;
2897   bool isAllUndef = false;
2898   if (ToC->isNullValue()) {
2899     isAllZeros = true;
2900     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2901       Constant *Val = cast<Constant>(O->get());
2902       Values.push_back(Val);
2903       if (isAllZeros) isAllZeros = Val->isNullValue();
2904     }
2905   } else if (isa<UndefValue>(ToC)) {
2906     isAllUndef = true;
2907     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2908       Constant *Val = cast<Constant>(O->get());
2909       Values.push_back(Val);
2910       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2911     }
2912   } else {
2913     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2914       Values.push_back(cast<Constant>(O->get()));
2915   }
2916   Values[OperandToUpdate] = ToC;
2917
2918   if (isAllZeros)
2919     return ConstantAggregateZero::get(getType());
2920
2921   if (isAllUndef)
2922     return UndefValue::get(getType());
2923
2924   // Update to the new value.
2925   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2926       Values, this, From, ToC);
2927 }
2928
2929 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2930   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2931   Constant *ToC = cast<Constant>(To);
2932
2933   SmallVector<Constant*, 8> Values;
2934   Values.reserve(getNumOperands());  // Build replacement array...
2935   unsigned NumUpdated = 0;
2936   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2937     Constant *Val = getOperand(i);
2938     if (Val == From) {
2939       ++NumUpdated;
2940       Val = ToC;
2941     }
2942     Values.push_back(Val);
2943   }
2944
2945   if (Constant *C = getImpl(Values))
2946     return C;
2947
2948   // Update to the new value.
2949   Use *OperandList = getOperandList();
2950   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2951       Values, this, From, ToC, NumUpdated, U - OperandList);
2952 }
2953
2954 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV, Use *U) {
2955   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2956   Constant *To = cast<Constant>(ToV);
2957
2958   SmallVector<Constant*, 8> NewOps;
2959   unsigned NumUpdated = 0;
2960   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2961     Constant *Op = getOperand(i);
2962     if (Op == From) {
2963       ++NumUpdated;
2964       Op = To;
2965     }
2966     NewOps.push_back(Op);
2967   }
2968   assert(NumUpdated && "I didn't contain From!");
2969
2970   if (Constant *C = getWithOperands(NewOps, getType(), true))
2971     return C;
2972
2973   // Update to the new value.
2974   Use *OperandList = getOperandList();
2975   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2976       NewOps, this, From, To, NumUpdated, U - OperandList);
2977 }
2978
2979 Instruction *ConstantExpr::getAsInstruction() {
2980   SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2981   ArrayRef<Value*> Ops(ValueOperands);
2982
2983   switch (getOpcode()) {
2984   case Instruction::Trunc:
2985   case Instruction::ZExt:
2986   case Instruction::SExt:
2987   case Instruction::FPTrunc:
2988   case Instruction::FPExt:
2989   case Instruction::UIToFP:
2990   case Instruction::SIToFP:
2991   case Instruction::FPToUI:
2992   case Instruction::FPToSI:
2993   case Instruction::PtrToInt:
2994   case Instruction::IntToPtr:
2995   case Instruction::BitCast:
2996   case Instruction::AddrSpaceCast:
2997     return CastInst::Create((Instruction::CastOps)getOpcode(),
2998                             Ops[0], getType());
2999   case Instruction::Select:
3000     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3001   case Instruction::InsertElement:
3002     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3003   case Instruction::ExtractElement:
3004     return ExtractElementInst::Create(Ops[0], Ops[1]);
3005   case Instruction::InsertValue:
3006     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3007   case Instruction::ExtractValue:
3008     return ExtractValueInst::Create(Ops[0], getIndices());
3009   case Instruction::ShuffleVector:
3010     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3011
3012   case Instruction::GetElementPtr: {
3013     const auto *GO = cast<GEPOperator>(this);
3014     if (GO->isInBounds())
3015       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3016                                                Ops[0], Ops.slice(1));
3017     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3018                                      Ops.slice(1));
3019   }
3020   case Instruction::ICmp:
3021   case Instruction::FCmp:
3022     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3023                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3024
3025   default:
3026     assert(getNumOperands() == 2 && "Must be binary operator?");
3027     BinaryOperator *BO =
3028       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3029                              Ops[0], Ops[1]);
3030     if (isa<OverflowingBinaryOperator>(BO)) {
3031       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3032                                OverflowingBinaryOperator::NoUnsignedWrap);
3033       BO->setHasNoSignedWrap(SubclassOptionalData &
3034                              OverflowingBinaryOperator::NoSignedWrap);
3035     }
3036     if (isa<PossiblyExactOperator>(BO))
3037       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3038     return BO;
3039   }
3040 }