Track IR ordering of SelectionDAG nodes 3/4.
[oota-llvm.git] / lib / CodeGen / SplitKit.cpp
1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "SplitKit.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29
30 using namespace llvm;
31
32 STATISTIC(NumFinished, "Number of splits finished");
33 STATISTIC(NumSimple,   "Number of splits that were simple");
34 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
35 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
36 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
37
38 //===----------------------------------------------------------------------===//
39 //                                 Split Analysis
40 //===----------------------------------------------------------------------===//
41
42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
43                              const LiveIntervals &lis,
44                              const MachineLoopInfo &mli)
45   : MF(vrm.getMachineFunction()),
46     VRM(vrm),
47     LIS(lis),
48     Loops(mli),
49     TII(*MF.getTarget().getInstrInfo()),
50     CurLI(0),
51     LastSplitPoint(MF.getNumBlockIDs()) {}
52
53 void SplitAnalysis::clear() {
54   UseSlots.clear();
55   UseBlocks.clear();
56   ThroughBlocks.clear();
57   CurLI = 0;
58   DidRepairRange = false;
59 }
60
61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
62   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
63   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
64   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
65   SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
66
67   // Compute split points on the first call. The pair is independent of the
68   // current live interval.
69   if (!LSP.first.isValid()) {
70     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
71     if (FirstTerm == MBB->end())
72       LSP.first = MBBEnd;
73     else
74       LSP.first = LIS.getInstructionIndex(FirstTerm);
75
76     // If there is a landing pad successor, also find the call instruction.
77     if (!LPad)
78       return LSP.first;
79     // There may not be a call instruction (?) in which case we ignore LPad.
80     LSP.second = LSP.first;
81     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
82          I != E;) {
83       --I;
84       if (I->isCall()) {
85         LSP.second = LIS.getInstructionIndex(I);
86         break;
87       }
88     }
89   }
90
91   // If CurLI is live into a landing pad successor, move the last split point
92   // back to the call that may throw.
93   if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
94     return LSP.first;
95
96   // Find the value leaving MBB.
97   const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
98   if (!VNI)
99     return LSP.first;
100
101   // If the value leaving MBB was defined after the call in MBB, it can't
102   // really be live-in to the landing pad.  This can happen if the landing pad
103   // has a PHI, and this register is undef on the exceptional edge.
104   // <rdar://problem/10664933>
105   if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
106     return LSP.first;
107
108   // Value is properly live-in to the landing pad.
109   // Only allow splits before the call.
110   return LSP.second;
111 }
112
113 MachineBasicBlock::iterator
114 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
115   SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
116   if (LSP == LIS.getMBBEndIdx(MBB))
117     return MBB->end();
118   return LIS.getInstructionFromIndex(LSP);
119 }
120
121 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
122 void SplitAnalysis::analyzeUses() {
123   assert(UseSlots.empty() && "Call clear first");
124
125   // First get all the defs from the interval values. This provides the correct
126   // slots for early clobbers.
127   for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
128        E = CurLI->vni_end(); I != E; ++I)
129     if (!(*I)->isPHIDef() && !(*I)->isUnused())
130       UseSlots.push_back((*I)->def);
131
132   // Get use slots form the use-def chain.
133   const MachineRegisterInfo &MRI = MF.getRegInfo();
134   for (MachineRegisterInfo::use_nodbg_iterator
135        I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
136        ++I)
137     if (!I.getOperand().isUndef())
138       UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
139
140   array_pod_sort(UseSlots.begin(), UseSlots.end());
141
142   // Remove duplicates, keeping the smaller slot for each instruction.
143   // That is what we want for early clobbers.
144   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
145                              SlotIndex::isSameInstr),
146                  UseSlots.end());
147
148   // Compute per-live block info.
149   if (!calcLiveBlockInfo()) {
150     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
151     // I am looking at you, RegisterCoalescer!
152     DidRepairRange = true;
153     ++NumRepairs;
154     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
155     const_cast<LiveIntervals&>(LIS)
156       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
157     UseBlocks.clear();
158     ThroughBlocks.clear();
159     bool fixed = calcLiveBlockInfo();
160     (void)fixed;
161     assert(fixed && "Couldn't fix broken live interval");
162   }
163
164   DEBUG(dbgs() << "Analyze counted "
165                << UseSlots.size() << " instrs in "
166                << UseBlocks.size() << " blocks, through "
167                << NumThroughBlocks << " blocks.\n");
168 }
169
170 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
171 /// where CurLI is live.
172 bool SplitAnalysis::calcLiveBlockInfo() {
173   ThroughBlocks.resize(MF.getNumBlockIDs());
174   NumThroughBlocks = NumGapBlocks = 0;
175   if (CurLI->empty())
176     return true;
177
178   LiveInterval::const_iterator LVI = CurLI->begin();
179   LiveInterval::const_iterator LVE = CurLI->end();
180
181   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
182   UseI = UseSlots.begin();
183   UseE = UseSlots.end();
184
185   // Loop over basic blocks where CurLI is live.
186   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
187   for (;;) {
188     BlockInfo BI;
189     BI.MBB = MFI;
190     SlotIndex Start, Stop;
191     tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
192
193     // If the block contains no uses, the range must be live through. At one
194     // point, RegisterCoalescer could create dangling ranges that ended
195     // mid-block.
196     if (UseI == UseE || *UseI >= Stop) {
197       ++NumThroughBlocks;
198       ThroughBlocks.set(BI.MBB->getNumber());
199       // The range shouldn't end mid-block if there are no uses. This shouldn't
200       // happen.
201       if (LVI->end < Stop)
202         return false;
203     } else {
204       // This block has uses. Find the first and last uses in the block.
205       BI.FirstInstr = *UseI;
206       assert(BI.FirstInstr >= Start);
207       do ++UseI;
208       while (UseI != UseE && *UseI < Stop);
209       BI.LastInstr = UseI[-1];
210       assert(BI.LastInstr < Stop);
211
212       // LVI is the first live segment overlapping MBB.
213       BI.LiveIn = LVI->start <= Start;
214
215       // When not live in, the first use should be a def.
216       if (!BI.LiveIn) {
217         assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
218         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
219         BI.FirstDef = BI.FirstInstr;
220       }
221
222       // Look for gaps in the live range.
223       BI.LiveOut = true;
224       while (LVI->end < Stop) {
225         SlotIndex LastStop = LVI->end;
226         if (++LVI == LVE || LVI->start >= Stop) {
227           BI.LiveOut = false;
228           BI.LastInstr = LastStop;
229           break;
230         }
231
232         if (LastStop < LVI->start) {
233           // There is a gap in the live range. Create duplicate entries for the
234           // live-in snippet and the live-out snippet.
235           ++NumGapBlocks;
236
237           // Push the Live-in part.
238           BI.LiveOut = false;
239           UseBlocks.push_back(BI);
240           UseBlocks.back().LastInstr = LastStop;
241
242           // Set up BI for the live-out part.
243           BI.LiveIn = false;
244           BI.LiveOut = true;
245           BI.FirstInstr = BI.FirstDef = LVI->start;
246         }
247
248         // A LiveRange that starts in the middle of the block must be a def.
249         assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
250         if (!BI.FirstDef)
251           BI.FirstDef = LVI->start;
252       }
253
254       UseBlocks.push_back(BI);
255
256       // LVI is now at LVE or LVI->end >= Stop.
257       if (LVI == LVE)
258         break;
259     }
260
261     // Live segment ends exactly at Stop. Move to the next segment.
262     if (LVI->end == Stop && ++LVI == LVE)
263       break;
264
265     // Pick the next basic block.
266     if (LVI->start < Stop)
267       ++MFI;
268     else
269       MFI = LIS.getMBBFromIndex(LVI->start);
270   }
271
272   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
273   return true;
274 }
275
276 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
277   if (cli->empty())
278     return 0;
279   LiveInterval *li = const_cast<LiveInterval*>(cli);
280   LiveInterval::iterator LVI = li->begin();
281   LiveInterval::iterator LVE = li->end();
282   unsigned Count = 0;
283
284   // Loop over basic blocks where li is live.
285   MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
286   SlotIndex Stop = LIS.getMBBEndIdx(MFI);
287   for (;;) {
288     ++Count;
289     LVI = li->advanceTo(LVI, Stop);
290     if (LVI == LVE)
291       return Count;
292     do {
293       ++MFI;
294       Stop = LIS.getMBBEndIdx(MFI);
295     } while (Stop <= LVI->start);
296   }
297 }
298
299 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
300   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
301   const LiveInterval &Orig = LIS.getInterval(OrigReg);
302   assert(!Orig.empty() && "Splitting empty interval?");
303   LiveInterval::const_iterator I = Orig.find(Idx);
304
305   // Range containing Idx should begin at Idx.
306   if (I != Orig.end() && I->start <= Idx)
307     return I->start == Idx;
308
309   // Range does not contain Idx, previous must end at Idx.
310   return I != Orig.begin() && (--I)->end == Idx;
311 }
312
313 void SplitAnalysis::analyze(const LiveInterval *li) {
314   clear();
315   CurLI = li;
316   analyzeUses();
317 }
318
319
320 //===----------------------------------------------------------------------===//
321 //                               Split Editor
322 //===----------------------------------------------------------------------===//
323
324 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
325 SplitEditor::SplitEditor(SplitAnalysis &sa,
326                          LiveIntervals &lis,
327                          VirtRegMap &vrm,
328                          MachineDominatorTree &mdt)
329   : SA(sa), LIS(lis), VRM(vrm),
330     MRI(vrm.getMachineFunction().getRegInfo()),
331     MDT(mdt),
332     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
333     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
334     Edit(0),
335     OpenIdx(0),
336     SpillMode(SM_Partition),
337     RegAssign(Allocator)
338 {}
339
340 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
341   Edit = &LRE;
342   SpillMode = SM;
343   OpenIdx = 0;
344   RegAssign.clear();
345   Values.clear();
346
347   // Reset the LiveRangeCalc instances needed for this spill mode.
348   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
349                   &LIS.getVNInfoAllocator());
350   if (SpillMode)
351     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
352                     &LIS.getVNInfoAllocator());
353
354   // We don't need an AliasAnalysis since we will only be performing
355   // cheap-as-a-copy remats anyway.
356   Edit->anyRematerializable(0);
357 }
358
359 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
360 void SplitEditor::dump() const {
361   if (RegAssign.empty()) {
362     dbgs() << " empty\n";
363     return;
364   }
365
366   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
367     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
368   dbgs() << '\n';
369 }
370 #endif
371
372 VNInfo *SplitEditor::defValue(unsigned RegIdx,
373                               const VNInfo *ParentVNI,
374                               SlotIndex Idx) {
375   assert(ParentVNI && "Mapping  NULL value");
376   assert(Idx.isValid() && "Invalid SlotIndex");
377   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
378   LiveInterval *LI = Edit->get(RegIdx);
379
380   // Create a new value.
381   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
382
383   // Use insert for lookup, so we can add missing values with a second lookup.
384   std::pair<ValueMap::iterator, bool> InsP =
385     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
386                                  ValueForcePair(VNI, false)));
387
388   // This was the first time (RegIdx, ParentVNI) was mapped.
389   // Keep it as a simple def without any liveness.
390   if (InsP.second)
391     return VNI;
392
393   // If the previous value was a simple mapping, add liveness for it now.
394   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
395     SlotIndex Def = OldVNI->def;
396     LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
397     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
398     InsP.first->second = ValueForcePair();
399   }
400
401   // This is a complex mapping, add liveness for VNI
402   SlotIndex Def = VNI->def;
403   LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
404
405   return VNI;
406 }
407
408 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
409   assert(ParentVNI && "Mapping  NULL value");
410   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
411   VNInfo *VNI = VFP.getPointer();
412
413   // ParentVNI was either unmapped or already complex mapped. Either way, just
414   // set the force bit.
415   if (!VNI) {
416     VFP.setInt(true);
417     return;
418   }
419
420   // This was previously a single mapping. Make sure the old def is represented
421   // by a trivial live range.
422   SlotIndex Def = VNI->def;
423   Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
424   // Mark as complex mapped, forced.
425   VFP = ValueForcePair(0, true);
426 }
427
428 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
429                                    VNInfo *ParentVNI,
430                                    SlotIndex UseIdx,
431                                    MachineBasicBlock &MBB,
432                                    MachineBasicBlock::iterator I) {
433   MachineInstr *CopyMI = 0;
434   SlotIndex Def;
435   LiveInterval *LI = Edit->get(RegIdx);
436
437   // We may be trying to avoid interference that ends at a deleted instruction,
438   // so always begin RegIdx 0 early and all others late.
439   bool Late = RegIdx != 0;
440
441   // Attempt cheap-as-a-copy rematerialization.
442   LiveRangeEdit::Remat RM(ParentVNI);
443   if (Edit->canRematerializeAt(RM, UseIdx, true)) {
444     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
445     ++NumRemats;
446   } else {
447     // Can't remat, just insert a copy from parent.
448     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
449                .addReg(Edit->getReg());
450     Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
451             .getRegSlot();
452     ++NumCopies;
453   }
454
455   // Define the value in Reg.
456   return defValue(RegIdx, ParentVNI, Def);
457 }
458
459 /// Create a new virtual register and live interval.
460 unsigned SplitEditor::openIntv() {
461   // Create the complement as index 0.
462   if (Edit->empty())
463     Edit->create();
464
465   // Create the open interval.
466   OpenIdx = Edit->size();
467   Edit->create();
468   return OpenIdx;
469 }
470
471 void SplitEditor::selectIntv(unsigned Idx) {
472   assert(Idx != 0 && "Cannot select the complement interval");
473   assert(Idx < Edit->size() && "Can only select previously opened interval");
474   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
475   OpenIdx = Idx;
476 }
477
478 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
479   assert(OpenIdx && "openIntv not called before enterIntvBefore");
480   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
481   Idx = Idx.getBaseIndex();
482   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
483   if (!ParentVNI) {
484     DEBUG(dbgs() << ": not live\n");
485     return Idx;
486   }
487   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
488   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
489   assert(MI && "enterIntvBefore called with invalid index");
490
491   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
492   return VNI->def;
493 }
494
495 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
496   assert(OpenIdx && "openIntv not called before enterIntvAfter");
497   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
498   Idx = Idx.getBoundaryIndex();
499   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
500   if (!ParentVNI) {
501     DEBUG(dbgs() << ": not live\n");
502     return Idx;
503   }
504   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
505   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
506   assert(MI && "enterIntvAfter called with invalid index");
507
508   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
509                               llvm::next(MachineBasicBlock::iterator(MI)));
510   return VNI->def;
511 }
512
513 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
514   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
515   SlotIndex End = LIS.getMBBEndIdx(&MBB);
516   SlotIndex Last = End.getPrevSlot();
517   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
518   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
519   if (!ParentVNI) {
520     DEBUG(dbgs() << ": not live\n");
521     return End;
522   }
523   DEBUG(dbgs() << ": valno " << ParentVNI->id);
524   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
525                               SA.getLastSplitPointIter(&MBB));
526   RegAssign.insert(VNI->def, End, OpenIdx);
527   DEBUG(dump());
528   return VNI->def;
529 }
530
531 /// useIntv - indicate that all instructions in MBB should use OpenLI.
532 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
533   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
534 }
535
536 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
537   assert(OpenIdx && "openIntv not called before useIntv");
538   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
539   RegAssign.insert(Start, End, OpenIdx);
540   DEBUG(dump());
541 }
542
543 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
544   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
545   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
546
547   // The interval must be live beyond the instruction at Idx.
548   SlotIndex Boundary = Idx.getBoundaryIndex();
549   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
550   if (!ParentVNI) {
551     DEBUG(dbgs() << ": not live\n");
552     return Boundary.getNextSlot();
553   }
554   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
555   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
556   assert(MI && "No instruction at index");
557
558   // In spill mode, make live ranges as short as possible by inserting the copy
559   // before MI.  This is only possible if that instruction doesn't redefine the
560   // value.  The inserted COPY is not a kill, and we don't need to recompute
561   // the source live range.  The spiller also won't try to hoist this copy.
562   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
563       MI->readsVirtualRegister(Edit->getReg())) {
564     forceRecompute(0, ParentVNI);
565     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
566     return Idx;
567   }
568
569   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
570                               llvm::next(MachineBasicBlock::iterator(MI)));
571   return VNI->def;
572 }
573
574 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
575   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
576   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
577
578   // The interval must be live into the instruction at Idx.
579   Idx = Idx.getBaseIndex();
580   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
581   if (!ParentVNI) {
582     DEBUG(dbgs() << ": not live\n");
583     return Idx.getNextSlot();
584   }
585   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
586
587   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
588   assert(MI && "No instruction at index");
589   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
590   return VNI->def;
591 }
592
593 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
594   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
595   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
596   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
597
598   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
599   if (!ParentVNI) {
600     DEBUG(dbgs() << ": not live\n");
601     return Start;
602   }
603
604   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
605                               MBB.SkipPHIsAndLabels(MBB.begin()));
606   RegAssign.insert(Start, VNI->def, OpenIdx);
607   DEBUG(dump());
608   return VNI->def;
609 }
610
611 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
612   assert(OpenIdx && "openIntv not called before overlapIntv");
613   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
614   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
615          "Parent changes value in extended range");
616   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
617          "Range cannot span basic blocks");
618
619   // The complement interval will be extended as needed by LRCalc.extend().
620   if (ParentVNI)
621     forceRecompute(0, ParentVNI);
622   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
623   RegAssign.insert(Start, End, OpenIdx);
624   DEBUG(dump());
625 }
626
627 //===----------------------------------------------------------------------===//
628 //                                  Spill modes
629 //===----------------------------------------------------------------------===//
630
631 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
632   LiveInterval *LI = Edit->get(0);
633   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
634   RegAssignMap::iterator AssignI;
635   AssignI.setMap(RegAssign);
636
637   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
638     VNInfo *VNI = Copies[i];
639     SlotIndex Def = VNI->def;
640     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
641     assert(MI && "No instruction for back-copy");
642
643     MachineBasicBlock *MBB = MI->getParent();
644     MachineBasicBlock::iterator MBBI(MI);
645     bool AtBegin;
646     do AtBegin = MBBI == MBB->begin();
647     while (!AtBegin && (--MBBI)->isDebugValue());
648
649     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
650     LI->removeValNo(VNI);
651     LIS.RemoveMachineInstrFromMaps(MI);
652     MI->eraseFromParent();
653
654     // Adjust RegAssign if a register assignment is killed at VNI->def.  We
655     // want to avoid calculating the live range of the source register if
656     // possible.
657     AssignI.find(Def.getPrevSlot());
658     if (!AssignI.valid() || AssignI.start() >= Def)
659       continue;
660     // If MI doesn't kill the assigned register, just leave it.
661     if (AssignI.stop() != Def)
662       continue;
663     unsigned RegIdx = AssignI.value();
664     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
665       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
666       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
667     } else {
668       SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
669       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
670       AssignI.setStop(Kill);
671     }
672   }
673 }
674
675 MachineBasicBlock*
676 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
677                                   MachineBasicBlock *DefMBB) {
678   if (MBB == DefMBB)
679     return MBB;
680   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
681
682   const MachineLoopInfo &Loops = SA.Loops;
683   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
684   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
685
686   // Best candidate so far.
687   MachineBasicBlock *BestMBB = MBB;
688   unsigned BestDepth = UINT_MAX;
689
690   for (;;) {
691     const MachineLoop *Loop = Loops.getLoopFor(MBB);
692
693     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
694     // higher frequency by definition.
695     if (!Loop) {
696       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
697                    << MBB->getNumber() << " at depth 0\n");
698       return MBB;
699     }
700
701     // We'll never be able to exit the DefLoop.
702     if (Loop == DefLoop) {
703       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
704                    << MBB->getNumber() << " in the same loop\n");
705       return MBB;
706     }
707
708     // Least busy dominator seen so far.
709     unsigned Depth = Loop->getLoopDepth();
710     if (Depth < BestDepth) {
711       BestMBB = MBB;
712       BestDepth = Depth;
713       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
714                    << MBB->getNumber() << " at depth " << Depth << '\n');
715     }
716
717     // Leave loop by going to the immediate dominator of the loop header.
718     // This is a bigger stride than simply walking up the dominator tree.
719     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
720
721     // Too far up the dominator tree?
722     if (!IDom || !MDT.dominates(DefDomNode, IDom))
723       return BestMBB;
724
725     MBB = IDom->getBlock();
726   }
727 }
728
729 void SplitEditor::hoistCopiesForSize() {
730   // Get the complement interval, always RegIdx 0.
731   LiveInterval *LI = Edit->get(0);
732   LiveInterval *Parent = &Edit->getParent();
733
734   // Track the nearest common dominator for all back-copies for each ParentVNI,
735   // indexed by ParentVNI->id.
736   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
737   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
738
739   // Find the nearest common dominator for parent values with multiple
740   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
741   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
742        VI != VE; ++VI) {
743     VNInfo *VNI = *VI;
744     if (VNI->isUnused())
745       continue;
746     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
747     assert(ParentVNI && "Parent not live at complement def");
748
749     // Don't hoist remats.  The complement is probably going to disappear
750     // completely anyway.
751     if (Edit->didRematerialize(ParentVNI))
752       continue;
753
754     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
755     DomPair &Dom = NearestDom[ParentVNI->id];
756
757     // Keep directly defined parent values.  This is either a PHI or an
758     // instruction in the complement range.  All other copies of ParentVNI
759     // should be eliminated.
760     if (VNI->def == ParentVNI->def) {
761       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
762       Dom = DomPair(ValMBB, VNI->def);
763       continue;
764     }
765     // Skip the singly mapped values.  There is nothing to gain from hoisting a
766     // single back-copy.
767     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
768       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
769       continue;
770     }
771
772     if (!Dom.first) {
773       // First time we see ParentVNI.  VNI dominates itself.
774       Dom = DomPair(ValMBB, VNI->def);
775     } else if (Dom.first == ValMBB) {
776       // Two defs in the same block.  Pick the earlier def.
777       if (!Dom.second.isValid() || VNI->def < Dom.second)
778         Dom.second = VNI->def;
779     } else {
780       // Different basic blocks. Check if one dominates.
781       MachineBasicBlock *Near =
782         MDT.findNearestCommonDominator(Dom.first, ValMBB);
783       if (Near == ValMBB)
784         // Def ValMBB dominates.
785         Dom = DomPair(ValMBB, VNI->def);
786       else if (Near != Dom.first)
787         // None dominate. Hoist to common dominator, need new def.
788         Dom = DomPair(Near, SlotIndex());
789     }
790
791     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
792                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
793                  << " hoist to BB#" << Dom.first->getNumber() << ' '
794                  << Dom.second << '\n');
795   }
796
797   // Insert the hoisted copies.
798   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
799     DomPair &Dom = NearestDom[i];
800     if (!Dom.first || Dom.second.isValid())
801       continue;
802     // This value needs a hoisted copy inserted at the end of Dom.first.
803     VNInfo *ParentVNI = Parent->getValNumInfo(i);
804     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
805     // Get a less loopy dominator than Dom.first.
806     Dom.first = findShallowDominator(Dom.first, DefMBB);
807     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
808     Dom.second =
809       defFromParent(0, ParentVNI, Last, *Dom.first,
810                     SA.getLastSplitPointIter(Dom.first))->def;
811   }
812
813   // Remove redundant back-copies that are now known to be dominated by another
814   // def with the same value.
815   SmallVector<VNInfo*, 8> BackCopies;
816   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
817        VI != VE; ++VI) {
818     VNInfo *VNI = *VI;
819     if (VNI->isUnused())
820       continue;
821     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
822     const DomPair &Dom = NearestDom[ParentVNI->id];
823     if (!Dom.first || Dom.second == VNI->def)
824       continue;
825     BackCopies.push_back(VNI);
826     forceRecompute(0, ParentVNI);
827   }
828   removeBackCopies(BackCopies);
829 }
830
831
832 /// transferValues - Transfer all possible values to the new live ranges.
833 /// Values that were rematerialized are left alone, they need LRCalc.extend().
834 bool SplitEditor::transferValues() {
835   bool Skipped = false;
836   RegAssignMap::const_iterator AssignI = RegAssign.begin();
837   for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
838          ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
839     DEBUG(dbgs() << "  blit " << *ParentI << ':');
840     VNInfo *ParentVNI = ParentI->valno;
841     // RegAssign has holes where RegIdx 0 should be used.
842     SlotIndex Start = ParentI->start;
843     AssignI.advanceTo(Start);
844     do {
845       unsigned RegIdx;
846       SlotIndex End = ParentI->end;
847       if (!AssignI.valid()) {
848         RegIdx = 0;
849       } else if (AssignI.start() <= Start) {
850         RegIdx = AssignI.value();
851         if (AssignI.stop() < End) {
852           End = AssignI.stop();
853           ++AssignI;
854         }
855       } else {
856         RegIdx = 0;
857         End = std::min(End, AssignI.start());
858       }
859
860       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
861       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
862       LiveInterval *LI = Edit->get(RegIdx);
863
864       // Check for a simply defined value that can be blitted directly.
865       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
866       if (VNInfo *VNI = VFP.getPointer()) {
867         DEBUG(dbgs() << ':' << VNI->id);
868         LI->addRange(LiveRange(Start, End, VNI));
869         Start = End;
870         continue;
871       }
872
873       // Skip values with forced recomputation.
874       if (VFP.getInt()) {
875         DEBUG(dbgs() << "(recalc)");
876         Skipped = true;
877         Start = End;
878         continue;
879       }
880
881       LiveRangeCalc &LRC = getLRCalc(RegIdx);
882
883       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
884       // so the live range is accurate. Add live-in blocks in [Start;End) to the
885       // LiveInBlocks.
886       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
887       SlotIndex BlockStart, BlockEnd;
888       tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
889
890       // The first block may be live-in, or it may have its own def.
891       if (Start != BlockStart) {
892         VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
893         assert(VNI && "Missing def for complex mapped value");
894         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
895         // MBB has its own def. Is it also live-out?
896         if (BlockEnd <= End)
897           LRC.setLiveOutValue(MBB, VNI);
898
899         // Skip to the next block for live-in.
900         ++MBB;
901         BlockStart = BlockEnd;
902       }
903
904       // Handle the live-in blocks covered by [Start;End).
905       assert(Start <= BlockStart && "Expected live-in block");
906       while (BlockStart < End) {
907         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
908         BlockEnd = LIS.getMBBEndIdx(MBB);
909         if (BlockStart == ParentVNI->def) {
910           // This block has the def of a parent PHI, so it isn't live-in.
911           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
912           VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
913           assert(VNI && "Missing def for complex mapped parent PHI");
914           if (End >= BlockEnd)
915             LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
916         } else {
917           // This block needs a live-in value.  The last block covered may not
918           // be live-out.
919           if (End < BlockEnd)
920             LRC.addLiveInBlock(LI, MDT[MBB], End);
921           else {
922             // Live-through, and we don't know the value.
923             LRC.addLiveInBlock(LI, MDT[MBB]);
924             LRC.setLiveOutValue(MBB, 0);
925           }
926         }
927         BlockStart = BlockEnd;
928         ++MBB;
929       }
930       Start = End;
931     } while (Start != ParentI->end);
932     DEBUG(dbgs() << '\n');
933   }
934
935   LRCalc[0].calculateValues();
936   if (SpillMode)
937     LRCalc[1].calculateValues();
938
939   return Skipped;
940 }
941
942 void SplitEditor::extendPHIKillRanges() {
943     // Extend live ranges to be live-out for successor PHI values.
944   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
945        E = Edit->getParent().vni_end(); I != E; ++I) {
946     const VNInfo *PHIVNI = *I;
947     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
948       continue;
949     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
950     LiveInterval *LI = Edit->get(RegIdx);
951     LiveRangeCalc &LRC = getLRCalc(RegIdx);
952     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
953     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
954          PE = MBB->pred_end(); PI != PE; ++PI) {
955       SlotIndex End = LIS.getMBBEndIdx(*PI);
956       SlotIndex LastUse = End.getPrevSlot();
957       // The predecessor may not have a live-out value. That is OK, like an
958       // undef PHI operand.
959       if (Edit->getParent().liveAt(LastUse)) {
960         assert(RegAssign.lookup(LastUse) == RegIdx &&
961                "Different register assignment in phi predecessor");
962         LRC.extend(LI, End);
963       }
964     }
965   }
966 }
967
968 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
969 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
970   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
971        RE = MRI.reg_end(); RI != RE;) {
972     MachineOperand &MO = RI.getOperand();
973     MachineInstr *MI = MO.getParent();
974     ++RI;
975     // LiveDebugVariables should have handled all DBG_VALUE instructions.
976     if (MI->isDebugValue()) {
977       DEBUG(dbgs() << "Zapping " << *MI);
978       MO.setReg(0);
979       continue;
980     }
981
982     // <undef> operands don't really read the register, so it doesn't matter
983     // which register we choose.  When the use operand is tied to a def, we must
984     // use the same register as the def, so just do that always.
985     SlotIndex Idx = LIS.getInstructionIndex(MI);
986     if (MO.isDef() || MO.isUndef())
987       Idx = Idx.getRegSlot(MO.isEarlyClobber());
988
989     // Rewrite to the mapped register at Idx.
990     unsigned RegIdx = RegAssign.lookup(Idx);
991     LiveInterval *LI = Edit->get(RegIdx);
992     MO.setReg(LI->reg);
993     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
994                  << Idx << ':' << RegIdx << '\t' << *MI);
995
996     // Extend liveness to Idx if the instruction reads reg.
997     if (!ExtendRanges || MO.isUndef())
998       continue;
999
1000     // Skip instructions that don't read Reg.
1001     if (MO.isDef()) {
1002       if (!MO.getSubReg() && !MO.isEarlyClobber())
1003         continue;
1004       // We may wan't to extend a live range for a partial redef, or for a use
1005       // tied to an early clobber.
1006       Idx = Idx.getPrevSlot();
1007       if (!Edit->getParent().liveAt(Idx))
1008         continue;
1009     } else
1010       Idx = Idx.getRegSlot(true);
1011
1012     getLRCalc(RegIdx).extend(LI, Idx.getNextSlot());
1013   }
1014 }
1015
1016 void SplitEditor::deleteRematVictims() {
1017   SmallVector<MachineInstr*, 8> Dead;
1018   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1019     LiveInterval *LI = *I;
1020     for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1021            LII != LIE; ++LII) {
1022       // Dead defs end at the dead slot.
1023       if (LII->end != LII->valno->def.getDeadSlot())
1024         continue;
1025       MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1026       assert(MI && "Missing instruction for dead def");
1027       MI->addRegisterDead(LI->reg, &TRI);
1028
1029       if (!MI->allDefsAreDead())
1030         continue;
1031
1032       DEBUG(dbgs() << "All defs dead: " << *MI);
1033       Dead.push_back(MI);
1034     }
1035   }
1036
1037   if (Dead.empty())
1038     return;
1039
1040   Edit->eliminateDeadDefs(Dead);
1041 }
1042
1043 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1044   ++NumFinished;
1045
1046   // At this point, the live intervals in Edit contain VNInfos corresponding to
1047   // the inserted copies.
1048
1049   // Add the original defs from the parent interval.
1050   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1051          E = Edit->getParent().vni_end(); I != E; ++I) {
1052     const VNInfo *ParentVNI = *I;
1053     if (ParentVNI->isUnused())
1054       continue;
1055     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1056     defValue(RegIdx, ParentVNI, ParentVNI->def);
1057
1058     // Force rematted values to be recomputed everywhere.
1059     // The new live ranges may be truncated.
1060     if (Edit->didRematerialize(ParentVNI))
1061       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1062         forceRecompute(i, ParentVNI);
1063   }
1064
1065   // Hoist back-copies to the complement interval when in spill mode.
1066   switch (SpillMode) {
1067   case SM_Partition:
1068     // Leave all back-copies as is.
1069     break;
1070   case SM_Size:
1071     hoistCopiesForSize();
1072     break;
1073   case SM_Speed:
1074     llvm_unreachable("Spill mode 'speed' not implemented yet");
1075   }
1076
1077   // Transfer the simply mapped values, check if any are skipped.
1078   bool Skipped = transferValues();
1079   if (Skipped)
1080     extendPHIKillRanges();
1081   else
1082     ++NumSimple;
1083
1084   // Rewrite virtual registers, possibly extending ranges.
1085   rewriteAssigned(Skipped);
1086
1087   // Delete defs that were rematted everywhere.
1088   if (Skipped)
1089     deleteRematVictims();
1090
1091   // Get rid of unused values and set phi-kill flags.
1092   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1093     (*I)->RenumberValues(LIS);
1094
1095   // Provide a reverse mapping from original indices to Edit ranges.
1096   if (LRMap) {
1097     LRMap->clear();
1098     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1099       LRMap->push_back(i);
1100   }
1101
1102   // Now check if any registers were separated into multiple components.
1103   ConnectedVNInfoEqClasses ConEQ(LIS);
1104   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1105     // Don't use iterators, they are invalidated by create() below.
1106     LiveInterval *li = Edit->get(i);
1107     unsigned NumComp = ConEQ.Classify(li);
1108     if (NumComp <= 1)
1109       continue;
1110     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1111     SmallVector<LiveInterval*, 8> dups;
1112     dups.push_back(li);
1113     for (unsigned j = 1; j != NumComp; ++j)
1114       dups.push_back(&Edit->create());
1115     ConEQ.Distribute(&dups[0], MRI);
1116     // The new intervals all map back to i.
1117     if (LRMap)
1118       LRMap->resize(Edit->size(), i);
1119   }
1120
1121   // Calculate spill weight and allocation hints for new intervals.
1122   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops);
1123
1124   assert(!LRMap || LRMap->size() == Edit->size());
1125 }
1126
1127
1128 //===----------------------------------------------------------------------===//
1129 //                            Single Block Splitting
1130 //===----------------------------------------------------------------------===//
1131
1132 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1133                                            bool SingleInstrs) const {
1134   // Always split for multiple instructions.
1135   if (!BI.isOneInstr())
1136     return true;
1137   // Don't split for single instructions unless explicitly requested.
1138   if (!SingleInstrs)
1139     return false;
1140   // Splitting a live-through range always makes progress.
1141   if (BI.LiveIn && BI.LiveOut)
1142     return true;
1143   // No point in isolating a copy. It has no register class constraints.
1144   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1145     return false;
1146   // Finally, don't isolate an end point that was created by earlier splits.
1147   return isOriginalEndpoint(BI.FirstInstr);
1148 }
1149
1150 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1151   openIntv();
1152   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1153   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1154     LastSplitPoint));
1155   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1156     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1157   } else {
1158       // The last use is after the last valid split point.
1159     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1160     useIntv(SegStart, SegStop);
1161     overlapIntv(SegStop, BI.LastInstr);
1162   }
1163 }
1164
1165
1166 //===----------------------------------------------------------------------===//
1167 //                    Global Live Range Splitting Support
1168 //===----------------------------------------------------------------------===//
1169
1170 // These methods support a method of global live range splitting that uses a
1171 // global algorithm to decide intervals for CFG edges. They will insert split
1172 // points and color intervals in basic blocks while avoiding interference.
1173 //
1174 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1175 // are on the stack.
1176
1177 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1178                                         unsigned IntvIn, SlotIndex LeaveBefore,
1179                                         unsigned IntvOut, SlotIndex EnterAfter){
1180   SlotIndex Start, Stop;
1181   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1182
1183   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1184                << ") intf " << LeaveBefore << '-' << EnterAfter
1185                << ", live-through " << IntvIn << " -> " << IntvOut);
1186
1187   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1188
1189   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1190   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1191   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1192
1193   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1194
1195   if (!IntvOut) {
1196     DEBUG(dbgs() << ", spill on entry.\n");
1197     //
1198     //        <<<<<<<<<    Possible LeaveBefore interference.
1199     //    |-----------|    Live through.
1200     //    -____________    Spill on entry.
1201     //
1202     selectIntv(IntvIn);
1203     SlotIndex Idx = leaveIntvAtTop(*MBB);
1204     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1205     (void)Idx;
1206     return;
1207   }
1208
1209   if (!IntvIn) {
1210     DEBUG(dbgs() << ", reload on exit.\n");
1211     //
1212     //    >>>>>>>          Possible EnterAfter interference.
1213     //    |-----------|    Live through.
1214     //    ___________--    Reload on exit.
1215     //
1216     selectIntv(IntvOut);
1217     SlotIndex Idx = enterIntvAtEnd(*MBB);
1218     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1219     (void)Idx;
1220     return;
1221   }
1222
1223   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1224     DEBUG(dbgs() << ", straight through.\n");
1225     //
1226     //    |-----------|    Live through.
1227     //    -------------    Straight through, same intv, no interference.
1228     //
1229     selectIntv(IntvOut);
1230     useIntv(Start, Stop);
1231     return;
1232   }
1233
1234   // We cannot legally insert splits after LSP.
1235   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1236   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1237
1238   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1239                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1240     DEBUG(dbgs() << ", switch avoiding interference.\n");
1241     //
1242     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1243     //    |-----------|    Live through.
1244     //    ------=======    Switch intervals between interference.
1245     //
1246     selectIntv(IntvOut);
1247     SlotIndex Idx;
1248     if (LeaveBefore && LeaveBefore < LSP) {
1249       Idx = enterIntvBefore(LeaveBefore);
1250       useIntv(Idx, Stop);
1251     } else {
1252       Idx = enterIntvAtEnd(*MBB);
1253     }
1254     selectIntv(IntvIn);
1255     useIntv(Start, Idx);
1256     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1257     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1258     return;
1259   }
1260
1261   DEBUG(dbgs() << ", create local intv for interference.\n");
1262   //
1263   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1264   //    |-----------|    Live through.
1265   //    ==---------==    Switch intervals before/after interference.
1266   //
1267   assert(LeaveBefore <= EnterAfter && "Missed case");
1268
1269   selectIntv(IntvOut);
1270   SlotIndex Idx = enterIntvAfter(EnterAfter);
1271   useIntv(Idx, Stop);
1272   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1273
1274   selectIntv(IntvIn);
1275   Idx = leaveIntvBefore(LeaveBefore);
1276   useIntv(Start, Idx);
1277   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1278 }
1279
1280
1281 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1282                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1283   SlotIndex Start, Stop;
1284   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1285
1286   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1287                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1288                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1289                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1290
1291   assert(IntvIn && "Must have register in");
1292   assert(BI.LiveIn && "Must be live-in");
1293   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1294
1295   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1296     DEBUG(dbgs() << " before interference.\n");
1297     //
1298     //               <<<    Interference after kill.
1299     //     |---o---x   |    Killed in block.
1300     //     =========        Use IntvIn everywhere.
1301     //
1302     selectIntv(IntvIn);
1303     useIntv(Start, BI.LastInstr);
1304     return;
1305   }
1306
1307   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1308
1309   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1310     //
1311     //               <<<    Possible interference after last use.
1312     //     |---o---o---|    Live-out on stack.
1313     //     =========____    Leave IntvIn after last use.
1314     //
1315     //                 <    Interference after last use.
1316     //     |---o---o--o|    Live-out on stack, late last use.
1317     //     ============     Copy to stack after LSP, overlap IntvIn.
1318     //            \_____    Stack interval is live-out.
1319     //
1320     if (BI.LastInstr < LSP) {
1321       DEBUG(dbgs() << ", spill after last use before interference.\n");
1322       selectIntv(IntvIn);
1323       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1324       useIntv(Start, Idx);
1325       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1326     } else {
1327       DEBUG(dbgs() << ", spill before last split point.\n");
1328       selectIntv(IntvIn);
1329       SlotIndex Idx = leaveIntvBefore(LSP);
1330       overlapIntv(Idx, BI.LastInstr);
1331       useIntv(Start, Idx);
1332       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1333     }
1334     return;
1335   }
1336
1337   // The interference is overlapping somewhere we wanted to use IntvIn. That
1338   // means we need to create a local interval that can be allocated a
1339   // different register.
1340   unsigned LocalIntv = openIntv();
1341   (void)LocalIntv;
1342   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1343
1344   if (!BI.LiveOut || BI.LastInstr < LSP) {
1345     //
1346     //           <<<<<<<    Interference overlapping uses.
1347     //     |---o---o---|    Live-out on stack.
1348     //     =====----____    Leave IntvIn before interference, then spill.
1349     //
1350     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1351     SlotIndex From = enterIntvBefore(LeaveBefore);
1352     useIntv(From, To);
1353     selectIntv(IntvIn);
1354     useIntv(Start, From);
1355     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1356     return;
1357   }
1358
1359   //           <<<<<<<    Interference overlapping uses.
1360   //     |---o---o--o|    Live-out on stack, late last use.
1361   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1362   //            \_____    Stack interval is live-out.
1363   //
1364   SlotIndex To = leaveIntvBefore(LSP);
1365   overlapIntv(To, BI.LastInstr);
1366   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1367   useIntv(From, To);
1368   selectIntv(IntvIn);
1369   useIntv(Start, From);
1370   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1371 }
1372
1373 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1374                                    unsigned IntvOut, SlotIndex EnterAfter) {
1375   SlotIndex Start, Stop;
1376   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1377
1378   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1379                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1380                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1381                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1382
1383   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1384
1385   assert(IntvOut && "Must have register out");
1386   assert(BI.LiveOut && "Must be live-out");
1387   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1388
1389   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1390     DEBUG(dbgs() << " after interference.\n");
1391     //
1392     //    >>>>             Interference before def.
1393     //    |   o---o---|    Defined in block.
1394     //        =========    Use IntvOut everywhere.
1395     //
1396     selectIntv(IntvOut);
1397     useIntv(BI.FirstInstr, Stop);
1398     return;
1399   }
1400
1401   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1402     DEBUG(dbgs() << ", reload after interference.\n");
1403     //
1404     //    >>>>             Interference before def.
1405     //    |---o---o---|    Live-through, stack-in.
1406     //    ____=========    Enter IntvOut before first use.
1407     //
1408     selectIntv(IntvOut);
1409     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1410     useIntv(Idx, Stop);
1411     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1412     return;
1413   }
1414
1415   // The interference is overlapping somewhere we wanted to use IntvOut. That
1416   // means we need to create a local interval that can be allocated a
1417   // different register.
1418   DEBUG(dbgs() << ", interference overlaps uses.\n");
1419   //
1420   //    >>>>>>>          Interference overlapping uses.
1421   //    |---o---o---|    Live-through, stack-in.
1422   //    ____---======    Create local interval for interference range.
1423   //
1424   selectIntv(IntvOut);
1425   SlotIndex Idx = enterIntvAfter(EnterAfter);
1426   useIntv(Idx, Stop);
1427   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1428
1429   openIntv();
1430   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1431   useIntv(From, Idx);
1432 }