Make TargetLowering::getShiftAmountTy() taking DataLayout as an argument
[oota-llvm.git] / lib / CodeGen / RegAllocPBQP.cpp
1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
16 //
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
20 //
21 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 //
25 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 //   architectures. In Proceedings of the Joint Conference on Languages,
27 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 //   NY, USA, 139-148.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/CodeGen/RegAllocPBQP.h"
33 #include "RegisterCoalescer.h"
34 #include "Spiller.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/CalcSpillWeights.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveStackAnalysis.h"
40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
41 #include "llvm/CodeGen/MachineDominators.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RegAllocRegistry.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/FileSystem.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Target/TargetInstrInfo.h"
52 #include "llvm/Target/TargetSubtargetInfo.h"
53 #include <limits>
54 #include <memory>
55 #include <queue>
56 #include <set>
57 #include <sstream>
58 #include <vector>
59
60 using namespace llvm;
61
62 #define DEBUG_TYPE "regalloc"
63
64 static RegisterRegAlloc
65 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
66                        createDefaultPBQPRegisterAllocator);
67
68 static cl::opt<bool>
69 PBQPCoalescing("pbqp-coalescing",
70                 cl::desc("Attempt coalescing during PBQP register allocation."),
71                 cl::init(false), cl::Hidden);
72
73 #ifndef NDEBUG
74 static cl::opt<bool>
75 PBQPDumpGraphs("pbqp-dump-graphs",
76                cl::desc("Dump graphs for each function/round in the compilation unit."),
77                cl::init(false), cl::Hidden);
78 #endif
79
80 namespace {
81
82 ///
83 /// PBQP based allocators solve the register allocation problem by mapping
84 /// register allocation problems to Partitioned Boolean Quadratic
85 /// Programming problems.
86 class RegAllocPBQP : public MachineFunctionPass {
87 public:
88
89   static char ID;
90
91   /// Construct a PBQP register allocator.
92   RegAllocPBQP(char *cPassID = nullptr)
93       : MachineFunctionPass(ID), customPassID(cPassID) {
94     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
95     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
96     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
97     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
98   }
99
100   /// Return the pass name.
101   const char* getPassName() const override {
102     return "PBQP Register Allocator";
103   }
104
105   /// PBQP analysis usage.
106   void getAnalysisUsage(AnalysisUsage &au) const override;
107
108   /// Perform register allocation
109   bool runOnMachineFunction(MachineFunction &MF) override;
110
111 private:
112
113   typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
114   typedef std::vector<const LiveInterval*> Node2LIMap;
115   typedef std::vector<unsigned> AllowedSet;
116   typedef std::vector<AllowedSet> AllowedSetMap;
117   typedef std::pair<unsigned, unsigned> RegPair;
118   typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
119   typedef std::set<unsigned> RegSet;
120
121   char *customPassID;
122
123   RegSet VRegsToAlloc, EmptyIntervalVRegs;
124
125   /// \brief Finds the initial set of vreg intervals to allocate.
126   void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
127
128   /// \brief Constructs an initial graph.
129   void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
130
131   /// \brief Spill the given VReg.
132   void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
133                  MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
134                  Spiller &VRegSpiller);
135
136   /// \brief Given a solved PBQP problem maps this solution back to a register
137   /// assignment.
138   bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
139                          const PBQP::Solution &Solution,
140                          VirtRegMap &VRM,
141                          Spiller &VRegSpiller);
142
143   /// \brief Postprocessing before final spilling. Sets basic block "live in"
144   /// variables.
145   void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
146                      VirtRegMap &VRM) const;
147
148 };
149
150 char RegAllocPBQP::ID = 0;
151
152 /// @brief Set spill costs for each node in the PBQP reg-alloc graph.
153 class SpillCosts : public PBQPRAConstraint {
154 public:
155   void apply(PBQPRAGraph &G) override {
156     LiveIntervals &LIS = G.getMetadata().LIS;
157
158     // A minimum spill costs, so that register constraints can can be set
159     // without normalization in the [0.0:MinSpillCost( interval.
160     const PBQP::PBQPNum MinSpillCost = 10.0;
161
162     for (auto NId : G.nodeIds()) {
163       PBQP::PBQPNum SpillCost =
164         LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
165       if (SpillCost == 0.0)
166         SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
167       else
168         SpillCost += MinSpillCost;
169       PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
170       NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
171       G.setNodeCosts(NId, std::move(NodeCosts));
172     }
173   }
174 };
175
176 /// @brief Add interference edges between overlapping vregs.
177 class Interference : public PBQPRAConstraint {
178 private:
179
180   typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
181   typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
182   typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
183   typedef DenseSet<IKey> DisjointAllowedRegsCache;
184   typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
185   typedef DenseSet<IEdgeKey> IEdgeCache;
186
187   bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
188                                PBQPRAGraph::NodeId MId,
189                                const DisjointAllowedRegsCache &D) const {
190     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
191     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
192
193     if (NRegs == MRegs)
194       return false;
195
196     if (NRegs < MRegs)
197       return D.count(IKey(NRegs, MRegs)) > 0;
198
199     return D.count(IKey(MRegs, NRegs)) > 0;
200   }
201
202   void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
203                               PBQPRAGraph::NodeId MId,
204                               DisjointAllowedRegsCache &D) {
205     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
206     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
207
208     assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
209
210     if (NRegs < MRegs)
211       D.insert(IKey(NRegs, MRegs));
212     else
213       D.insert(IKey(MRegs, NRegs));
214   }
215
216   // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
217   // for the fast interference graph construction algorithm. The last is there
218   // to save us from looking up node ids via the VRegToNode map in the graph
219   // metadata.
220   typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
221     IntervalInfo;
222
223   static SlotIndex getStartPoint(const IntervalInfo &I) {
224     return std::get<0>(I)->segments[std::get<1>(I)].start;
225   }
226
227   static SlotIndex getEndPoint(const IntervalInfo &I) {
228     return std::get<0>(I)->segments[std::get<1>(I)].end;
229   }
230
231   static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
232     return std::get<2>(I);
233   }
234
235   static bool lowestStartPoint(const IntervalInfo &I1,
236                                const IntervalInfo &I2) {
237     // Condition reversed because priority queue has the *highest* element at
238     // the front, rather than the lowest.
239     return getStartPoint(I1) > getStartPoint(I2);
240   }
241
242   static bool lowestEndPoint(const IntervalInfo &I1,
243                              const IntervalInfo &I2) {
244     SlotIndex E1 = getEndPoint(I1);
245     SlotIndex E2 = getEndPoint(I2);
246
247     if (E1 < E2)
248       return true;
249
250     if (E1 > E2)
251       return false;
252
253     // If two intervals end at the same point, we need a way to break the tie or
254     // the set will assume they're actually equal and refuse to insert a
255     // "duplicate". Just compare the vregs - fast and guaranteed unique.
256     return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
257   }
258
259   static bool isAtLastSegment(const IntervalInfo &I) {
260     return std::get<1>(I) == std::get<0>(I)->size() - 1;
261   }
262
263   static IntervalInfo nextSegment(const IntervalInfo &I) {
264     return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
265   }
266
267 public:
268
269   void apply(PBQPRAGraph &G) override {
270     // The following is loosely based on the linear scan algorithm introduced in
271     // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
272     // isn't linear, because the size of the active set isn't bound by the
273     // number of registers, but rather the size of the largest clique in the
274     // graph. Still, we expect this to be better than N^2.
275     LiveIntervals &LIS = G.getMetadata().LIS;
276
277     // Interferenc matrices are incredibly regular - they're only a function of
278     // the allowed sets, so we cache them to avoid the overhead of constructing
279     // and uniquing them.
280     IMatrixCache C;
281
282     // Finding an edge is expensive in the worst case (O(max_clique(G))). So
283     // cache locally edges we have already seen.
284     IEdgeCache EC;
285
286     // Cache known disjoint allowed registers pairs
287     DisjointAllowedRegsCache D;
288
289     typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
290     typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
291                                 decltype(&lowestStartPoint)> IntervalQueue;
292     IntervalSet Active(lowestEndPoint);
293     IntervalQueue Inactive(lowestStartPoint);
294
295     // Start by building the inactive set.
296     for (auto NId : G.nodeIds()) {
297       unsigned VReg = G.getNodeMetadata(NId).getVReg();
298       LiveInterval &LI = LIS.getInterval(VReg);
299       assert(!LI.empty() && "PBQP graph contains node for empty interval");
300       Inactive.push(std::make_tuple(&LI, 0, NId));
301     }
302
303     while (!Inactive.empty()) {
304       // Tentatively grab the "next" interval - this choice may be overriden
305       // below.
306       IntervalInfo Cur = Inactive.top();
307
308       // Retire any active intervals that end before Cur starts.
309       IntervalSet::iterator RetireItr = Active.begin();
310       while (RetireItr != Active.end() &&
311              (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
312         // If this interval has subsequent segments, add the next one to the
313         // inactive list.
314         if (!isAtLastSegment(*RetireItr))
315           Inactive.push(nextSegment(*RetireItr));
316
317         ++RetireItr;
318       }
319       Active.erase(Active.begin(), RetireItr);
320
321       // One of the newly retired segments may actually start before the
322       // Cur segment, so re-grab the front of the inactive list.
323       Cur = Inactive.top();
324       Inactive.pop();
325
326       // At this point we know that Cur overlaps all active intervals. Add the
327       // interference edges.
328       PBQP::GraphBase::NodeId NId = getNodeId(Cur);
329       for (const auto &A : Active) {
330         PBQP::GraphBase::NodeId MId = getNodeId(A);
331
332         // Do not add an edge when the nodes' allowed registers do not
333         // intersect: there is obviously no interference.
334         if (haveDisjointAllowedRegs(G, NId, MId, D))
335           continue;
336
337         // Check that we haven't already added this edge
338         IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
339         if (EC.count(EK))
340           continue;
341
342         // This is a new edge - add it to the graph.
343         if (!createInterferenceEdge(G, NId, MId, C))
344           setDisjointAllowedRegs(G, NId, MId, D);
345         else
346           EC.insert(EK);
347       }
348
349       // Finally, add Cur to the Active set.
350       Active.insert(Cur);
351     }
352   }
353
354 private:
355
356   // Create an Interference edge and add it to the graph, unless it is
357   // a null matrix, meaning the nodes' allowed registers do not have any
358   // interference. This case occurs frequently between integer and floating
359   // point registers for example.
360   // return true iff both nodes interferes.
361   bool createInterferenceEdge(PBQPRAGraph &G,
362                               PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
363                               IMatrixCache &C) {
364
365     const TargetRegisterInfo &TRI =
366         *G.getMetadata().MF.getSubtarget().getRegisterInfo();
367     const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
368     const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
369
370     // Try looking the edge costs up in the IMatrixCache first.
371     IKey K(&NRegs, &MRegs);
372     IMatrixCache::iterator I = C.find(K);
373     if (I != C.end()) {
374       G.addEdgeBypassingCostAllocator(NId, MId, I->second);
375       return true;
376     }
377
378     PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
379     bool NodesInterfere = false;
380     for (unsigned I = 0; I != NRegs.size(); ++I) {
381       unsigned PRegN = NRegs[I];
382       for (unsigned J = 0; J != MRegs.size(); ++J) {
383         unsigned PRegM = MRegs[J];
384         if (TRI.regsOverlap(PRegN, PRegM)) {
385           M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
386           NodesInterfere = true;
387         }
388       }
389     }
390
391     if (!NodesInterfere)
392       return false;
393
394     PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
395     C[K] = G.getEdgeCostsPtr(EId);
396
397     return true;
398   }
399 };
400
401
402 class Coalescing : public PBQPRAConstraint {
403 public:
404   void apply(PBQPRAGraph &G) override {
405     MachineFunction &MF = G.getMetadata().MF;
406     MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
407     CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
408
409     // Scan the machine function and add a coalescing cost whenever CoalescerPair
410     // gives the Ok.
411     for (const auto &MBB : MF) {
412       for (const auto &MI : MBB) {
413
414         // Skip not-coalescable or already coalesced copies.
415         if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
416           continue;
417
418         unsigned DstReg = CP.getDstReg();
419         unsigned SrcReg = CP.getSrcReg();
420
421         const float Scale = 1.0f / MBFI.getEntryFreq();
422         PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
423
424         if (CP.isPhys()) {
425           if (!MF.getRegInfo().isAllocatable(DstReg))
426             continue;
427
428           PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
429
430           const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
431             G.getNodeMetadata(NId).getAllowedRegs();
432
433           unsigned PRegOpt = 0;
434           while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
435             ++PRegOpt;
436
437           if (PRegOpt < Allowed.size()) {
438             PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
439             NewCosts[PRegOpt + 1] -= CBenefit;
440             G.setNodeCosts(NId, std::move(NewCosts));
441           }
442         } else {
443           PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
444           PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
445           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
446             &G.getNodeMetadata(N1Id).getAllowedRegs();
447           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
448             &G.getNodeMetadata(N2Id).getAllowedRegs();
449
450           PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
451           if (EId == G.invalidEdgeId()) {
452             PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
453                                          Allowed2->size() + 1, 0);
454             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
455             G.addEdge(N1Id, N2Id, std::move(Costs));
456           } else {
457             if (G.getEdgeNode1Id(EId) == N2Id) {
458               std::swap(N1Id, N2Id);
459               std::swap(Allowed1, Allowed2);
460             }
461             PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
462             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
463             G.updateEdgeCosts(EId, std::move(Costs));
464           }
465         }
466       }
467     }
468   }
469
470 private:
471
472   void addVirtRegCoalesce(
473                     PBQPRAGraph::RawMatrix &CostMat,
474                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
475                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
476                     PBQP::PBQPNum Benefit) {
477     assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
478     assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
479     for (unsigned I = 0; I != Allowed1.size(); ++I) {
480       unsigned PReg1 = Allowed1[I];
481       for (unsigned J = 0; J != Allowed2.size(); ++J) {
482         unsigned PReg2 = Allowed2[J];
483         if (PReg1 == PReg2)
484           CostMat[I + 1][J + 1] -= Benefit;
485       }
486     }
487   }
488
489 };
490
491 } // End anonymous namespace.
492
493 // Out-of-line destructor/anchor for PBQPRAConstraint.
494 PBQPRAConstraint::~PBQPRAConstraint() {}
495 void PBQPRAConstraint::anchor() {}
496 void PBQPRAConstraintList::anchor() {}
497
498 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
499   au.setPreservesCFG();
500   au.addRequired<AliasAnalysis>();
501   au.addPreserved<AliasAnalysis>();
502   au.addRequired<SlotIndexes>();
503   au.addPreserved<SlotIndexes>();
504   au.addRequired<LiveIntervals>();
505   au.addPreserved<LiveIntervals>();
506   //au.addRequiredID(SplitCriticalEdgesID);
507   if (customPassID)
508     au.addRequiredID(*customPassID);
509   au.addRequired<LiveStacks>();
510   au.addPreserved<LiveStacks>();
511   au.addRequired<MachineBlockFrequencyInfo>();
512   au.addPreserved<MachineBlockFrequencyInfo>();
513   au.addRequired<MachineLoopInfo>();
514   au.addPreserved<MachineLoopInfo>();
515   au.addRequired<MachineDominatorTree>();
516   au.addPreserved<MachineDominatorTree>();
517   au.addRequired<VirtRegMap>();
518   au.addPreserved<VirtRegMap>();
519   MachineFunctionPass::getAnalysisUsage(au);
520 }
521
522 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
523                                             LiveIntervals &LIS) {
524   const MachineRegisterInfo &MRI = MF.getRegInfo();
525
526   // Iterate over all live ranges.
527   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
528     unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
529     if (MRI.reg_nodbg_empty(Reg))
530       continue;
531     LiveInterval &LI = LIS.getInterval(Reg);
532
533     // If this live interval is non-empty we will use pbqp to allocate it.
534     // Empty intervals we allocate in a simple post-processing stage in
535     // finalizeAlloc.
536     if (!LI.empty()) {
537       VRegsToAlloc.insert(LI.reg);
538     } else {
539       EmptyIntervalVRegs.insert(LI.reg);
540     }
541   }
542 }
543
544 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
545                                    const MachineFunction &MF) {
546   const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
547   for (unsigned i = 0; CSR[i] != 0; ++i)
548     if (TRI.regsOverlap(reg, CSR[i]))
549       return true;
550   return false;
551 }
552
553 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
554                                    Spiller &VRegSpiller) {
555   MachineFunction &MF = G.getMetadata().MF;
556
557   LiveIntervals &LIS = G.getMetadata().LIS;
558   const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
559   const TargetRegisterInfo &TRI =
560       *G.getMetadata().MF.getSubtarget().getRegisterInfo();
561
562   std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
563
564   while (!Worklist.empty()) {
565     unsigned VReg = Worklist.back();
566     Worklist.pop_back();
567
568     const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
569     LiveInterval &VRegLI = LIS.getInterval(VReg);
570
571     // Record any overlaps with regmask operands.
572     BitVector RegMaskOverlaps;
573     LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
574
575     // Compute an initial allowed set for the current vreg.
576     std::vector<unsigned> VRegAllowed;
577     ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
578     for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
579       unsigned PReg = RawPRegOrder[I];
580       if (MRI.isReserved(PReg))
581         continue;
582
583       // vregLI crosses a regmask operand that clobbers preg.
584       if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
585         continue;
586
587       // vregLI overlaps fixed regunit interference.
588       bool Interference = false;
589       for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
590         if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
591           Interference = true;
592           break;
593         }
594       }
595       if (Interference)
596         continue;
597
598       // preg is usable for this virtual register.
599       VRegAllowed.push_back(PReg);
600     }
601
602     // Check for vregs that have no allowed registers. These should be
603     // pre-spilled and the new vregs added to the worklist.
604     if (VRegAllowed.empty()) {
605       SmallVector<unsigned, 8> NewVRegs;
606       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
607       Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
608       continue;
609     }
610
611     PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
612
613     // Tweak cost of callee saved registers, as using then force spilling and
614     // restoring them. This would only happen in the prologue / epilogue though.
615     for (unsigned i = 0; i != VRegAllowed.size(); ++i)
616       if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
617         NodeCosts[1 + i] += 1.0;
618
619     PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
620     G.getNodeMetadata(NId).setVReg(VReg);
621     G.getNodeMetadata(NId).setAllowedRegs(
622       G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
623     G.getMetadata().setNodeIdForVReg(VReg, NId);
624   }
625 }
626
627 void RegAllocPBQP::spillVReg(unsigned VReg,
628                              SmallVectorImpl<unsigned> &NewIntervals,
629                              MachineFunction &MF, LiveIntervals &LIS,
630                              VirtRegMap &VRM, Spiller &VRegSpiller) {
631
632   VRegsToAlloc.erase(VReg);
633   LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM);
634   VRegSpiller.spill(LRE);
635
636   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
637   (void)TRI;
638   DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
639                << LRE.getParent().weight << ", New vregs: ");
640
641   // Copy any newly inserted live intervals into the list of regs to
642   // allocate.
643   for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
644        I != E; ++I) {
645     const LiveInterval &LI = LIS.getInterval(*I);
646     assert(!LI.empty() && "Empty spill range.");
647     DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
648     VRegsToAlloc.insert(LI.reg);
649   }
650
651   DEBUG(dbgs() << ")\n");
652 }
653
654 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
655                                      const PBQP::Solution &Solution,
656                                      VirtRegMap &VRM,
657                                      Spiller &VRegSpiller) {
658   MachineFunction &MF = G.getMetadata().MF;
659   LiveIntervals &LIS = G.getMetadata().LIS;
660   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
661   (void)TRI;
662
663   // Set to true if we have any spills
664   bool AnotherRoundNeeded = false;
665
666   // Clear the existing allocation.
667   VRM.clearAllVirt();
668
669   // Iterate over the nodes mapping the PBQP solution to a register
670   // assignment.
671   for (auto NId : G.nodeIds()) {
672     unsigned VReg = G.getNodeMetadata(NId).getVReg();
673     unsigned AllocOption = Solution.getSelection(NId);
674
675     if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
676       unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
677       DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
678             << TRI.getName(PReg) << "\n");
679       assert(PReg != 0 && "Invalid preg selected.");
680       VRM.assignVirt2Phys(VReg, PReg);
681     } else {
682       // Spill VReg. If this introduces new intervals we'll need another round
683       // of allocation.
684       SmallVector<unsigned, 8> NewVRegs;
685       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
686       AnotherRoundNeeded |= !NewVRegs.empty();
687     }
688   }
689
690   return !AnotherRoundNeeded;
691 }
692
693 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
694                                  LiveIntervals &LIS,
695                                  VirtRegMap &VRM) const {
696   MachineRegisterInfo &MRI = MF.getRegInfo();
697
698   // First allocate registers for the empty intervals.
699   for (RegSet::const_iterator
700          I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
701          I != E; ++I) {
702     LiveInterval &LI = LIS.getInterval(*I);
703
704     unsigned PReg = MRI.getSimpleHint(LI.reg);
705
706     if (PReg == 0) {
707       const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
708       PReg = RC.getRawAllocationOrder(MF).front();
709     }
710
711     VRM.assignVirt2Phys(LI.reg, PReg);
712   }
713 }
714
715 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
716                                          unsigned NumInstr) {
717   // All intervals have a spill weight that is mostly proportional to the number
718   // of uses, with uses in loops having a bigger weight.
719   return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
720 }
721
722 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
723   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
724   MachineBlockFrequencyInfo &MBFI =
725     getAnalysis<MachineBlockFrequencyInfo>();
726
727   calculateSpillWeightsAndHints(LIS, MF, getAnalysis<MachineLoopInfo>(), MBFI,
728                                 normalizePBQPSpillWeight);
729
730   VirtRegMap &VRM = getAnalysis<VirtRegMap>();
731
732   std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
733
734   MF.getRegInfo().freezeReservedRegs(MF);
735
736   DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
737
738   // Allocator main loop:
739   //
740   // * Map current regalloc problem to a PBQP problem
741   // * Solve the PBQP problem
742   // * Map the solution back to a register allocation
743   // * Spill if necessary
744   //
745   // This process is continued till no more spills are generated.
746
747   // Find the vreg intervals in need of allocation.
748   findVRegIntervalsToAlloc(MF, LIS);
749
750 #ifndef NDEBUG
751   const Function &F = *MF.getFunction();
752   std::string FullyQualifiedName =
753     F.getParent()->getModuleIdentifier() + "." + F.getName().str();
754 #endif
755
756   // If there are non-empty intervals allocate them using pbqp.
757   if (!VRegsToAlloc.empty()) {
758
759     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
760     std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
761       llvm::make_unique<PBQPRAConstraintList>();
762     ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
763     ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
764     if (PBQPCoalescing)
765       ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
766     ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
767
768     bool PBQPAllocComplete = false;
769     unsigned Round = 0;
770
771     while (!PBQPAllocComplete) {
772       DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
773
774       PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
775       initializeGraph(G, VRM, *VRegSpiller);
776       ConstraintsRoot->apply(G);
777
778 #ifndef NDEBUG
779       if (PBQPDumpGraphs) {
780         std::ostringstream RS;
781         RS << Round;
782         std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
783                                     ".pbqpgraph";
784         std::error_code EC;
785         raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
786         DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
787               << GraphFileName << "\"\n");
788         G.dump(OS);
789       }
790 #endif
791
792       PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
793       PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
794       ++Round;
795     }
796   }
797
798   // Finalise allocation, allocate empty ranges.
799   finalizeAlloc(MF, LIS, VRM);
800   VRegsToAlloc.clear();
801   EmptyIntervalVRegs.clear();
802
803   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
804
805   return true;
806 }
807
808 namespace {
809 // A helper class for printing node and register info in a consistent way
810 class PrintNodeInfo {
811 public:
812   typedef PBQP::RegAlloc::PBQPRAGraph Graph;
813   typedef PBQP::RegAlloc::PBQPRAGraph::NodeId NodeId;
814
815   PrintNodeInfo(NodeId NId, const Graph &G) : G(G), NId(NId) {}
816
817   void print(raw_ostream &OS) const {
818     const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
819     const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
820     unsigned VReg = G.getNodeMetadata(NId).getVReg();
821     const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
822     OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
823   }
824
825 private:
826   const Graph &G;
827   NodeId NId;
828 };
829
830 inline raw_ostream &operator<<(raw_ostream &OS, const PrintNodeInfo &PR) {
831   PR.print(OS);
832   return OS;
833 }
834 } // anonymous namespace
835
836 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
837   for (auto NId : nodeIds()) {
838     const Vector &Costs = getNodeCosts(NId);
839     assert(Costs.getLength() != 0 && "Empty vector in graph.");
840     OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
841   }
842   OS << '\n';
843
844   for (auto EId : edgeIds()) {
845     NodeId N1Id = getEdgeNode1Id(EId);
846     NodeId N2Id = getEdgeNode2Id(EId);
847     assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
848     const Matrix &M = getEdgeCosts(EId);
849     assert(M.getRows() != 0 && "No rows in matrix.");
850     assert(M.getCols() != 0 && "No cols in matrix.");
851     OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
852     OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
853     OS << M << '\n';
854   }
855 }
856
857 void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }
858
859 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
860   OS << "graph {\n";
861   for (auto NId : nodeIds()) {
862     OS << "  node" << NId << " [ label=\""
863        << PrintNodeInfo(NId, *this) << "\\n"
864        << getNodeCosts(NId) << "\" ]\n";
865   }
866
867   OS << "  edge [ len=" << nodeIds().size() << " ]\n";
868   for (auto EId : edgeIds()) {
869     OS << "  node" << getEdgeNode1Id(EId)
870        << " -- node" << getEdgeNode2Id(EId)
871        << " [ label=\"";
872     const Matrix &EdgeCosts = getEdgeCosts(EId);
873     for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
874       OS << EdgeCosts.getRowAsVector(i) << "\\n";
875     }
876     OS << "\" ]\n";
877   }
878   OS << "}\n";
879 }
880
881 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
882   return new RegAllocPBQP(customPassID);
883 }
884
885 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
886   return createPBQPRegisterAllocator();
887 }
888
889 #undef DEBUG_TYPE