Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / CodeGen / RegAllocPBQP.cpp
1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
16 //
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
20 //
21 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 //
25 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 //   architectures. In Proceedings of the Joint Conference on Languages,
27 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 //   NY, USA, 139-148.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/CodeGen/RegAllocPBQP.h"
33 #include "RegisterCoalescer.h"
34 #include "Spiller.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/CalcSpillWeights.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveStackAnalysis.h"
40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
41 #include "llvm/CodeGen/MachineDominators.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RegAllocRegistry.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/FileSystem.h"
50 #include "llvm/Support/Printable.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 #include <limits>
55 #include <memory>
56 #include <queue>
57 #include <set>
58 #include <sstream>
59 #include <vector>
60
61 using namespace llvm;
62
63 #define DEBUG_TYPE "regalloc"
64
65 static RegisterRegAlloc
66 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
67                        createDefaultPBQPRegisterAllocator);
68
69 static cl::opt<bool>
70 PBQPCoalescing("pbqp-coalescing",
71                 cl::desc("Attempt coalescing during PBQP register allocation."),
72                 cl::init(false), cl::Hidden);
73
74 #ifndef NDEBUG
75 static cl::opt<bool>
76 PBQPDumpGraphs("pbqp-dump-graphs",
77                cl::desc("Dump graphs for each function/round in the compilation unit."),
78                cl::init(false), cl::Hidden);
79 #endif
80
81 namespace {
82
83 ///
84 /// PBQP based allocators solve the register allocation problem by mapping
85 /// register allocation problems to Partitioned Boolean Quadratic
86 /// Programming problems.
87 class RegAllocPBQP : public MachineFunctionPass {
88 public:
89
90   static char ID;
91
92   /// Construct a PBQP register allocator.
93   RegAllocPBQP(char *cPassID = nullptr)
94       : MachineFunctionPass(ID), customPassID(cPassID) {
95     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
96     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
98     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
99   }
100
101   /// Return the pass name.
102   const char* getPassName() const override {
103     return "PBQP Register Allocator";
104   }
105
106   /// PBQP analysis usage.
107   void getAnalysisUsage(AnalysisUsage &au) const override;
108
109   /// Perform register allocation
110   bool runOnMachineFunction(MachineFunction &MF) override;
111
112 private:
113
114   typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
115   typedef std::vector<const LiveInterval*> Node2LIMap;
116   typedef std::vector<unsigned> AllowedSet;
117   typedef std::vector<AllowedSet> AllowedSetMap;
118   typedef std::pair<unsigned, unsigned> RegPair;
119   typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
120   typedef std::set<unsigned> RegSet;
121
122   char *customPassID;
123
124   RegSet VRegsToAlloc, EmptyIntervalVRegs;
125
126   /// \brief Finds the initial set of vreg intervals to allocate.
127   void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
128
129   /// \brief Constructs an initial graph.
130   void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
131
132   /// \brief Spill the given VReg.
133   void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
134                  MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
135                  Spiller &VRegSpiller);
136
137   /// \brief Given a solved PBQP problem maps this solution back to a register
138   /// assignment.
139   bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
140                          const PBQP::Solution &Solution,
141                          VirtRegMap &VRM,
142                          Spiller &VRegSpiller);
143
144   /// \brief Postprocessing before final spilling. Sets basic block "live in"
145   /// variables.
146   void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
147                      VirtRegMap &VRM) const;
148
149 };
150
151 char RegAllocPBQP::ID = 0;
152
153 /// @brief Set spill costs for each node in the PBQP reg-alloc graph.
154 class SpillCosts : public PBQPRAConstraint {
155 public:
156   void apply(PBQPRAGraph &G) override {
157     LiveIntervals &LIS = G.getMetadata().LIS;
158
159     // A minimum spill costs, so that register constraints can can be set
160     // without normalization in the [0.0:MinSpillCost( interval.
161     const PBQP::PBQPNum MinSpillCost = 10.0;
162
163     for (auto NId : G.nodeIds()) {
164       PBQP::PBQPNum SpillCost =
165         LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
166       if (SpillCost == 0.0)
167         SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
168       else
169         SpillCost += MinSpillCost;
170       PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
171       NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
172       G.setNodeCosts(NId, std::move(NodeCosts));
173     }
174   }
175 };
176
177 /// @brief Add interference edges between overlapping vregs.
178 class Interference : public PBQPRAConstraint {
179 private:
180
181   typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
182   typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
183   typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
184   typedef DenseSet<IKey> DisjointAllowedRegsCache;
185   typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
186   typedef DenseSet<IEdgeKey> IEdgeCache;
187
188   bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
189                                PBQPRAGraph::NodeId MId,
190                                const DisjointAllowedRegsCache &D) const {
191     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
192     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
193
194     if (NRegs == MRegs)
195       return false;
196
197     if (NRegs < MRegs)
198       return D.count(IKey(NRegs, MRegs)) > 0;
199
200     return D.count(IKey(MRegs, NRegs)) > 0;
201   }
202
203   void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
204                               PBQPRAGraph::NodeId MId,
205                               DisjointAllowedRegsCache &D) {
206     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
207     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
208
209     assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
210
211     if (NRegs < MRegs)
212       D.insert(IKey(NRegs, MRegs));
213     else
214       D.insert(IKey(MRegs, NRegs));
215   }
216
217   // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
218   // for the fast interference graph construction algorithm. The last is there
219   // to save us from looking up node ids via the VRegToNode map in the graph
220   // metadata.
221   typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
222     IntervalInfo;
223
224   static SlotIndex getStartPoint(const IntervalInfo &I) {
225     return std::get<0>(I)->segments[std::get<1>(I)].start;
226   }
227
228   static SlotIndex getEndPoint(const IntervalInfo &I) {
229     return std::get<0>(I)->segments[std::get<1>(I)].end;
230   }
231
232   static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
233     return std::get<2>(I);
234   }
235
236   static bool lowestStartPoint(const IntervalInfo &I1,
237                                const IntervalInfo &I2) {
238     // Condition reversed because priority queue has the *highest* element at
239     // the front, rather than the lowest.
240     return getStartPoint(I1) > getStartPoint(I2);
241   }
242
243   static bool lowestEndPoint(const IntervalInfo &I1,
244                              const IntervalInfo &I2) {
245     SlotIndex E1 = getEndPoint(I1);
246     SlotIndex E2 = getEndPoint(I2);
247
248     if (E1 < E2)
249       return true;
250
251     if (E1 > E2)
252       return false;
253
254     // If two intervals end at the same point, we need a way to break the tie or
255     // the set will assume they're actually equal and refuse to insert a
256     // "duplicate". Just compare the vregs - fast and guaranteed unique.
257     return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
258   }
259
260   static bool isAtLastSegment(const IntervalInfo &I) {
261     return std::get<1>(I) == std::get<0>(I)->size() - 1;
262   }
263
264   static IntervalInfo nextSegment(const IntervalInfo &I) {
265     return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
266   }
267
268 public:
269
270   void apply(PBQPRAGraph &G) override {
271     // The following is loosely based on the linear scan algorithm introduced in
272     // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
273     // isn't linear, because the size of the active set isn't bound by the
274     // number of registers, but rather the size of the largest clique in the
275     // graph. Still, we expect this to be better than N^2.
276     LiveIntervals &LIS = G.getMetadata().LIS;
277
278     // Interferenc matrices are incredibly regular - they're only a function of
279     // the allowed sets, so we cache them to avoid the overhead of constructing
280     // and uniquing them.
281     IMatrixCache C;
282
283     // Finding an edge is expensive in the worst case (O(max_clique(G))). So
284     // cache locally edges we have already seen.
285     IEdgeCache EC;
286
287     // Cache known disjoint allowed registers pairs
288     DisjointAllowedRegsCache D;
289
290     typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
291     typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
292                                 decltype(&lowestStartPoint)> IntervalQueue;
293     IntervalSet Active(lowestEndPoint);
294     IntervalQueue Inactive(lowestStartPoint);
295
296     // Start by building the inactive set.
297     for (auto NId : G.nodeIds()) {
298       unsigned VReg = G.getNodeMetadata(NId).getVReg();
299       LiveInterval &LI = LIS.getInterval(VReg);
300       assert(!LI.empty() && "PBQP graph contains node for empty interval");
301       Inactive.push(std::make_tuple(&LI, 0, NId));
302     }
303
304     while (!Inactive.empty()) {
305       // Tentatively grab the "next" interval - this choice may be overriden
306       // below.
307       IntervalInfo Cur = Inactive.top();
308
309       // Retire any active intervals that end before Cur starts.
310       IntervalSet::iterator RetireItr = Active.begin();
311       while (RetireItr != Active.end() &&
312              (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
313         // If this interval has subsequent segments, add the next one to the
314         // inactive list.
315         if (!isAtLastSegment(*RetireItr))
316           Inactive.push(nextSegment(*RetireItr));
317
318         ++RetireItr;
319       }
320       Active.erase(Active.begin(), RetireItr);
321
322       // One of the newly retired segments may actually start before the
323       // Cur segment, so re-grab the front of the inactive list.
324       Cur = Inactive.top();
325       Inactive.pop();
326
327       // At this point we know that Cur overlaps all active intervals. Add the
328       // interference edges.
329       PBQP::GraphBase::NodeId NId = getNodeId(Cur);
330       for (const auto &A : Active) {
331         PBQP::GraphBase::NodeId MId = getNodeId(A);
332
333         // Do not add an edge when the nodes' allowed registers do not
334         // intersect: there is obviously no interference.
335         if (haveDisjointAllowedRegs(G, NId, MId, D))
336           continue;
337
338         // Check that we haven't already added this edge
339         IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
340         if (EC.count(EK))
341           continue;
342
343         // This is a new edge - add it to the graph.
344         if (!createInterferenceEdge(G, NId, MId, C))
345           setDisjointAllowedRegs(G, NId, MId, D);
346         else
347           EC.insert(EK);
348       }
349
350       // Finally, add Cur to the Active set.
351       Active.insert(Cur);
352     }
353   }
354
355 private:
356
357   // Create an Interference edge and add it to the graph, unless it is
358   // a null matrix, meaning the nodes' allowed registers do not have any
359   // interference. This case occurs frequently between integer and floating
360   // point registers for example.
361   // return true iff both nodes interferes.
362   bool createInterferenceEdge(PBQPRAGraph &G,
363                               PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
364                               IMatrixCache &C) {
365
366     const TargetRegisterInfo &TRI =
367         *G.getMetadata().MF.getSubtarget().getRegisterInfo();
368     const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
369     const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
370
371     // Try looking the edge costs up in the IMatrixCache first.
372     IKey K(&NRegs, &MRegs);
373     IMatrixCache::iterator I = C.find(K);
374     if (I != C.end()) {
375       G.addEdgeBypassingCostAllocator(NId, MId, I->second);
376       return true;
377     }
378
379     PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
380     bool NodesInterfere = false;
381     for (unsigned I = 0; I != NRegs.size(); ++I) {
382       unsigned PRegN = NRegs[I];
383       for (unsigned J = 0; J != MRegs.size(); ++J) {
384         unsigned PRegM = MRegs[J];
385         if (TRI.regsOverlap(PRegN, PRegM)) {
386           M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
387           NodesInterfere = true;
388         }
389       }
390     }
391
392     if (!NodesInterfere)
393       return false;
394
395     PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
396     C[K] = G.getEdgeCostsPtr(EId);
397
398     return true;
399   }
400 };
401
402
403 class Coalescing : public PBQPRAConstraint {
404 public:
405   void apply(PBQPRAGraph &G) override {
406     MachineFunction &MF = G.getMetadata().MF;
407     MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
408     CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
409
410     // Scan the machine function and add a coalescing cost whenever CoalescerPair
411     // gives the Ok.
412     for (const auto &MBB : MF) {
413       for (const auto &MI : MBB) {
414
415         // Skip not-coalescable or already coalesced copies.
416         if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
417           continue;
418
419         unsigned DstReg = CP.getDstReg();
420         unsigned SrcReg = CP.getSrcReg();
421
422         const float Scale = 1.0f / MBFI.getEntryFreq();
423         PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
424
425         if (CP.isPhys()) {
426           if (!MF.getRegInfo().isAllocatable(DstReg))
427             continue;
428
429           PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
430
431           const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
432             G.getNodeMetadata(NId).getAllowedRegs();
433
434           unsigned PRegOpt = 0;
435           while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
436             ++PRegOpt;
437
438           if (PRegOpt < Allowed.size()) {
439             PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
440             NewCosts[PRegOpt + 1] -= CBenefit;
441             G.setNodeCosts(NId, std::move(NewCosts));
442           }
443         } else {
444           PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
445           PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
446           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
447             &G.getNodeMetadata(N1Id).getAllowedRegs();
448           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
449             &G.getNodeMetadata(N2Id).getAllowedRegs();
450
451           PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
452           if (EId == G.invalidEdgeId()) {
453             PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
454                                          Allowed2->size() + 1, 0);
455             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
456             G.addEdge(N1Id, N2Id, std::move(Costs));
457           } else {
458             if (G.getEdgeNode1Id(EId) == N2Id) {
459               std::swap(N1Id, N2Id);
460               std::swap(Allowed1, Allowed2);
461             }
462             PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
463             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
464             G.updateEdgeCosts(EId, std::move(Costs));
465           }
466         }
467       }
468     }
469   }
470
471 private:
472
473   void addVirtRegCoalesce(
474                     PBQPRAGraph::RawMatrix &CostMat,
475                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
476                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
477                     PBQP::PBQPNum Benefit) {
478     assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
479     assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
480     for (unsigned I = 0; I != Allowed1.size(); ++I) {
481       unsigned PReg1 = Allowed1[I];
482       for (unsigned J = 0; J != Allowed2.size(); ++J) {
483         unsigned PReg2 = Allowed2[J];
484         if (PReg1 == PReg2)
485           CostMat[I + 1][J + 1] -= Benefit;
486       }
487     }
488   }
489
490 };
491
492 } // End anonymous namespace.
493
494 // Out-of-line destructor/anchor for PBQPRAConstraint.
495 PBQPRAConstraint::~PBQPRAConstraint() {}
496 void PBQPRAConstraint::anchor() {}
497 void PBQPRAConstraintList::anchor() {}
498
499 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
500   au.setPreservesCFG();
501   au.addRequired<AAResultsWrapperPass>();
502   au.addPreserved<AAResultsWrapperPass>();
503   au.addRequired<SlotIndexes>();
504   au.addPreserved<SlotIndexes>();
505   au.addRequired<LiveIntervals>();
506   au.addPreserved<LiveIntervals>();
507   //au.addRequiredID(SplitCriticalEdgesID);
508   if (customPassID)
509     au.addRequiredID(*customPassID);
510   au.addRequired<LiveStacks>();
511   au.addPreserved<LiveStacks>();
512   au.addRequired<MachineBlockFrequencyInfo>();
513   au.addPreserved<MachineBlockFrequencyInfo>();
514   au.addRequired<MachineLoopInfo>();
515   au.addPreserved<MachineLoopInfo>();
516   au.addRequired<MachineDominatorTree>();
517   au.addPreserved<MachineDominatorTree>();
518   au.addRequired<VirtRegMap>();
519   au.addPreserved<VirtRegMap>();
520   MachineFunctionPass::getAnalysisUsage(au);
521 }
522
523 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
524                                             LiveIntervals &LIS) {
525   const MachineRegisterInfo &MRI = MF.getRegInfo();
526
527   // Iterate over all live ranges.
528   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
529     unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
530     if (MRI.reg_nodbg_empty(Reg))
531       continue;
532     LiveInterval &LI = LIS.getInterval(Reg);
533
534     // If this live interval is non-empty we will use pbqp to allocate it.
535     // Empty intervals we allocate in a simple post-processing stage in
536     // finalizeAlloc.
537     if (!LI.empty()) {
538       VRegsToAlloc.insert(LI.reg);
539     } else {
540       EmptyIntervalVRegs.insert(LI.reg);
541     }
542   }
543 }
544
545 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
546                                    const MachineFunction &MF) {
547   const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
548   for (unsigned i = 0; CSR[i] != 0; ++i)
549     if (TRI.regsOverlap(reg, CSR[i]))
550       return true;
551   return false;
552 }
553
554 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
555                                    Spiller &VRegSpiller) {
556   MachineFunction &MF = G.getMetadata().MF;
557
558   LiveIntervals &LIS = G.getMetadata().LIS;
559   const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
560   const TargetRegisterInfo &TRI =
561       *G.getMetadata().MF.getSubtarget().getRegisterInfo();
562
563   std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
564
565   while (!Worklist.empty()) {
566     unsigned VReg = Worklist.back();
567     Worklist.pop_back();
568
569     const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
570     LiveInterval &VRegLI = LIS.getInterval(VReg);
571
572     // Record any overlaps with regmask operands.
573     BitVector RegMaskOverlaps;
574     LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
575
576     // Compute an initial allowed set for the current vreg.
577     std::vector<unsigned> VRegAllowed;
578     ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
579     for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
580       unsigned PReg = RawPRegOrder[I];
581       if (MRI.isReserved(PReg))
582         continue;
583
584       // vregLI crosses a regmask operand that clobbers preg.
585       if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
586         continue;
587
588       // vregLI overlaps fixed regunit interference.
589       bool Interference = false;
590       for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
591         if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
592           Interference = true;
593           break;
594         }
595       }
596       if (Interference)
597         continue;
598
599       // preg is usable for this virtual register.
600       VRegAllowed.push_back(PReg);
601     }
602
603     // Check for vregs that have no allowed registers. These should be
604     // pre-spilled and the new vregs added to the worklist.
605     if (VRegAllowed.empty()) {
606       SmallVector<unsigned, 8> NewVRegs;
607       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
608       Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
609       continue;
610     }
611
612     PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
613
614     // Tweak cost of callee saved registers, as using then force spilling and
615     // restoring them. This would only happen in the prologue / epilogue though.
616     for (unsigned i = 0; i != VRegAllowed.size(); ++i)
617       if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
618         NodeCosts[1 + i] += 1.0;
619
620     PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
621     G.getNodeMetadata(NId).setVReg(VReg);
622     G.getNodeMetadata(NId).setAllowedRegs(
623       G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
624     G.getMetadata().setNodeIdForVReg(VReg, NId);
625   }
626 }
627
628 void RegAllocPBQP::spillVReg(unsigned VReg,
629                              SmallVectorImpl<unsigned> &NewIntervals,
630                              MachineFunction &MF, LiveIntervals &LIS,
631                              VirtRegMap &VRM, Spiller &VRegSpiller) {
632
633   VRegsToAlloc.erase(VReg);
634   LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM);
635   VRegSpiller.spill(LRE);
636
637   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
638   (void)TRI;
639   DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
640                << LRE.getParent().weight << ", New vregs: ");
641
642   // Copy any newly inserted live intervals into the list of regs to
643   // allocate.
644   for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
645        I != E; ++I) {
646     const LiveInterval &LI = LIS.getInterval(*I);
647     assert(!LI.empty() && "Empty spill range.");
648     DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
649     VRegsToAlloc.insert(LI.reg);
650   }
651
652   DEBUG(dbgs() << ")\n");
653 }
654
655 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
656                                      const PBQP::Solution &Solution,
657                                      VirtRegMap &VRM,
658                                      Spiller &VRegSpiller) {
659   MachineFunction &MF = G.getMetadata().MF;
660   LiveIntervals &LIS = G.getMetadata().LIS;
661   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
662   (void)TRI;
663
664   // Set to true if we have any spills
665   bool AnotherRoundNeeded = false;
666
667   // Clear the existing allocation.
668   VRM.clearAllVirt();
669
670   // Iterate over the nodes mapping the PBQP solution to a register
671   // assignment.
672   for (auto NId : G.nodeIds()) {
673     unsigned VReg = G.getNodeMetadata(NId).getVReg();
674     unsigned AllocOption = Solution.getSelection(NId);
675
676     if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
677       unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
678       DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
679             << TRI.getName(PReg) << "\n");
680       assert(PReg != 0 && "Invalid preg selected.");
681       VRM.assignVirt2Phys(VReg, PReg);
682     } else {
683       // Spill VReg. If this introduces new intervals we'll need another round
684       // of allocation.
685       SmallVector<unsigned, 8> NewVRegs;
686       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
687       AnotherRoundNeeded |= !NewVRegs.empty();
688     }
689   }
690
691   return !AnotherRoundNeeded;
692 }
693
694 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
695                                  LiveIntervals &LIS,
696                                  VirtRegMap &VRM) const {
697   MachineRegisterInfo &MRI = MF.getRegInfo();
698
699   // First allocate registers for the empty intervals.
700   for (RegSet::const_iterator
701          I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
702          I != E; ++I) {
703     LiveInterval &LI = LIS.getInterval(*I);
704
705     unsigned PReg = MRI.getSimpleHint(LI.reg);
706
707     if (PReg == 0) {
708       const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
709       PReg = RC.getRawAllocationOrder(MF).front();
710     }
711
712     VRM.assignVirt2Phys(LI.reg, PReg);
713   }
714 }
715
716 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
717                                          unsigned NumInstr) {
718   // All intervals have a spill weight that is mostly proportional to the number
719   // of uses, with uses in loops having a bigger weight.
720   return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
721 }
722
723 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
724   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
725   MachineBlockFrequencyInfo &MBFI =
726     getAnalysis<MachineBlockFrequencyInfo>();
727
728   VirtRegMap &VRM = getAnalysis<VirtRegMap>();
729
730   calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
731                                 MBFI, normalizePBQPSpillWeight);
732
733   std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
734
735   MF.getRegInfo().freezeReservedRegs(MF);
736
737   DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
738
739   // Allocator main loop:
740   //
741   // * Map current regalloc problem to a PBQP problem
742   // * Solve the PBQP problem
743   // * Map the solution back to a register allocation
744   // * Spill if necessary
745   //
746   // This process is continued till no more spills are generated.
747
748   // Find the vreg intervals in need of allocation.
749   findVRegIntervalsToAlloc(MF, LIS);
750
751 #ifndef NDEBUG
752   const Function &F = *MF.getFunction();
753   std::string FullyQualifiedName =
754     F.getParent()->getModuleIdentifier() + "." + F.getName().str();
755 #endif
756
757   // If there are non-empty intervals allocate them using pbqp.
758   if (!VRegsToAlloc.empty()) {
759
760     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
761     std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
762       llvm::make_unique<PBQPRAConstraintList>();
763     ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
764     ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
765     if (PBQPCoalescing)
766       ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
767     ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
768
769     bool PBQPAllocComplete = false;
770     unsigned Round = 0;
771
772     while (!PBQPAllocComplete) {
773       DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
774
775       PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
776       initializeGraph(G, VRM, *VRegSpiller);
777       ConstraintsRoot->apply(G);
778
779 #ifndef NDEBUG
780       if (PBQPDumpGraphs) {
781         std::ostringstream RS;
782         RS << Round;
783         std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
784                                     ".pbqpgraph";
785         std::error_code EC;
786         raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
787         DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
788               << GraphFileName << "\"\n");
789         G.dump(OS);
790       }
791 #endif
792
793       PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
794       PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
795       ++Round;
796     }
797   }
798
799   // Finalise allocation, allocate empty ranges.
800   finalizeAlloc(MF, LIS, VRM);
801   VRegsToAlloc.clear();
802   EmptyIntervalVRegs.clear();
803
804   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
805
806   return true;
807 }
808
809 /// Create Printable object for node and register info.
810 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
811                                const PBQP::RegAlloc::PBQPRAGraph &G) {
812   return Printable([NId, &G](raw_ostream &OS) {
813     const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
814     const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
815     unsigned VReg = G.getNodeMetadata(NId).getVReg();
816     const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
817     OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
818   });
819 }
820
821 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
822   for (auto NId : nodeIds()) {
823     const Vector &Costs = getNodeCosts(NId);
824     assert(Costs.getLength() != 0 && "Empty vector in graph.");
825     OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
826   }
827   OS << '\n';
828
829   for (auto EId : edgeIds()) {
830     NodeId N1Id = getEdgeNode1Id(EId);
831     NodeId N2Id = getEdgeNode2Id(EId);
832     assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
833     const Matrix &M = getEdgeCosts(EId);
834     assert(M.getRows() != 0 && "No rows in matrix.");
835     assert(M.getCols() != 0 && "No cols in matrix.");
836     OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
837     OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
838     OS << M << '\n';
839   }
840 }
841
842 void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }
843
844 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
845   OS << "graph {\n";
846   for (auto NId : nodeIds()) {
847     OS << "  node" << NId << " [ label=\""
848        << PrintNodeInfo(NId, *this) << "\\n"
849        << getNodeCosts(NId) << "\" ]\n";
850   }
851
852   OS << "  edge [ len=" << nodeIds().size() << " ]\n";
853   for (auto EId : edgeIds()) {
854     OS << "  node" << getEdgeNode1Id(EId)
855        << " -- node" << getEdgeNode2Id(EId)
856        << " [ label=\"";
857     const Matrix &EdgeCosts = getEdgeCosts(EId);
858     for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
859       OS << EdgeCosts.getRowAsVector(i) << "\\n";
860     }
861     OS << "\" ]\n";
862   }
863   OS << "}\n";
864 }
865
866 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
867   return new RegAllocPBQP(customPassID);
868 }
869
870 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
871   return createPBQPRegisterAllocator();
872 }
873
874 #undef DEBUG_TYPE