d14270bbce7a8726f32ac8b6fd6c7a14d3d4c534
[pingpong.git] / Code / Projects / SmartPlugDetector / src / main / java / edu / uci / iotproject / detection / SignatureDetector.java
1 package edu.uci.iotproject.detection;
2
3 import edu.uci.iotproject.analysis.TriggerTrafficExtractor;
4 import edu.uci.iotproject.analysis.UserAction;
5 import edu.uci.iotproject.io.PcapHandleReader;
6 import edu.uci.iotproject.util.PrintUtils;
7 import org.jgrapht.GraphPath;
8 import org.jgrapht.alg.shortestpath.DijkstraShortestPath;
9 import org.jgrapht.graph.DefaultWeightedEdge;
10 import org.jgrapht.graph.SimpleDirectedWeightedGraph;
11 import org.pcap4j.core.*;
12
13 import java.time.Duration;
14 import java.time.ZoneId;
15 import java.time.format.DateTimeFormatter;
16 import java.time.format.FormatStyle;
17 import java.util.*;
18 import java.util.function.Consumer;
19
20 /**
21  * Detects an event signature that spans one or multiple TCP connections.
22  *
23  * @author Janus Varmarken {@literal <jvarmark@uci.edu>}
24  * @author Rahmadi Trimananda {@literal <rtrimana@uci.edu>}
25  */
26 public class SignatureDetector implements PacketListener, ClusterMatcher.ClusterMatchObserver {
27
28     // Test client
29     public static void main(String[] args) throws PcapNativeException, NotOpenException {
30         //        String path = "/scratch/July-2018"; // Rahmadi
31         String path = "/Users/varmarken/temp/UCI IoT Project/experiments"; // Janus
32         final String inputPcapFile = path + "/2018-08/kwikset-doorlock/kwikset3.wlan1.local.pcap";
33         final String onSignatureFile = path + "/2018-08/kwikset-doorlock/onSignature-Kwikset-Doorlock-phone.sig";
34         final String offSignatureFile = path + "/2018-08/kwikset-doorlock/offSignature-Kwikset-Doorlock-phone.sig";
35
36         List<List<List<PcapPacket>>> onSignature = PrintUtils.deserializeSignatureFromFile(onSignatureFile);
37         List<List<List<PcapPacket>>> offSignature = PrintUtils.deserializeSignatureFromFile(offSignatureFile);
38
39         SignatureDetector onDetector = new SignatureDetector(onSignature, null);
40         SignatureDetector offDetector = new SignatureDetector(offSignature, null);
41
42         final DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofLocalizedDateTime(FormatStyle.MEDIUM).
43                 withLocale(Locale.US).withZone(ZoneId.of("America/Los_Angeles"));
44
45         // Outputs information about a detected event to std.out
46         final Consumer<UserAction> outputter = ua -> {
47             String eventDescription;
48             switch (ua.getType()) {
49                 case TOGGLE_ON:
50                     eventDescription = "ON";
51                     break;
52                 case TOGGLE_OFF:
53                     eventDescription = "OFF";
54                     break;
55                 default:
56                     throw new AssertionError("unhandled event type");
57             }
58             String output = String.format("[ !!! %s SIGNATURE DETECTED at %s !!! ]",
59                     eventDescription, dateTimeFormatter.format(ua.getTimestamp()));
60             System.out.println(output);
61         };
62
63         // Let's create observers that construct a UserAction representing the detected event.
64         final List<UserAction> detectedEvents = new ArrayList<>();
65         onDetector.addObserver((searched, match) -> {
66             PcapPacket firstPkt = match.get(0).get(0);
67             detectedEvents.add(new UserAction(UserAction.Type.TOGGLE_ON, firstPkt.getTimestamp()));
68         });
69         offDetector.addObserver((searched, match) -> {
70             PcapPacket firstPkt = match.get(0).get(0);
71             detectedEvents.add(new UserAction(UserAction.Type.TOGGLE_OFF, firstPkt.getTimestamp()));
72         });
73
74         PcapHandle handle;
75         try {
76             handle = Pcaps.openOffline(inputPcapFile, PcapHandle.TimestampPrecision.NANO);
77         } catch (PcapNativeException pne) {
78             handle = Pcaps.openOffline(inputPcapFile);
79         }
80         PcapHandleReader reader = new PcapHandleReader(handle, p -> true, onDetector, offDetector);
81         reader.readFromHandle();
82
83         // TODO: need a better way of triggering detection than this...
84         onDetector.mClusterMatchers.forEach(cm -> cm.performDetection());
85         offDetector.mClusterMatchers.forEach(cm -> cm.performDetection());
86
87         // Sort the list of detected events by timestamp to make it easier to compare it line-by-line with the trigger
88         // times file.
89         Collections.sort(detectedEvents, Comparator.comparing(UserAction::getTimestamp));
90         // Output the detected events
91         detectedEvents.forEach(outputter);
92     }
93
94     /**
95      * The signature that this {@link SignatureDetector} is searching for.
96      */
97     private final List<List<List<PcapPacket>>> mSignature;
98
99     /**
100      * The {@link ClusterMatcher}s in charge of detecting each individual sequence of packets that together make up the
101      * the signature.
102      */
103     private final List<ClusterMatcher> mClusterMatchers;
104
105     /**
106      * For each {@code i} ({@code i >= 0 && i < pendingMatches.length}), {@code pendingMatches[i]} holds the matches
107      * found by the {@link ClusterMatcher} at {@code mClusterMatchers.get(i)} that have yet to be "consumed", i.e.,
108      * have yet to be included in a signature detected by this {@link SignatureDetector} (a signature can be encompassed
109      * of multiple packet sequences occurring shortly after one another on multiple connections).
110      */
111     private final List<List<PcapPacket>>[] pendingMatches;
112
113     /**
114      * Maps a {@link ClusterMatcher} to its corresponding index in {@link #pendingMatches}.
115      */
116     private final Map<ClusterMatcher, Integer> mClusterMatcherIds;
117
118     private final List<SignatureDetectionObserver> mObservers = new ArrayList<>();
119
120     public SignatureDetector(List<List<List<PcapPacket>>> searchedSignature, String routerWanIp) {
121         // note: doesn't protect inner lists from changes :'(
122         mSignature = Collections.unmodifiableList(searchedSignature);
123         // Generate corresponding/appropriate ClusterMatchers based on the provided signature
124         List<ClusterMatcher> clusterMatchers = new ArrayList<>();
125         for (List<List<PcapPacket>> cluster : mSignature) {
126             clusterMatchers.add(new ClusterMatcher(cluster, routerWanIp, this));
127         }
128         mClusterMatchers = Collections.unmodifiableList(clusterMatchers);
129
130         // < exploratory >
131         pendingMatches = new List[mClusterMatchers.size()];
132         for (int i = 0; i < pendingMatches.length; i++) {
133             pendingMatches[i] = new ArrayList<>();
134         }
135         Map<ClusterMatcher, Integer> clusterMatcherIds = new HashMap<>();
136         for (int i = 0; i < mClusterMatchers.size(); i++) {
137             clusterMatcherIds.put(mClusterMatchers.get(i), i);
138         }
139         mClusterMatcherIds = Collections.unmodifiableMap(clusterMatcherIds);
140     }
141
142     public void addObserver(SignatureDetectionObserver observer) {
143         mObservers.add(observer);
144     }
145
146     public boolean removeObserver(SignatureDetectionObserver observer) {
147         return mObservers.remove(observer);
148     }
149
150     @Override
151     public void gotPacket(PcapPacket packet) {
152         // simply delegate packet reception to all ClusterMatchers.
153         mClusterMatchers.forEach(cm -> cm.gotPacket(packet));
154     }
155
156     @Override
157     public void onMatch(ClusterMatcher clusterMatcher, List<PcapPacket> match) {
158         // Add the match at the corresponding index
159         pendingMatches[mClusterMatcherIds.get(clusterMatcher)].add(match);
160         checkSignatureMatch3();
161
162
163         // INITIAL
164 //        // No need to check for signature presence until all ClusterMatchers have found a match.
165 //        if (Arrays.stream(pendingMatches).noneMatch(l -> l.isEmpty())) {
166 //            // There's potentially a signature match...
167 //            // TODO need to check if all matches are within X seconds of one another
168 //
169 //            List<List<PcapPacket>> signatureMatch = new ArrayList<>();
170 //            for (int i = 0; i < pendingMatches.length; i++) {
171 //                if (signatureMatch.size() != i) {
172 //                    // Didn't manage to add sequence at previous index to signature match, so not a signature match.
173 //                    // TODO: clear array?
174 //                    return;
175 //                }
176 //                if (i == 0) {
177 //                    // Special case with no preceding sequence as this is the first sequence of the signature.
178 //                    // TODO...
179 //                    signatureMatch.add(pendingMatches[i].get(0)); // TODO: pick earliest or latest match?
180 //                } else {
181 //                    // Fetch the sequence in the signature that precedes this sequence
182 //                    List<PcapPacket> prev = signatureMatch.get(i-1);
183 //                    // And get a hold of it's latest packet; note that a match should never be empty so .get() is safe.
184 //                    PcapPacket prevLatestPkt = prev.stream().max(Comparator.comparing(PcapPacket::getTimestamp)).get();
185 //                    /*
186 //                     * Do any of the matches of the sequence at the current index of the signature lie later in time
187 //                     * than the match of the sequence that precedes it? If so, we are good and can proceed, otherwise we
188 //                     * do not have a signature match.
189 //                     */
190 //                    Optional<List<PcapPacket>> curr = pendingMatches[i].stream().filter(pkts -> pkts.stream().allMatch(
191 //                            pkt -> pkt.getTimestamp().isAfter(prevLatestPkt.getTimestamp()))).findFirst();
192 //                    if (curr.isPresent()) {
193 //                        // So far so good, keep going.
194 //                        signatureMatch.add(curr.get());
195 //                    } else {
196 //                        // Bummer, not a signature match.
197 //                        // TODO: clear array?
198 //                        return;
199 //                    }
200 //                }
201 //            }
202 //            // If we make it out of the loop, it means that we have managed to construct a match of the signature.
203 //            // Notify observers of the match.
204 //            // TODO: clear array? At the very least we need to remove those entries that we used for this match so they are not reused later.
205 //            mObservers.forEach(obs -> obs.onSignatureDetected(mSignature, signatureMatch));
206 //        }
207
208     }
209
210     private void checkSignatureMatch3() {
211         // << Graph-based approach using Balint's idea. >>
212         // This implementation assumes that the packets in the inner lists (the sequences) are ordered by asc timestamp.
213
214         // There cannot be a signature match until each ClusterMatcher has found a match of its respective sequence.
215         if (Arrays.stream(pendingMatches).noneMatch(l -> l.isEmpty())) {
216             // Construct the DAG
217             final SimpleDirectedWeightedGraph<Vertex, DefaultWeightedEdge> graph =
218                     new SimpleDirectedWeightedGraph<>(DefaultWeightedEdge.class);
219             // Add a vertex for each match found by all ClusterMatchers
220             // And maintain an array to keep track of what cluster matcher each vertex corresponds to
221             final List<Vertex>[] vertices = new List[pendingMatches.length];
222             for (int i = 0; i < pendingMatches.length; i++) {
223                 vertices[i] = new ArrayList<>();
224                 for (List<PcapPacket> sequence : pendingMatches[i]) {
225                     Vertex v = new Vertex(sequence);
226                     vertices[i].add(v); // retain reference for later when we are to add edges
227                     graph.addVertex(v); // add to vertex to graph
228                 }
229             }
230             // Add dummy source and sink vertices to facilitate search.
231             final Vertex source = new Vertex(null);
232             final Vertex sink = new Vertex(null);
233             graph.addVertex(source);
234             graph.addVertex(sink);
235             // The source is connected to all vertices that wrap the sequences detected by ClusterMatcher at index 0.
236             // Note: zero cost edges as this is just a dummy link to facilitate search from a common start node.
237             for (Vertex v : vertices[0]) {
238                 DefaultWeightedEdge edge = graph.addEdge(source, v);
239                 graph.setEdgeWeight(edge, 0.0);
240             }
241             // Similarly, all vertices that wrap the sequences detected by the last ClusterMatcher of the signature
242             // are connected to the sink node.
243             for (Vertex v : vertices[vertices.length-1]) {
244                 DefaultWeightedEdge edge = graph.addEdge(v, sink);
245                 graph.setEdgeWeight(edge, 0.0);
246             }
247             // Now link sequences detected by ClusterMatcher at index i to sequences detected by ClusterMatcher at index
248             // i+1 if they obey the timestamp constraint (i.e., that the latter is later in time than the former).
249             for (int i = 0; i < vertices.length; i++) {
250                 int j = i + 1;
251                 if (j < vertices.length) {
252                     for (Vertex iv : vertices[i]) {
253                         PcapPacket ivLast = iv.sequence.get(iv.sequence.size()-1);
254                         for (Vertex jv : vertices[j]) {
255                             PcapPacket jvFirst = jv.sequence.get(jv.sequence.size()-1);
256                             if (ivLast.getTimestamp().isBefore(jvFirst.getTimestamp())) {
257                                 DefaultWeightedEdge edge = graph.addEdge(iv, jv);
258                                 // The weight is the duration of the i'th sequence plus the duration between the i'th
259                                 // and i+1'th sequence.
260                                 Duration d = Duration.
261                                         between(iv.sequence.get(0).getTimestamp(), jvFirst.getTimestamp());
262                                 // Unfortunately weights are double values, so must convert from long to double.
263                                 // TODO: need nano second precision? If so, use d.toNanos().
264                                 // TODO: risk of overflow when converting from long to double..?
265                                 graph.setEdgeWeight(edge, Long.valueOf(d.toMillis()).doubleValue());
266                             }
267                             // Alternative version if we cannot assume that sequences are ordered by timestamp:
268 //                            if (iv.sequence.stream().max(Comparator.comparing(PcapPacket::getTimestamp)).get()
269 //                                    .getTimestamp().isBefore(jv.sequence.stream().min(
270 //                                            Comparator.comparing(PcapPacket::getTimestamp)).get().getTimestamp())) {
271 //
272 //                            }
273                         }
274                     }
275                 }
276             }
277             // Graph construction complete, run shortest-path to find a (potential) signature match.
278             DijkstraShortestPath<Vertex, DefaultWeightedEdge> dijkstra = new DijkstraShortestPath<>(graph);
279             GraphPath<Vertex, DefaultWeightedEdge> shortestPath = dijkstra.getPath(source, sink);
280             if (shortestPath != null) {
281                 // The total weight is the duration between the first packet of the first sequence and the last packet
282                 // of the last sequence, so we simply have to compare the weight against the timeframe that we allow
283                 // the signature to span. For now we just use the inclusion window we defined for training purposes.
284                 // Note however, that we must convert back from double to long as the weight is stored as a double in
285                 // JGraphT's API.
286                 if (((long)shortestPath.getWeight()) < TriggerTrafficExtractor.INCLUSION_WINDOW_MILLIS) {
287                     // There's a signature match!
288                     // Extract the match from the vertices
289                     List<List<PcapPacket>> signatureMatch = new ArrayList<>();
290                     for(Vertex v : shortestPath.getVertexList()) {
291                         if (v == source || v == sink) {
292                             // Skip the dummy source and sink nodes.
293                             continue;
294                         }
295                         signatureMatch.add(v.sequence);
296                         // As there is a one-to-one correspondence between vertices[] and pendingMatches[], we know that
297                         // the sequence we've "consumed" for index i of the matched signature is also at index i in
298                         // pendingMatches. We must remove it from pendingMatches so that we don't use it to construct
299                         // another signature match in a later call.
300                         pendingMatches[signatureMatch.size()-1].remove(v.sequence);
301                     }
302                     // Declare success: notify observers
303                     mObservers.forEach(obs -> obs.onSignatureDetected(mSignature,
304                             Collections.unmodifiableList(signatureMatch)));
305                 }
306             }
307         }
308     }
309
310     private void checkSignatureMatch2() {
311         /*
312          * In this implementation, we assume that the packets in the inner lists (the sequences) are ordered by
313          * timestamp (ascending) AND that the outer list is ordered by timestamp of the most recent packet of each inner
314          * list (i.e., the last packet of the inner list).
315          */
316         if (Arrays.stream(pendingMatches).noneMatch(l -> l.isEmpty())) {
317             /*
318              * The signature match consisting of one (or a set of) sequence(s) observed on (potentially multiple)
319              * separate TCP connections. The signature match is reconstructed from the matches found by the individual
320              * ClusterMatchers that each look for a separate sequence of packets occurring on one TCP connection.
321              * Invariant used below: if all entries are non-null, we have a match; initially all entries are null.
322              */
323             List<PcapPacket>[] signatureMatch = new List[pendingMatches.length];
324             // List<List<PcapPacket>> signatureMatch = new ArrayList<>();
325             /*
326              * For the first sequence of the signature, we give preference to the later samples as that strategy makes
327              * it more likely that the full set of sequences that make up the signature fit in the time window that
328              * dictates the maximum time between the sequences of the signature.
329              */
330             for (int i = pendingMatches[0].size()-1; i >= 0; i--) {
331                 signatureMatch[0] = pendingMatches[0].get(i);
332                 // Having selected the most recent sequence
333                 for (int j = 1; j < pendingMatches.length; j++) {
334                     List<List<PcapPacket>> entry = pendingMatches[j];
335
336                 }
337
338             }
339
340
341             /*
342             // First sort by duration
343             Stream<List<PcapPacket>> sortedByDuration = pendingMatches[0].stream().sorted((l1, l2) -> {
344                 Instant l1Max = l1.get(l1.size()-1).getTimestamp();
345                 Instant l1Min = l1.get(0).getTimestamp();
346                 Instant l2Max = l2.get(l2.size()-1).getTimestamp();
347                 Instant l2Min = l2.get(0).getTimestamp();
348                 Duration l1Duration = Duration.between(l1Min, l1Max);
349                 Duration l2Duration = Duration.between(l2Min, l2Max);
350
351                 return l1Duration.compareTo(l2Duration);
352             });
353             for (int i = 1; i < pendingMatches.length; i++) {
354                 pendingMatches[i].stream()
355             }
356             */
357         }
358
359     }
360
361     /*
362     private void checkSignatureMatch() {
363         // There cannot be a signature match until each ClusterMatcher has found a match of its respective sequence.
364         if (Arrays.stream(pendingMatches).noneMatch(l -> l.isEmpty())) {
365             List<List<PcapPacket>> sigMatch = new ArrayList<>();
366             for (int i = 0; i < pendingMatches.length; i++) {
367                 if (i + 1 < pendingMatches.length) {
368                     // We want to select the current element that is the latest, yet lies before the next element.
369                     // Start by fetching the matches at the next index.
370                     List<List<PcapPacket>> nextIdxMatches = pendingMatches[i+1];
371                     // Create a stream that contains the minimum packet timestamp of each inner list of nextIdMatches
372                     Stream<PcapPacket> nextMinTimestamps = nextIdxMatches.stream().
373                             map(l -> l.stream().min(Comparator.comparing(PcapPacket::getTimestamp)).get());
374                     // Create a stream that contains the maximum packet timestamps of each inner list of current index
375                     Stream<PcapPacket> currMaxTimestamps = pendingMatches[i].stream().
376                             map(ps -> ps.stream().max(Comparator.comparing(PcapPacket::getTimestamp)).get());
377                     currMaxTimestamps.filter(p1 -> nextMinTimestamps.anyMatch(p2 -> p2.getTimestamp().isAfter(p1.getTimestamp())));
378
379
380
381                     //pendingMatches[i].stream().filter(ps -> ps.stream().map(p1 -> ))
382
383
384
385
386                     pendingMatches[i].stream().filter(ps -> ps.stream().allMatch(p -> p.getTimestamp().isBefore(
387                     )))
388
389
390                     pendingMatches[i].stream().filter(ps -> ps.stream().allMatch(p -> p.getTimestamp().isBefore(
391
392                     )))
393
394                     Stream<PcapPacket> currMaxTimestamps = pendingMatches[i].stream().
395                             map(ps -> ps.stream().max(Comparator.comparing(PcapPacket::getTimestamp)));
396
397
398 //                    pendingMatches[i].stream().filter(ps -> ps.stream().allMatch(p -> p.getTimestamp().isBefore(
399 //                            // which match (item) in 'next' do we consider?
400 //                            next.stream().
401 //                    )))
402                 }
403
404             }
405         }
406     }
407     */
408     interface SignatureDetectionObserver {
409         // TODO: add argument that points to the packets matching the signature
410         void onSignatureDetected(List<List<List<PcapPacket>>> searchedSignature,
411                                  List<List<PcapPacket>> matchingTraffic);
412     }
413
414     /**
415      * Encapsulates a {@code List<PcapPacket>} so as to allow the list to be used as a vertex in a graph while avoiding
416      * the expensive {@link AbstractList#equals(Object)} calls when adding vertices to the graph.
417      * Using this wrapper makes the incurred {@code equals(Object)} calls delegate to {@link Object#equals(Object)}
418      * instead of {@link AbstractList#equals(Object)}. The net effect is a faster implementation, but the graph will not
419      * recognize two lists that contain the same items--from a value and not reference point of view--as the same
420      * vertex. However, this is fine for our purposes -- in fact restricting it to reference equality seems more
421      * appropriate.
422      */
423     private static class Vertex {
424         private final List<PcapPacket> sequence;
425         private Vertex(List<PcapPacket> wrappedSequence) {
426             sequence = wrappedSequence;
427         }
428     }
429 }