Adding range-based matching for Layer 2 and fusing it off for now (the results are...
[pingpong.git] / Code / Projects / PacketLevelSignatureExtractor / src / main / java / edu / uci / iotproject / detection / layer3 / Layer3ClusterMatcher.java
1 package edu.uci.iotproject.detection.layer3;
2
3 import edu.uci.iotproject.detection.AbstractClusterMatcher;
4 import edu.uci.iotproject.detection.ClusterMatcherObserver;
5 import edu.uci.iotproject.trafficreassembly.layer3.Conversation;
6 import edu.uci.iotproject.trafficreassembly.layer3.TcpReassembler;
7 import edu.uci.iotproject.analysis.TcpConversationUtils;
8 import edu.uci.iotproject.io.PcapHandleReader;
9 import edu.uci.iotproject.util.PrintUtils;
10 import org.pcap4j.core.*;
11
12 import java.time.ZoneId;
13 import java.util.*;
14 import java.util.stream.Collectors;
15
16 import static edu.uci.iotproject.util.PcapPacketUtils.*;
17
18 /**
19  * Searches a traffic trace for sequences of packets "belong to" a given cluster (in other words, attempts to classify
20  * traffic as pertaining to a given cluster).
21  *
22  * @author Janus Varmarken {@literal <jvarmark@uci.edu>}
23  * @author Rahmadi Trimananda {@literal <rtrimana@uci.edu>}
24  */
25 public class Layer3ClusterMatcher extends AbstractClusterMatcher implements PacketListener {
26
27     // Test client
28     public static void main(String[] args) throws PcapNativeException, NotOpenException {
29
30 //        String path = "/scratch/July-2018"; // Rahmadi
31 //        String path = "/Users/varmarken/temp/UCI IoT Project/experiments"; // Janus
32 //        final String inputPcapFile = path + "/2018-07/dlink/dlink.wlan1.local.pcap";
33 //        final String signatureFile = path + "/2018-07/dlink/offSignature1.sig";
34 //
35 //        List<List<PcapPacket>> signature = PrintUtils.deserializeClustersFromFile(signatureFile);
36 //        Layer3ClusterMatcher clusterMatcher = new Layer3ClusterMatcher(signature, null,
37 //                (sig, match) -> System.out.println(
38 //                        String.format("[ !!! SIGNATURE DETECTED AT %s !!! ]",
39 //                                match.get(0).getTimestamp().atZone(ZoneId.of("America/Los_Angeles")))
40 //                )
41 //        );
42 //
43 //        PcapHandle handle;
44 //        try {
45 //            handle = Pcaps.openOffline(inputPcapFile, PcapHandle.TimestampPrecision.NANO);
46 //        } catch (PcapNativeException pne) {
47 //            handle = Pcaps.openOffline(inputPcapFile);
48 //        }
49 //        PcapHandleReader reader = new PcapHandleReader(handle, p -> true, clusterMatcher);
50 //        reader.readFromHandle();
51 //        clusterMatcher.performDetection();
52     }
53
54     /**
55      * The ordered directions of packets in the sequences that make up {@link #mCluster}.
56      */
57     private final Conversation.Direction[] mClusterMemberDirections;
58
59     /**
60      * For reassembling the observed traffic into TCP connections.
61      */
62     private final TcpReassembler mTcpReassembler = new TcpReassembler();
63
64     /**
65      * IP of the router's WAN port (if analyzed traffic is captured at the ISP's point of view).
66      */
67     private final String mRouterWanIp;
68
69     /**
70      * Epsilon value used by the DBSCAN algorithm; it is used again for range-based matching here.
71      */
72     private final double mEps;
73
74     /**
75      * Create a {@link Layer3ClusterMatcher}.
76      * @param cluster The cluster that traffic is matched against.
77      * @param routerWanIp The router's WAN IP if examining traffic captured at the ISP's point of view (used for
78      *                    determining the direction of packets).
79      * @param eps The epsilon value used in the DBSCAN algorithm.
80      * @param isRangeBased The boolean that decides if it is range-based vs. strict matching.
81      * @param detectionObservers Client code that wants to get notified whenever the {@link Layer3ClusterMatcher} detects that
82      *                          (a subset of) the examined traffic is similar to the traffic that makes up
83      *                          {@code cluster}, i.e., when the examined traffic is classified as pertaining to
84      *                          {@code cluster}.
85      */
86     public Layer3ClusterMatcher(List<List<PcapPacket>> cluster, String routerWanIp, boolean isRangeBased, double eps,
87                                 ClusterMatcherObserver... detectionObservers) {
88         super(cluster, isRangeBased);
89         Objects.requireNonNull(detectionObservers, "detectionObservers cannot be null");
90         for (ClusterMatcherObserver obs : detectionObservers) {
91             addObserver(obs);
92         }
93         // Build the cluster members' direction sequence.
94         // Note: assumes that the provided cluster was captured within the local network (routerWanIp is set to null).
95         mClusterMemberDirections = getPacketDirections(cluster.get(0), null);
96         /*
97          * Enforce restriction on cluster members: all representatives must exhibit the same direction pattern and
98          * contain the same number of packets. Note that this is a somewhat heavy operation, so it may be disabled later
99          * on in favor of performance. However, it is only run once (at instantiation), so the overhead may be warranted
100          * in order to ensure correctness, especially during the development/debugging phase.
101          */
102         if (!isRangeBased) {    // Only when it is not range-based
103             if (mCluster.stream().
104                     anyMatch(inner -> !Arrays.equals(mClusterMemberDirections, getPacketDirections(inner, null)))) {
105                 throw new IllegalArgumentException(
106                         "cluster members must contain the same number of packets and exhibit the same packet direction " +
107                                 "pattern"
108                 );
109             }
110         }
111         mEps = eps;
112         mRouterWanIp = routerWanIp;
113     }
114
115     @Override
116     public void gotPacket(PcapPacket packet) {
117         // Present packet to TCP reassembler so that it can be mapped to a connection (if it is a TCP packet).
118         mTcpReassembler.gotPacket(packet);
119     }
120
121     /**
122      * Get the cluster that describes the packet sequence that this {@link Layer3ClusterMatcher} is searching for.
123      * @return the cluster that describes the packet sequence that this {@link Layer3ClusterMatcher} is searching for.
124      */
125     public List<List<PcapPacket>> getCluster() {
126         return mCluster;
127     }
128
129     public void performDetectionRangeBased() {
130         /*
131          * Let's start out simple by building a version that only works for signatures that do not span across multiple
132          * TCP conversations...
133          */
134         for (Conversation c : mTcpReassembler.getTcpConversations()) {
135             if (c.isTls() && c.getTlsApplicationDataPackets().isEmpty() || !c.isTls() && c.getPackets().isEmpty()) {
136                 // Skip empty conversations.
137                 continue;
138             }
139             List<PcapPacket> lowerBound = mCluster.get(0);
140             List<PcapPacket> upperBound = mCluster.get(1);
141             if (isTlsSequence(lowerBound) != c.isTls() || isTlsSequence(upperBound) != c.isTls()) {
142                 // We consider it a mismatch if one is a TLS application data sequence and the other is not.
143                 continue;
144             }
145             // Fetch set of packets to examine based on TLS or not.
146             List<PcapPacket> cPkts = c.isTls() ? c.getTlsApplicationDataPackets() : c.getPackets();
147             Optional<List<PcapPacket>> match;
148             while ((match = findSubsequenceInSequence(lowerBound, upperBound, cPkts, mClusterMemberDirections, null)).
149                     isPresent()) {
150                 List<PcapPacket> matchSeq = match.get();
151                 // Notify observers about the match.
152                 mObservers.forEach(o -> o.onMatch(Layer3ClusterMatcher.this, matchSeq));
153                 /*
154                  * Get the index in cPkts of the last packet in the sequence of packets that matches the searched
155                  * signature sequence.
156                  */
157                 int matchSeqEndIdx = cPkts.indexOf(matchSeq.get(matchSeq.size() - 1));
158                 // We restart the search for the signature sequence immediately after that index, so truncate cPkts.
159                 cPkts = cPkts.stream().skip(matchSeqEndIdx + 1).collect(Collectors.toList());
160             }
161         }
162     }
163
164     public void performDetectionConservative() {
165         /*
166          * Let's start out simple by building a version that only works for signatures that do not span across multiple
167          * TCP conversations...
168          */
169         for (Conversation c : mTcpReassembler.getTcpConversations()) {
170             if (c.isTls() && c.getTlsApplicationDataPackets().isEmpty() || !c.isTls() && c.getPackets().isEmpty()) {
171                 // Skip empty conversations.
172                 continue;
173             }
174             for (List<PcapPacket> signatureSequence : mCluster) {
175                 if (isTlsSequence(signatureSequence) != c.isTls()) {
176                     // We consider it a mismatch if one is a TLS application data sequence and the other is not.
177                     continue;
178                 }
179                 // Fetch set of packets to examine based on TLS or not.
180                 List<PcapPacket> cPkts = c.isTls() ? c.getTlsApplicationDataPackets() : c.getPackets();
181                 /*
182                  * Note: we embed the attempt to detect the signature sequence in a loop in order to capture those cases
183                  * where the same signature sequence appears multiple times in one Conversation.
184                  *
185                  * Note: since we expect all sequences that together make up the signature to exhibit the same direction
186                  * pattern, we can simply pass the precomputed direction array for the signature sequence so that it
187                  * won't have to be recomputed internally in each call to findSubsequenceInSequence().
188                  */
189                 Optional<List<PcapPacket>> match;
190                 while ((match = findSubsequenceInSequence(signatureSequence, cPkts, mClusterMemberDirections, null)).
191                         isPresent()) {
192                     List<PcapPacket> matchSeq = match.get();
193                     // Notify observers about the match.
194                     mObservers.forEach(o -> o.onMatch(Layer3ClusterMatcher.this, matchSeq));
195                     /*
196                      * Get the index in cPkts of the last packet in the sequence of packets that matches the searched
197                      * signature sequence.
198                      */
199                     int matchSeqEndIdx = cPkts.indexOf(matchSeq.get(matchSeq.size() - 1));
200                     // We restart the search for the signature sequence immediately after that index, so truncate cPkts.
201                     cPkts = cPkts.stream().skip(matchSeqEndIdx + 1).collect(Collectors.toList());
202                 }
203             }
204
205             /*
206              * TODO:
207              * if no item in cluster matches, also perform a distance-based matching to cover those cases where we did
208              * not manage to capture every single mutation of the sequence during training.
209              *
210              * Need to compute average/centroid of cluster to do so...? Compute within-cluster variance, then check if
211              * distance between input conversation and cluster average/centroid is smaller than or equal to the computed
212              * variance?
213              */
214         }
215     }
216
217     /**
218      * Checks if {@code sequence} is a sequence of TLS packets. Note: the current implementation relies on inspection
219      * of the port numbers when deciding between TLS vs. non-TLS. Therefore, only the first packet of {@code sequence}
220      * is examined as it is assumed that all packets in {@code sequence} pertain to the same {@link Conversation} and
221      * hence share the same set of two src/dst port numbers (albeit possibly alternating between which one is the src
222      * and which one is the dst, as packets in {@code sequence} may be in alternating directions).
223      * @param sequence The sequence of packets for which it is to be determined if it is a sequence of TLS packets or
224      *                 non-TLS packets.
225      * @return {@code true} if {@code sequence} is a sequence of TLS packets, {@code false} otherwise.
226      */
227     private boolean isTlsSequence(List<PcapPacket> sequence) {
228         // NOTE: Assumes ALL packets in sequence pertain to the same TCP connection!
229         PcapPacket firstPkt = sequence.get(0);
230         int srcPort = getSourcePort(firstPkt);
231         int dstPort = getDestinationPort(firstPkt);
232         return TcpConversationUtils.isTlsPort(srcPort) || TcpConversationUtils.isTlsPort(dstPort);
233     }
234
235     /**
236      * Examine if a given sequence of packets ({@code sequence}) contains a given shorter sequence of packets
237      * ({@code subsequence}). Note: the current implementation actually searches for a substring as it does not allow
238      * for interleaving packets in {@code sequence} that are not in {@code subsequence}; for example, if
239      * {@code subsequence} consists of packet lengths [2, 3, 5] and {@code sequence} consists of  packet lengths
240      * [2, 3, 4, 5], the result will be that there is no match (because of the interleaving 4). If we are to allow
241      * interleaving packets, we need a modified version of
242      * <a href="https://stackoverflow.com/a/20545604/1214974">this</a>.
243      *
244      * @param subsequence The sequence to search for.
245      * @param sequence The sequence to search.
246      * @param subsequenceDirections The directions of packets in {@code subsequence} such that for all {@code i},
247      *                              {@code subsequenceDirections[i]} is the direction of the packet returned by
248      *                              {@code subsequence.get(i)}. May be set to {@code null}, in which this call will
249      *                              internally compute the packet directions.
250      * @param sequenceDirections The directions of packets in {@code sequence} such that for all {@code i},
251      *                           {@code sequenceDirections[i]} is the direction of the packet returned by
252      *                           {@code sequence.get(i)}. May be set to {@code null}, in which this call will internally
253      *                           compute the packet directions.
254      *
255      * @return An {@link Optional} containing the part of {@code sequence} that matches {@code subsequence}, or an empty
256      *         {@link Optional} if no part of {@code sequence} matches {@code subsequence}.
257      */
258     private Optional<List<PcapPacket>> findSubsequenceInSequence(List<PcapPacket> subsequence,
259                                                                  List<PcapPacket> sequence,
260                                                                  Conversation.Direction[] subsequenceDirections,
261                                                                  Conversation.Direction[] sequenceDirections) {
262         if (sequence.size() < subsequence.size()) {
263             // If subsequence is longer, it cannot be contained in sequence.
264             return Optional.empty();
265         }
266         if (isTlsSequence(subsequence) != isTlsSequence(sequence)) {
267             // We consider it a mismatch if one is a TLS application data sequence and the other is not.
268             return Optional.empty();
269         }
270         // If packet directions have not been precomputed by calling code, we need to construct them.
271         if (subsequenceDirections == null) {
272             subsequenceDirections = getPacketDirections(subsequence, mRouterWanIp);
273         }
274         if (sequenceDirections == null) {
275             sequenceDirections = getPacketDirections(sequence, mRouterWanIp);
276         }
277         int subseqIdx = 0;
278         int seqIdx = 0;
279         while (seqIdx < sequence.size()) {
280             PcapPacket subseqPkt = subsequence.get(subseqIdx);
281             PcapPacket seqPkt = sequence.get(seqIdx);
282             // We only have a match if packet lengths and directions match.
283             if (subseqPkt.getOriginalLength() == seqPkt.getOriginalLength() &&
284                     subsequenceDirections[subseqIdx] == sequenceDirections[seqIdx]) {
285                 // A match; advance both indices to consider next packet in subsequence vs. next packet in sequence.
286                 subseqIdx++;
287                 seqIdx++;
288                 if (subseqIdx == subsequence.size()) {
289                     // We managed to match the entire subsequence in sequence.
290                     // Return the sublist of sequence that matches subsequence.
291                     /*
292                      * TODO:
293                      * ASSUMES THE BACKING LIST (i.e., 'sequence') IS _NOT_ STRUCTURALLY MODIFIED, hence may not work
294                      * for live traces!
295                      */
296                     return Optional.of(sequence.subList(seqIdx - subsequence.size(), seqIdx));
297                 }
298             } else {
299                 // Mismatch.
300                 if (subseqIdx > 0) {
301                     /*
302                      * If we managed to match parts of subsequence, we restart the search for subsequence in sequence at
303                      * the index of sequence where the current mismatch occurred. I.e., we must reset subseqIdx, but
304                      * leave seqIdx untouched.
305                      */
306                     subseqIdx = 0;
307                 } else {
308                     /*
309                      * First packet of subsequence didn't match packet at seqIdx of sequence, so we move forward in
310                      * sequence, i.e., we continue the search for subsequence in sequence starting at index seqIdx+1 of
311                      * sequence.
312                      */
313                     seqIdx++;
314                 }
315             }
316         }
317         return Optional.empty();
318     }
319
320     /**
321      * Overloading the method {@code findSubsequenceInSequence} for range-based matching. Instead of a sequence,
322      * we have sequences of lower and upper bounds.
323      *
324      * @param lowerBound The lower bound of the sequence we search for.
325      * @param upperBound The upper bound of the sequence we search for.
326      * @param subsequenceDirections The directions of packets in {@code subsequence} such that for all {@code i},
327      *                              {@code subsequenceDirections[i]} is the direction of the packet returned by
328      *                              {@code subsequence.get(i)}. May be set to {@code null}, in which this call will
329      *                              internally compute the packet directions.
330      * @param sequenceDirections The directions of packets in {@code sequence} such that for all {@code i},
331      *                           {@code sequenceDirections[i]} is the direction of the packet returned by
332      *                           {@code sequence.get(i)}. May be set to {@code null}, in which this call will internally
333      *                           compute the packet directions.
334      *
335      * @return An {@link Optional} containing the part of {@code sequence} that matches {@code subsequence}, or an empty
336      *         {@link Optional} if no part of {@code sequence} matches {@code subsequence}.
337      */
338     private Optional<List<PcapPacket>> findSubsequenceInSequence(List<PcapPacket> lowerBound,
339                                                                  List<PcapPacket> upperBound,
340                                                                  List<PcapPacket> sequence,
341                                                                  Conversation.Direction[] subsequenceDirections,
342                                                                  Conversation.Direction[] sequenceDirections) {
343         // Just do the checks for either lower or upper bound!
344         // TODO: For now we use just the lower bound
345         if (sequence.size() < lowerBound.size()) {
346             // If subsequence is longer, it cannot be contained in sequence.
347             return Optional.empty();
348         }
349         if (isTlsSequence(lowerBound) != isTlsSequence(sequence)) {
350             // We consider it a mismatch if one is a TLS application data sequence and the other is not.
351             return Optional.empty();
352         }
353         // If packet directions have not been precomputed by calling code, we need to construct them.
354         if (subsequenceDirections == null) {
355             subsequenceDirections = getPacketDirections(lowerBound, mRouterWanIp);
356         }
357         if (sequenceDirections == null) {
358             sequenceDirections = getPacketDirections(sequence, mRouterWanIp);
359         }
360         int subseqIdx = 0;
361         int seqIdx = 0;
362         while (seqIdx < sequence.size()) {
363             PcapPacket lowBndPkt = lowerBound.get(subseqIdx);
364             PcapPacket upBndPkt = upperBound.get(subseqIdx);
365             PcapPacket seqPkt = sequence.get(seqIdx);
366             // We only have a match if packet lengths and directions match.
367             // The packet lengths have to be in the range of [lowerBound - eps, upperBound+eps]
368             // TODO: Maybe we could do better here for the double to integer conversion?
369             int epsLowerBound = lowBndPkt.length() - (int) mEps;
370             int epsUpperBound = upBndPkt.length() + (int) mEps;
371             if (epsLowerBound <= seqPkt.getOriginalLength() &&
372                     seqPkt.getOriginalLength() <= epsUpperBound &&
373                     subsequenceDirections[subseqIdx] == sequenceDirections[seqIdx]) {
374                 // A match; advance both indices to consider next packet in subsequence vs. next packet in sequence.
375                 subseqIdx++;
376                 seqIdx++;
377                 if (subseqIdx == lowerBound.size()) {
378                     // We managed to match the entire subsequence in sequence.
379                     // Return the sublist of sequence that matches subsequence.
380                     /*
381                      * TODO:
382                      * ASSUMES THE BACKING LIST (i.e., 'sequence') IS _NOT_ STRUCTURALLY MODIFIED, hence may not work
383                      * for live traces!
384                      */
385                     return Optional.of(sequence.subList(seqIdx - lowerBound.size(), seqIdx));
386                 }
387             } else {
388                 // Mismatch.
389                 if (subseqIdx > 0) {
390                     /*
391                      * If we managed to match parts of subsequence, we restart the search for subsequence in sequence at
392                      * the index of sequence where the current mismatch occurred. I.e., we must reset subseqIdx, but
393                      * leave seqIdx untouched.
394                      */
395                     subseqIdx = 0;
396                 } else {
397                     /*
398                      * First packet of subsequence didn't match packet at seqIdx of sequence, so we move forward in
399                      * sequence, i.e., we continue the search for subsequence in sequence starting at index seqIdx+1 of
400                      * sequence.
401                      */
402                     seqIdx++;
403                 }
404             }
405         }
406         return Optional.empty();
407     }
408
409     /**
410      * Given a cluster, produces a pruned version of that cluster. In the pruned version, there are no duplicate cluster
411      * members. Two cluster members are considered identical if their packets lengths and packet directions are
412      * identical. The resulting pruned cluster is unmodifiable (this applies to both the outermost list as well as the
413      * nested lists) in order to preserve its integrity when exposed to external code (e.g., through
414      * {@link #getCluster()}).
415      *
416      * @param cluster A cluster to prune.
417      * @return The resulting pruned cluster.
418      */
419     @Override
420     protected List<List<PcapPacket>> pruneCluster(List<List<PcapPacket>> cluster) {
421         List<List<PcapPacket>> prunedCluster = new ArrayList<>();
422         for (List<PcapPacket> originalClusterSeq : cluster) {
423             boolean alreadyPresent = false;
424             for (List<PcapPacket> prunedClusterSeq : prunedCluster) {
425                 Optional<List<PcapPacket>> duplicate = findSubsequenceInSequence(originalClusterSeq, prunedClusterSeq,
426                         mClusterMemberDirections, mClusterMemberDirections);
427                 if (duplicate.isPresent()) {
428                     alreadyPresent = true;
429                     break;
430                 }
431             }
432             if (!alreadyPresent) {
433                 prunedCluster.add(Collections.unmodifiableList(originalClusterSeq));
434             }
435         }
436         return Collections.unmodifiableList(prunedCluster);
437     }
438
439     /**
440      * Given a {@code List<PcapPacket>}, generate a {@code Conversation.Direction[]} such that each entry in the
441      * resulting {@code Conversation.Direction[]} specifies the direction of the {@link PcapPacket} at the corresponding
442      * index in the input list.
443      * @param packets The list of packets for which to construct a corresponding array of packet directions.
444      * @param routerWanIp The IP of the router's WAN port. This is used for determining the direction of packets when
445      *                    the traffic is captured just outside the local network (at the ISP side of the router). Set to
446      *                    {@code null} if {@code packets} stem from traffic captured within the local network.
447      * @return A {@code Conversation.Direction[]} specifying the direction of the {@link PcapPacket} at the
448      *         corresponding index in {@code packets}.
449      */
450     private static Conversation.Direction[] getPacketDirections(List<PcapPacket> packets, String routerWanIp) {
451         Conversation.Direction[] directions = new Conversation.Direction[packets.size()];
452         for (int i = 0; i < packets.size(); i++) {
453             PcapPacket pkt = packets.get(i);
454             if (getSourceIp(pkt).equals(getDestinationIp(pkt))) {
455                 // Sanity check: we shouldn't be processing loopback traffic
456                 throw new AssertionError("loopback traffic detected");
457             }
458             if (isSrcIpLocal(pkt) || getSourceIp(pkt).equals(routerWanIp)) {
459                 directions[i] = Conversation.Direction.CLIENT_TO_SERVER;
460             } else if (isDstIpLocal(pkt) || getDestinationIp(pkt).equals(routerWanIp)) {
461                 directions[i] = Conversation.Direction.SERVER_TO_CLIENT;
462             } else {
463                 //throw new IllegalArgumentException("no local IP or router WAN port IP found, can't detect direction");
464             }
465         }
466         return directions;
467     }
468
469 }