- Eliminate the last traces of the 'analysis' namespace
authorChris Lattner <sabre@nondot.org>
Fri, 30 Aug 2002 22:53:53 +0000 (22:53 +0000)
committerChris Lattner <sabre@nondot.org>
Fri, 30 Aug 2002 22:53:53 +0000 (22:53 +0000)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3550 91177308-0d34-0410-b5e6-96231b3b80d8

include/llvm/Analysis/Expressions.h
lib/Analysis/Expressions.cpp
lib/Analysis/InductionVariable.cpp
lib/Transforms/ExprTypeConvert.cpp
lib/Transforms/TransformInternals.cpp
tools/analyze/AnalysisWrappers.cpp
tools/opt/AnalysisWrappers.cpp

index f64f8f14f86fe323cbd82f721384ffd3c2dd63e2..6d1d686ad2527c47b938c43c9fdcae9d7cdbba6b 100644 (file)
@@ -15,8 +15,6 @@ class Type;
 class Value;
 class ConstantInt;
 
-namespace analysis {
-
 struct ExprType;
 
 // ClassifyExpression: Analyze an expression to determine the complexity of the
@@ -52,6 +50,4 @@ struct ExprType {
   const Type *getExprType(const Type *Default) const;
 };
 
-} // End namespace analysis
-
 #endif
index f4f76af4c9977d0c3bed14aec25f89fd746b813d..7901b1421e5c34a4f284dde5de39b14b8607851f 100644 (file)
 #include "llvm/Analysis/Expressions.h"
 #include "llvm/ConstantHandling.h"
 #include "llvm/Function.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Instruction.h"
-#include <iostream>
-
-using namespace analysis;
 
 ExprType::ExprType(Value *Val) {
   if (Val) 
@@ -233,7 +228,7 @@ static inline ExprType negate(const ExprType &E, Value *V) {
 // Note that this analysis cannot get into infinite loops because it treats PHI
 // nodes as being an unknown linear expression.
 //
-ExprType analysis::ClassifyExpression(Value *Expr) {
+ExprType ClassifyExpression(Value *Expr) {
   assert(Expr != 0 && "Can't classify a null expression!");
   if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy)
     return Expr;   // FIXME: Can't handle FP expressions
index 485586a018cd0f66ce9f15806da0a0b2c6c6c6fb..5703d6de2c0712135c357f8f026c9ea5e402e2ec 100644 (file)
@@ -25,9 +25,6 @@
 #include "llvm/Constants.h"
 #include "llvm/Assembly/Writer.h"
 
-using analysis::ExprType;
-
-
 static bool isLoopInvariant(const Value *V, const Loop *L) {
   if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
     return true;
@@ -85,8 +82,8 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
   Value *V2 = Phi->getIncomingValue(1);
 
   if (L == 0) {  // No loop information?  Base everything on expression analysis
-    ExprType E1 = analysis::ClassifyExpression(V1);
-    ExprType E2 = analysis::ClassifyExpression(V2);
+    ExprType E1 = ClassifyExpression(V1);
+    ExprType E2 = ClassifyExpression(V2);
 
     if (E1.ExprTy > E2.ExprTy)        // Make E1 be the simpler expression
       std::swap(E1, E2);
@@ -128,7 +125,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
     }
 
     if (Step == 0) {                  // Unrecognized step value...
-      ExprType StepE = analysis::ClassifyExpression(V2);
+      ExprType StepE = ClassifyExpression(V2);
       if (StepE.ExprTy != ExprType::Linear ||
          StepE.Var != Phi) return;
 
@@ -136,7 +133,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
       if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
       Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
     } else {   // We were able to get a step value, simplify with expr analysis
-      ExprType StepE = analysis::ClassifyExpression(Step);
+      ExprType StepE = ClassifyExpression(Step);
       if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
         // No offset from variable?  Grab the variable
         Step = StepE.Var;
index 33aa3cb4751d20d8b36185ac0fb05a35c3298eb9..01c8d6f354bee29c8879056be84255cdd5d0b5b9 100644 (file)
@@ -15,7 +15,6 @@
 #include "Support/STLExtras.h"
 #include "Support/StatisticReporter.h"
 #include <algorithm>
-#include <iostream>
 using std::cerr;
 
 static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
@@ -44,7 +43,7 @@ static bool MallocConvertableToType(MallocInst *MI, const Type *Ty,
   if (!Ty->isSized()) return false;      // Can only alloc something with a size
 
   // Analyze the number of bytes allocated...
-  analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
+  ExprType Expr = ClassifyExpression(MI->getArraySize());
 
   // Get information about the base datatype being allocated, before & after
   int ReqTypeSize = TD.getTypeSize(Ty);
@@ -79,7 +78,7 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
   BasicBlock::iterator It = BB->end();
 
   // Analyze the number of bytes allocated...
-  analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
+  ExprType Expr = ClassifyExpression(MI->getArraySize());
 
   const PointerType *AllocTy = cast<PointerType>(Ty);
   const Type *ElType = AllocTy->getElementType();
index f8476231cf9b3e6dfcd5bd370b6d77cbe4298e04..3f61864c9c53a918d3c16398fcd1ba4975a9638e 100644 (file)
@@ -94,7 +94,7 @@ const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal,
   // See if the cast is of an integer expression that is either a constant,
   // or a value scaled by some amount with a possible offset.
   //
-  analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal);
+  ExprType Expr = ClassifyExpression(OffsetVal);
 
   // Get the offset and scale values if they exists...
   // A scale of zero with Expr.Var != 0 means a scale of 1.
index a674e7c8fbb4cec07dec0e13d9fb80ee50bd585e..027866beeeae9d1da2f97f99a1a15ce5c9575b13 100644 (file)
@@ -71,20 +71,20 @@ namespace {
         OS << *I;
       
         if ((*I)->getType() == Type::VoidTy) continue;
-        analysis::ExprType R = analysis::ClassifyExpression(*I);
+        ExprType R = ClassifyExpression(*I);
         if (R.Var == *I) continue;  // Doesn't tell us anything
       
         OS << "\t\tExpr =";
         switch (R.ExprTy) {
-        case analysis::ExprType::ScaledLinear:
+        case ExprType::ScaledLinear:
           WriteAsOperand(OS << "(", (Value*)R.Scale) << " ) *";
           // fall through
-        case analysis::ExprType::Linear:
+        case ExprType::Linear:
           WriteAsOperand(OS << "(", R.Var) << " )";
           if (R.Offset == 0) break;
           else OS << " +";
           // fall through
-        case analysis::ExprType::Constant:
+        case ExprType::Constant:
           if (R.Offset) WriteAsOperand(OS, (Value*)R.Offset);
           else OS << " 0";
           break;
index a674e7c8fbb4cec07dec0e13d9fb80ee50bd585e..027866beeeae9d1da2f97f99a1a15ce5c9575b13 100644 (file)
@@ -71,20 +71,20 @@ namespace {
         OS << *I;
       
         if ((*I)->getType() == Type::VoidTy) continue;
-        analysis::ExprType R = analysis::ClassifyExpression(*I);
+        ExprType R = ClassifyExpression(*I);
         if (R.Var == *I) continue;  // Doesn't tell us anything
       
         OS << "\t\tExpr =";
         switch (R.ExprTy) {
-        case analysis::ExprType::ScaledLinear:
+        case ExprType::ScaledLinear:
           WriteAsOperand(OS << "(", (Value*)R.Scale) << " ) *";
           // fall through
-        case analysis::ExprType::Linear:
+        case ExprType::Linear:
           WriteAsOperand(OS << "(", R.Var) << " )";
           if (R.Offset == 0) break;
           else OS << " +";
           // fall through
-        case analysis::ExprType::Constant:
+        case ExprType::Constant:
           if (R.Offset) WriteAsOperand(OS, (Value*)R.Offset);
           else OS << " 0";
           break;