[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility
authorChandler Carruth <chandlerc@gmail.com>
Thu, 23 Jan 2014 11:23:19 +0000 (11:23 +0000)
committerChandler Carruth <chandlerc@gmail.com>
Thu, 23 Jan 2014 11:23:19 +0000 (11:23 +0000)
function and a FunctionPass.

This has many benefits. The motivating use case was to be able to
compute function analysis passes *after* running LoopSimplify (to avoid
invalidating them) and then to run other passes which require
LoopSimplify. Specifically passes like unrolling and vectorization are
critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so
that they can be profile aware. For the LoopVectorize pass the only
things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify
and LCSSA is next on my list.

There are also a bunch of other benefits of doing this:
- It is now very feasible to make more passes *preserve* LoopSimplify
  because they can simply run it after changing a loop. Because
  subsequence passes can assume LoopSimplify is preserved we can reduce
  the runs of this pass to the times when we actually mutate a loop
  structure.
- The new pass manager should be able to more easily support loop passes
  factored in this way.
- We can at long, long last observe that LoopSimplify is preserved
  across SCEV. This *halves* the number of times we run LoopSimplify!!!

Now, getting here wasn't trivial. First off, the interfaces used by
LoopSimplify are all over the map regarding how analysis are updated. We
end up with weird "pass" parameters as a consequence. I'll try to clean
at least some of this up later -- I'll have to have it all clean for the
new pass manager.

Next up I discovered a really frustrating bug. LoopUnroll *claims* to
preserve LoopSimplify. That's actually a lie. But the way the
LoopPassManager ends up running the passes, it always ran LoopSimplify
on the unrolled-into loop, rectifying this oversight before any
verification could kick in and point out that in fact nothing was
preserved. So I've added code to the unroller to *actually* simplify the
surrounding loop when it succeeds at unrolling.

The only functional change in the test suite is that we now catch a case
that was previously missed because SCEV and other loop transforms see
their containing loops as simplified and thus don't miss some
opportunities. One test case has been converted to check that we catch
this case rather than checking that we miss it but at least don't get
the wrong answer.

Note that I have #if-ed out all of the verification logic in
LoopSimplify! This is a temporary workaround while extracting these bits
from the LoopPassManager. Currently, there is no way to have a pass in
the LoopPassManager which preserves LoopSimplify along with one which
does not. The LPM will try to verify on each loop in the nest that
LoopSimplify holds but the now-Function-pass cannot distinguish what
loop is being verified and so must try to verify all of them. The inner
most loop is clearly no longer simplified as there is a pass which
didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe
LoopVectorize and some other fixes) I'll be able to re-enable this check
and catch any places where we are still failing to preserve
LoopSimplify. If this causes problems I can back this out and try to
commit *all* of this at once, but so far this seems to work and allow
much more incremental progress.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8

include/llvm/Transforms/Utils/LoopUtils.h
include/llvm/Transforms/Utils/UnrollLoop.h
lib/Transforms/Scalar/LoopUnrollPass.cpp
lib/Transforms/Utils/LoopSimplify.cpp
lib/Transforms/Utils/LoopUnroll.cpp
test/Transforms/IndVarSimplify/lftr-reuse.ll

index 4745eba079aee97e22ac4460665c850dfc6d7e76..2171350d56530cc050a21a64ef6c1afd63bda36c 100644 (file)
 #define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
 
 namespace llvm {
-
+class AliasAnalysis;
+class BasicBlock;
+class DominatorTree;
 class Loop;
+class LoopInfo;
 class Pass;
+class ScalarEvolution;
 
 BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
 
+/// \brief Simplify each loop in a loop nest recursively.
+///
+/// This takes a potentially un-simplified loop L (and its children) and turns
+/// it into a simplified loop nest with preheaders and single backedges. It
+/// will optionally update \c AliasAnalysis and \c ScalarEvolution analyses if
+/// passed into it.
+bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
+                  AliasAnalysis *AA = 0, ScalarEvolution *SE = 0);
+
 }
 
 #endif
index f175e8371e79d63f5d0f9db534e985f47bdd16bd..0bbd57219e5a496672a55f82b979a61f375a46a3 100644 (file)
@@ -21,9 +21,11 @@ namespace llvm {
 class Loop;
 class LoopInfo;
 class LPPassManager;
+class Pass;
 
 bool UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool AllowRuntime,
-                unsigned TripMultiple, LoopInfo* LI, LPPassManager* LPM);
+                unsigned TripMultiple, LoopInfo *LI, Pass *PP,
+                LPPassManager *LPM);
 
 bool UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
                              LPPassManager* LPM);
index a6963a8d2b0420e58598f6fc0cf5384d9f5bbefa..658413497a0f03190b9158b93cf315f8f68891c2 100644 (file)
@@ -254,7 +254,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
   }
 
   // Unroll the loop.
-  if (!UnrollLoop(L, Count, TripCount, Runtime, TripMultiple, LI, &LPM))
+  if (!UnrollLoop(L, Count, TripCount, Runtime, TripMultiple, LI, this, &LPM))
     return false;
 
   return true;
index 1ad4d768d11e8bfe615c91fe0f6db1919734decb..15500e6eb48e2f4332571e9a02b13ae1592a9cb3 100644 (file)
 #include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/SetOperations.h"
 #include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/DependenceAnalysis.h"
 #include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/LoopInfo.h"
 #include "llvm/Analysis/ScalarEvolution.h"
 #include "llvm/IR/Constants.h"
 #include "llvm/IR/Dominators.h"
@@ -65,142 +66,471 @@ using namespace llvm;
 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
 STATISTIC(NumNested  , "Number of nested loops split out");
 
-namespace {
-  struct LoopSimplify : public LoopPass {
-    static char ID; // Pass identification, replacement for typeid
-    LoopSimplify() : LoopPass(ID) {
-      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
+// If the block isn't already, move the new block to right after some 'outside
+// block' block.  This prevents the preheader from being placed inside the loop
+// body, e.g. when the loop hasn't been rotated.
+static void placeSplitBlockCarefully(BasicBlock *NewBB,
+                                     SmallVectorImpl<BasicBlock *> &SplitPreds,
+                                     Loop *L) {
+  // Check to see if NewBB is already well placed.
+  Function::iterator BBI = NewBB; --BBI;
+  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
+    if (&*BBI == SplitPreds[i])
+      return;
+  }
+
+  // If it isn't already after an outside block, move it after one.  This is
+  // always good as it makes the uncond branch from the outside block into a
+  // fall-through.
+
+  // Figure out *which* outside block to put this after.  Prefer an outside
+  // block that neighbors a BB actually in the loop.
+  BasicBlock *FoundBB = 0;
+  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
+    Function::iterator BBI = SplitPreds[i];
+    if (++BBI != NewBB->getParent()->end() &&
+        L->contains(BBI)) {
+      FoundBB = SplitPreds[i];
+      break;
     }
+  }
 
-    // AA - If we have an alias analysis object to update, this is it, otherwise
-    // this is null.
-    AliasAnalysis *AA;
-    LoopInfo *LI;
-    DominatorTree *DT;
-    ScalarEvolution *SE;
-    Loop *L;
-    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
+  // If our heuristic for a *good* bb to place this after doesn't find
+  // anything, just pick something.  It's likely better than leaving it within
+  // the loop.
+  if (!FoundBB)
+    FoundBB = SplitPreds[0];
+  NewBB->moveAfter(FoundBB);
+}
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      // We need loop information to identify the loops...
-      AU.addRequired<DominatorTreeWrapperPass>();
-      AU.addPreserved<DominatorTreeWrapperPass>();
+/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
+/// preheader, this method is called to insert one.  This method has two phases:
+/// preheader insertion and analysis updating.
+///
+BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
+  BasicBlock *Header = L->getHeader();
 
-      AU.addRequired<LoopInfo>();
-      AU.addPreserved<LoopInfo>();
+  // Compute the set of predecessors of the loop that are not in the loop.
+  SmallVector<BasicBlock*, 8> OutsideBlocks;
+  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
+       PI != PE; ++PI) {
+    BasicBlock *P = *PI;
+    if (!L->contains(P)) {         // Coming in from outside the loop?
+      // If the loop is branched to from an indirect branch, we won't
+      // be able to fully transform the loop, because it prohibits
+      // edge splitting.
+      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
 
-      AU.addPreserved<AliasAnalysis>();
-      AU.addPreserved<ScalarEvolution>();
-      AU.addPreserved<DependenceAnalysis>();
-      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
+      // Keep track of it.
+      OutsideBlocks.push_back(P);
     }
+  }
 
-    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
-    void verifyAnalysis() const;
+  // Split out the loop pre-header.
+  BasicBlock *PreheaderBB;
+  if (!Header->isLandingPad()) {
+    PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
+                                         PP);
+  } else {
+    SmallVector<BasicBlock*, 2> NewBBs;
+    SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
+                                ".split-lp", PP, NewBBs);
+    PreheaderBB = NewBBs[0];
+  }
 
-  private:
-    bool ProcessLoop(Loop *L, LPPassManager &LPM);
-    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
-    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
-                             BasicBlock *Preheader);
-    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
-  };
+  PreheaderBB->getTerminator()->setDebugLoc(
+                                      Header->getFirstNonPHI()->getDebugLoc());
+  DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
+               << PreheaderBB->getName() << "\n");
+
+  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
+  // code layout too horribly.
+  placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
+
+  return PreheaderBB;
 }
 
-static void PlaceSplitBlockCarefully(BasicBlock *NewBB,
-                                     SmallVectorImpl<BasicBlock*> &SplitPreds,
-                                     Loop *L);
+/// \brief Ensure that the loop preheader dominates all exit blocks.
+///
+/// This method is used to split exit blocks that have predecessors outside of
+/// the loop.
+static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
+  SmallVector<BasicBlock*, 8> LoopBlocks;
+  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
+    BasicBlock *P = *I;
+    if (L->contains(P)) {
+      // Don't do this if the loop is exited via an indirect branch.
+      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
 
-char LoopSimplify::ID = 0;
-INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
-                "Canonicalize natural loops", true, false)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
-INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
-                "Canonicalize natural loops", true, false)
+      LoopBlocks.push_back(P);
+    }
+  }
 
-// Publicly exposed interface to pass...
-char &llvm::LoopSimplifyID = LoopSimplify::ID;
-Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
+  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
+  BasicBlock *NewExitBB = 0;
 
-/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
-/// it in any convenient order) inserting preheaders...
-///
-bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
-  L = l;
-  bool Changed = false;
-  LI = &getAnalysis<LoopInfo>();
-  AA = getAnalysisIfAvailable<AliasAnalysis>();
-  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-  SE = getAnalysisIfAvailable<ScalarEvolution>();
+  if (Exit->isLandingPad()) {
+    SmallVector<BasicBlock*, 2> NewBBs;
+    SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
+                                                            LoopBlocks.size()),
+                                ".loopexit", ".nonloopexit",
+                                PP, NewBBs);
+    NewExitBB = NewBBs[0];
+  } else {
+    NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP);
+  }
 
-  Changed |= ProcessLoop(L, LPM);
+  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
+               << NewExitBB->getName() << "\n");
+  return NewExitBB;
+}
 
-  return Changed;
+/// Add the specified block, and all of its predecessors, to the specified set,
+/// if it's not already in there.  Stop predecessor traversal when we reach
+/// StopBlock.
+static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
+                                  std::set<BasicBlock*> &Blocks) {
+  SmallVector<BasicBlock *, 8> Worklist;
+  Worklist.push_back(InputBB);
+  do {
+    BasicBlock *BB = Worklist.pop_back_val();
+    if (Blocks.insert(BB).second && BB != StopBlock)
+      // If BB is not already processed and it is not a stop block then
+      // insert its predecessor in the work list
+      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
+        BasicBlock *WBB = *I;
+        Worklist.push_back(WBB);
+      }
+  } while (!Worklist.empty());
 }
 
-/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
-/// all loops have preheaders.
-///
-bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
-  bool Changed = false;
-ReprocessLoop:
+/// \brief The first part of loop-nestification is to find a PHI node that tells
+/// us how to partition the loops.
+static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
+                                        DominatorTree *DT) {
+  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
+    PHINode *PN = cast<PHINode>(I);
+    ++I;
+    if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
+      // This is a degenerate PHI already, don't modify it!
+      PN->replaceAllUsesWith(V);
+      if (AA) AA->deleteValue(PN);
+      PN->eraseFromParent();
+      continue;
+    }
 
-  // Check to see that no blocks (other than the header) in this loop have
-  // predecessors that are not in the loop.  This is not valid for natural
-  // loops, but can occur if the blocks are unreachable.  Since they are
-  // unreachable we can just shamelessly delete those CFG edges!
-  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
-       BB != E; ++BB) {
-    if (*BB == L->getHeader()) continue;
+    // Scan this PHI node looking for a use of the PHI node by itself.
+    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+      if (PN->getIncomingValue(i) == PN &&
+          L->contains(PN->getIncomingBlock(i)))
+        // We found something tasty to remove.
+        return PN;
+  }
+  return 0;
+}
 
-    SmallPtrSet<BasicBlock*, 4> BadPreds;
-    for (pred_iterator PI = pred_begin(*BB),
-         PE = pred_end(*BB); PI != PE; ++PI) {
-      BasicBlock *P = *PI;
-      if (!L->contains(P))
-        BadPreds.insert(P);
-    }
+/// \brief If this loop has multiple backedges, try to pull one of them out into
+/// a nested loop.
+///
+/// This is important for code that looks like
+/// this:
+///
+///  Loop:
+///     ...
+///     br cond, Loop, Next
+///     ...
+///     br cond2, Loop, Out
+///
+/// To identify this common case, we look at the PHI nodes in the header of the
+/// loop.  PHI nodes with unchanging values on one backedge correspond to values
+/// that change in the "outer" loop, but not in the "inner" loop.
+///
+/// If we are able to separate out a loop, return the new outer loop that was
+/// created.
+///
+static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
+                                AliasAnalysis *AA, DominatorTree *DT,
+                                LoopInfo *LI, ScalarEvolution *SE, Pass *PP) {
+  // Don't try to separate loops without a preheader.
+  if (!Preheader)
+    return 0;
 
-    // Delete each unique out-of-loop (and thus dead) predecessor.
-    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
-         E = BadPreds.end(); I != E; ++I) {
+  // The header is not a landing pad; preheader insertion should ensure this.
+  assert(!L->getHeader()->isLandingPad() &&
+         "Can't insert backedge to landing pad");
 
-      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
-                   << (*I)->getName() << "\n");
+  PHINode *PN = findPHIToPartitionLoops(L, AA, DT);
+  if (PN == 0) return 0;  // No known way to partition.
 
-      // Inform each successor of each dead pred.
-      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
-        (*SI)->removePredecessor(*I);
-      // Zap the dead pred's terminator and replace it with unreachable.
-      TerminatorInst *TI = (*I)->getTerminator();
-       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
-      (*I)->getTerminator()->eraseFromParent();
-      new UnreachableInst((*I)->getContext(), *I);
-      Changed = true;
+  // Pull out all predecessors that have varying values in the loop.  This
+  // handles the case when a PHI node has multiple instances of itself as
+  // arguments.
+  SmallVector<BasicBlock*, 8> OuterLoopPreds;
+  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+    if (PN->getIncomingValue(i) != PN ||
+        !L->contains(PN->getIncomingBlock(i))) {
+      // We can't split indirectbr edges.
+      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
+        return 0;
+      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
     }
   }
+  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
 
-  // If there are exiting blocks with branches on undef, resolve the undef in
-  // the direction which will exit the loop. This will help simplify loop
-  // trip count computations.
-  SmallVector<BasicBlock*, 8> ExitingBlocks;
-  L->getExitingBlocks(ExitingBlocks);
-  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
-       E = ExitingBlocks.end(); I != E; ++I)
-    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
-      if (BI->isConditional()) {
-        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
+  // If ScalarEvolution is around and knows anything about values in
+  // this loop, tell it to forget them, because we're about to
+  // substantially change it.
+  if (SE)
+    SE->forgetLoop(L);
 
-          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
-                       << (*I)->getName() << "\n");
+  BasicBlock *Header = L->getHeader();
+  BasicBlock *NewBB =
+    SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", PP);
 
-          BI->setCondition(ConstantInt::get(Cond->getType(),
-                                            !L->contains(BI->getSuccessor(0))));
+  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
+  // code layout too horribly.
+  placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
 
-          // This may make the loop analyzable, force SCEV recomputation.
-          if (SE)
-            SE->forgetLoop(L);
+  // Create the new outer loop.
+  Loop *NewOuter = new Loop();
+
+  // Change the parent loop to use the outer loop as its child now.
+  if (Loop *Parent = L->getParentLoop())
+    Parent->replaceChildLoopWith(L, NewOuter);
+  else
+    LI->changeTopLevelLoop(L, NewOuter);
+
+  // L is now a subloop of our outer loop.
+  NewOuter->addChildLoop(L);
+
+  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+       I != E; ++I)
+    NewOuter->addBlockEntry(*I);
+
+  // Now reset the header in L, which had been moved by
+  // SplitBlockPredecessors for the outer loop.
+  L->moveToHeader(Header);
+
+  // Determine which blocks should stay in L and which should be moved out to
+  // the Outer loop now.
+  std::set<BasicBlock*> BlocksInL;
+  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
+    BasicBlock *P = *PI;
+    if (DT->dominates(Header, P))
+      addBlockAndPredsToSet(P, Header, BlocksInL);
+  }
+
+  // Scan all of the loop children of L, moving them to OuterLoop if they are
+  // not part of the inner loop.
+  const std::vector<Loop*> &SubLoops = L->getSubLoops();
+  for (size_t I = 0; I != SubLoops.size(); )
+    if (BlocksInL.count(SubLoops[I]->getHeader()))
+      ++I;   // Loop remains in L
+    else
+      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
+
+  // Now that we know which blocks are in L and which need to be moved to
+  // OuterLoop, move any blocks that need it.
+  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
+    BasicBlock *BB = L->getBlocks()[i];
+    if (!BlocksInL.count(BB)) {
+      // Move this block to the parent, updating the exit blocks sets
+      L->removeBlockFromLoop(BB);
+      if ((*LI)[BB] == L)
+        LI->changeLoopFor(BB, NewOuter);
+      --i;
+    }
+  }
+
+  return NewOuter;
+}
+
+/// \brief This method is called when the specified loop has more than one
+/// backedge in it.
+///
+/// If this occurs, revector all of these backedges to target a new basic block
+/// and have that block branch to the loop header.  This ensures that loops
+/// have exactly one backedge.
+static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
+                                             AliasAnalysis *AA,
+                                             DominatorTree *DT, LoopInfo *LI) {
+  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
+
+  // Get information about the loop
+  BasicBlock *Header = L->getHeader();
+  Function *F = Header->getParent();
+
+  // Unique backedge insertion currently depends on having a preheader.
+  if (!Preheader)
+    return 0;
+
+  // The header is not a landing pad; preheader insertion should ensure this.
+  assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
+
+  // Figure out which basic blocks contain back-edges to the loop header.
+  std::vector<BasicBlock*> BackedgeBlocks;
+  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
+    BasicBlock *P = *I;
+
+    // Indirectbr edges cannot be split, so we must fail if we find one.
+    if (isa<IndirectBrInst>(P->getTerminator()))
+      return 0;
+
+    if (P != Preheader) BackedgeBlocks.push_back(P);
+  }
+
+  // Create and insert the new backedge block...
+  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
+                                           Header->getName()+".backedge", F);
+  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
+
+  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
+               << BEBlock->getName() << "\n");
+
+  // Move the new backedge block to right after the last backedge block.
+  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
+  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
+
+  // Now that the block has been inserted into the function, create PHI nodes in
+  // the backedge block which correspond to any PHI nodes in the header block.
+  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+    PHINode *PN = cast<PHINode>(I);
+    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
+                                     PN->getName()+".be", BETerminator);
+    if (AA) AA->copyValue(PN, NewPN);
+
+    // Loop over the PHI node, moving all entries except the one for the
+    // preheader over to the new PHI node.
+    unsigned PreheaderIdx = ~0U;
+    bool HasUniqueIncomingValue = true;
+    Value *UniqueValue = 0;
+    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+      BasicBlock *IBB = PN->getIncomingBlock(i);
+      Value *IV = PN->getIncomingValue(i);
+      if (IBB == Preheader) {
+        PreheaderIdx = i;
+      } else {
+        NewPN->addIncoming(IV, IBB);
+        if (HasUniqueIncomingValue) {
+          if (UniqueValue == 0)
+            UniqueValue = IV;
+          else if (UniqueValue != IV)
+            HasUniqueIncomingValue = false;
+        }
+      }
+    }
+
+    // Delete all of the incoming values from the old PN except the preheader's
+    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
+    if (PreheaderIdx != 0) {
+      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
+      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
+    }
+    // Nuke all entries except the zero'th.
+    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
+      PN->removeIncomingValue(e-i, false);
+
+    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
+    PN->addIncoming(NewPN, BEBlock);
+
+    // As an optimization, if all incoming values in the new PhiNode (which is a
+    // subset of the incoming values of the old PHI node) have the same value,
+    // eliminate the PHI Node.
+    if (HasUniqueIncomingValue) {
+      NewPN->replaceAllUsesWith(UniqueValue);
+      if (AA) AA->deleteValue(NewPN);
+      BEBlock->getInstList().erase(NewPN);
+    }
+  }
+
+  // Now that all of the PHI nodes have been inserted and adjusted, modify the
+  // backedge blocks to just to the BEBlock instead of the header.
+  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
+    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
+    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
+      if (TI->getSuccessor(Op) == Header)
+        TI->setSuccessor(Op, BEBlock);
+  }
+
+  //===--- Update all analyses which we must preserve now -----------------===//
+
+  // Update Loop Information - we know that this block is now in the current
+  // loop and all parent loops.
+  L->addBasicBlockToLoop(BEBlock, LI->getBase());
+
+  // Update dominator information
+  DT->splitBlock(BEBlock);
+
+  return BEBlock;
+}
+
+/// \brief Simplify one loop and queue further loops for simplification.
+///
+/// FIXME: Currently this accepts both lots of analyses that it uses and a raw
+/// Pass pointer. The Pass pointer is used by numerous utilities to update
+/// specific analyses. Rather than a pass it would be much cleaner and more
+/// explicit if they accepted the analysis directly and then updated it.
+static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
+                            AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
+                            ScalarEvolution *SE, Pass *PP) {
+  bool Changed = false;
+ReprocessLoop:
+
+  // Check to see that no blocks (other than the header) in this loop have
+  // predecessors that are not in the loop.  This is not valid for natural
+  // loops, but can occur if the blocks are unreachable.  Since they are
+  // unreachable we can just shamelessly delete those CFG edges!
+  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
+       BB != E; ++BB) {
+    if (*BB == L->getHeader()) continue;
+
+    SmallPtrSet<BasicBlock*, 4> BadPreds;
+    for (pred_iterator PI = pred_begin(*BB),
+         PE = pred_end(*BB); PI != PE; ++PI) {
+      BasicBlock *P = *PI;
+      if (!L->contains(P))
+        BadPreds.insert(P);
+    }
+
+    // Delete each unique out-of-loop (and thus dead) predecessor.
+    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
+         E = BadPreds.end(); I != E; ++I) {
+
+      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
+                   << (*I)->getName() << "\n");
+
+      // Inform each successor of each dead pred.
+      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
+        (*SI)->removePredecessor(*I);
+      // Zap the dead pred's terminator and replace it with unreachable.
+      TerminatorInst *TI = (*I)->getTerminator();
+       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
+      (*I)->getTerminator()->eraseFromParent();
+      new UnreachableInst((*I)->getContext(), *I);
+      Changed = true;
+    }
+  }
+
+  // If there are exiting blocks with branches on undef, resolve the undef in
+  // the direction which will exit the loop. This will help simplify loop
+  // trip count computations.
+  SmallVector<BasicBlock*, 8> ExitingBlocks;
+  L->getExitingBlocks(ExitingBlocks);
+  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
+       E = ExitingBlocks.end(); I != E; ++I)
+    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
+      if (BI->isConditional()) {
+        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
+
+          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
+                       << (*I)->getName() << "\n");
+
+          BI->setCondition(ConstantInt::get(Cond->getType(),
+                                            !L->contains(BI->getSuccessor(0))));
+
+          // This may make the loop analyzable, force SCEV recomputation.
+          if (SE)
+            SE->forgetLoop(L);
 
           Changed = true;
         }
@@ -209,7 +539,7 @@ ReprocessLoop:
   // Does the loop already have a preheader?  If so, don't insert one.
   BasicBlock *Preheader = L->getLoopPreheader();
   if (!Preheader) {
-    Preheader = InsertPreheaderForLoop(L, this);
+    Preheader = InsertPreheaderForLoop(L, PP);
     if (Preheader) {
       ++NumInserted;
       Changed = true;
@@ -233,7 +563,7 @@ ReprocessLoop:
       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
       // allowed.
       if (!L->contains(*PI)) {
-        if (RewriteLoopExitBlock(L, ExitBlock)) {
+        if (rewriteLoopExitBlock(L, ExitBlock, PP)) {
           ++NumInserted;
           Changed = true;
         }
@@ -249,11 +579,16 @@ ReprocessLoop:
     // this for loops with a giant number of backedges, just factor them into a
     // common backedge instead.
     if (L->getNumBackEdges() < 8) {
-      if (SeparateNestedLoop(L, LPM, Preheader)) {
+      if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) {
         ++NumNested;
+        // Enqueue the outer loop as it should be processed next in our
+        // depth-first nest walk.
+        Worklist.push_back(OuterL);
+
         // This is a big restructuring change, reprocess the whole loop.
         Changed = true;
         // GCC doesn't tail recursion eliminate this.
+        // FIXME: It isn't clear we can't rely on LLVM to TRE this.
         goto ReprocessLoop;
       }
     }
@@ -261,7 +596,7 @@ ReprocessLoop:
     // If we either couldn't, or didn't want to, identify nesting of the loops,
     // insert a new block that all backedges target, then make it jump to the
     // loop header.
-    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
+    LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
     if (LoopLatch) {
       ++NumInserted;
       Changed = true;
@@ -286,490 +621,192 @@ ReprocessLoop:
   // as LoopRotation, which do not support loops with multiple exits.
   // SimplifyCFG also does this (and this code uses the same utility
   // function), however this code is loop-aware, where SimplifyCFG is
-  // not. That gives it the advantage of being able to hoist
-  // loop-invariant instructions out of the way to open up more
-  // opportunities, and the disadvantage of having the responsibility
-  // to preserve dominator information.
-  bool UniqueExit = true;
-  if (!ExitBlocks.empty())
-    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
-      if (ExitBlocks[i] != ExitBlocks[0]) {
-        UniqueExit = false;
-        break;
-      }
-  if (UniqueExit) {
-    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
-      BasicBlock *ExitingBlock = ExitingBlocks[i];
-      if (!ExitingBlock->getSinglePredecessor()) continue;
-      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
-      if (!BI || !BI->isConditional()) continue;
-      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
-      if (!CI || CI->getParent() != ExitingBlock) continue;
-
-      // Attempt to hoist out all instructions except for the
-      // comparison and the branch.
-      bool AllInvariant = true;
-      bool AnyInvariant = false;
-      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
-        Instruction *Inst = I++;
-        // Skip debug info intrinsics.
-        if (isa<DbgInfoIntrinsic>(Inst))
-          continue;
-        if (Inst == CI)
-          continue;
-        if (!L->makeLoopInvariant(Inst, AnyInvariant,
-                                 Preheader ? Preheader->getTerminator() : 0)) {
-          AllInvariant = false;
-          break;
-        }
-      }
-      if (AnyInvariant) {
-        Changed = true;
-        // The loop disposition of all SCEV expressions that depend on any
-        // hoisted values have also changed.
-        if (SE)
-          SE->forgetLoopDispositions(L);
-      }
-      if (!AllInvariant) continue;
-
-      // The block has now been cleared of all instructions except for
-      // a comparison and a conditional branch. SimplifyCFG may be able
-      // to fold it now.
-      if (!FoldBranchToCommonDest(BI)) continue;
-
-      // Success. The block is now dead, so remove it from the loop,
-      // update the dominator tree and delete it.
-      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
-                   << ExitingBlock->getName() << "\n");
-
-      // Notify ScalarEvolution before deleting this block. Currently assume the
-      // parent loop doesn't change (spliting edges doesn't count). If blocks,
-      // CFG edges, or other values in the parent loop change, then we need call
-      // to forgetLoop() for the parent instead.
-      if (SE)
-        SE->forgetLoop(L);
-
-      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
-      Changed = true;
-      LI->removeBlock(ExitingBlock);
-
-      DomTreeNode *Node = DT->getNode(ExitingBlock);
-      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
-        Node->getChildren();
-      while (!Children.empty()) {
-        DomTreeNode *Child = Children.front();
-        DT->changeImmediateDominator(Child, Node->getIDom());
-      }
-      DT->eraseNode(ExitingBlock);
-
-      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
-      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
-      ExitingBlock->eraseFromParent();
-    }
-  }
-
-  return Changed;
-}
-
-/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
-/// preheader, this method is called to insert one.  This method has two phases:
-/// preheader insertion and analysis updating.
-///
-BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
-  BasicBlock *Header = L->getHeader();
-
-  // Compute the set of predecessors of the loop that are not in the loop.
-  SmallVector<BasicBlock*, 8> OutsideBlocks;
-  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
-       PI != PE; ++PI) {
-    BasicBlock *P = *PI;
-    if (!L->contains(P)) {         // Coming in from outside the loop?
-      // If the loop is branched to from an indirect branch, we won't
-      // be able to fully transform the loop, because it prohibits
-      // edge splitting.
-      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
-
-      // Keep track of it.
-      OutsideBlocks.push_back(P);
-    }
-  }
-
-  // Split out the loop pre-header.
-  BasicBlock *PreheaderBB;
-  if (!Header->isLandingPad()) {
-    PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
-                                         PP);
-  } else {
-    SmallVector<BasicBlock*, 2> NewBBs;
-    SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
-                                ".split-lp", PP, NewBBs);
-    PreheaderBB = NewBBs[0];
-  }
-
-  PreheaderBB->getTerminator()->setDebugLoc(
-                                      Header->getFirstNonPHI()->getDebugLoc());
-  DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
-               << PreheaderBB->getName() << "\n");
-
-  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
-  // code layout too horribly.
-  PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
-
-  return PreheaderBB;
-}
-
-/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
-/// blocks.  This method is used to split exit blocks that have predecessors
-/// outside of the loop.
-BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
-  SmallVector<BasicBlock*, 8> LoopBlocks;
-  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
-    BasicBlock *P = *I;
-    if (L->contains(P)) {
-      // Don't do this if the loop is exited via an indirect branch.
-      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
-
-      LoopBlocks.push_back(P);
-    }
-  }
-
-  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
-  BasicBlock *NewExitBB = 0;
-
-  if (Exit->isLandingPad()) {
-    SmallVector<BasicBlock*, 2> NewBBs;
-    SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
-                                                            LoopBlocks.size()),
-                                ".loopexit", ".nonloopexit",
-                                this, NewBBs);
-    NewExitBB = NewBBs[0];
-  } else {
-    NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
-  }
-
-  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
-               << NewExitBB->getName() << "\n");
-  return NewExitBB;
-}
-
-/// AddBlockAndPredsToSet - Add the specified block, and all of its
-/// predecessors, to the specified set, if it's not already in there.  Stop
-/// predecessor traversal when we reach StopBlock.
-static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
-                                  std::set<BasicBlock*> &Blocks) {
-  std::vector<BasicBlock *> WorkList;
-  WorkList.push_back(InputBB);
-  do {
-    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
-    if (Blocks.insert(BB).second && BB != StopBlock)
-      // If BB is not already processed and it is not a stop block then
-      // insert its predecessor in the work list
-      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
-        BasicBlock *WBB = *I;
-        WorkList.push_back(WBB);
-      }
-  } while(!WorkList.empty());
-}
-
-/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
-/// PHI node that tells us how to partition the loops.
-static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
-                                        AliasAnalysis *AA, LoopInfo *LI) {
-  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
-    PHINode *PN = cast<PHINode>(I);
-    ++I;
-    if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
-      // This is a degenerate PHI already, don't modify it!
-      PN->replaceAllUsesWith(V);
-      if (AA) AA->deleteValue(PN);
-      PN->eraseFromParent();
-      continue;
-    }
-
-    // Scan this PHI node looking for a use of the PHI node by itself.
-    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
-      if (PN->getIncomingValue(i) == PN &&
-          L->contains(PN->getIncomingBlock(i)))
-        // We found something tasty to remove.
-        return PN;
-  }
-  return 0;
-}
-
-// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
-// right after some 'outside block' block.  This prevents the preheader from
-// being placed inside the loop body, e.g. when the loop hasn't been rotated.
-void PlaceSplitBlockCarefully(BasicBlock *NewBB,
-                              SmallVectorImpl<BasicBlock*> &SplitPreds,
-                              Loop *L) {
-  // Check to see if NewBB is already well placed.
-  Function::iterator BBI = NewBB; --BBI;
-  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
-    if (&*BBI == SplitPreds[i])
-      return;
-  }
-
-  // If it isn't already after an outside block, move it after one.  This is
-  // always good as it makes the uncond branch from the outside block into a
-  // fall-through.
-
-  // Figure out *which* outside block to put this after.  Prefer an outside
-  // block that neighbors a BB actually in the loop.
-  BasicBlock *FoundBB = 0;
-  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
-    Function::iterator BBI = SplitPreds[i];
-    if (++BBI != NewBB->getParent()->end() &&
-        L->contains(BBI)) {
-      FoundBB = SplitPreds[i];
-      break;
-    }
-  }
-
-  // If our heuristic for a *good* bb to place this after doesn't find
-  // anything, just pick something.  It's likely better than leaving it within
-  // the loop.
-  if (!FoundBB)
-    FoundBB = SplitPreds[0];
-  NewBB->moveAfter(FoundBB);
-}
-
-
-/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
-/// them out into a nested loop.  This is important for code that looks like
-/// this:
-///
-///  Loop:
-///     ...
-///     br cond, Loop, Next
-///     ...
-///     br cond2, Loop, Out
-///
-/// To identify this common case, we look at the PHI nodes in the header of the
-/// loop.  PHI nodes with unchanging values on one backedge correspond to values
-/// that change in the "outer" loop, but not in the "inner" loop.
-///
-/// If we are able to separate out a loop, return the new outer loop that was
-/// created.
-///
-Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
-                                       BasicBlock *Preheader) {
-  // Don't try to separate loops without a preheader.
-  if (!Preheader)
-    return 0;
-
-  // The header is not a landing pad; preheader insertion should ensure this.
-  assert(!L->getHeader()->isLandingPad() &&
-         "Can't insert backedge to landing pad");
-
-  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
-  if (PN == 0) return 0;  // No known way to partition.
-
-  // Pull out all predecessors that have varying values in the loop.  This
-  // handles the case when a PHI node has multiple instances of itself as
-  // arguments.
-  SmallVector<BasicBlock*, 8> OuterLoopPreds;
-  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
-    if (PN->getIncomingValue(i) != PN ||
-        !L->contains(PN->getIncomingBlock(i))) {
-      // We can't split indirectbr edges.
-      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
-        return 0;
-      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
-    }
-  }
-  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
-
-  // If ScalarEvolution is around and knows anything about values in
-  // this loop, tell it to forget them, because we're about to
-  // substantially change it.
-  if (SE)
-    SE->forgetLoop(L);
-
-  BasicBlock *Header = L->getHeader();
-  BasicBlock *NewBB =
-    SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", this);
-
-  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
-  // code layout too horribly.
-  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
-
-  // Create the new outer loop.
-  Loop *NewOuter = new Loop();
-
-  // Change the parent loop to use the outer loop as its child now.
-  if (Loop *Parent = L->getParentLoop())
-    Parent->replaceChildLoopWith(L, NewOuter);
-  else
-    LI->changeTopLevelLoop(L, NewOuter);
+  // not. That gives it the advantage of being able to hoist
+  // loop-invariant instructions out of the way to open up more
+  // opportunities, and the disadvantage of having the responsibility
+  // to preserve dominator information.
+  bool UniqueExit = true;
+  if (!ExitBlocks.empty())
+    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
+      if (ExitBlocks[i] != ExitBlocks[0]) {
+        UniqueExit = false;
+        break;
+      }
+  if (UniqueExit) {
+    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
+      BasicBlock *ExitingBlock = ExitingBlocks[i];
+      if (!ExitingBlock->getSinglePredecessor()) continue;
+      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+      if (!BI || !BI->isConditional()) continue;
+      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
+      if (!CI || CI->getParent() != ExitingBlock) continue;
 
-  // L is now a subloop of our outer loop.
-  NewOuter->addChildLoop(L);
+      // Attempt to hoist out all instructions except for the
+      // comparison and the branch.
+      bool AllInvariant = true;
+      bool AnyInvariant = false;
+      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
+        Instruction *Inst = I++;
+        // Skip debug info intrinsics.
+        if (isa<DbgInfoIntrinsic>(Inst))
+          continue;
+        if (Inst == CI)
+          continue;
+        if (!L->makeLoopInvariant(Inst, AnyInvariant,
+                                 Preheader ? Preheader->getTerminator() : 0)) {
+          AllInvariant = false;
+          break;
+        }
+      }
+      if (AnyInvariant) {
+        Changed = true;
+        // The loop disposition of all SCEV expressions that depend on any
+        // hoisted values have also changed.
+        if (SE)
+          SE->forgetLoopDispositions(L);
+      }
+      if (!AllInvariant) continue;
 
-  // Add the new loop to the pass manager queue.
-  LPM.insertLoopIntoQueue(NewOuter);
+      // The block has now been cleared of all instructions except for
+      // a comparison and a conditional branch. SimplifyCFG may be able
+      // to fold it now.
+      if (!FoldBranchToCommonDest(BI)) continue;
 
-  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
-       I != E; ++I)
-    NewOuter->addBlockEntry(*I);
+      // Success. The block is now dead, so remove it from the loop,
+      // update the dominator tree and delete it.
+      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
+                   << ExitingBlock->getName() << "\n");
 
-  // Now reset the header in L, which had been moved by
-  // SplitBlockPredecessors for the outer loop.
-  L->moveToHeader(Header);
+      // Notify ScalarEvolution before deleting this block. Currently assume the
+      // parent loop doesn't change (spliting edges doesn't count). If blocks,
+      // CFG edges, or other values in the parent loop change, then we need call
+      // to forgetLoop() for the parent instead.
+      if (SE)
+        SE->forgetLoop(L);
 
-  // Determine which blocks should stay in L and which should be moved out to
-  // the Outer loop now.
-  std::set<BasicBlock*> BlocksInL;
-  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
-    BasicBlock *P = *PI;
-    if (DT->dominates(Header, P))
-      AddBlockAndPredsToSet(P, Header, BlocksInL);
-  }
+      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
+      Changed = true;
+      LI->removeBlock(ExitingBlock);
 
-  // Scan all of the loop children of L, moving them to OuterLoop if they are
-  // not part of the inner loop.
-  const std::vector<Loop*> &SubLoops = L->getSubLoops();
-  for (size_t I = 0; I != SubLoops.size(); )
-    if (BlocksInL.count(SubLoops[I]->getHeader()))
-      ++I;   // Loop remains in L
-    else
-      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
+      DomTreeNode *Node = DT->getNode(ExitingBlock);
+      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
+        Node->getChildren();
+      while (!Children.empty()) {
+        DomTreeNode *Child = Children.front();
+        DT->changeImmediateDominator(Child, Node->getIDom());
+      }
+      DT->eraseNode(ExitingBlock);
 
-  // Now that we know which blocks are in L and which need to be moved to
-  // OuterLoop, move any blocks that need it.
-  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
-    BasicBlock *BB = L->getBlocks()[i];
-    if (!BlocksInL.count(BB)) {
-      // Move this block to the parent, updating the exit blocks sets
-      L->removeBlockFromLoop(BB);
-      if ((*LI)[BB] == L)
-        LI->changeLoopFor(BB, NewOuter);
-      --i;
+      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
+      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
+      ExitingBlock->eraseFromParent();
     }
   }
 
-  return NewOuter;
+  return Changed;
 }
 
+bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
+                        AliasAnalysis *AA, ScalarEvolution *SE) {
+  bool Changed = false;
 
+  // Worklist maintains our depth-first queue of loops in this nest to process.
+  SmallVector<Loop *, 4> Worklist;
+  Worklist.push_back(L);
+
+  // Walk the worklist from front to back, pushing newly found sub loops onto
+  // the back. This will let us process loops from back to front in depth-first
+  // order. We can use this simple process because loops form a tree.
+  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
+    Loop *L2 = Worklist[Idx];
+    for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I)
+      Worklist.push_back(*I);
+  }
 
-/// InsertUniqueBackedgeBlock - This method is called when the specified loop
-/// has more than one backedge in it.  If this occurs, revector all of these
-/// backedges to target a new basic block and have that block branch to the loop
-/// header.  This ensures that loops have exactly one backedge.
-///
-BasicBlock *
-LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
-  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
-
-  // Get information about the loop
-  BasicBlock *Header = L->getHeader();
-  Function *F = Header->getParent();
-
-  // Unique backedge insertion currently depends on having a preheader.
-  if (!Preheader)
-    return 0;
-
-  // The header is not a landing pad; preheader insertion should ensure this.
-  assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
-
-  // Figure out which basic blocks contain back-edges to the loop header.
-  std::vector<BasicBlock*> BackedgeBlocks;
-  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
-    BasicBlock *P = *I;
-
-    // Indirectbr edges cannot be split, so we must fail if we find one.
-    if (isa<IndirectBrInst>(P->getTerminator()))
-      return 0;
+  while (!Worklist.empty())
+    Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, SE, PP);
 
-    if (P != Preheader) BackedgeBlocks.push_back(P);
-  }
+  return Changed;
+}
 
-  // Create and insert the new backedge block...
-  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
-                                           Header->getName()+".backedge", F);
-  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
+namespace {
+  struct LoopSimplify : public FunctionPass {
+    static char ID; // Pass identification, replacement for typeid
+    LoopSimplify() : FunctionPass(ID) {
+      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
+    }
 
-  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
-               << BEBlock->getName() << "\n");
+    // AA - If we have an alias analysis object to update, this is it, otherwise
+    // this is null.
+    AliasAnalysis *AA;
+    DominatorTree *DT;
+    LoopInfo *LI;
+    ScalarEvolution *SE;
 
-  // Move the new backedge block to right after the last backedge block.
-  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
-  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
+    virtual bool runOnFunction(Function &F);
 
-  // Now that the block has been inserted into the function, create PHI nodes in
-  // the backedge block which correspond to any PHI nodes in the header block.
-  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
-    PHINode *PN = cast<PHINode>(I);
-    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
-                                     PN->getName()+".be", BETerminator);
-    if (AA) AA->copyValue(PN, NewPN);
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      // We need loop information to identify the loops...
+      AU.addRequired<DominatorTreeWrapperPass>();
+      AU.addPreserved<DominatorTreeWrapperPass>();
 
-    // Loop over the PHI node, moving all entries except the one for the
-    // preheader over to the new PHI node.
-    unsigned PreheaderIdx = ~0U;
-    bool HasUniqueIncomingValue = true;
-    Value *UniqueValue = 0;
-    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
-      BasicBlock *IBB = PN->getIncomingBlock(i);
-      Value *IV = PN->getIncomingValue(i);
-      if (IBB == Preheader) {
-        PreheaderIdx = i;
-      } else {
-        NewPN->addIncoming(IV, IBB);
-        if (HasUniqueIncomingValue) {
-          if (UniqueValue == 0)
-            UniqueValue = IV;
-          else if (UniqueValue != IV)
-            HasUniqueIncomingValue = false;
-        }
-      }
-    }
+      AU.addRequired<LoopInfo>();
+      AU.addPreserved<LoopInfo>();
 
-    // Delete all of the incoming values from the old PN except the preheader's
-    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
-    if (PreheaderIdx != 0) {
-      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
-      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
+      AU.addPreserved<AliasAnalysis>();
+      AU.addPreserved<ScalarEvolution>();
+      AU.addPreserved<DependenceAnalysis>();
+      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
     }
-    // Nuke all entries except the zero'th.
-    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
-      PN->removeIncomingValue(e-i, false);
 
-    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
-    PN->addIncoming(NewPN, BEBlock);
+    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
+    void verifyAnalysis() const;
 
-    // As an optimization, if all incoming values in the new PhiNode (which is a
-    // subset of the incoming values of the old PHI node) have the same value,
-    // eliminate the PHI Node.
-    if (HasUniqueIncomingValue) {
-      NewPN->replaceAllUsesWith(UniqueValue);
-      if (AA) AA->deleteValue(NewPN);
-      BEBlock->getInstList().erase(NewPN);
-    }
-  }
+  private:
+    bool ProcessLoop(Loop *L);
+    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
+    Loop *SeparateNestedLoop(Loop *L, BasicBlock *Preheader);
+    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
+  };
+}
 
-  // Now that all of the PHI nodes have been inserted and adjusted, modify the
-  // backedge blocks to just to the BEBlock instead of the header.
-  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
-    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
-    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
-      if (TI->getSuccessor(Op) == Header)
-        TI->setSuccessor(Op, BEBlock);
-  }
+char LoopSimplify::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
+                "Canonicalize natural loops", true, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
+                "Canonicalize natural loops", true, false)
 
-  //===--- Update all analyses which we must preserve now -----------------===//
+// Publicly exposed interface to pass...
+char &llvm::LoopSimplifyID = LoopSimplify::ID;
+Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
 
-  // Update Loop Information - we know that this block is now in the current
-  // loop and all parent loops.
-  L->addBasicBlockToLoop(BEBlock, LI->getBase());
+/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
+/// it in any convenient order) inserting preheaders...
+///
+bool LoopSimplify::runOnFunction(Function &F) {
+  bool Changed = false;
+  AA = getAnalysisIfAvailable<AliasAnalysis>();
+  LI = &getAnalysis<LoopInfo>();
+  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+  SE = getAnalysisIfAvailable<ScalarEvolution>();
 
-  // Update dominator information
-  DT->splitBlock(BEBlock);
+  // Simplify each loop nest in the function.
+  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
+    Changed |= simplifyLoop(*I, DT, LI, this, AA, SE);
 
-  return BEBlock;
+  return Changed;
 }
 
-void LoopSimplify::verifyAnalysis() const {
+// FIXME: Restore this code when we re-enable verification in verifyAnalysis
+// below.
+#if 0
+static void verifyLoop(Loop *L) {
+  // Verify subloops.
+  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+    verifyLoop(*I);
+
   // It used to be possible to just assert L->isLoopSimplifyForm(), however
   // with the introduction of indirectbr, there are now cases where it's
   // not possible to transform a loop as necessary. We can at least check
@@ -806,3 +843,15 @@ void LoopSimplify::verifyAnalysis() const {
     (void)HasIndBrExiting;
   }
 }
+#endif
+
+void LoopSimplify::verifyAnalysis() const {
+  // FIXME: This routine is being called mid-way through the loop pass manager
+  // as loop passes destroy this analysis. That's actually fine, but we have no
+  // way of expressing that here. Once all of the passes that destroy this are
+  // hoisted out of the loop pass manager we can add back verification here.
+#if 0
+  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
+    verifyLoop(*I);
+#endif
+}
index 3c792dd13685aac1ba8714d881884fd0117c7384..3c43fbbe828cb2c9ab8c57deb011db7e56127651 100644 (file)
@@ -30,6 +30,7 @@
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/Cloning.h"
 #include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
 using namespace llvm;
 
@@ -138,10 +139,10 @@ static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
 /// removed from the LoopPassManager as well. LPM can also be NULL.
 ///
 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
-/// available it must also preserve those analyses.
+/// available from the Pass it must also preserve those analyses.
 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
                       bool AllowRuntime, unsigned TripMultiple,
-                      LoopInfo *LI, LPPassManager *LPM) {
+                      LoopInfo *LI, Pass *PP, LPPassManager *LPM) {
   BasicBlock *Preheader = L->getLoopPreheader();
   if (!Preheader) {
     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
@@ -209,8 +210,8 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
 
   // Notify ScalarEvolution that the loop will be substantially changed,
   // if not outright eliminated.
-  if (LPM) {
-    ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
+  if (PP) {
+    ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
     if (SE)
       SE->forgetLoop(L);
   }
@@ -410,15 +411,18 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
     }
   }
 
-  if (LPM) {
+  DominatorTree *DT = 0;
+  if (PP) {
     // FIXME: Reconstruct dom info, because it is not preserved properly.
     // Incrementally updating domtree after loop unrolling would be easy.
     if (DominatorTreeWrapperPass *DTWP =
-            LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
-      DTWP->getDomTree().recalculate(*L->getHeader()->getParent());
+            PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
+      DT = &DTWP->getDomTree();
+      DT->recalculate(*L->getHeader()->getParent());
+    }
 
     // Simplify any new induction variables in the partially unrolled loop.
-    ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
+    ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
     if (SE && !CompletelyUnroll) {
       SmallVector<WeakVH, 16> DeadInsts;
       simplifyLoopIVs(L, SE, LPM, DeadInsts);
@@ -451,9 +455,23 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
 
   NumCompletelyUnrolled += CompletelyUnroll;
   ++NumUnrolled;
+
+  Loop *OuterL = L->getParentLoop();
   // Remove the loop from the LoopPassManager if it's completely removed.
   if (CompletelyUnroll && LPM != NULL)
     LPM->deleteLoopFromQueue(L);
 
+  // If we have a pass and a DominatorTree we should re-simplify impacted loops
+  // to ensure subsequent analyses can rely on this form. We want to simplify
+  // at least one layer outside of the loop that was unrolled so that any
+  // changes to the parent loop exposed by the unrolling are considered.
+  if (PP && DT) {
+    if (!OuterL && !CompletelyUnroll)
+      OuterL = L;
+    if (OuterL)
+      simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ 0,
+                   PP->getAnalysisIfAvailable<ScalarEvolution>());
+  }
+
   return true;
 }
index fe3df5cfa88c7f31e340d2a94800b1009c091fd3..1fdcdd1ec3a48d6e86ffc0c892b4a57668c19cca 100644 (file)
@@ -38,17 +38,16 @@ for.end:
   ret void
 }
 
-; It would be nice if SCEV and any loop analysis could assume that
-; preheaders exist. Unfortunately it is not always the case. This test
-; checks that SCEVExpander can handle an outer loop that has not yet
-; been simplified. As a result, the inner loop's exit test will not be
-; rewritten.
+; This test checks that SCEVExpander can handle an outer loop that has been
+; simplified, and as a result the inner loop's exit test will be rewritten.
 define void @expandOuterRecurrence(i32 %arg) nounwind {
 entry:
   %sub1 = sub nsw i32 %arg, 1
   %cmp1 = icmp slt i32 0, %sub1
   br i1 %cmp1, label %outer, label %exit
 
+; CHECK: outer:
+; CHECK: icmp slt
 outer:
   %i = phi i32 [ 0, %entry ], [ %i.inc, %outer.inc ]
   %sub2 = sub nsw i32 %arg, %i
@@ -60,7 +59,6 @@ inner.ph:
   br label %inner
 
 ; CHECK: inner:
-; CHECK: icmp slt
 ; CHECK: br i1
 inner:
   %j = phi i32 [ 0, %inner.ph ], [ %j.inc, %inner ]