Initial checking of a perfect shuffle generation program for 4-element
authorChris Lattner <sabre@nondot.org>
Mon, 17 Apr 2006 00:30:41 +0000 (00:30 +0000)
committerChris Lattner <sabre@nondot.org>
Mon, 17 Apr 2006 00:30:41 +0000 (00:30 +0000)
Altivec vectors.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27736 91177308-0d34-0410-b5e6-96231b3b80d8

utils/PerfectShuffle/Makefile [new file with mode: 0644]
utils/PerfectShuffle/PerfectShuffle.cpp [new file with mode: 0644]

diff --git a/utils/PerfectShuffle/Makefile b/utils/PerfectShuffle/Makefile
new file mode 100644 (file)
index 0000000..332c580
--- /dev/null
@@ -0,0 +1,13 @@
+##===- utils/BuildShuffleTable/Makefile --------------------*- Makefile -*-===##
+# 
+#                     The LLVM Compiler Infrastructure
+#
+# This file was developed by Chris Lattner and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+# 
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../..
+TOOLNAME = llvm-BuildShuffleTable
+include $(LEVEL)/Makefile.common
+
diff --git a/utils/PerfectShuffle/PerfectShuffle.cpp b/utils/PerfectShuffle/PerfectShuffle.cpp
new file mode 100644 (file)
index 0000000..ae2e05f
--- /dev/null
@@ -0,0 +1,474 @@
+//===-- BuildShuffleTable.cpp - Perfect Shuffle Generator -----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file computes an optimal sequence of instructions for doing all shuffles
+// of two 4-element vectors.  With a release build and when configured to emit
+// an altivec instruction table, this takes about 30s to run on a 2.7Ghz
+// PowerPC G5.
+//
+//===----------------------------------------------------------------------===//
+
+#include <iostream>
+#include <vector>
+
+struct Operator;
+
+// Masks are 4-nibble hex numbers.  Values 0-7 in any nibble means that it takes
+// an element from that value of the input vectors.  A value of 8 means the 
+// entry is undefined.
+
+// Mask manipulation functions.
+static inline unsigned short MakeMask(unsigned V0, unsigned V1, 
+                                      unsigned V2, unsigned V3) {
+  return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4));
+}
+
+/// getMaskElt - Return element N of the specified mask.
+static unsigned getMaskElt(unsigned Mask, unsigned Elt) {
+  return (Mask >> ((3-Elt)*4)) & 0xF;
+}
+
+static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) {
+  unsigned FieldShift = ((3-Elt)*4);
+  return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift);
+}
+
+// Reject elements where the values are 9-15.
+static bool isValidMask(unsigned short Mask) {
+  unsigned short UndefBits = Mask & 0x8888;
+  return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0;
+}
+
+/// hasUndefElements - Return true if any of the elements in the mask are undefs
+///
+static bool hasUndefElements(unsigned short Mask) {
+  return (Mask & 0x8888) != 0;
+}
+
+/// isOnlyLHSMask - Return true if this mask only refers to its LHS, not
+/// including undef values..
+static bool isOnlyLHSMask(unsigned short Mask) {
+  return (Mask & 0x4444) == 0;
+}
+
+/// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to
+/// refer to the LHS only (for when one argument value is passed into the same
+/// function twice).
+static unsigned short getLHSOnlyMask(unsigned short Mask) {
+  return Mask & 0xBBBB;  // Keep only LHS and Undefs.
+}
+
+/// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4
+/// bits) into a compressed 13-bit mask, where each elt is multiplied by 9.
+static unsigned getCompressedMask(unsigned short Mask) {
+  return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 + 
+         getMaskElt(Mask, 2)*9     + getMaskElt(Mask, 3);
+}
+
+static void PrintMask(unsigned i, std::ostream &OS) {
+  OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0)))
+     << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1)))
+     << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2)))
+     << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3)))
+     << ">";
+}
+
+/// ShuffleVal - This represents a shufflevector operation.
+struct ShuffleVal {
+  unsigned Cost;  // Number of instrs used to generate this value.
+  Operator *Op;   // The Operation used to generate this value.
+  unsigned short Arg0, Arg1;  // Input operands for this value.
+  
+  ShuffleVal() : Cost(1000000) {}
+};
+
+
+/// ShufTab - This is the actual shuffle table that we are trying to generate.
+///
+static ShuffleVal ShufTab[65536];
+
+/// TheOperators - All of the operators that this target supports.
+static std::vector<Operator*> TheOperators;
+
+/// Operator - This is a vector operation that is available for use.
+struct Operator {
+  unsigned short ShuffleMask;
+  unsigned short OpNum;
+  const char *Name;
+  
+  Operator(unsigned short shufflemask, const char *name)
+    : ShuffleMask(shufflemask), Name(name) {
+    OpNum = TheOperators.size();
+    TheOperators.push_back(this);
+  }
+  ~Operator() {
+    assert(TheOperators.back() == this);
+    TheOperators.pop_back();
+  }
+  
+  bool isOnlyLHSOperator() const {
+    return isOnlyLHSMask(ShuffleMask);
+  }
+  
+  const char *getName() const { return Name; }
+  
+  unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) {
+    // Extract the elements from LHSMask and RHSMask, as appropriate.
+    unsigned Result = 0;
+    for (unsigned i = 0; i != 4; ++i) {
+      unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF;
+      unsigned ResElt;
+      if (SrcElt < 4)
+        ResElt = getMaskElt(LHSMask, SrcElt);
+      else if (SrcElt < 8)
+        ResElt = getMaskElt(RHSMask, SrcElt-4);
+      else {
+        assert(SrcElt == 8 && "Bad src elt!");
+        ResElt = 8;
+      }
+      Result |= ResElt << (4*i);
+    }
+    return Result;
+  }
+};
+
+static const char *getZeroCostOpName(unsigned short Op) {
+  if (ShufTab[Op].Arg0 == 0x0123)
+    return "LHS";
+  else if (ShufTab[Op].Arg0 == 0x4567)
+    return "RHS";
+  else {
+    assert(0 && "bad zero cost operation");
+    abort();
+  }
+}
+
+static void PrintOperation(unsigned ValNo, unsigned short Vals[]) {
+  unsigned short ThisOp = Vals[ValNo];
+  std::cerr << "t" << ValNo;
+  PrintMask(ThisOp, std::cerr);
+  std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "(";
+    
+  if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) {
+    std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0);
+    PrintMask(ShufTab[ThisOp].Arg0, std::cerr);
+  } else {
+    // Figure out what tmp # it is.
+    for (unsigned i = 0; ; ++i)
+      if (Vals[i] == ShufTab[ThisOp].Arg0) {
+        std::cerr << "t" << i;
+        break;
+      }
+  }
+  
+  if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) {
+    std::cerr << ", ";
+    if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) {
+      std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1);
+      PrintMask(ShufTab[ThisOp].Arg1, std::cerr);
+    } else {
+      // Figure out what tmp # it is.
+      for (unsigned i = 0; ; ++i)
+        if (Vals[i] == ShufTab[ThisOp].Arg1) {
+          std::cerr << "t" << i;
+          break;
+        }
+    }
+  }
+  std::cerr << ")  ";
+}
+
+static unsigned getNumEntered() {
+  unsigned Count = 0;
+  for (unsigned i = 0; i != 65536; ++i)
+    Count += ShufTab[i].Cost < 100;
+  return Count;
+}
+
+static void EvaluateOps(unsigned short Elt, unsigned short Vals[], 
+                        unsigned &NumVals) {
+  if (ShufTab[Elt].Cost == 0) return;
+
+  // If this value has already been evaluated, it is free.  FIXME: match undefs.
+  for (unsigned i = 0, e = NumVals; i != e; ++i)
+    if (Vals[i] == Elt) return;
+  
+  // Otherwise, get the operands of the value, then add it.
+  unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1;
+  if (ShufTab[Arg0].Cost)
+    EvaluateOps(Arg0, Vals, NumVals);
+  if (Arg0 != Arg1 && ShufTab[Arg1].Cost)
+    EvaluateOps(Arg1, Vals, NumVals);
+  
+  Vals[NumVals++] = Elt;
+}
+
+
+int main() {
+  // Seed the table with accesses to the LHS and RHS.
+  ShufTab[0x0123].Cost = 0;
+  ShufTab[0x0123].Op = 0;
+  ShufTab[0x0123].Arg0 = 0x0123;
+  ShufTab[0x4567].Cost = 0;
+  ShufTab[0x4567].Op = 0;
+  ShufTab[0x4567].Arg0 = 0x4567;
+  
+  // Seed the first-level of shuffles, shuffles whose inputs are the input to
+  // the vectorshuffle operation.
+  bool MadeChange = true;
+  unsigned OpCount = 0;
+  while (MadeChange) {
+    MadeChange = false;
+    ++OpCount;
+    std::cerr << "Starting iteration #" << OpCount << " with "
+              << getNumEntered() << " entries established.\n";
+    
+    // Scan the table for two reasons: First, compute the maximum cost of any
+    // operation left in the table.  Second, make sure that values with undefs
+    // have the cheapest alternative that they match.
+    unsigned MaxCost = ShufTab[0].Cost;
+    for (unsigned i = 1; i != 0x8889; ++i) {
+      if (!isValidMask(i)) continue;
+      if (ShufTab[i].Cost > MaxCost)
+        MaxCost = ShufTab[i].Cost;
+      
+      // If this value has an undef, make it be computed the cheapest possible
+      // way of any of the things that it matches.
+      if (hasUndefElements(i)) {
+        // This code is a little bit tricky, so here's the idea: consider some
+        // permutation, like 7u4u.  To compute the lowest cost for 7u4u, we
+        // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries.  If
+        // there are 3 undefs, the number rises to 729 entries we have to scan,
+        // and for the 4 undef case, we have to scan the whole table.
+        //
+        // Instead of doing this huge amount of scanning, we process the table
+        // entries *in order*, and use the fact that 'u' is 8, larger than any
+        // valid index.  Given an entry like 7u4u then, we only need to scan
+        // 7[0-7]4u - 8 entries.  We can get away with this, because we already
+        // know that each of 704u, 714u, 724u, etc contain the minimum value of
+        // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively.
+        unsigned UndefIdx;
+        if (i & 0x8000)
+          UndefIdx = 0;
+        else if (i & 0x0800)
+          UndefIdx = 1;
+        else if (i & 0x0080)
+          UndefIdx = 2;
+        else if (i & 0x0008)
+          UndefIdx = 3;
+        else
+          abort();
+        
+        unsigned MinVal  = i;
+        unsigned MinCost = ShufTab[i].Cost;
+        
+        // Scan the 8 entries.
+        for (unsigned j = 0; j != 8; ++j) {
+          unsigned NewElt = setMaskElt(i, UndefIdx, j);
+          if (ShufTab[NewElt].Cost < MinCost) {
+            MinCost = ShufTab[NewElt].Cost;
+            MinVal = NewElt;
+          }
+        }
+        
+        // If we found something cheaper than what was here before, use it.
+        if (i != MinVal) {
+          MadeChange = true;
+          ShufTab[i] = ShufTab[MinVal];
+        }
+      } 
+    }
+    
+    for (unsigned LHS = 0; LHS != 0x8889; ++LHS) {
+      if (!isValidMask(LHS)) continue;
+      if (ShufTab[LHS].Cost > 1000) continue;
+
+      // If nothing involving this operand could possibly be cheaper than what
+      // we already have, don't consider it.
+      if (ShufTab[LHS].Cost + 1 >= MaxCost)
+        continue;
+        
+      for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) {
+        Operator *Op = TheOperators[opnum];
+        unsigned short Mask = Op->ShuffleMask;
+
+        // Evaluate op(LHS,LHS)
+        unsigned ResultMask = Op->getTransformedMask(LHS, LHS);
+
+        unsigned Cost = ShufTab[LHS].Cost + 1;
+        if (Cost < ShufTab[ResultMask].Cost) {
+          ShufTab[ResultMask].Cost = Cost;
+          ShufTab[ResultMask].Op = Op;
+          ShufTab[ResultMask].Arg0 = LHS;
+          ShufTab[ResultMask].Arg1 = LHS;
+          MadeChange = true;
+        }
+        
+        // If this is a two input instruction, include the op(x,y) cases.  If
+        // this is a one input instruction, skip this.
+        if (Op->isOnlyLHSOperator()) continue;
+        
+        for (unsigned RHS = 0; RHS != 0x8889; ++RHS) {
+          if (!isValidMask(RHS)) continue;
+          if (ShufTab[RHS].Cost > 1000) continue;
+          
+          // If nothing involving this operand could possibly be cheaper than
+          // what we already have, don't consider it.
+          if (ShufTab[RHS].Cost + 1 >= MaxCost)
+            continue;
+          
+
+          // Evaluate op(LHS,RHS)
+          unsigned ResultMask = Op->getTransformedMask(LHS, RHS);
+
+          if (ShufTab[ResultMask].Cost <= OpCount ||
+              ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost ||
+              ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost)
+            continue;
+          
+          // Figure out the cost to evaluate this, knowing that CSE's only need
+          // to be evaluated once.
+          unsigned short Vals[30];
+          unsigned NumVals = 0;
+          EvaluateOps(LHS, Vals, NumVals);
+          EvaluateOps(RHS, Vals, NumVals);
+
+          unsigned Cost = NumVals + 1;
+          if (Cost < ShufTab[ResultMask].Cost) {
+            ShufTab[ResultMask].Cost = Cost;
+            ShufTab[ResultMask].Op = Op;
+            ShufTab[ResultMask].Arg0 = LHS;
+            ShufTab[ResultMask].Arg1 = RHS;
+            MadeChange = true;
+          }
+        }
+      }
+    }
+  }
+  
+  std::cerr << "Finished Table has " << getNumEntered()
+            << " entries established.\n";
+  
+  unsigned CostArray[10] = { 0 };
+
+  // Compute a cost histogram.
+  for (unsigned i = 0; i != 65536; ++i) {
+    if (!isValidMask(i)) continue;
+    if (ShufTab[i].Cost > 9)
+      ++CostArray[9];
+    else
+      ++CostArray[ShufTab[i].Cost];
+  }
+  
+  for (unsigned i = 0; i != 9; ++i)
+    if (CostArray[i])
+      std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n";
+  if (CostArray[9])
+    std::cout << "// " << CostArray[9] << " entries have higher cost!\n";
+  
+  
+  // Build up the table to emit.
+  std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n";
+  std::cout << "static const unsigned InstrTab[6561+1] = {\n";
+  
+  for (unsigned i = 0; i != 0x8889; ++i) {
+    if (!isValidMask(i)) continue;
+    
+    // CostSat - The cost of this operation saturated to two bits.
+    unsigned CostSat = ShufTab[i].Cost;
+    if (CostSat > 3) CostSat = 3;
+    
+    unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0;
+    assert(OpNum < 16 && "Too few bits to encode operation!");
+    
+    unsigned LHS = getCompressedMask(ShufTab[i].Arg0);
+    unsigned RHS = getCompressedMask(ShufTab[i].Arg1);
+    
+    // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of
+    // LHS, and 13 bits of RHS = 32 bits.
+    unsigned Val = (CostSat << 30) | (OpNum << 27) | (LHS << 13) | RHS;
+
+    std::cout << "  " << Val << "U,\t// ";
+    PrintMask(i, std::cout);
+    std::cout << ": Cost " << ShufTab[i].Cost;
+    std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy");
+    std::cout << " ";
+    if (ShufTab[ShufTab[i].Arg0].Cost == 0) {
+      std::cout << getZeroCostOpName(ShufTab[i].Arg0);
+    } else {
+      PrintMask(ShufTab[i].Arg0, std::cout);
+    }
+
+    if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) {
+      std::cout << ", ";
+      if (ShufTab[ShufTab[i].Arg1].Cost == 0) {
+        std::cout << getZeroCostOpName(ShufTab[i].Arg1);
+      } else {
+        PrintMask(ShufTab[i].Arg1, std::cout);
+      }
+    }
+    std::cout << "\n";
+  }  
+  std::cout << "  0\n};\n";
+
+  if (0) {
+    // Print out the table.
+    for (unsigned i = 0; i != 0x8889; ++i) {
+      if (!isValidMask(i)) continue;
+      if (ShufTab[i].Cost < 1000) {
+        PrintMask(i, std::cerr);
+        std::cerr << " - Cost " << ShufTab[i].Cost << " - ";
+        
+        unsigned short Vals[30];
+        unsigned NumVals = 0;
+        EvaluateOps(i, Vals, NumVals);
+
+        for (unsigned j = 0, e = NumVals; j != e; ++j)
+          PrintOperation(j, Vals);
+        std::cerr << "\n";
+      }
+    }
+  }
+}
+
+
+
+///===---------------------------------------------------------------------===//
+/// The altivec instruction definitions.  This is the altivec-specific part of
+/// this file.
+///===---------------------------------------------------------------------===//
+
+struct vmrghw : public Operator {
+  vmrghw() : Operator(0x0415, "vmrghw") {}
+} the_vmrghw;
+
+struct vmrglw : public Operator {
+  vmrglw() : Operator(0x2637, "vmrglw") {}
+} the_vmrglw;
+
+template<unsigned Elt>
+struct vspltisw : public Operator {
+  vspltisw(const char *N) : Operator(MakeMask(Elt, Elt, Elt, Elt), N) {}
+};
+
+vspltisw<0> the_vspltisw0("vspltisw0");
+vspltisw<1> the_vspltisw1("vspltisw1");
+vspltisw<2> the_vspltisw2("vspltisw2");
+vspltisw<3> the_vspltisw3("vspltisw3");
+
+template<unsigned N>
+struct vsldoi : public Operator {
+  vsldoi(const char *n) : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), n){
+  }
+};
+
+vsldoi<1> the_vsldoi1("vsldoi4");
+vsldoi<2> the_vsldoi2("vsldoi8");
+vsldoi<3> the_vsldoi3("vsldoi12");
+