[PM] Pull the generic graph algorithms and data structures for dominator
authorChandler Carruth <chandlerc@gmail.com>
Mon, 13 Jan 2014 10:52:56 +0000 (10:52 +0000)
committerChandler Carruth <chandlerc@gmail.com>
Mon, 13 Jan 2014 10:52:56 +0000 (10:52 +0000)
trees into the Support library.

These are all expressed in terms of the generic GraphTraits and CFG,
with no reliance on any concrete IR types. Putting them in support
clarifies that and makes the fact that the static analyzer in Clang uses
them much more sane. When moving the Dominators.h file into the IR
library I claimed that this was the right home for it but not something
I planned to work on. Oops.

So why am I doing this? It happens to be one step toward breaking the
requirement that IR verification can only be performed from inside of
a pass context, which completely blocks the implementation of
verification for the new pass manager infrastructure. Fixing it will
also allow removing the concept of the "preverify" step (WTF???) and
allow the verifier to cleanly flag functions which fail verification in
a way that precludes even computing dominance information. Currently,
that results in a fatal error even when you ask the verifier to not
fatally error. It's awesome like that.

The yak shaving will continue...

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199095 91177308-0d34-0410-b5e6-96231b3b80d8

include/llvm/CodeGen/MachineDominators.h
include/llvm/IR/DominatorInternals.h [deleted file]
include/llvm/IR/Dominators.h
include/llvm/IR/Verifier.h
include/llvm/Support/GenericDomTree.h [new file with mode: 0644]
include/llvm/Support/GenericDomTreeConstruction.h [new file with mode: 0644]
lib/Analysis/PostDominators.cpp
lib/CodeGen/GCStrategy.cpp
lib/IR/Dominators.cpp
lib/Target/R600/AMDILCFGStructurizer.cpp
lib/Transforms/Scalar/CodeGenPrepare.cpp

index f50c61876c28efb75d4f1889a22a0e43f889d464..608833305f9679531c6867afe96ac332435c4b67 100644 (file)
@@ -18,8 +18,8 @@
 #include "llvm/CodeGen/MachineBasicBlock.h"
 #include "llvm/CodeGen/MachineFunction.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/IR/DominatorInternals.h"
-#include "llvm/IR/Dominators.h"
+#include "llvm/Support/GenericDomTreeConstruction.h"
+#include "llvm/Support/GenericDomTree.h"
 
 namespace llvm {
 
diff --git a/include/llvm/IR/DominatorInternals.h b/include/llvm/IR/DominatorInternals.h
deleted file mode 100644 (file)
index 9e2922d..0000000
+++ /dev/null
@@ -1,289 +0,0 @@
-//===- DominatorInternals.h - Dominator Calculation --------------*- C++ -*-==//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_IR_DOMINATOR_INTERNALS_H
-#define LLVM_IR_DOMINATOR_INTERNALS_H
-
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/IR/Dominators.h"
-
-//===----------------------------------------------------------------------===//
-//
-// DominatorTree construction - This pass constructs immediate dominator
-// information for a flow-graph based on the algorithm described in this
-// document:
-//
-//   A Fast Algorithm for Finding Dominators in a Flowgraph
-//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
-//
-// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
-// out that the theoretically slower O(n*log(n)) implementation is actually
-// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
-//
-//===----------------------------------------------------------------------===//
-
-namespace llvm {
-
-template<class GraphT>
-unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
-                 typename GraphT::NodeType* V, unsigned N) {
-  // This is more understandable as a recursive algorithm, but we can't use the
-  // recursive algorithm due to stack depth issues.  Keep it here for
-  // documentation purposes.
-#if 0
-  InfoRec &VInfo = DT.Info[DT.Roots[i]];
-  VInfo.DFSNum = VInfo.Semi = ++N;
-  VInfo.Label = V;
-
-  Vertex.push_back(V);        // Vertex[n] = V;
-
-  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
-    InfoRec &SuccVInfo = DT.Info[*SI];
-    if (SuccVInfo.Semi == 0) {
-      SuccVInfo.Parent = V;
-      N = DTDFSPass(DT, *SI, N);
-    }
-  }
-#else
-  bool IsChildOfArtificialExit = (N != 0);
-
-  SmallVector<std::pair<typename GraphT::NodeType*,
-                        typename GraphT::ChildIteratorType>, 32> Worklist;
-  Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
-  while (!Worklist.empty()) {
-    typename GraphT::NodeType* BB = Worklist.back().first;
-    typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
-
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
-                                                                    DT.Info[BB];
-
-    // First time we visited this BB?
-    if (NextSucc == GraphT::child_begin(BB)) {
-      BBInfo.DFSNum = BBInfo.Semi = ++N;
-      BBInfo.Label = BB;
-
-      DT.Vertex.push_back(BB);       // Vertex[n] = V;
-
-      if (IsChildOfArtificialExit)
-        BBInfo.Parent = 1;
-
-      IsChildOfArtificialExit = false;
-    }
-
-    // store the DFS number of the current BB - the reference to BBInfo might
-    // get invalidated when processing the successors.
-    unsigned BBDFSNum = BBInfo.DFSNum;
-
-    // If we are done with this block, remove it from the worklist.
-    if (NextSucc == GraphT::child_end(BB)) {
-      Worklist.pop_back();
-      continue;
-    }
-
-    // Increment the successor number for the next time we get to it.
-    ++Worklist.back().second;
-    
-    // Visit the successor next, if it isn't already visited.
-    typename GraphT::NodeType* Succ = *NextSucc;
-
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
-                                                                  DT.Info[Succ];
-    if (SuccVInfo.Semi == 0) {
-      SuccVInfo.Parent = BBDFSNum;
-      Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
-    }
-  }
-#endif
-    return N;
-}
-
-template<class GraphT>
-typename GraphT::NodeType* 
-Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
-     typename GraphT::NodeType *VIn, unsigned LastLinked) {
-  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
-                                                                  DT.Info[VIn];
-  if (VInInfo.DFSNum < LastLinked)
-    return VIn;
-
-  SmallVector<typename GraphT::NodeType*, 32> Work;
-  SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
-
-  if (VInInfo.Parent >= LastLinked)
-    Work.push_back(VIn);
-  
-  while (!Work.empty()) {
-    typename GraphT::NodeType* V = Work.back();
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
-                                                                     DT.Info[V];
-    typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
-
-    // Process Ancestor first
-    if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
-      Work.push_back(VAncestor);
-      continue;
-    } 
-    Work.pop_back(); 
-
-    // Update VInfo based on Ancestor info
-    if (VInfo.Parent < LastLinked)
-      continue;
-
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
-                                                             DT.Info[VAncestor];
-    typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
-    typename GraphT::NodeType* VLabel = VInfo.Label;
-    if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
-      VInfo.Label = VAncestorLabel;
-    VInfo.Parent = VAInfo.Parent;
-  }
-
-  return VInInfo.Label;
-}
-
-template<class FuncT, class NodeT>
-void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
-               FuncT& F) {
-  typedef GraphTraits<NodeT> GraphT;
-
-  unsigned N = 0;
-  bool MultipleRoots = (DT.Roots.size() > 1);
-  if (MultipleRoots) {
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
-        DT.Info[NULL];
-    BBInfo.DFSNum = BBInfo.Semi = ++N;
-    BBInfo.Label = NULL;
-
-    DT.Vertex.push_back(NULL);       // Vertex[n] = V;
-  }
-
-  // Step #1: Number blocks in depth-first order and initialize variables used
-  // in later stages of the algorithm.
-  for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
-       i != e; ++i)
-    N = DFSPass<GraphT>(DT, DT.Roots[i], N);
-
-  // it might be that some blocks did not get a DFS number (e.g., blocks of 
-  // infinite loops). In these cases an artificial exit node is required.
-  MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
-
-  // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
-  // bucket for each vertex. However, this is unnecessary, because each vertex
-  // is only placed into a single bucket (that of its semidominator), and each
-  // vertex's bucket is processed before it is added to any bucket itself.
-  //
-  // Instead of using a bucket per vertex, we use a single array Buckets that
-  // has two purposes. Before the vertex V with preorder number i is processed,
-  // Buckets[i] stores the index of the first element in V's bucket. After V's
-  // bucket is processed, Buckets[i] stores the index of the next element in the
-  // bucket containing V, if any.
-  SmallVector<unsigned, 32> Buckets;
-  Buckets.resize(N + 1);
-  for (unsigned i = 1; i <= N; ++i)
-    Buckets[i] = i;
-
-  for (unsigned i = N; i >= 2; --i) {
-    typename GraphT::NodeType* W = DT.Vertex[i];
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
-                                                                     DT.Info[W];
-
-    // Step #2: Implicitly define the immediate dominator of vertices
-    for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
-      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
-      typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
-      DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
-    }
-
-    // Step #3: Calculate the semidominators of all vertices
-
-    // initialize the semi dominator to point to the parent node
-    WInfo.Semi = WInfo.Parent;
-    typedef GraphTraits<Inverse<NodeT> > InvTraits;
-    for (typename InvTraits::ChildIteratorType CI =
-         InvTraits::child_begin(W),
-         E = InvTraits::child_end(W); CI != E; ++CI) {
-      typename InvTraits::NodeType *N = *CI;
-      if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
-        unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
-        if (SemiU < WInfo.Semi)
-          WInfo.Semi = SemiU;
-      }
-    }
-
-    // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
-    // necessarily parent(V). In this case, set idom(V) here and avoid placing
-    // V into a bucket.
-    if (WInfo.Semi == WInfo.Parent) {
-      DT.IDoms[W] = DT.Vertex[WInfo.Parent];
-    } else {
-      Buckets[i] = Buckets[WInfo.Semi];
-      Buckets[WInfo.Semi] = i;
-    }
-  }
-
-  if (N >= 1) {
-    typename GraphT::NodeType* Root = DT.Vertex[1];
-    for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
-      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
-      DT.IDoms[V] = Root;
-    }
-  }
-
-  // Step #4: Explicitly define the immediate dominator of each vertex
-  for (unsigned i = 2; i <= N; ++i) {
-    typename GraphT::NodeType* W = DT.Vertex[i];
-    typename GraphT::NodeType*& WIDom = DT.IDoms[W];
-    if (WIDom != DT.Vertex[DT.Info[W].Semi])
-      WIDom = DT.IDoms[WIDom];
-  }
-
-  if (DT.Roots.empty()) return;
-
-  // Add a node for the root.  This node might be the actual root, if there is
-  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
-  // which postdominates all real exits if there are multiple exit blocks, or
-  // an infinite loop.
-  typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
-
-  DT.DomTreeNodes[Root] = DT.RootNode =
-                        new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
-
-  // Loop over all of the reachable blocks in the function...
-  for (unsigned i = 2; i <= N; ++i) {
-    typename GraphT::NodeType* W = DT.Vertex[i];
-
-    DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
-    if (BBNode) continue;  // Haven't calculated this node yet?
-
-    typename GraphT::NodeType* ImmDom = DT.getIDom(W);
-
-    assert(ImmDom || DT.DomTreeNodes[NULL]);
-
-    // Get or calculate the node for the immediate dominator
-    DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
-                                                     DT.getNodeForBlock(ImmDom);
-
-    // Add a new tree node for this BasicBlock, and link it as a child of
-    // IDomNode
-    DomTreeNodeBase<typename GraphT::NodeType> *C =
-                    new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
-    DT.DomTreeNodes[W] = IDomNode->addChild(C);
-  }
-
-  // Free temporary memory used to construct idom's
-  DT.IDoms.clear();
-  DT.Info.clear();
-  std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
-
-  DT.updateDFSNumbers();
-}
-
-}
-
-#endif
index 6a6e71e3144c94542d57a4f381cfaf440a1bd1a5..9dc0860dbd90b2dfb7a7a3ab2d4107808854a996 100644 (file)
 #include "llvm/ADT/GraphTraits.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/BasicBlock.h"
 #include "llvm/IR/Function.h"
 #include "llvm/Pass.h"
 #include "llvm/Support/CFG.h"
+#include "llvm/Support/GenericDomTree.h"
 #include "llvm/Support/Compiler.h"
 #include "llvm/Support/raw_ostream.h"
 #include <algorithm>
 
 namespace llvm {
 
-//===----------------------------------------------------------------------===//
-/// DominatorBase - Base class that other, more interesting dominator analyses
-/// inherit from.
-///
-template <class NodeT>
-class DominatorBase {
-protected:
-  std::vector<NodeT*> Roots;
-  const bool IsPostDominators;
-  inline explicit DominatorBase(bool isPostDom) :
-    Roots(), IsPostDominators(isPostDom) {}
-public:
-
-  /// getRoots - Return the root blocks of the current CFG.  This may include
-  /// multiple blocks if we are computing post dominators.  For forward
-  /// dominators, this will always be a single block (the entry node).
-  ///
-  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
-
-  /// isPostDominator - Returns true if analysis based of postdoms
-  ///
-  bool isPostDominator() const { return IsPostDominators; }
-};
-
-
-//===----------------------------------------------------------------------===//
-// DomTreeNode - Dominator Tree Node
-template<class NodeT> class DominatorTreeBase;
-struct PostDominatorTree;
-class MachineBasicBlock;
-
-template <class NodeT>
-class DomTreeNodeBase {
-  NodeT *TheBB;
-  DomTreeNodeBase<NodeT> *IDom;
-  std::vector<DomTreeNodeBase<NodeT> *> Children;
-  int DFSNumIn, DFSNumOut;
-
-  template<class N> friend class DominatorTreeBase;
-  friend struct PostDominatorTree;
-public:
-  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
-  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
-                   const_iterator;
-
-  iterator begin()             { return Children.begin(); }
-  iterator end()               { return Children.end(); }
-  const_iterator begin() const { return Children.begin(); }
-  const_iterator end()   const { return Children.end(); }
-
-  NodeT *getBlock() const { return TheBB; }
-  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
-  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
-    return Children;
-  }
-
-  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
-    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
-
-  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
-    Children.push_back(C);
-    return C;
-  }
-
-  size_t getNumChildren() const {
-    return Children.size();
-  }
-
-  void clearAllChildren() {
-    Children.clear();
-  }
-
-  bool compare(const DomTreeNodeBase<NodeT> *Other) const {
-    if (getNumChildren() != Other->getNumChildren())
-      return true;
-
-    SmallPtrSet<const NodeT *, 4> OtherChildren;
-    for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
-      const NodeT *Nd = (*I)->getBlock();
-      OtherChildren.insert(Nd);
-    }
-
-    for (const_iterator I = begin(), E = end(); I != E; ++I) {
-      const NodeT *N = (*I)->getBlock();
-      if (OtherChildren.count(N) == 0)
-        return true;
-    }
-    return false;
-  }
-
-  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
-    assert(IDom && "No immediate dominator?");
-    if (IDom != NewIDom) {
-      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
-                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
-      assert(I != IDom->Children.end() &&
-             "Not in immediate dominator children set!");
-      // I am no longer your child...
-      IDom->Children.erase(I);
-
-      // Switch to new dominator
-      IDom = NewIDom;
-      IDom->Children.push_back(this);
-    }
-  }
-
-  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
-  /// not call them.
-  unsigned getDFSNumIn() const { return DFSNumIn; }
-  unsigned getDFSNumOut() const { return DFSNumOut; }
-private:
-  // Return true if this node is dominated by other. Use this only if DFS info
-  // is valid.
-  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
-    return this->DFSNumIn >= other->DFSNumIn &&
-      this->DFSNumOut <= other->DFSNumOut;
-  }
-};
-
 EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
-EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
-
-template<class NodeT>
-inline raw_ostream &operator<<(raw_ostream &o,
-                               const DomTreeNodeBase<NodeT> *Node) {
-  if (Node->getBlock())
-    Node->getBlock()->printAsOperand(o, false);
-  else
-    o << " <<exit node>>";
-
-  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
-
-  return o << "\n";
-}
-
-template<class NodeT>
-inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
-                         unsigned Lev) {
-  o.indent(2*Lev) << "[" << Lev << "] " << N;
-  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
-       E = N->end(); I != E; ++I)
-    PrintDomTree<NodeT>(*I, o, Lev+1);
-}
+EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
 
 typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
 
-//===----------------------------------------------------------------------===//
-/// DominatorTree - Calculate the immediate dominator tree for a function.
-///
-
-template<class FuncT, class N>
-void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
-               FuncT& F);
-
-template<class NodeT>
-class DominatorTreeBase : public DominatorBase<NodeT> {
-  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
-                               const DomTreeNodeBase<NodeT> *B) const {
-    assert(A != B);
-    assert(isReachableFromEntry(B));
-    assert(isReachableFromEntry(A));
-
-    const DomTreeNodeBase<NodeT> *IDom;
-    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
-      B = IDom;   // Walk up the tree
-    return IDom != 0;
-  }
-
-protected:
-  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
-  DomTreeNodeMapType DomTreeNodes;
-  DomTreeNodeBase<NodeT> *RootNode;
-
-  bool DFSInfoValid;
-  unsigned int SlowQueries;
-  // Information record used during immediate dominators computation.
-  struct InfoRec {
-    unsigned DFSNum;
-    unsigned Parent;
-    unsigned Semi;
-    NodeT *Label;
-
-    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
-  };
-
-  DenseMap<NodeT*, NodeT*> IDoms;
-
-  // Vertex - Map the DFS number to the BasicBlock*
-  std::vector<NodeT*> Vertex;
-
-  // Info - Collection of information used during the computation of idoms.
-  DenseMap<NodeT*, InfoRec> Info;
-
-  void reset() {
-    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
-           E = DomTreeNodes.end(); I != E; ++I)
-      delete I->second;
-    DomTreeNodes.clear();
-    IDoms.clear();
-    this->Roots.clear();
-    Vertex.clear();
-    RootNode = 0;
-  }
-
-  // NewBB is split and now it has one successor. Update dominator tree to
-  // reflect this change.
-  template<class N, class GraphT>
-  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
-             typename GraphT::NodeType* NewBB) {
-    assert(std::distance(GraphT::child_begin(NewBB),
-                         GraphT::child_end(NewBB)) == 1 &&
-           "NewBB should have a single successor!");
-    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
-
-    std::vector<typename GraphT::NodeType*> PredBlocks;
-    typedef GraphTraits<Inverse<N> > InvTraits;
-    for (typename InvTraits::ChildIteratorType PI =
-         InvTraits::child_begin(NewBB),
-         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
-      PredBlocks.push_back(*PI);
-
-    assert(!PredBlocks.empty() && "No predblocks?");
-
-    bool NewBBDominatesNewBBSucc = true;
-    for (typename InvTraits::ChildIteratorType PI =
-         InvTraits::child_begin(NewBBSucc),
-         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
-      typename InvTraits::NodeType *ND = *PI;
-      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
-          DT.isReachableFromEntry(ND)) {
-        NewBBDominatesNewBBSucc = false;
-        break;
-      }
-    }
-
-    // Find NewBB's immediate dominator and create new dominator tree node for
-    // NewBB.
-    NodeT *NewBBIDom = 0;
-    unsigned i = 0;
-    for (i = 0; i < PredBlocks.size(); ++i)
-      if (DT.isReachableFromEntry(PredBlocks[i])) {
-        NewBBIDom = PredBlocks[i];
-        break;
-      }
-
-    // It's possible that none of the predecessors of NewBB are reachable;
-    // in that case, NewBB itself is unreachable, so nothing needs to be
-    // changed.
-    if (!NewBBIDom)
-      return;
-
-    for (i = i + 1; i < PredBlocks.size(); ++i) {
-      if (DT.isReachableFromEntry(PredBlocks[i]))
-        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
-    }
-
-    // Create the new dominator tree node... and set the idom of NewBB.
-    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
-
-    // If NewBB strictly dominates other blocks, then it is now the immediate
-    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
-    if (NewBBDominatesNewBBSucc) {
-      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
-      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
-    }
-  }
-
-public:
-  explicit DominatorTreeBase(bool isPostDom)
-    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
-  virtual ~DominatorTreeBase() { reset(); }
-
-  /// compare - Return false if the other dominator tree base matches this
-  /// dominator tree base. Otherwise return true.
-  bool compare(DominatorTreeBase &Other) const {
-
-    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
-    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
-      return true;
-
-    for (typename DomTreeNodeMapType::const_iterator
-           I = this->DomTreeNodes.begin(),
-           E = this->DomTreeNodes.end(); I != E; ++I) {
-      NodeT *BB = I->first;
-      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
-      if (OI == OtherDomTreeNodes.end())
-        return true;
-
-      DomTreeNodeBase<NodeT>* MyNd = I->second;
-      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
-
-      if (MyNd->compare(OtherNd))
-        return true;
-    }
-
-    return false;
-  }
-
-  virtual void releaseMemory() { reset(); }
-
-  /// getNode - return the (Post)DominatorTree node for the specified basic
-  /// block.  This is the same as using operator[] on this class.
-  ///
-  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
-    return DomTreeNodes.lookup(BB);
-  }
-
-  /// getRootNode - This returns the entry node for the CFG of the function.  If
-  /// this tree represents the post-dominance relations for a function, however,
-  /// this root may be a node with the block == NULL.  This is the case when
-  /// there are multiple exit nodes from a particular function.  Consumers of
-  /// post-dominance information must be capable of dealing with this
-  /// possibility.
-  ///
-  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
-  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
-
-  /// Get all nodes dominated by R, including R itself.
-  void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
-    Result.clear();
-    const DomTreeNodeBase<NodeT> *RN = getNode(R);
-    if (RN == NULL)
-      return; // If R is unreachable, it will not be present in the DOM tree.
-    SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
-    WL.push_back(RN);
-
-    while (!WL.empty()) {
-      const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
-      Result.push_back(N->getBlock());
-      WL.append(N->begin(), N->end());
-    }
-  }
-
-  /// properlyDominates - Returns true iff A dominates B and A != B.
-  /// Note that this is not a constant time operation!
-  ///
-  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
-                         const DomTreeNodeBase<NodeT> *B) {
-    if (A == 0 || B == 0)
-      return false;
-    if (A == B)
-      return false;
-    return dominates(A, B);
-  }
-
-  bool properlyDominates(const NodeT *A, const NodeT *B);
-
-  /// isReachableFromEntry - Return true if A is dominated by the entry
-  /// block of the function containing it.
-  bool isReachableFromEntry(const NodeT* A) const {
-    assert(!this->isPostDominator() &&
-           "This is not implemented for post dominators");
-    return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
-  }
-
-  inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
-    return A;
-  }
-
-  /// dominates - Returns true iff A dominates B.  Note that this is not a
-  /// constant time operation!
-  ///
-  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
-                        const DomTreeNodeBase<NodeT> *B) {
-    // A node trivially dominates itself.
-    if (B == A)
-      return true;
-
-    // An unreachable node is dominated by anything.
-    if (!isReachableFromEntry(B))
-      return true;
-
-    // And dominates nothing.
-    if (!isReachableFromEntry(A))
-      return false;
-
-    // Compare the result of the tree walk and the dfs numbers, if expensive
-    // checks are enabled.
-#ifdef XDEBUG
-    assert((!DFSInfoValid ||
-            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
-           "Tree walk disagrees with dfs numbers!");
-#endif
-
-    if (DFSInfoValid)
-      return B->DominatedBy(A);
-
-    // If we end up with too many slow queries, just update the
-    // DFS numbers on the theory that we are going to keep querying.
-    SlowQueries++;
-    if (SlowQueries > 32) {
-      updateDFSNumbers();
-      return B->DominatedBy(A);
-    }
-
-    return dominatedBySlowTreeWalk(A, B);
-  }
-
-  bool dominates(const NodeT *A, const NodeT *B);
-
-  NodeT *getRoot() const {
-    assert(this->Roots.size() == 1 && "Should always have entry node!");
-    return this->Roots[0];
-  }
-
-  /// findNearestCommonDominator - Find nearest common dominator basic block
-  /// for basic block A and B. If there is no such block then return NULL.
-  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
-    assert(A->getParent() == B->getParent() &&
-           "Two blocks are not in same function");
-
-    // If either A or B is a entry block then it is nearest common dominator
-    // (for forward-dominators).
-    if (!this->isPostDominator()) {
-      NodeT &Entry = A->getParent()->front();
-      if (A == &Entry || B == &Entry)
-        return &Entry;
-    }
-
-    // If B dominates A then B is nearest common dominator.
-    if (dominates(B, A))
-      return B;
-
-    // If A dominates B then A is nearest common dominator.
-    if (dominates(A, B))
-      return A;
-
-    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
-    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
-
-    // Collect NodeA dominators set.
-    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
-    NodeADoms.insert(NodeA);
-    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
-    while (IDomA) {
-      NodeADoms.insert(IDomA);
-      IDomA = IDomA->getIDom();
-    }
-
-    // Walk NodeB immediate dominators chain and find common dominator node.
-    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
-    while (IDomB) {
-      if (NodeADoms.count(IDomB) != 0)
-        return IDomB->getBlock();
-
-      IDomB = IDomB->getIDom();
-    }
-
-    return NULL;
-  }
-
-  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
-    // Cast away the const qualifiers here. This is ok since
-    // const is re-introduced on the return type.
-    return findNearestCommonDominator(const_cast<NodeT *>(A),
-                                      const_cast<NodeT *>(B));
-  }
-
-  //===--------------------------------------------------------------------===//
-  // API to update (Post)DominatorTree information based on modifications to
-  // the CFG...
-
-  /// addNewBlock - Add a new node to the dominator tree information.  This
-  /// creates a new node as a child of DomBB dominator node,linking it into
-  /// the children list of the immediate dominator.
-  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
-    assert(getNode(BB) == 0 && "Block already in dominator tree!");
-    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
-    assert(IDomNode && "Not immediate dominator specified for block!");
-    DFSInfoValid = false;
-    return DomTreeNodes[BB] =
-      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
-  }
-
-  /// changeImmediateDominator - This method is used to update the dominator
-  /// tree information when a node's immediate dominator changes.
-  ///
-  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
-                                DomTreeNodeBase<NodeT> *NewIDom) {
-    assert(N && NewIDom && "Cannot change null node pointers!");
-    DFSInfoValid = false;
-    N->setIDom(NewIDom);
-  }
-
-  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
-    changeImmediateDominator(getNode(BB), getNode(NewBB));
-  }
-
-  /// eraseNode - Removes a node from the dominator tree. Block must not
-  /// dominate any other blocks. Removes node from its immediate dominator's
-  /// children list. Deletes dominator node associated with basic block BB.
-  void eraseNode(NodeT *BB) {
-    DomTreeNodeBase<NodeT> *Node = getNode(BB);
-    assert(Node && "Removing node that isn't in dominator tree.");
-    assert(Node->getChildren().empty() && "Node is not a leaf node.");
-
-      // Remove node from immediate dominator's children list.
-    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
-    if (IDom) {
-      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
-        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
-      assert(I != IDom->Children.end() &&
-             "Not in immediate dominator children set!");
-      // I am no longer your child...
-      IDom->Children.erase(I);
-    }
-
-    DomTreeNodes.erase(BB);
-    delete Node;
-  }
-
-  /// removeNode - Removes a node from the dominator tree.  Block must not
-  /// dominate any other blocks.  Invalidates any node pointing to removed
-  /// block.
-  void removeNode(NodeT *BB) {
-    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
-    DomTreeNodes.erase(BB);
-  }
-
-  /// splitBlock - BB is split and now it has one successor. Update dominator
-  /// tree to reflect this change.
-  void splitBlock(NodeT* NewBB) {
-    if (this->IsPostDominators)
-      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
-    else
-      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
-  }
-
-  /// print - Convert to human readable form
-  ///
-  void print(raw_ostream &o) const {
-    o << "=============================--------------------------------\n";
-    if (this->isPostDominator())
-      o << "Inorder PostDominator Tree: ";
-    else
-      o << "Inorder Dominator Tree: ";
-    if (!this->DFSInfoValid)
-      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
-    o << "\n";
-
-    // The postdom tree can have a null root if there are no returns.
-    if (getRootNode())
-      PrintDomTree<NodeT>(getRootNode(), o, 1);
-  }
-
-protected:
-  template<class GraphT>
-  friend typename GraphT::NodeType* Eval(
-                               DominatorTreeBase<typename GraphT::NodeType>& DT,
-                                         typename GraphT::NodeType* V,
-                                         unsigned LastLinked);
-
-  template<class GraphT>
-  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
-                          typename GraphT::NodeType* V,
-                          unsigned N);
-
-  template<class FuncT, class N>
-  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
-                        FuncT& F);
-
-  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
-  /// dominator tree in dfs order.
-  void updateDFSNumbers() {
-    unsigned DFSNum = 0;
-
-    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
-                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
-
-    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
-
-    if (!ThisRoot)
-      return;
-
-    // Even in the case of multiple exits that form the post dominator root
-    // nodes, do not iterate over all exits, but start from the virtual root
-    // node. Otherwise bbs, that are not post dominated by any exit but by the
-    // virtual root node, will never be assigned a DFS number.
-    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
-    ThisRoot->DFSNumIn = DFSNum++;
-
-    while (!WorkStack.empty()) {
-      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
-      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
-        WorkStack.back().second;
-
-      // If we visited all of the children of this node, "recurse" back up the
-      // stack setting the DFOutNum.
-      if (ChildIt == Node->end()) {
-        Node->DFSNumOut = DFSNum++;
-        WorkStack.pop_back();
-      } else {
-        // Otherwise, recursively visit this child.
-        DomTreeNodeBase<NodeT> *Child = *ChildIt;
-        ++WorkStack.back().second;
-
-        WorkStack.push_back(std::make_pair(Child, Child->begin()));
-        Child->DFSNumIn = DFSNum++;
-      }
-    }
-
-    SlowQueries = 0;
-    DFSInfoValid = true;
-  }
-
-  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
-    if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
-      return Node;
-
-    // Haven't calculated this node yet?  Get or calculate the node for the
-    // immediate dominator.
-    NodeT *IDom = getIDom(BB);
-
-    assert(IDom || this->DomTreeNodes[NULL]);
-    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
-
-    // Add a new tree node for this BasicBlock, and link it as a child of
-    // IDomNode
-    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
-    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
-  }
-
-  inline NodeT *getIDom(NodeT *BB) const {
-    return IDoms.lookup(BB);
-  }
-
-  inline void addRoot(NodeT* BB) {
-    this->Roots.push_back(BB);
-  }
-
-public:
-  /// recalculate - compute a dominator tree for the given function
-  template<class FT>
-  void recalculate(FT& F) {
-    typedef GraphTraits<FT*> TraitsTy;
-    reset();
-    this->Vertex.push_back(0);
-
-    if (!this->IsPostDominators) {
-      // Initialize root
-      NodeT *entry = TraitsTy::getEntryNode(&F);
-      this->Roots.push_back(entry);
-      this->IDoms[entry] = 0;
-      this->DomTreeNodes[entry] = 0;
-
-      Calculate<FT, NodeT*>(*this, F);
-    } else {
-      // Initialize the roots list
-      for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
-                                        E = TraitsTy::nodes_end(&F); I != E; ++I) {
-        if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
-          addRoot(I);
-
-        // Prepopulate maps so that we don't get iterator invalidation issues later.
-        this->IDoms[I] = 0;
-        this->DomTreeNodes[I] = 0;
-      }
-
-      Calculate<FT, Inverse<NodeT*> >(*this, F);
-    }
-  }
-};
-
-// These two functions are declared out of line as a workaround for building
-// with old (< r147295) versions of clang because of pr11642.
-template<class NodeT>
-bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) {
-  if (A == B)
-    return true;
-
-  // Cast away the const qualifiers here. This is ok since
-  // this function doesn't actually return the values returned
-  // from getNode.
-  return dominates(getNode(const_cast<NodeT *>(A)),
-                   getNode(const_cast<NodeT *>(B)));
-}
-template<class NodeT>
-bool
-DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) {
-  if (A == B)
-    return false;
-
-  // Cast away the const qualifiers here. This is ok since
-  // this function doesn't actually return the values returned
-  // from getNode.
-  return dominates(getNode(const_cast<NodeT *>(A)),
-                   getNode(const_cast<NodeT *>(B)));
-}
-
-EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
-
 class BasicBlockEdge {
   const BasicBlock *Start;
   const BasicBlock *End;
index 787166d4b57d05d03cf0ca547997c41a2ec87959..7aec9732b9e3cf0c826f5349cc871f4057a6aba0 100644 (file)
@@ -49,6 +49,11 @@ enum VerifierFailureAction {
 FunctionPass *
 createVerifierPass(VerifierFailureAction action = AbortProcessAction);
 
+/// \brief Check a function for errors, useful for use when debugging a
+/// pass.
+bool verifyFunction(const Function &F,
+                    VerifierFailureAction action = AbortProcessAction);
+
 /// \brief Check a module for errors.
 ///
 /// If there are no errors, the function returns false. If an error is found,
@@ -59,11 +64,6 @@ bool verifyModule(const Module &M,
                   VerifierFailureAction action = AbortProcessAction,
                   std::string *ErrorInfo = 0);
 
-/// \brief Check a function for errors, useful for use when debugging a
-/// pass.
-bool verifyFunction(const Function &F,
-                    VerifierFailureAction action = AbortProcessAction);
-
 } // End llvm namespace
 
 #endif
diff --git a/include/llvm/Support/GenericDomTree.h b/include/llvm/Support/GenericDomTree.h
new file mode 100644 (file)
index 0000000..55dcb94
--- /dev/null
@@ -0,0 +1,718 @@
+//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file defines a set of templates that efficiently compute a dominator
+/// tree over a generic graph. This is used typically in LLVM for fast
+/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
+/// graph types.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_GENERIC_DOM_TREE_H
+#define LLVM_SUPPORT_GENERIC_DOM_TREE_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+namespace llvm {
+
+//===----------------------------------------------------------------------===//
+/// DominatorBase - Base class that other, more interesting dominator analyses
+/// inherit from.
+///
+template <class NodeT>
+class DominatorBase {
+protected:
+  std::vector<NodeT*> Roots;
+  const bool IsPostDominators;
+  inline explicit DominatorBase(bool isPostDom) :
+    Roots(), IsPostDominators(isPostDom) {}
+public:
+
+  /// getRoots - Return the root blocks of the current CFG.  This may include
+  /// multiple blocks if we are computing post dominators.  For forward
+  /// dominators, this will always be a single block (the entry node).
+  ///
+  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
+
+  /// isPostDominator - Returns true if analysis based of postdoms
+  ///
+  bool isPostDominator() const { return IsPostDominators; }
+};
+
+
+//===----------------------------------------------------------------------===//
+// DomTreeNodeBase - Dominator Tree Node
+template<class NodeT> class DominatorTreeBase;
+struct PostDominatorTree;
+
+template <class NodeT>
+class DomTreeNodeBase {
+  NodeT *TheBB;
+  DomTreeNodeBase<NodeT> *IDom;
+  std::vector<DomTreeNodeBase<NodeT> *> Children;
+  int DFSNumIn, DFSNumOut;
+
+  template<class N> friend class DominatorTreeBase;
+  friend struct PostDominatorTree;
+public:
+  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
+  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
+                   const_iterator;
+
+  iterator begin()             { return Children.begin(); }
+  iterator end()               { return Children.end(); }
+  const_iterator begin() const { return Children.begin(); }
+  const_iterator end()   const { return Children.end(); }
+
+  NodeT *getBlock() const { return TheBB; }
+  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
+  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
+    return Children;
+  }
+
+  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
+    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
+
+  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
+    Children.push_back(C);
+    return C;
+  }
+
+  size_t getNumChildren() const {
+    return Children.size();
+  }
+
+  void clearAllChildren() {
+    Children.clear();
+  }
+
+  bool compare(const DomTreeNodeBase<NodeT> *Other) const {
+    if (getNumChildren() != Other->getNumChildren())
+      return true;
+
+    SmallPtrSet<const NodeT *, 4> OtherChildren;
+    for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
+      const NodeT *Nd = (*I)->getBlock();
+      OtherChildren.insert(Nd);
+    }
+
+    for (const_iterator I = begin(), E = end(); I != E; ++I) {
+      const NodeT *N = (*I)->getBlock();
+      if (OtherChildren.count(N) == 0)
+        return true;
+    }
+    return false;
+  }
+
+  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
+    assert(IDom && "No immediate dominator?");
+    if (IDom != NewIDom) {
+      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
+                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
+      assert(I != IDom->Children.end() &&
+             "Not in immediate dominator children set!");
+      // I am no longer your child...
+      IDom->Children.erase(I);
+
+      // Switch to new dominator
+      IDom = NewIDom;
+      IDom->Children.push_back(this);
+    }
+  }
+
+  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
+  /// not call them.
+  unsigned getDFSNumIn() const { return DFSNumIn; }
+  unsigned getDFSNumOut() const { return DFSNumOut; }
+private:
+  // Return true if this node is dominated by other. Use this only if DFS info
+  // is valid.
+  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
+    return this->DFSNumIn >= other->DFSNumIn &&
+      this->DFSNumOut <= other->DFSNumOut;
+  }
+};
+
+template<class NodeT>
+inline raw_ostream &operator<<(raw_ostream &o,
+                               const DomTreeNodeBase<NodeT> *Node) {
+  if (Node->getBlock())
+    Node->getBlock()->printAsOperand(o, false);
+  else
+    o << " <<exit node>>";
+
+  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
+
+  return o << "\n";
+}
+
+template<class NodeT>
+inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
+                         unsigned Lev) {
+  o.indent(2*Lev) << "[" << Lev << "] " << N;
+  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
+       E = N->end(); I != E; ++I)
+    PrintDomTree<NodeT>(*I, o, Lev+1);
+}
+
+//===----------------------------------------------------------------------===//
+/// DominatorTree - Calculate the immediate dominator tree for a function.
+///
+
+template<class FuncT, class N>
+void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
+               FuncT& F);
+
+template<class NodeT>
+class DominatorTreeBase : public DominatorBase<NodeT> {
+  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
+                               const DomTreeNodeBase<NodeT> *B) const {
+    assert(A != B);
+    assert(isReachableFromEntry(B));
+    assert(isReachableFromEntry(A));
+
+    const DomTreeNodeBase<NodeT> *IDom;
+    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
+      B = IDom;   // Walk up the tree
+    return IDom != 0;
+  }
+
+protected:
+  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
+  DomTreeNodeMapType DomTreeNodes;
+  DomTreeNodeBase<NodeT> *RootNode;
+
+  bool DFSInfoValid;
+  unsigned int SlowQueries;
+  // Information record used during immediate dominators computation.
+  struct InfoRec {
+    unsigned DFSNum;
+    unsigned Parent;
+    unsigned Semi;
+    NodeT *Label;
+
+    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
+  };
+
+  DenseMap<NodeT*, NodeT*> IDoms;
+
+  // Vertex - Map the DFS number to the NodeT*
+  std::vector<NodeT*> Vertex;
+
+  // Info - Collection of information used during the computation of idoms.
+  DenseMap<NodeT*, InfoRec> Info;
+
+  void reset() {
+    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
+           E = DomTreeNodes.end(); I != E; ++I)
+      delete I->second;
+    DomTreeNodes.clear();
+    IDoms.clear();
+    this->Roots.clear();
+    Vertex.clear();
+    RootNode = 0;
+  }
+
+  // NewBB is split and now it has one successor. Update dominator tree to
+  // reflect this change.
+  template<class N, class GraphT>
+  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
+             typename GraphT::NodeType* NewBB) {
+    assert(std::distance(GraphT::child_begin(NewBB),
+                         GraphT::child_end(NewBB)) == 1 &&
+           "NewBB should have a single successor!");
+    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
+
+    std::vector<typename GraphT::NodeType*> PredBlocks;
+    typedef GraphTraits<Inverse<N> > InvTraits;
+    for (typename InvTraits::ChildIteratorType PI =
+         InvTraits::child_begin(NewBB),
+         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
+      PredBlocks.push_back(*PI);
+
+    assert(!PredBlocks.empty() && "No predblocks?");
+
+    bool NewBBDominatesNewBBSucc = true;
+    for (typename InvTraits::ChildIteratorType PI =
+         InvTraits::child_begin(NewBBSucc),
+         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
+      typename InvTraits::NodeType *ND = *PI;
+      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
+          DT.isReachableFromEntry(ND)) {
+        NewBBDominatesNewBBSucc = false;
+        break;
+      }
+    }
+
+    // Find NewBB's immediate dominator and create new dominator tree node for
+    // NewBB.
+    NodeT *NewBBIDom = 0;
+    unsigned i = 0;
+    for (i = 0; i < PredBlocks.size(); ++i)
+      if (DT.isReachableFromEntry(PredBlocks[i])) {
+        NewBBIDom = PredBlocks[i];
+        break;
+      }
+
+    // It's possible that none of the predecessors of NewBB are reachable;
+    // in that case, NewBB itself is unreachable, so nothing needs to be
+    // changed.
+    if (!NewBBIDom)
+      return;
+
+    for (i = i + 1; i < PredBlocks.size(); ++i) {
+      if (DT.isReachableFromEntry(PredBlocks[i]))
+        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
+    }
+
+    // Create the new dominator tree node... and set the idom of NewBB.
+    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
+
+    // If NewBB strictly dominates other blocks, then it is now the immediate
+    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
+    if (NewBBDominatesNewBBSucc) {
+      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
+      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
+    }
+  }
+
+public:
+  explicit DominatorTreeBase(bool isPostDom)
+    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
+  virtual ~DominatorTreeBase() { reset(); }
+
+  /// compare - Return false if the other dominator tree base matches this
+  /// dominator tree base. Otherwise return true.
+  bool compare(DominatorTreeBase &Other) const {
+
+    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
+    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
+      return true;
+
+    for (typename DomTreeNodeMapType::const_iterator
+           I = this->DomTreeNodes.begin(),
+           E = this->DomTreeNodes.end(); I != E; ++I) {
+      NodeT *BB = I->first;
+      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
+      if (OI == OtherDomTreeNodes.end())
+        return true;
+
+      DomTreeNodeBase<NodeT>* MyNd = I->second;
+      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
+
+      if (MyNd->compare(OtherNd))
+        return true;
+    }
+
+    return false;
+  }
+
+  virtual void releaseMemory() { reset(); }
+
+  /// getNode - return the (Post)DominatorTree node for the specified basic
+  /// block.  This is the same as using operator[] on this class.
+  ///
+  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
+    return DomTreeNodes.lookup(BB);
+  }
+
+  /// getRootNode - This returns the entry node for the CFG of the function.  If
+  /// this tree represents the post-dominance relations for a function, however,
+  /// this root may be a node with the block == NULL.  This is the case when
+  /// there are multiple exit nodes from a particular function.  Consumers of
+  /// post-dominance information must be capable of dealing with this
+  /// possibility.
+  ///
+  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
+  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
+
+  /// Get all nodes dominated by R, including R itself.
+  void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
+    Result.clear();
+    const DomTreeNodeBase<NodeT> *RN = getNode(R);
+    if (RN == NULL)
+      return; // If R is unreachable, it will not be present in the DOM tree.
+    SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
+    WL.push_back(RN);
+
+    while (!WL.empty()) {
+      const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
+      Result.push_back(N->getBlock());
+      WL.append(N->begin(), N->end());
+    }
+  }
+
+  /// properlyDominates - Returns true iff A dominates B and A != B.
+  /// Note that this is not a constant time operation!
+  ///
+  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
+                         const DomTreeNodeBase<NodeT> *B) {
+    if (A == 0 || B == 0)
+      return false;
+    if (A == B)
+      return false;
+    return dominates(A, B);
+  }
+
+  bool properlyDominates(const NodeT *A, const NodeT *B);
+
+  /// isReachableFromEntry - Return true if A is dominated by the entry
+  /// block of the function containing it.
+  bool isReachableFromEntry(const NodeT* A) const {
+    assert(!this->isPostDominator() &&
+           "This is not implemented for post dominators");
+    return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
+  }
+
+  inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
+    return A;
+  }
+
+  /// dominates - Returns true iff A dominates B.  Note that this is not a
+  /// constant time operation!
+  ///
+  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
+                        const DomTreeNodeBase<NodeT> *B) {
+    // A node trivially dominates itself.
+    if (B == A)
+      return true;
+
+    // An unreachable node is dominated by anything.
+    if (!isReachableFromEntry(B))
+      return true;
+
+    // And dominates nothing.
+    if (!isReachableFromEntry(A))
+      return false;
+
+    // Compare the result of the tree walk and the dfs numbers, if expensive
+    // checks are enabled.
+#ifdef XDEBUG
+    assert((!DFSInfoValid ||
+            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
+           "Tree walk disagrees with dfs numbers!");
+#endif
+
+    if (DFSInfoValid)
+      return B->DominatedBy(A);
+
+    // If we end up with too many slow queries, just update the
+    // DFS numbers on the theory that we are going to keep querying.
+    SlowQueries++;
+    if (SlowQueries > 32) {
+      updateDFSNumbers();
+      return B->DominatedBy(A);
+    }
+
+    return dominatedBySlowTreeWalk(A, B);
+  }
+
+  bool dominates(const NodeT *A, const NodeT *B);
+
+  NodeT *getRoot() const {
+    assert(this->Roots.size() == 1 && "Should always have entry node!");
+    return this->Roots[0];
+  }
+
+  /// findNearestCommonDominator - Find nearest common dominator basic block
+  /// for basic block A and B. If there is no such block then return NULL.
+  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
+    assert(A->getParent() == B->getParent() &&
+           "Two blocks are not in same function");
+
+    // If either A or B is a entry block then it is nearest common dominator
+    // (for forward-dominators).
+    if (!this->isPostDominator()) {
+      NodeT &Entry = A->getParent()->front();
+      if (A == &Entry || B == &Entry)
+        return &Entry;
+    }
+
+    // If B dominates A then B is nearest common dominator.
+    if (dominates(B, A))
+      return B;
+
+    // If A dominates B then A is nearest common dominator.
+    if (dominates(A, B))
+      return A;
+
+    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
+    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
+
+    // Collect NodeA dominators set.
+    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
+    NodeADoms.insert(NodeA);
+    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
+    while (IDomA) {
+      NodeADoms.insert(IDomA);
+      IDomA = IDomA->getIDom();
+    }
+
+    // Walk NodeB immediate dominators chain and find common dominator node.
+    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
+    while (IDomB) {
+      if (NodeADoms.count(IDomB) != 0)
+        return IDomB->getBlock();
+
+      IDomB = IDomB->getIDom();
+    }
+
+    return NULL;
+  }
+
+  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
+    // Cast away the const qualifiers here. This is ok since
+    // const is re-introduced on the return type.
+    return findNearestCommonDominator(const_cast<NodeT *>(A),
+                                      const_cast<NodeT *>(B));
+  }
+
+  //===--------------------------------------------------------------------===//
+  // API to update (Post)DominatorTree information based on modifications to
+  // the CFG...
+
+  /// addNewBlock - Add a new node to the dominator tree information.  This
+  /// creates a new node as a child of DomBB dominator node,linking it into
+  /// the children list of the immediate dominator.
+  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
+    assert(getNode(BB) == 0 && "Block already in dominator tree!");
+    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
+    assert(IDomNode && "Not immediate dominator specified for block!");
+    DFSInfoValid = false;
+    return DomTreeNodes[BB] =
+      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
+  }
+
+  /// changeImmediateDominator - This method is used to update the dominator
+  /// tree information when a node's immediate dominator changes.
+  ///
+  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
+                                DomTreeNodeBase<NodeT> *NewIDom) {
+    assert(N && NewIDom && "Cannot change null node pointers!");
+    DFSInfoValid = false;
+    N->setIDom(NewIDom);
+  }
+
+  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
+    changeImmediateDominator(getNode(BB), getNode(NewBB));
+  }
+
+  /// eraseNode - Removes a node from the dominator tree. Block must not
+  /// dominate any other blocks. Removes node from its immediate dominator's
+  /// children list. Deletes dominator node associated with basic block BB.
+  void eraseNode(NodeT *BB) {
+    DomTreeNodeBase<NodeT> *Node = getNode(BB);
+    assert(Node && "Removing node that isn't in dominator tree.");
+    assert(Node->getChildren().empty() && "Node is not a leaf node.");
+
+      // Remove node from immediate dominator's children list.
+    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
+    if (IDom) {
+      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
+        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
+      assert(I != IDom->Children.end() &&
+             "Not in immediate dominator children set!");
+      // I am no longer your child...
+      IDom->Children.erase(I);
+    }
+
+    DomTreeNodes.erase(BB);
+    delete Node;
+  }
+
+  /// removeNode - Removes a node from the dominator tree.  Block must not
+  /// dominate any other blocks.  Invalidates any node pointing to removed
+  /// block.
+  void removeNode(NodeT *BB) {
+    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
+    DomTreeNodes.erase(BB);
+  }
+
+  /// splitBlock - BB is split and now it has one successor. Update dominator
+  /// tree to reflect this change.
+  void splitBlock(NodeT* NewBB) {
+    if (this->IsPostDominators)
+      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
+    else
+      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
+  }
+
+  /// print - Convert to human readable form
+  ///
+  void print(raw_ostream &o) const {
+    o << "=============================--------------------------------\n";
+    if (this->isPostDominator())
+      o << "Inorder PostDominator Tree: ";
+    else
+      o << "Inorder Dominator Tree: ";
+    if (!this->DFSInfoValid)
+      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
+    o << "\n";
+
+    // The postdom tree can have a null root if there are no returns.
+    if (getRootNode())
+      PrintDomTree<NodeT>(getRootNode(), o, 1);
+  }
+
+protected:
+  template<class GraphT>
+  friend typename GraphT::NodeType* Eval(
+                               DominatorTreeBase<typename GraphT::NodeType>& DT,
+                                         typename GraphT::NodeType* V,
+                                         unsigned LastLinked);
+
+  template<class GraphT>
+  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
+                          typename GraphT::NodeType* V,
+                          unsigned N);
+
+  template<class FuncT, class N>
+  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
+                        FuncT& F);
+
+  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
+  /// dominator tree in dfs order.
+  void updateDFSNumbers() {
+    unsigned DFSNum = 0;
+
+    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
+                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
+
+    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
+
+    if (!ThisRoot)
+      return;
+
+    // Even in the case of multiple exits that form the post dominator root
+    // nodes, do not iterate over all exits, but start from the virtual root
+    // node. Otherwise bbs, that are not post dominated by any exit but by the
+    // virtual root node, will never be assigned a DFS number.
+    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
+    ThisRoot->DFSNumIn = DFSNum++;
+
+    while (!WorkStack.empty()) {
+      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
+      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
+        WorkStack.back().second;
+
+      // If we visited all of the children of this node, "recurse" back up the
+      // stack setting the DFOutNum.
+      if (ChildIt == Node->end()) {
+        Node->DFSNumOut = DFSNum++;
+        WorkStack.pop_back();
+      } else {
+        // Otherwise, recursively visit this child.
+        DomTreeNodeBase<NodeT> *Child = *ChildIt;
+        ++WorkStack.back().second;
+
+        WorkStack.push_back(std::make_pair(Child, Child->begin()));
+        Child->DFSNumIn = DFSNum++;
+      }
+    }
+
+    SlowQueries = 0;
+    DFSInfoValid = true;
+  }
+
+  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
+    if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
+      return Node;
+
+    // Haven't calculated this node yet?  Get or calculate the node for the
+    // immediate dominator.
+    NodeT *IDom = getIDom(BB);
+
+    assert(IDom || this->DomTreeNodes[NULL]);
+    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
+
+    // Add a new tree node for this NodeT, and link it as a child of
+    // IDomNode
+    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
+    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
+  }
+
+  inline NodeT *getIDom(NodeT *BB) const {
+    return IDoms.lookup(BB);
+  }
+
+  inline void addRoot(NodeT* BB) {
+    this->Roots.push_back(BB);
+  }
+
+public:
+  /// recalculate - compute a dominator tree for the given function
+  template<class FT>
+  void recalculate(FT& F) {
+    typedef GraphTraits<FT*> TraitsTy;
+    reset();
+    this->Vertex.push_back(0);
+
+    if (!this->IsPostDominators) {
+      // Initialize root
+      NodeT *entry = TraitsTy::getEntryNode(&F);
+      this->Roots.push_back(entry);
+      this->IDoms[entry] = 0;
+      this->DomTreeNodes[entry] = 0;
+
+      Calculate<FT, NodeT*>(*this, F);
+    } else {
+      // Initialize the roots list
+      for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
+                                        E = TraitsTy::nodes_end(&F); I != E; ++I) {
+        if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
+          addRoot(I);
+
+        // Prepopulate maps so that we don't get iterator invalidation issues later.
+        this->IDoms[I] = 0;
+        this->DomTreeNodes[I] = 0;
+      }
+
+      Calculate<FT, Inverse<NodeT*> >(*this, F);
+    }
+  }
+};
+
+// These two functions are declared out of line as a workaround for building
+// with old (< r147295) versions of clang because of pr11642.
+template<class NodeT>
+bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) {
+  if (A == B)
+    return true;
+
+  // Cast away the const qualifiers here. This is ok since
+  // this function doesn't actually return the values returned
+  // from getNode.
+  return dominates(getNode(const_cast<NodeT *>(A)),
+                   getNode(const_cast<NodeT *>(B)));
+}
+template<class NodeT>
+bool
+DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) {
+  if (A == B)
+    return false;
+
+  // Cast away the const qualifiers here. This is ok since
+  // this function doesn't actually return the values returned
+  // from getNode.
+  return dominates(getNode(const_cast<NodeT *>(A)),
+                   getNode(const_cast<NodeT *>(B)));
+}
+
+}
+
+#endif
diff --git a/include/llvm/Support/GenericDomTreeConstruction.h b/include/llvm/Support/GenericDomTreeConstruction.h
new file mode 100644 (file)
index 0000000..a0b444e
--- /dev/null
@@ -0,0 +1,289 @@
+//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// Generic dominator tree construction - This file provides rouitens to
+/// constructs immediate dominator information for a flow-graph based on the
+/// algorithm described in this document:
+///
+///   A Fast Algorithm for Finding Dominators in a Flowgraph
+///   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
+///
+/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
+/// out that the theoretically slower O(n*log(n)) implementation is actually
+/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
+///
+//===----------------------------------------------------------------------===//
+
+
+#ifndef LLVM_SUPPORT_GENERIC_DOM_TREE_CONSTRUCTION_H
+#define LLVM_SUPPORT_GENERIC_DOM_TREE_CONSTRUCTION_H
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/GenericDomTree.h"
+
+namespace llvm {
+
+template<class GraphT>
+unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
+                 typename GraphT::NodeType* V, unsigned N) {
+  // This is more understandable as a recursive algorithm, but we can't use the
+  // recursive algorithm due to stack depth issues.  Keep it here for
+  // documentation purposes.
+#if 0
+  InfoRec &VInfo = DT.Info[DT.Roots[i]];
+  VInfo.DFSNum = VInfo.Semi = ++N;
+  VInfo.Label = V;
+
+  Vertex.push_back(V);        // Vertex[n] = V;
+
+  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
+    InfoRec &SuccVInfo = DT.Info[*SI];
+    if (SuccVInfo.Semi == 0) {
+      SuccVInfo.Parent = V;
+      N = DTDFSPass(DT, *SI, N);
+    }
+  }
+#else
+  bool IsChildOfArtificialExit = (N != 0);
+
+  SmallVector<std::pair<typename GraphT::NodeType*,
+                        typename GraphT::ChildIteratorType>, 32> Worklist;
+  Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
+  while (!Worklist.empty()) {
+    typename GraphT::NodeType* BB = Worklist.back().first;
+    typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
+
+    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
+                                                                    DT.Info[BB];
+
+    // First time we visited this BB?
+    if (NextSucc == GraphT::child_begin(BB)) {
+      BBInfo.DFSNum = BBInfo.Semi = ++N;
+      BBInfo.Label = BB;
+
+      DT.Vertex.push_back(BB);       // Vertex[n] = V;
+
+      if (IsChildOfArtificialExit)
+        BBInfo.Parent = 1;
+
+      IsChildOfArtificialExit = false;
+    }
+
+    // store the DFS number of the current BB - the reference to BBInfo might
+    // get invalidated when processing the successors.
+    unsigned BBDFSNum = BBInfo.DFSNum;
+
+    // If we are done with this block, remove it from the worklist.
+    if (NextSucc == GraphT::child_end(BB)) {
+      Worklist.pop_back();
+      continue;
+    }
+
+    // Increment the successor number for the next time we get to it.
+    ++Worklist.back().second;
+    
+    // Visit the successor next, if it isn't already visited.
+    typename GraphT::NodeType* Succ = *NextSucc;
+
+    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
+                                                                  DT.Info[Succ];
+    if (SuccVInfo.Semi == 0) {
+      SuccVInfo.Parent = BBDFSNum;
+      Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
+    }
+  }
+#endif
+    return N;
+}
+
+template<class GraphT>
+typename GraphT::NodeType* 
+Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
+     typename GraphT::NodeType *VIn, unsigned LastLinked) {
+  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
+                                                                  DT.Info[VIn];
+  if (VInInfo.DFSNum < LastLinked)
+    return VIn;
+
+  SmallVector<typename GraphT::NodeType*, 32> Work;
+  SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
+
+  if (VInInfo.Parent >= LastLinked)
+    Work.push_back(VIn);
+  
+  while (!Work.empty()) {
+    typename GraphT::NodeType* V = Work.back();
+    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
+                                                                     DT.Info[V];
+    typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
+
+    // Process Ancestor first
+    if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
+      Work.push_back(VAncestor);
+      continue;
+    } 
+    Work.pop_back(); 
+
+    // Update VInfo based on Ancestor info
+    if (VInfo.Parent < LastLinked)
+      continue;
+
+    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
+                                                             DT.Info[VAncestor];
+    typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
+    typename GraphT::NodeType* VLabel = VInfo.Label;
+    if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
+      VInfo.Label = VAncestorLabel;
+    VInfo.Parent = VAInfo.Parent;
+  }
+
+  return VInInfo.Label;
+}
+
+template<class FuncT, class NodeT>
+void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
+               FuncT& F) {
+  typedef GraphTraits<NodeT> GraphT;
+
+  unsigned N = 0;
+  bool MultipleRoots = (DT.Roots.size() > 1);
+  if (MultipleRoots) {
+    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
+        DT.Info[NULL];
+    BBInfo.DFSNum = BBInfo.Semi = ++N;
+    BBInfo.Label = NULL;
+
+    DT.Vertex.push_back(NULL);       // Vertex[n] = V;
+  }
+
+  // Step #1: Number blocks in depth-first order and initialize variables used
+  // in later stages of the algorithm.
+  for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
+       i != e; ++i)
+    N = DFSPass<GraphT>(DT, DT.Roots[i], N);
+
+  // it might be that some blocks did not get a DFS number (e.g., blocks of 
+  // infinite loops). In these cases an artificial exit node is required.
+  MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
+
+  // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
+  // bucket for each vertex. However, this is unnecessary, because each vertex
+  // is only placed into a single bucket (that of its semidominator), and each
+  // vertex's bucket is processed before it is added to any bucket itself.
+  //
+  // Instead of using a bucket per vertex, we use a single array Buckets that
+  // has two purposes. Before the vertex V with preorder number i is processed,
+  // Buckets[i] stores the index of the first element in V's bucket. After V's
+  // bucket is processed, Buckets[i] stores the index of the next element in the
+  // bucket containing V, if any.
+  SmallVector<unsigned, 32> Buckets;
+  Buckets.resize(N + 1);
+  for (unsigned i = 1; i <= N; ++i)
+    Buckets[i] = i;
+
+  for (unsigned i = N; i >= 2; --i) {
+    typename GraphT::NodeType* W = DT.Vertex[i];
+    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
+                                                                     DT.Info[W];
+
+    // Step #2: Implicitly define the immediate dominator of vertices
+    for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
+      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
+      typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
+      DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
+    }
+
+    // Step #3: Calculate the semidominators of all vertices
+
+    // initialize the semi dominator to point to the parent node
+    WInfo.Semi = WInfo.Parent;
+    typedef GraphTraits<Inverse<NodeT> > InvTraits;
+    for (typename InvTraits::ChildIteratorType CI =
+         InvTraits::child_begin(W),
+         E = InvTraits::child_end(W); CI != E; ++CI) {
+      typename InvTraits::NodeType *N = *CI;
+      if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
+        unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
+        if (SemiU < WInfo.Semi)
+          WInfo.Semi = SemiU;
+      }
+    }
+
+    // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
+    // necessarily parent(V). In this case, set idom(V) here and avoid placing
+    // V into a bucket.
+    if (WInfo.Semi == WInfo.Parent) {
+      DT.IDoms[W] = DT.Vertex[WInfo.Parent];
+    } else {
+      Buckets[i] = Buckets[WInfo.Semi];
+      Buckets[WInfo.Semi] = i;
+    }
+  }
+
+  if (N >= 1) {
+    typename GraphT::NodeType* Root = DT.Vertex[1];
+    for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
+      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
+      DT.IDoms[V] = Root;
+    }
+  }
+
+  // Step #4: Explicitly define the immediate dominator of each vertex
+  for (unsigned i = 2; i <= N; ++i) {
+    typename GraphT::NodeType* W = DT.Vertex[i];
+    typename GraphT::NodeType*& WIDom = DT.IDoms[W];
+    if (WIDom != DT.Vertex[DT.Info[W].Semi])
+      WIDom = DT.IDoms[WIDom];
+  }
+
+  if (DT.Roots.empty()) return;
+
+  // Add a node for the root.  This node might be the actual root, if there is
+  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
+  // which postdominates all real exits if there are multiple exit blocks, or
+  // an infinite loop.
+  typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
+
+  DT.DomTreeNodes[Root] = DT.RootNode =
+                        new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
+
+  // Loop over all of the reachable blocks in the function...
+  for (unsigned i = 2; i <= N; ++i) {
+    typename GraphT::NodeType* W = DT.Vertex[i];
+
+    DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
+    if (BBNode) continue;  // Haven't calculated this node yet?
+
+    typename GraphT::NodeType* ImmDom = DT.getIDom(W);
+
+    assert(ImmDom || DT.DomTreeNodes[NULL]);
+
+    // Get or calculate the node for the immediate dominator
+    DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
+                                                     DT.getNodeForBlock(ImmDom);
+
+    // Add a new tree node for this BasicBlock, and link it as a child of
+    // IDomNode
+    DomTreeNodeBase<typename GraphT::NodeType> *C =
+                    new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
+    DT.DomTreeNodes[W] = IDomNode->addChild(C);
+  }
+
+  // Free temporary memory used to construct idom's
+  DT.IDoms.clear();
+  DT.Info.clear();
+  std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
+
+  DT.updateDFSNumbers();
+}
+
+}
+
+#endif
index 882c9ffc13116fcf6c8fa3fc823820c05db21b7c..7da8f46ea10e98c50d82787f896037d046cf9a2b 100644 (file)
@@ -16,7 +16,7 @@
 #include "llvm/Analysis/PostDominators.h"
 #include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/SetOperations.h"
-#include "llvm/IR/DominatorInternals.h"
+#include "llvm/Support/GenericDomTreeConstruction.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/Support/CFG.h"
 #include "llvm/Support/Debug.h"
index 8bb6f1614a2ad9d40605f46d92382f4cfe03ab93..ca715dfe186538139729a6479c4b7136c3a555f2 100644 (file)
@@ -21,7 +21,6 @@
 #include "llvm/CodeGen/MachineInstrBuilder.h"
 #include "llvm/CodeGen/MachineModuleInfo.h"
 #include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/DominatorInternals.h"
 #include "llvm/IR/Dominators.h"
 #include "llvm/IR/IntrinsicInst.h"
 #include "llvm/IR/Module.h"
index b5553626cf47bead910ac1920bd3ebff5e6049ff..c831c19517f5484f01512febdf6e4e55c3fce9b0 100644 (file)
 #include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallVector.h"
-#include "llvm/IR/DominatorInternals.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/Support/CFG.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Compiler.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/GenericDomTreeConstruction.h"
 #include "llvm/Support/raw_ostream.h"
 #include <algorithm>
 using namespace llvm;
@@ -56,7 +56,8 @@ bool BasicBlockEdge::isSingleEdge() const {
 //===----------------------------------------------------------------------===//
 //
 // Provide public access to DominatorTree information.  Implementation details
-// can be found in DominatorInternals.h.
+// can be found in Dominators.h, GenericDomTree.h, and
+// GenericDomTreeConstruction.h.
 //
 //===----------------------------------------------------------------------===//
 
index 84a5a451468a1495deafcfd4c0ce06922f7d6cf3..4ad7eba36e21774eadf8a8e243150d28194ed2b9 100644 (file)
@@ -26,7 +26,6 @@
 #include "llvm/CodeGen/MachineLoopInfo.h"
 #include "llvm/CodeGen/MachinePostDominators.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/IR/DominatorInternals.h"
 #include "llvm/IR/Dominators.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
index f0df1d44371c8f3b05b039a8df15b52a295b4b68..dcb5dae69e64cbe13481d3675a09c4907a71724a 100644 (file)
@@ -23,7 +23,6 @@
 #include "llvm/IR/Constants.h"
 #include "llvm/IR/DataLayout.h"
 #include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/DominatorInternals.h"
 #include "llvm/IR/Dominators.h"
 #include "llvm/IR/Function.h"
 #include "llvm/IR/IRBuilder.h"