Merging r259958:
authorHans Wennborg <hans@hanshq.net>
Mon, 8 Feb 2016 22:15:55 +0000 (22:15 +0000)
committerHans Wennborg <hans@hanshq.net>
Mon, 8 Feb 2016 22:15:55 +0000 (22:15 +0000)
------------------------------------------------------------------------
r259958 | evandro | 2016-02-05 16:01:41 -0800 (Fri, 05 Feb 2016) | 11 lines

[AArch64] Add the scheduling model for Exynos-M1

Summary:
Add the core scheduling model for the Samsung Exynos-M1 (ARMv8-A).

Reviewers: jmolloy, rengolin, christof, MinSeongKIM, t.p.northover

Subscribers: aemerson, rengolin, MatzeB

Differential Revision: http://reviews.llvm.org/D16644
------------------------------------------------------------------------

git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_38@260156 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Target/AArch64/AArch64.td
lib/Target/AArch64/AArch64SchedM1.td [new file with mode: 0644]

index 46ef2c111baeb4551a13e75aca834300cbd38c70..cd3e84d38fe2faa2e7be13306301b1953911b83b 100644 (file)
@@ -90,6 +90,7 @@ def AArch64InstrInfo : InstrInfo;
 include "AArch64SchedA53.td"
 include "AArch64SchedA57.td"
 include "AArch64SchedCyclone.td"
 include "AArch64SchedA53.td"
 include "AArch64SchedA57.td"
 include "AArch64SchedCyclone.td"
+include "AArch64SchedM1.td"
 
 def ProcA35     : SubtargetFeature<"a35", "ARMProcFamily", "CortexA35",
                                    "Cortex-A35 ARM processors",
 
 def ProcA35     : SubtargetFeature<"a35", "ARMProcFamily", "CortexA35",
                                    "Cortex-A35 ARM processors",
@@ -144,8 +145,7 @@ def : ProcessorModel<"cortex-a57", CortexA57Model, [ProcA57]>;
 // FIXME: Cortex-A72 is currently modelled as an Cortex-A57.
 def : ProcessorModel<"cortex-a72", CortexA57Model, [ProcA57]>;
 def : ProcessorModel<"cyclone", CycloneModel, [ProcCyclone]>;
 // FIXME: Cortex-A72 is currently modelled as an Cortex-A57.
 def : ProcessorModel<"cortex-a72", CortexA57Model, [ProcA57]>;
 def : ProcessorModel<"cyclone", CycloneModel, [ProcCyclone]>;
-// FIXME: Exynos-M1 is currently modelled without a specific SchedModel.
-def : ProcessorModel<"exynos-m1", NoSchedModel, [ProcExynosM1]>;
+def : ProcessorModel<"exynos-m1", ExynosM1Model, [ProcExynosM1]>;
 
 //===----------------------------------------------------------------------===//
 // Assembly parser
 
 //===----------------------------------------------------------------------===//
 // Assembly parser
diff --git a/lib/Target/AArch64/AArch64SchedM1.td b/lib/Target/AArch64/AArch64SchedM1.td
new file mode 100644 (file)
index 0000000..6525628
--- /dev/null
@@ -0,0 +1,359 @@
+//=- AArch64SchedM1.td - Samsung Exynos-M1 Scheduling Defs ---*- tablegen -*-=//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for Samsung Exynos-M1 to support
+// instruction scheduling and other instruction cost heuristics.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// The Exynos-M1 is a traditional superscalar microprocessor with a
+// 4-wide in-order stage for decode and dispatch and a wider issue stage.
+// The execution units and loads and stores are out-of-order.
+
+def ExynosM1Model : SchedMachineModel {
+  let IssueWidth            =  4; // Up to 4 uops per cycle.
+  let MinLatency            =  0; // OoO.
+  let MicroOpBufferSize     = 96; // ROB size.
+  let LoopMicroOpBufferSize = 32; // Instruction queue size.
+  let LoadLatency           =  4; // Optimistic load cases.
+  let MispredictPenalty     = 14; // Minimum branch misprediction penalty.
+  let CompleteModel         =  0; // Use the default model otherwise.
+}
+
+//===----------------------------------------------------------------------===//
+// Define each kind of processor resource and number available on the Exynos-M1,
+// which has 9 pipelines, each with its own queue with out-of-order dispatch.
+
+def M1UnitA  : ProcResource<2>; // Simple integer
+def M1UnitC  : ProcResource<1>; // Simple and complex integer
+def M1UnitB  : ProcResource<2>; // Branch
+def M1UnitL  : ProcResource<1>; // Load
+def M1UnitS  : ProcResource<1>; // Store
+def M1PipeF0 : ProcResource<1>; // FP #0
+def M1PipeF1 : ProcResource<1>; // FP #1
+
+let Super = M1PipeF0 in {
+  def M1UnitFMAC   : ProcResource<1>; // FP multiplication
+  def M1UnitFCVT   : ProcResource<1>; // FP conversion
+  def M1UnitNAL0   : ProcResource<1>; // Simple vector.
+  def M1UnitNMISC  : ProcResource<1>; // Miscellanea
+  def M1UnitNCRYPT : ProcResource<1>; // Cryptographic
+}
+
+let Super = M1PipeF1 in {
+  def M1UnitFADD : ProcResource<1>; // Simple FP
+  let BufferSize = 1 in
+  def M1UnitFVAR : ProcResource<1>; // FP division & square root (serialized)
+  def M1UnitNAL1 : ProcResource<1>; // Simple vector.
+  def M1UnitFST  : ProcResource<1>; // FP store
+}
+
+let SchedModel = ExynosM1Model in {
+  def M1UnitALU  : ProcResGroup<[M1UnitA,
+                                 M1UnitC]>;    // All simple integer.
+  def M1UnitNALU : ProcResGroup<[M1UnitNAL0,
+                                 M1UnitNAL1]>; // All simple vector.
+}
+
+let SchedModel = ExynosM1Model in {
+
+//===----------------------------------------------------------------------===//
+// Coarse scheduling model for the Exynos-M1.
+
+// Branch instructions.
+// TODO: Non-conditional direct branches take zero cycles and units.
+def : WriteRes<WriteBr,    [M1UnitB]> { let Latency = 1; }
+def : WriteRes<WriteBrReg, [M1UnitC]> { let Latency = 1; }
+// TODO: Branch and link is much different.
+
+// Arithmetic and logical integer instructions.
+def : WriteRes<WriteI,     [M1UnitALU]> { let Latency = 1; }
+// TODO: Shift over 3 and some extensions take 2 cycles.
+def : WriteRes<WriteISReg, [M1UnitALU]> { let Latency = 1; }
+def : WriteRes<WriteIEReg, [M1UnitALU]> { let Latency = 1; }
+def : WriteRes<WriteIS,    [M1UnitALU]> { let Latency = 1; }
+
+// Move instructions.
+def : WriteRes<WriteImm, [M1UnitALU]> { let Latency = 1; }
+
+// Divide and multiply instructions.
+// TODO: Division blocks the divider inside C.
+def : WriteRes<WriteID32, [M1UnitC]> { let Latency = 13; }
+def : WriteRes<WriteID64, [M1UnitC]> { let Latency = 21; }
+// TODO: Long multiplication take 5 cycles and also the ALU.
+// TODO: Multiplication with accumulation can be advanced.
+def : WriteRes<WriteIM32, [M1UnitC]> { let Latency = 3; }
+// TODO: 64-bit multiplication has a throughput of 1/2.
+def : WriteRes<WriteIM64, [M1UnitC]> { let Latency = 4; }
+
+// Miscellaneous instructions.
+def : WriteRes<WriteExtr, [M1UnitALU,
+                           M1UnitALU]> { let Latency = 2; }
+
+// TODO: The latency for the post or pre register is 1 cycle.
+def : WriteRes<WriteAdr, []> { let Latency = 0; }
+
+// Load instructions.
+def : WriteRes<WriteLD,    [M1UnitL]>   { let Latency = 4; }
+// TODO: Extended address requires also the ALU.
+def : WriteRes<WriteLDIdx, [M1UnitL]>   { let Latency = 5; }
+def : WriteRes<WriteLDHi,  [M1UnitALU]> { let Latency = 4; }
+
+// Store instructions.
+def : WriteRes<WriteST,    [M1UnitS]> { let Latency = 1; }
+// TODO: Extended address requires also the ALU.
+def : WriteRes<WriteSTIdx, [M1UnitS]> { let Latency = 1; }
+def : WriteRes<WriteSTP,   [M1UnitS]> { let Latency = 1; }
+def : WriteRes<WriteSTX,   [M1UnitS]> { let Latency = 1; }
+
+// FP data instructions.
+def : WriteRes<WriteF,    [M1UnitFADD]>  { let Latency = 3; }
+// TODO: FCCMP is much different.
+def : WriteRes<WriteFCmp, [M1UnitNMISC]> { let Latency = 4; }
+// TODO: DP takes longer.
+def : WriteRes<WriteFDiv, [M1UnitFVAR]>  { let Latency = 15; }
+// TODO: MACC takes longer.
+def : WriteRes<WriteFMul, [M1UnitFMAC]>  { let Latency = 4; }
+
+// FP miscellaneous instructions.
+// TODO: Conversion between register files is much different.
+def : WriteRes<WriteFCvt,  [M1UnitFCVT]> { let Latency = 3; }
+def : WriteRes<WriteFImm,  [M1UnitNALU]> { let Latency = 1; }
+// TODO: Copy from FPR to GPR is much different.
+def : WriteRes<WriteFCopy, [M1UnitS]>    { let Latency = 4; }
+
+// FP load instructions.
+// TODO: ASIMD loads are much different.
+def : WriteRes<WriteVLD, [M1UnitL]> { let Latency = 5; }
+
+// FP store instructions.
+// TODO: ASIMD stores are much different.
+def : WriteRes<WriteVST, [M1UnitS, M1UnitFST]> { let Latency = 1; }
+
+// ASIMD FP instructions.
+// TODO: Other operations are much different.
+def : WriteRes<WriteV, [M1UnitFADD]> { let Latency = 3; }
+
+// Other miscellaneous instructions.
+def : WriteRes<WriteSys,     []> { let Latency = 1; }
+def : WriteRes<WriteBarrier, []> { let Latency = 1; }
+def : WriteRes<WriteHint,    []> { let Latency = 1; }
+
+//===----------------------------------------------------------------------===//
+// Fast forwarding.
+
+// TODO: Add FP register forwarding rules.
+
+def : ReadAdvance<ReadI,       0>;
+def : ReadAdvance<ReadISReg,   0>;
+def : ReadAdvance<ReadIEReg,   0>;
+def : ReadAdvance<ReadIM,      0>;
+// Integer multiply-accumulate.
+// TODO: The forwarding for WriteIM64 saves actually 3 cycles.
+def : ReadAdvance<ReadIMA,     2, [WriteIM32, WriteIM64]>;
+def : ReadAdvance<ReadID,      0>;
+def : ReadAdvance<ReadExtrHi,  0>;
+def : ReadAdvance<ReadAdrBase, 0>;
+def : ReadAdvance<ReadVLD,     0>;
+
+//===----------------------------------------------------------------------===//
+// Finer scheduling model for the Exynos-M1.
+
+def M1WriteNEONA   : SchedWriteRes<[M1UnitNALU,
+                                    M1UnitNALU,
+                                    M1UnitFADD]>   { let Latency = 9; }
+def M1WriteNEONB   : SchedWriteRes<[M1UnitNALU,
+                                    M1UnitFST]>    { let Latency = 5; }
+def M1WriteNEONC   : SchedWriteRes<[M1UnitNALU,
+                                    M1UnitFST]>    { let Latency = 6; }
+def M1WriteNEOND   : SchedWriteRes<[M1UnitNALU,
+                                    M1UnitFST,
+                                    M1UnitL]>      { let Latency = 10; }
+def M1WriteNEONE   : SchedWriteRes<[M1UnitFCVT,
+                                    M1UnitFST]>    { let Latency = 8; }
+def M1WriteNEONF   : SchedWriteRes<[M1UnitFCVT,
+                                    M1UnitFST,
+                                    M1UnitL]>      { let Latency = 13; }
+def M1WriteNEONG   : SchedWriteRes<[M1UnitNMISC,
+                                    M1UnitFST]>    { let Latency = 6; }
+def M1WriteNEONH   : SchedWriteRes<[M1UnitNALU,
+                                    M1UnitFST]>    { let Latency = 3; }
+def M1WriteNEONI   : SchedWriteRes<[M1UnitFST,
+                                    M1UnitL]>      { let Latency = 9; }
+def M1WriteALU1    : SchedWriteRes<[M1UnitALU]>    { let Latency = 1; }
+def M1WriteB       : SchedWriteRes<[M1UnitB]>      { let Latency = 1; }
+// FIXME: This is the worst case, conditional branch and link.
+def M1WriteBL      : SchedWriteRes<[M1UnitB,
+                                    M1UnitALU]>    { let Latency = 1; }
+// FIXME: This is the worst case, when using LR.
+def M1WriteBLR     : SchedWriteRes<[M1UnitB,
+                                    M1UnitALU,
+                                    M1UnitALU]>    { let Latency = 2; }
+def M1WriteC1      : SchedWriteRes<[M1UnitC]>      { let Latency = 1; }
+def M1WriteC2      : SchedWriteRes<[M1UnitC]>      { let Latency = 2; }
+def M1WriteFADD3   : SchedWriteRes<[M1UnitFADD]>   { let Latency = 3; }
+def M1WriteFCVT3   : SchedWriteRes<[M1UnitFCVT]>   { let Latency = 3; }
+def M1WriteFCVT4   : SchedWriteRes<[M1UnitFCVT]>   { let Latency = 4; }
+def M1WriteFMAC4   : SchedWriteRes<[M1UnitFMAC]>   { let Latency = 4; }
+def M1WriteFMAC5   : SchedWriteRes<[M1UnitFMAC]>   { let Latency = 5; }
+def M1WriteFVAR15  : SchedWriteRes<[M1UnitFVAR]>   { let Latency = 15; }
+def M1WriteFVAR23  : SchedWriteRes<[M1UnitFVAR]>   { let Latency = 23; }
+def M1WriteNALU1   : SchedWriteRes<[M1UnitNALU]>   { let Latency = 1; }
+def M1WriteNALU2   : SchedWriteRes<[M1UnitNALU]>   { let Latency = 2; }
+def M1WriteNAL11   : SchedWriteRes<[M1UnitNAL1]>   { let Latency = 1; }
+def M1WriteNAL12   : SchedWriteRes<[M1UnitNAL1]>   { let Latency = 2; }
+def M1WriteNAL13   : SchedWriteRes<[M1UnitNAL1]>   { let Latency = 3; }
+def M1WriteNCRYPT1 : SchedWriteRes<[M1UnitNCRYPT]> { let Latency = 1; }
+def M1WriteNCRYPT5 : SchedWriteRes<[M1UnitNCRYPT]> { let Latency = 5; }
+def M1WriteNMISC1  : SchedWriteRes<[M1UnitNMISC]>  { let Latency = 1; }
+def M1WriteNMISC2  : SchedWriteRes<[M1UnitNMISC]>  { let Latency = 2; }
+def M1WriteNMISC3  : SchedWriteRes<[M1UnitNMISC]>  { let Latency = 3; }
+def M1WriteNMISC4  : SchedWriteRes<[M1UnitNMISC]>  { let Latency = 4; }
+def M1WriteS4      : SchedWriteRes<[M1UnitS]>      { let Latency = 4; }
+def M1WriteTB      : SchedWriteRes<[M1UnitC,
+                                    M1UnitALU]>    { let Latency = 2; }
+
+// Branch instructions
+def : InstRW<[M1WriteB ],  (instrs Bcc)>;
+def : InstRW<[M1WriteBL],  (instrs BL)>;
+def : InstRW<[M1WriteBLR], (instrs BLR)>;
+def : InstRW<[M1WriteC1],  (instregex "^CBN?Z[WX]")>;
+def : InstRW<[M1WriteTB],  (instregex "^TBN?Z[WX]")>;
+
+// Arithmetic and logical integer instructions.
+def : InstRW<[M1WriteALU1], (instrs COPY)>;
+
+// Divide and multiply instructions.
+
+// Miscellaneous instructions.
+
+// Load instructions.
+
+// Store instructions.
+
+// FP data instructions.
+def : InstRW<[M1WriteNALU1],  (instregex "^F(ABS|NEG)[DS]r")>;
+def : InstRW<[M1WriteFADD3],  (instregex "^F(ADD|SUB)[DS]rr")>;
+def : InstRW<[M1WriteNEONG],  (instregex "^FCCMPE?[DS]rr")>;
+def : InstRW<[M1WriteNMISC4], (instregex "^FCMPE?[DS]r")>;
+def : InstRW<[M1WriteFVAR15], (instrs FDIVSrr)>;
+def : InstRW<[M1WriteFVAR23], (instrs FDIVDrr)>;
+def : InstRW<[M1WriteNMISC2], (instregex "^F(MAX|MIN).+rr")>;
+def : InstRW<[M1WriteFMAC4],  (instregex "^FN?MUL[DS]rr")>;
+def : InstRW<[M1WriteFMAC5],  (instregex "^FN?M(ADD|SUB)[DS]rrr")>;
+def : InstRW<[M1WriteFCVT3],  (instregex "^FRINT.+r")>;
+def : InstRW<[M1WriteNEONH],  (instregex "^FCSEL[DS]rrr")>;
+def : InstRW<[M1WriteFVAR15], (instrs FSQRTSr)>;
+def : InstRW<[M1WriteFVAR23], (instrs FSQRTDr)>;
+
+// FP miscellaneous instructions.
+def : InstRW<[M1WriteFCVT3], (instregex "^FCVT[DS][DS]r")>;
+def : InstRW<[M1WriteNEONF], (instregex "^[FSU]CVT[AMNPZ][SU](_Int)?[SU]?[XW]?[DS]?[rds]i?")>;
+def : InstRW<[M1WriteNEONE], (instregex "^[SU]CVTF[SU]")>;
+def : InstRW<[M1WriteNALU1], (instregex "^FMOV[DS][ir]")>;
+def : InstRW<[M1WriteS4],    (instregex "^FMOV[WX][DS](High)?r")>;
+def : InstRW<[M1WriteNEONI], (instregex "^FMOV[DS][WX](High)?r")>;
+
+// FP load instructions.
+
+// FP store instructions.
+
+// ASIMD instructions.
+def : InstRW<[M1WriteNMISC3], (instregex "^[SU]ABAL?v")>;
+def : InstRW<[M1WriteNMISC1], (instregex "^[SU]ABDL?v")>;
+def : InstRW<[M1WriteNMISC1], (instregex "^(SQ)?ABSv")>;
+def : InstRW<[M1WriteNMISC1], (instregex "^SQNEGv")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^(ADD|NEG|SUB)v")>;
+def : InstRW<[M1WriteNMISC3], (instregex "^[SU]?H(ADD|SUB)v")>;
+def : InstRW<[M1WriteNMISC3], (instregex "^[SU]?AD[AD](L|LP|P|W)V?2?v")>;
+def : InstRW<[M1WriteNMISC3], (instregex "^[SU]?SUB[LW]2?v")>;
+def : InstRW<[M1WriteNMISC3], (instregex "^R?(ADD|SUB)HN?2?v")>;
+def : InstRW<[M1WriteNMISC3], (instregex "^[SU]+Q(ADD|SUB)v")>;
+def : InstRW<[M1WriteNMISC3], (instregex "^[SU]RHADDv")>;
+def : InstRW<[M1WriteNMISC1], (instregex "^CM(EQ|GE|GT|HI|HS|LE|LT)v")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^CMTSTv")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^(AND|BIC|EOR|MVNI|NOT|ORN|ORR)v")>;
+def : InstRW<[M1WriteNMISC1], (instregex "^[SU](MIN|MAX)v")>;
+def : InstRW<[M1WriteNMISC2], (instregex "^[SU](MIN|MAX)Pv")>;
+def : InstRW<[M1WriteNMISC3], (instregex "^[SU](MIN|MAX)Vv")>;
+def : InstRW<[M1WriteNMISC4], (instregex "^(MUL|SQR?DMULH)v")>;
+def : InstRW<[M1WriteNMISC4], (instregex "^ML[AS]v")>;
+def : InstRW<[M1WriteNMISC4], (instregex "^(S|U|SQD|SQRD)ML[AS][HL]v")>;
+def : InstRW<[M1WriteNMISC4], (instregex "^(S|U|SQD)MULLv")>;
+def : InstRW<[M1WriteNAL13],  (instregex "^(S|SR|U|UR)SRAv")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^[SU]?SH(L|LL|R)2?v")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^S[LR]Iv")>;
+def : InstRW<[M1WriteNAL13],  (instregex "^[SU]?(Q|QR|R)?SHR(N|U|UN)?2?v")>;
+def : InstRW<[M1WriteNAL13],  (instregex "^[SU](Q|QR|R)SHLU?v")>;
+
+// ASIMD FP instructions.
+def : InstRW<[M1WriteNALU1],  (instregex "^F(ABS|NEG)v")>;
+def : InstRW<[M1WriteNMISC3], (instregex "^F(ABD|ADD|SUB)v")>;
+def : InstRW<[M1WriteNEONA],  (instregex "^FADDP")>;
+def : InstRW<[M1WriteNMISC1], (instregex "^F(AC|CM)(EQ|GE|GT|LE|LT)v[^1]")>;
+def : InstRW<[M1WriteFCVT3],  (instregex "^[FVSU]CVTX?[AFLMNPZ][SU]?(_Int)?v")>;
+def : InstRW<[M1WriteFVAR15], (instregex "FDIVv.f32")>;
+def : InstRW<[M1WriteFVAR23], (instregex "FDIVv2f64")>;
+def : InstRW<[M1WriteFVAR15], (instregex "FSQRTv.f32")>;
+def : InstRW<[M1WriteFVAR23], (instregex "FSQRTv2f64")>;
+def : InstRW<[M1WriteNMISC1], (instregex "^F(MAX|MIN)(NM)?V?v")>;
+def : InstRW<[M1WriteNMISC2], (instregex "^F(MAX|MIN)(NM)?Pv")>;
+def : InstRW<[M1WriteFMAC4],  (instregex "^FMULX?v")>;
+def : InstRW<[M1WriteFMAC5],  (instregex "^FML[AS]v")>;
+def : InstRW<[M1WriteFCVT3],  (instregex "^FRINT[AIMNPXZ]v")>;
+
+// ASIMD miscellaneous instructions.
+def : InstRW<[M1WriteNALU1],  (instregex "^RBITv")>;
+def : InstRW<[M1WriteNAL11],  (instregex "^(BIF|BIT|BSL)v")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^CPY")>;
+def : InstRW<[M1WriteNEONB],  (instregex "^DUPv.+gpr")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^DUPv.+lane")>;
+def : InstRW<[M1WriteNAL13],  (instregex "^[SU]?Q?XTU?Nv")>;
+def : InstRW<[M1WriteNEONC],  (instregex "^INSv.+gpr")>;
+def : InstRW<[M1WriteFCVT4],  (instregex "^[FU](RECP|RSQRT)Ev")>;
+def : InstRW<[M1WriteNMISC1], (instregex "^[FU](RECP|RSQRT)Xv")>;
+def : InstRW<[M1WriteFMAC5],  (instregex "^F(RECP|RSQRT)Sv")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^REV(16|32|64)v")>;
+def : InstRW<[M1WriteNAL11],  (instregex "^TB[LX]v8i8One")>;
+def : InstRW<[WriteSequence<[M1WriteNAL11], 2>],
+                              (instregex "^TB[LX]v8i8Two")>;
+def : InstRW<[WriteSequence<[M1WriteNAL11], 3>],
+                              (instregex "^TB[LX]v8i8Three")>;
+def : InstRW<[WriteSequence<[M1WriteNAL11], 4>],
+                              (instregex "^TB[LX]v8i8Four")>;
+def : InstRW<[M1WriteNAL12],  (instregex "^TB[LX]v16i8One")>;
+def : InstRW<[WriteSequence<[M1WriteNAL12], 2>],
+                              (instregex "^TB[LX]v16i8Two")>;
+def : InstRW<[WriteSequence<[M1WriteNAL12], 3>],
+                              (instregex "^TB[LX]v16i8Three")>;
+def : InstRW<[WriteSequence<[M1WriteNAL12], 4>],
+                              (instregex "^TB[LX]v16i8Four")>;
+def : InstRW<[M1WriteNEOND],  (instregex "^[SU]MOVv")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^INSv.+lane")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^(TRN|UZP)(1|2)(v8i8|v4i16|v2i32)")>;
+def : InstRW<[M1WriteNALU2],  (instregex "^(TRN|UZP)(1|2)(v16i8|v8i16|v4i32|v2i64)")>;
+def : InstRW<[M1WriteNALU1],  (instregex "^ZIP(1|2)v")>;
+
+// ASIMD load instructions.
+
+// ASIMD store instructions.
+
+// Cryptography instructions.
+def : InstRW<[M1WriteNCRYPT1], (instregex "^AES")>;
+def : InstRW<[M1WriteNCRYPT1], (instregex "^PMUL")>;
+def : InstRW<[M1WriteNCRYPT1], (instregex "^SHA1(H|SU)")>;
+def : InstRW<[M1WriteNCRYPT5], (instregex "^SHA1[CMP]")>;
+def : InstRW<[M1WriteNCRYPT1], (instregex "^SHA256SU0")>;
+def : InstRW<[M1WriteNCRYPT5], (instregex "^SHA256(H|SU1)")>;
+
+// CRC instructions.
+def : InstRW<[M1WriteC2], (instregex "^CRC32")>;
+
+} // SchedModel = ExynosM1Model