Free the constants that have no uses in ~LLVMContext.
[oota-llvm.git] / lib / VMCore / LLVMContextImpl.h
index 6d189339eb0a051e518977677041cec92bba6894..2faf6ac6e38f8a1a97c4d610ec91fc5952d03688 100644 (file)
@@ -1,4 +1,4 @@
-//===----------------- LLVMContextImpl.h - Implementation ------*- C++ -*--===//
+//===-- LLVMContextImpl.h - The LLVMContextImpl opaque class --------------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
 #ifndef LLVM_LLVMCONTEXT_IMPL_H
 #define LLVM_LLVMCONTEXT_IMPL_H
 
+#include "ConstantsContext.h"
+#include "LeaksContext.h"
+#include "TypesContext.h"
 #include "llvm/LLVMContext.h"
 #include "llvm/Constants.h"
 #include "llvm/DerivedTypes.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
 #include "llvm/System/Mutex.h"
 #include "llvm/System/RWMutex.h"
+#include "llvm/Assembly/Writer.h"
 #include "llvm/ADT/APFloat.h"
 #include "llvm/ADT/APInt.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/FoldingSet.h"
 #include "llvm/ADT/StringMap.h"
-#include <map>
 #include <vector>
 
 namespace llvm {
-template<class ValType>
-struct ConstantTraits;
-
-// The number of operands for each ConstantCreator::create method is
-// determined by the ConstantTraits template.
-// ConstantCreator - A class that is used to create constants by
-// ValueMap*.  This class should be partially specialized if there is
-// something strange that needs to be done to interface to the ctor for the
-// constant.
-//
-template<typename T, typename Alloc>
-struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
-  static unsigned uses(const std::vector<T, Alloc>& v) {
-    return v.size();
-  }
-};
-
-template<class ConstantClass, class TypeClass, class ValType>
-struct VISIBILITY_HIDDEN ConstantCreator {
-  static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
-    return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
-  }
-};
-
-template<class ConstantClass, class TypeClass>
-struct VISIBILITY_HIDDEN ConvertConstantType {
-  static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
-    llvm_unreachable("This type cannot be converted!");
-  }
-};
-
-// ConstantAggregateZero does not take extra "value" argument...
-template<class ValType>
-struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
-  static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
-    return new ConstantAggregateZero(Ty);
-  }
-};
-
-template<>
-struct ConvertConstantType<ConstantVector, VectorType> {
-  static void convert(ConstantVector *OldC, const VectorType *NewTy) {
-    // Make everyone now use a constant of the new type...
-    std::vector<Constant*> C;
-    for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
-      C.push_back(cast<Constant>(OldC->getOperand(i)));
-    Constant *New = ConstantVector::get(NewTy, C);
-    assert(New != OldC && "Didn't replace constant??");
-    OldC->uncheckedReplaceAllUsesWith(New);
-    OldC->destroyConstant();    // This constant is now dead, destroy it.
-  }
-};
-
-template<>
-struct ConvertConstantType<ConstantAggregateZero, Type> {
-  static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
-    // Make everyone now use a constant of the new type...
-    Constant *New = ConstantAggregateZero::get(NewTy);
-    assert(New != OldC && "Didn't replace constant??");
-    OldC->uncheckedReplaceAllUsesWith(New);
-    OldC->destroyConstant();     // This constant is now dead, destroy it.
-  }
-};
-
-template<>
-struct ConvertConstantType<ConstantArray, ArrayType> {
-  static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
-    // Make everyone now use a constant of the new type...
-    std::vector<Constant*> C;
-    for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
-      C.push_back(cast<Constant>(OldC->getOperand(i)));
-    Constant *New = ConstantArray::get(NewTy, C);
-    assert(New != OldC && "Didn't replace constant??");
-    OldC->uncheckedReplaceAllUsesWith(New);
-    OldC->destroyConstant();    // This constant is now dead, destroy it.
-  }
-};
-
-template<>
-struct ConvertConstantType<ConstantStruct, StructType> {
-  static void convert(ConstantStruct *OldC, const StructType *NewTy) {
-    // Make everyone now use a constant of the new type...
-    std::vector<Constant*> C;
-    for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
-      C.push_back(cast<Constant>(OldC->getOperand(i)));
-    Constant *New = ConstantStruct::get(NewTy, C);
-    assert(New != OldC && "Didn't replace constant??");
-
-    OldC->uncheckedReplaceAllUsesWith(New);
-    OldC->destroyConstant();    // This constant is now dead, destroy it.
-  }
-};
-
-// ConstantPointerNull does not take extra "value" argument...
-template<class ValType>
-struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
-  static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
-    return new ConstantPointerNull(Ty);
-  }
-};
-
-template<>
-struct ConvertConstantType<ConstantPointerNull, PointerType> {
-  static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
-    // Make everyone now use a constant of the new type...
-    Constant *New = ConstantPointerNull::get(NewTy);
-    assert(New != OldC && "Didn't replace constant??");
-    OldC->uncheckedReplaceAllUsesWith(New);
-    OldC->destroyConstant();     // This constant is now dead, destroy it.
-  }
-};
-
-// UndefValue does not take extra "value" argument...
-template<class ValType>
-struct ConstantCreator<UndefValue, Type, ValType> {
-  static UndefValue *create(const Type *Ty, const ValType &V) {
-    return new UndefValue(Ty);
-  }
-};
-
-template<>
-struct ConvertConstantType<UndefValue, Type> {
-  static void convert(UndefValue *OldC, const Type *NewTy) {
-    // Make everyone now use a constant of the new type.
-    Constant *New = UndefValue::get(NewTy);
-    assert(New != OldC && "Didn't replace constant??");
-    OldC->uncheckedReplaceAllUsesWith(New);
-    OldC->destroyConstant();     // This constant is now dead, destroy it.
-  }
-};
-
-template<class ValType, class TypeClass, class ConstantClass,
-         bool HasLargeKey = false /*true for arrays and structs*/ >
-class ValueMap : public AbstractTypeUser {
-public:
-  typedef std::pair<const Type*, ValType> MapKey;
-  typedef std::map<MapKey, Constant *> MapTy;
-  typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
-  typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
-private:
-  /// Map - This is the main map from the element descriptor to the Constants.
-  /// This is the primary way we avoid creating two of the same shape
-  /// constant.
-  MapTy Map;
-    
-  /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
-  /// from the constants to their element in Map.  This is important for
-  /// removal of constants from the array, which would otherwise have to scan
-  /// through the map with very large keys.
-  InverseMapTy InverseMap;
-
-  /// AbstractTypeMap - Map for abstract type constants.
-  ///
-  AbstractTypeMapTy AbstractTypeMap;
-    
-  /// ValueMapLock - Mutex for this map.
-  sys::SmartMutex<true> ValueMapLock;
-
-public:
-  // NOTE: This function is not locked.  It is the caller's responsibility
-  // to enforce proper synchronization.
-  typename MapTy::iterator map_end() { return Map.end(); }
-    
-  /// InsertOrGetItem - Return an iterator for the specified element.
-  /// If the element exists in the map, the returned iterator points to the
-  /// entry and Exists=true.  If not, the iterator points to the newly
-  /// inserted entry and returns Exists=false.  Newly inserted entries have
-  /// I->second == 0, and should be filled in.
-  /// NOTE: This function is not locked.  It is the caller's responsibility
-  // to enforce proper synchronization.
-  typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
-                                 &InsertVal,
-                                 bool &Exists) {
-    std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
-    Exists = !IP.second;
-    return IP.first;
-  }
-    
-private:
-  typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
-    if (HasLargeKey) {
-      typename InverseMapTy::iterator IMI = InverseMap.find(CP);
-      assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
-             IMI->second->second == CP &&
-             "InverseMap corrupt!");
-      return IMI->second;
-    }
-      
-    typename MapTy::iterator I =
-      Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
-                      getValType(CP)));
-    if (I == Map.end() || I->second != CP) {
-      // FIXME: This should not use a linear scan.  If this gets to be a
-      // performance problem, someone should look at this.
-      for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
-        /* empty */;
-    }
-    return I;
-  }
-    
-  ConstantClass* Create(const TypeClass *Ty, const ValType &V,
-                        typename MapTy::iterator I) {
-    ConstantClass* Result =
-      ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-
-    assert(Result->getType() == Ty && "Type specified is not correct!");
-    I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
-
-    if (HasLargeKey)  // Remember the reverse mapping if needed.
-      InverseMap.insert(std::make_pair(Result, I));
-
-    // If the type of the constant is abstract, make sure that an entry
-    // exists for it in the AbstractTypeMap.
-    if (Ty->isAbstract()) {
-      typename AbstractTypeMapTy::iterator TI = 
-                                               AbstractTypeMap.find(Ty);
-
-      if (TI == AbstractTypeMap.end()) {
-        // Add ourselves to the ATU list of the type.
-        cast<DerivedType>(Ty)->addAbstractTypeUser(this);
-
-        AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
-      }
-    }
-      
-    return Result;
-  }
-public:
-    
-  /// getOrCreate - Return the specified constant from the map, creating it if
-  /// necessary.
-  ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
-    sys::SmartScopedLock<true> Lock(ValueMapLock);
-    MapKey Lookup(Ty, V);
-    ConstantClass* Result = 0;
-    
-    typename MapTy::iterator I = Map.find(Lookup);
-    // Is it in the map?  
-    if (I != Map.end())
-      Result = static_cast<ConstantClass *>(I->second);
-        
-    if (!Result) {
-      // If no preexisting value, create one now...
-      Result = Create(Ty, V, I);
-    }
-        
-    return Result;
-  }
-
-  void remove(ConstantClass *CP) {
-    sys::SmartScopedLock<true> Lock(ValueMapLock);
-    typename MapTy::iterator I = FindExistingElement(CP);
-    assert(I != Map.end() && "Constant not found in constant table!");
-    assert(I->second == CP && "Didn't find correct element?");
-
-    if (HasLargeKey)  // Remember the reverse mapping if needed.
-      InverseMap.erase(CP);
-      
-    // Now that we found the entry, make sure this isn't the entry that
-    // the AbstractTypeMap points to.
-    const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
-    if (Ty->isAbstract()) {
-      assert(AbstractTypeMap.count(Ty) &&
-             "Abstract type not in AbstractTypeMap?");
-      typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
-      if (ATMEntryIt == I) {
-        // Yes, we are removing the representative entry for this type.
-        // See if there are any other entries of the same type.
-        typename MapTy::iterator TmpIt = ATMEntryIt;
-
-        // First check the entry before this one...
-        if (TmpIt != Map.begin()) {
-          --TmpIt;
-          if (TmpIt->first.first != Ty) // Not the same type, move back...
-            ++TmpIt;
-        }
-
-        // If we didn't find the same type, try to move forward...
-        if (TmpIt == ATMEntryIt) {
-          ++TmpIt;
-          if (TmpIt == Map.end() || TmpIt->first.first != Ty)
-            --TmpIt;   // No entry afterwards with the same type
-        }
-
-        // If there is another entry in the map of the same abstract type,
-        // update the AbstractTypeMap entry now.
-        if (TmpIt != ATMEntryIt) {
-          ATMEntryIt = TmpIt;
-        } else {
-          // Otherwise, we are removing the last instance of this type
-          // from the table.  Remove from the ATM, and from user list.
-          cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
-          AbstractTypeMap.erase(Ty);
-        }
-      }
-    }
-
-    Map.erase(I);
-  }
-
-    
-  /// MoveConstantToNewSlot - If we are about to change C to be the element
-  /// specified by I, update our internal data structures to reflect this
-  /// fact.
-  /// NOTE: This function is not locked. It is the responsibility of the
-  /// caller to enforce proper synchronization if using this method.
-  void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
-    // First, remove the old location of the specified constant in the map.
-    typename MapTy::iterator OldI = FindExistingElement(C);
-    assert(OldI != Map.end() && "Constant not found in constant table!");
-    assert(OldI->second == C && "Didn't find correct element?");
-      
-    // If this constant is the representative element for its abstract type,
-    // update the AbstractTypeMap so that the representative element is I.
-    if (C->getType()->isAbstract()) {
-      typename AbstractTypeMapTy::iterator ATI =
-          AbstractTypeMap.find(C->getType());
-      assert(ATI != AbstractTypeMap.end() &&
-             "Abstract type not in AbstractTypeMap?");
-      if (ATI->second == OldI)
-        ATI->second = I;
-    }
-      
-    // Remove the old entry from the map.
-    Map.erase(OldI);
-    
-    // Update the inverse map so that we know that this constant is now
-    // located at descriptor I.
-    if (HasLargeKey) {
-      assert(I->second == C && "Bad inversemap entry!");
-      InverseMap[C] = I;
-    }
-  }
-    
-  void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
-    sys::SmartScopedLock<true> Lock(ValueMapLock);
-    typename AbstractTypeMapTy::iterator I =
-      AbstractTypeMap.find(cast<Type>(OldTy));
-
-    assert(I != AbstractTypeMap.end() &&
-           "Abstract type not in AbstractTypeMap?");
-
-    // Convert a constant at a time until the last one is gone.  The last one
-    // leaving will remove() itself, causing the AbstractTypeMapEntry to be
-    // eliminated eventually.
-    do {
-      ConvertConstantType<ConstantClass,
-                          TypeClass>::convert(
-                              static_cast<ConstantClass *>(I->second->second),
-                                              cast<TypeClass>(NewTy));
-
-      I = AbstractTypeMap.find(cast<Type>(OldTy));
-    } while (I != AbstractTypeMap.end());
-  }
-
-  // If the type became concrete without being refined to any other existing
-  // type, we just remove ourselves from the ATU list.
-  void typeBecameConcrete(const DerivedType *AbsTy) {
-    AbsTy->removeAbstractTypeUser(this);
-  }
-
-  void dump() const {
-    DOUT << "Constant.cpp: ValueMap\n";
-  }
-};
-
 
 class ConstantInt;
 class ConstantFP;
@@ -459,21 +94,24 @@ struct DenseMapAPFloatKeyInfo {
 };
 
 class LLVMContextImpl {
+public:
   sys::SmartRWMutex<true> ConstantsLock;
-  
   typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, 
-                   DenseMapAPIntKeyInfo> IntMapTy;
+                         DenseMapAPIntKeyInfo> IntMapTy;
   IntMapTy IntConstants;
   
   typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, 
-                   DenseMapAPFloatKeyInfo> FPMapTy;
+                         DenseMapAPFloatKeyInfo> FPMapTy;
   FPMapTy FPConstants;
   
   StringMap<MDString*> MDStringCache;
   
-  FoldingSet<MDNode> MDNodeSet;
-  
   ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
+
+  typedef ValueMap<std::vector<Value*>, Type, MDNode, true /*largekey*/> 
+  MDNodeMapTy;
+
+  MDNodeMapTy MDNodes;
   
   typedef ValueMap<std::vector<Constant*>, ArrayType, 
     ConstantArray, true /*largekey*/> ArrayConstantsTy;
@@ -491,25 +129,94 @@ class LLVMContextImpl {
   
   ValueMap<char, Type, UndefValue> UndefValueConstants;
   
-  LLVMContext &Context;
+  ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
+  
   ConstantInt *TheTrueVal;
   ConstantInt *TheFalseVal;
   
-  LLVMContextImpl();
-  LLVMContextImpl(const LLVMContextImpl&);
+  // Lock used for guarding access to the leak detector
+  sys::SmartMutex<true> LLVMObjectsLock;
+  LeakDetectorImpl<Value> LLVMObjects;
   
-  friend class ConstantInt;
-  friend class ConstantFP;
-  friend class ConstantStruct;
-  friend class ConstantArray;
-  friend class ConstantVector;
-  friend class ConstantAggregateZero;
-  friend class MDNode;
-  friend class MDString;
-  friend class ConstantPointerNull;
-  friend class UndefValue;
-public:
-  LLVMContextImpl(LLVMContext &C);
+  // Lock used for guarding access to the type maps.
+  sys::SmartMutex<true> TypeMapLock;
+  
+  // Recursive lock used for guarding access to AbstractTypeUsers.
+  // NOTE: The true template parameter means this will no-op when we're not in
+  // multithreaded mode.
+  sys::SmartMutex<true> AbstractTypeUsersLock;
+
+  // Basic type instances.
+  const Type VoidTy;
+  const Type LabelTy;
+  const Type FloatTy;
+  const Type DoubleTy;
+  const Type MetadataTy;
+  const Type X86_FP80Ty;
+  const Type FP128Ty;
+  const Type PPC_FP128Ty;
+  const IntegerType Int1Ty;
+  const IntegerType Int8Ty;
+  const IntegerType Int16Ty;
+  const IntegerType Int32Ty;
+  const IntegerType Int64Ty;
+
+  // Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
+  // for types as they are needed.  Because resolution of types must invalidate
+  // all of the abstract type descriptions, we keep them in a seperate map to 
+  // make this easy.
+  TypePrinting ConcreteTypeDescriptions;
+  TypePrinting AbstractTypeDescriptions;
+  
+  TypeMap<ArrayValType, ArrayType> ArrayTypes;
+  TypeMap<VectorValType, VectorType> VectorTypes;
+  TypeMap<PointerValType, PointerType> PointerTypes;
+  TypeMap<FunctionValType, FunctionType> FunctionTypes;
+  TypeMap<StructValType, StructType> StructTypes;
+  TypeMap<IntegerValType, IntegerType> IntegerTypes;
+
+  /// ValueHandles - This map keeps track of all of the value handles that are
+  /// watching a Value*.  The Value::HasValueHandle bit is used to know
+  // whether or not a value has an entry in this map.
+  typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy;
+  ValueHandlesTy ValueHandles;
+  
+  LLVMContextImpl(LLVMContext &C) : TheTrueVal(0), TheFalseVal(0),
+    VoidTy(C, Type::VoidTyID),
+    LabelTy(C, Type::LabelTyID),
+    FloatTy(C, Type::FloatTyID),
+    DoubleTy(C, Type::DoubleTyID),
+    MetadataTy(C, Type::MetadataTyID),
+    X86_FP80Ty(C, Type::X86_FP80TyID),
+    FP128Ty(C, Type::FP128TyID),
+    PPC_FP128Ty(C, Type::PPC_FP128TyID),
+    Int1Ty(C, 1),
+    Int8Ty(C, 8),
+    Int16Ty(C, 16),
+    Int32Ty(C, 32),
+    Int64Ty(C, 64) { }
+
+  ~LLVMContextImpl()
+  {
+    ExprConstants.freeConstants();
+    ArrayConstants.freeConstants();
+    StructConstants.freeConstants();
+    VectorConstants.freeConstants();
+
+    AggZeroConstants.freeConstants();
+    NullPtrConstants.freeConstants();
+    UndefValueConstants.freeConstants();
+    for (IntMapTy::iterator I=IntConstants.begin(), E=IntConstants.end(); 
+         I != E; ++I) {
+      if (I->second->use_empty())
+        delete I->second;
+    }
+    for (FPMapTy::iterator I=FPConstants.begin(), E=FPConstants.end(); 
+         I != E; ++I) {
+      if (I->second->use_empty())
+        delete I->second;
+    }
+  }
 };
 
 }