Rename VMCore directory to IR.
[oota-llvm.git] / lib / VMCore / DataLayout.cpp
diff --git a/lib/VMCore/DataLayout.cpp b/lib/VMCore/DataLayout.cpp
deleted file mode 100644 (file)
index 6cf51f5..0000000
+++ /dev/null
@@ -1,725 +0,0 @@
-//===-- DataLayout.cpp - Data size & alignment routines --------------------==//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines layout properties related to datatype size/offset/alignment
-// information.
-//
-// This structure should be created once, filled in if the defaults are not
-// correct and then passed around by const&.  None of the members functions
-// require modification to the object.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/DataLayout.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Mutex.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cstdlib>
-using namespace llvm;
-
-// Handle the Pass registration stuff necessary to use DataLayout's.
-
-// Register the default SparcV9 implementation...
-INITIALIZE_PASS(DataLayout, "datalayout", "Data Layout", false, true)
-char DataLayout::ID = 0;
-
-//===----------------------------------------------------------------------===//
-// Support for StructLayout
-//===----------------------------------------------------------------------===//
-
-StructLayout::StructLayout(StructType *ST, const DataLayout &TD) {
-  assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
-  StructAlignment = 0;
-  StructSize = 0;
-  NumElements = ST->getNumElements();
-
-  // Loop over each of the elements, placing them in memory.
-  for (unsigned i = 0, e = NumElements; i != e; ++i) {
-    Type *Ty = ST->getElementType(i);
-    unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
-
-    // Add padding if necessary to align the data element properly.
-    if ((StructSize & (TyAlign-1)) != 0)
-      StructSize = DataLayout::RoundUpAlignment(StructSize, TyAlign);
-
-    // Keep track of maximum alignment constraint.
-    StructAlignment = std::max(TyAlign, StructAlignment);
-
-    MemberOffsets[i] = StructSize;
-    StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
-  }
-
-  // Empty structures have alignment of 1 byte.
-  if (StructAlignment == 0) StructAlignment = 1;
-
-  // Add padding to the end of the struct so that it could be put in an array
-  // and all array elements would be aligned correctly.
-  if ((StructSize & (StructAlignment-1)) != 0)
-    StructSize = DataLayout::RoundUpAlignment(StructSize, StructAlignment);
-}
-
-
-/// getElementContainingOffset - Given a valid offset into the structure,
-/// return the structure index that contains it.
-unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
-  const uint64_t *SI =
-    std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
-  assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
-  --SI;
-  assert(*SI <= Offset && "upper_bound didn't work");
-  assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
-         (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
-         "Upper bound didn't work!");
-
-  // Multiple fields can have the same offset if any of them are zero sized.
-  // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
-  // at the i32 element, because it is the last element at that offset.  This is
-  // the right one to return, because anything after it will have a higher
-  // offset, implying that this element is non-empty.
-  return SI-&MemberOffsets[0];
-}
-
-//===----------------------------------------------------------------------===//
-// LayoutAlignElem, LayoutAlign support
-//===----------------------------------------------------------------------===//
-
-LayoutAlignElem
-LayoutAlignElem::get(AlignTypeEnum align_type, unsigned abi_align,
-                     unsigned pref_align, uint32_t bit_width) {
-  assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
-  LayoutAlignElem retval;
-  retval.AlignType = align_type;
-  retval.ABIAlign = abi_align;
-  retval.PrefAlign = pref_align;
-  retval.TypeBitWidth = bit_width;
-  return retval;
-}
-
-bool
-LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
-  return (AlignType == rhs.AlignType
-          && ABIAlign == rhs.ABIAlign
-          && PrefAlign == rhs.PrefAlign
-          && TypeBitWidth == rhs.TypeBitWidth);
-}
-
-const LayoutAlignElem
-DataLayout::InvalidAlignmentElem = LayoutAlignElem::get(INVALID_ALIGN, 0, 0, 0);
-
-//===----------------------------------------------------------------------===//
-// PointerAlignElem, PointerAlign support
-//===----------------------------------------------------------------------===//
-
-PointerAlignElem
-PointerAlignElem::get(uint32_t addr_space, unsigned abi_align,
-                     unsigned pref_align, uint32_t bit_width) {
-  assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
-  PointerAlignElem retval;
-  retval.AddressSpace = addr_space;
-  retval.ABIAlign = abi_align;
-  retval.PrefAlign = pref_align;
-  retval.TypeBitWidth = bit_width;
-  return retval;
-}
-
-bool
-PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
-  return (ABIAlign == rhs.ABIAlign
-          && AddressSpace == rhs.AddressSpace
-          && PrefAlign == rhs.PrefAlign
-          && TypeBitWidth == rhs.TypeBitWidth);
-}
-
-const PointerAlignElem
-DataLayout::InvalidPointerElem = PointerAlignElem::get(~0U, 0U, 0U, 0U);
-
-//===----------------------------------------------------------------------===//
-//                       DataLayout Class Implementation
-//===----------------------------------------------------------------------===//
-
-void DataLayout::init(StringRef Desc) {
-  initializeDataLayoutPass(*PassRegistry::getPassRegistry());
-
-  LayoutMap = 0;
-  LittleEndian = false;
-  StackNaturalAlign = 0;
-
-  // Default alignments
-  setAlignment(INTEGER_ALIGN,   1,  1, 1);   // i1
-  setAlignment(INTEGER_ALIGN,   1,  1, 8);   // i8
-  setAlignment(INTEGER_ALIGN,   2,  2, 16);  // i16
-  setAlignment(INTEGER_ALIGN,   4,  4, 32);  // i32
-  setAlignment(INTEGER_ALIGN,   4,  8, 64);  // i64
-  setAlignment(FLOAT_ALIGN,     2,  2, 16);  // half
-  setAlignment(FLOAT_ALIGN,     4,  4, 32);  // float
-  setAlignment(FLOAT_ALIGN,     8,  8, 64);  // double
-  setAlignment(FLOAT_ALIGN,    16, 16, 128); // ppcf128, quad, ...
-  setAlignment(VECTOR_ALIGN,    8,  8, 64);  // v2i32, v1i64, ...
-  setAlignment(VECTOR_ALIGN,   16, 16, 128); // v16i8, v8i16, v4i32, ...
-  setAlignment(AGGREGATE_ALIGN, 0,  8,  0);  // struct
-  setPointerAlignment(0, 8, 8, 8);
-
-  parseSpecifier(Desc);
-}
-
-/// Checked version of split, to ensure mandatory subparts.
-static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) {
-  assert(!Str.empty() && "parse error, string can't be empty here");
-  std::pair<StringRef, StringRef> Split = Str.split(Separator);
-  assert((!Split.second.empty() || Split.first == Str) &&
-         "a trailing separator is not allowed");
-  return Split;
-}
-
-/// Get an unsinged integer, including error checks.
-static unsigned getInt(StringRef R) {
-  unsigned Result;
-  bool error = R.getAsInteger(10, Result); (void)error;
-  assert(!error && "not a number, or does not fit in an unsigned int");
-  return Result;
-}
-
-/// Convert bits into bytes. Assert if not a byte width multiple.
-static unsigned inBytes(unsigned Bits) {
-  assert(Bits % 8 == 0 && "number of bits must be a byte width multiple");
-  return Bits / 8;
-}
-
-void DataLayout::parseSpecifier(StringRef Desc) {
-
-  while (!Desc.empty()) {
-
-    // Split at '-'.
-    std::pair<StringRef, StringRef> Split = split(Desc, '-');
-    Desc = Split.second;
-
-    // Split at ':'.
-    Split = split(Split.first, ':');
-
-    // Aliases used below.
-    StringRef &Tok  = Split.first;  // Current token.
-    StringRef &Rest = Split.second; // The rest of the string.
-
-    char Specifier = Tok.front();
-    Tok = Tok.substr(1);
-
-    switch (Specifier) {
-    case 'E':
-      LittleEndian = false;
-      break;
-    case 'e':
-      LittleEndian = true;
-      break;
-    case 'p': {
-      // Address space.
-      unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok);
-      assert(AddrSpace < 1 << 24 &&
-             "Invalid address space, must be a 24bit integer");
-
-      // Size.
-      Split = split(Rest, ':');
-      unsigned PointerMemSize = inBytes(getInt(Tok));
-
-      // ABI alignment.
-      Split = split(Rest, ':');
-      unsigned PointerABIAlign = inBytes(getInt(Tok));
-
-      // Preferred alignment.
-      unsigned PointerPrefAlign = PointerABIAlign;
-      if (!Rest.empty()) {
-        Split = split(Rest, ':');
-        PointerPrefAlign = inBytes(getInt(Tok));
-      }
-
-      setPointerAlignment(AddrSpace, PointerABIAlign, PointerPrefAlign,
-                          PointerMemSize);
-      break;
-    }
-    case 'i':
-    case 'v':
-    case 'f':
-    case 'a':
-    case 's': {
-      AlignTypeEnum AlignType;
-      switch (Specifier) {
-      default:
-      case 'i': AlignType = INTEGER_ALIGN; break;
-      case 'v': AlignType = VECTOR_ALIGN; break;
-      case 'f': AlignType = FLOAT_ALIGN; break;
-      case 'a': AlignType = AGGREGATE_ALIGN; break;
-      case 's': AlignType = STACK_ALIGN; break;
-      }
-
-      // Bit size.
-      unsigned Size = Tok.empty() ? 0 : getInt(Tok);
-
-      // ABI alignment.
-      Split = split(Rest, ':');
-      unsigned ABIAlign = inBytes(getInt(Tok));
-
-      // Preferred alignment.
-      unsigned PrefAlign = ABIAlign;
-      if (!Rest.empty()) {
-        Split = split(Rest, ':');
-        PrefAlign = inBytes(getInt(Tok));
-      }
-
-      setAlignment(AlignType, ABIAlign, PrefAlign, Size);
-
-      break;
-    }
-    case 'n':  // Native integer types.
-      for (;;) {
-        unsigned Width = getInt(Tok);
-        assert(Width != 0 && "width must be non-zero");
-        LegalIntWidths.push_back(Width);
-        if (Rest.empty())
-          break;
-        Split = split(Rest, ':');
-      }
-      break;
-    case 'S': { // Stack natural alignment.
-      StackNaturalAlign = inBytes(getInt(Tok));
-      break;
-    }
-    default:
-      llvm_unreachable("Unknown specifier in datalayout string");
-      break;
-    }
-  }
-}
-
-/// Default ctor.
-///
-/// @note This has to exist, because this is a pass, but it should never be
-/// used.
-DataLayout::DataLayout() : ImmutablePass(ID) {
-  report_fatal_error("Bad DataLayout ctor used.  "
-                    "Tool did not specify a DataLayout to use?");
-}
-
-DataLayout::DataLayout(const Module *M)
-  : ImmutablePass(ID) {
-  init(M->getDataLayout());
-}
-
-void
-DataLayout::setAlignment(AlignTypeEnum align_type, unsigned abi_align,
-                         unsigned pref_align, uint32_t bit_width) {
-  assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
-  assert(pref_align < (1 << 16) && "Alignment doesn't fit in bitfield");
-  assert(bit_width < (1 << 24) && "Bit width doesn't fit in bitfield");
-  for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
-    if (Alignments[i].AlignType == (unsigned)align_type &&
-        Alignments[i].TypeBitWidth == bit_width) {
-      // Update the abi, preferred alignments.
-      Alignments[i].ABIAlign = abi_align;
-      Alignments[i].PrefAlign = pref_align;
-      return;
-    }
-  }
-
-  Alignments.push_back(LayoutAlignElem::get(align_type, abi_align,
-                                            pref_align, bit_width));
-}
-
-void
-DataLayout::setPointerAlignment(uint32_t addr_space, unsigned abi_align,
-                         unsigned pref_align, uint32_t bit_width) {
-  assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
-  DenseMap<unsigned,PointerAlignElem>::iterator val = Pointers.find(addr_space);
-  if (val == Pointers.end()) {
-    Pointers[addr_space] = PointerAlignElem::get(addr_space,
-          abi_align, pref_align, bit_width);
-  } else {
-    val->second.ABIAlign = abi_align;
-    val->second.PrefAlign = pref_align;
-    val->second.TypeBitWidth = bit_width;
-  }
-}
-
-/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
-/// preferred if ABIInfo = false) the layout wants for the specified datatype.
-unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType,
-                                      uint32_t BitWidth, bool ABIInfo,
-                                      Type *Ty) const {
-  // Check to see if we have an exact match and remember the best match we see.
-  int BestMatchIdx = -1;
-  int LargestInt = -1;
-  for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
-    if (Alignments[i].AlignType == (unsigned)AlignType &&
-        Alignments[i].TypeBitWidth == BitWidth)
-      return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
-
-    // The best match so far depends on what we're looking for.
-     if (AlignType == INTEGER_ALIGN &&
-         Alignments[i].AlignType == INTEGER_ALIGN) {
-      // The "best match" for integers is the smallest size that is larger than
-      // the BitWidth requested.
-      if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
-           Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
-        BestMatchIdx = i;
-      // However, if there isn't one that's larger, then we must use the
-      // largest one we have (see below)
-      if (LargestInt == -1 ||
-          Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
-        LargestInt = i;
-    }
-  }
-
-  // Okay, we didn't find an exact solution.  Fall back here depending on what
-  // is being looked for.
-  if (BestMatchIdx == -1) {
-    // If we didn't find an integer alignment, fall back on most conservative.
-    if (AlignType == INTEGER_ALIGN) {
-      BestMatchIdx = LargestInt;
-    } else {
-      assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
-
-      // By default, use natural alignment for vector types. This is consistent
-      // with what clang and llvm-gcc do.
-      unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
-      Align *= cast<VectorType>(Ty)->getNumElements();
-      // If the alignment is not a power of 2, round up to the next power of 2.
-      // This happens for non-power-of-2 length vectors.
-      if (Align & (Align-1))
-        Align = NextPowerOf2(Align);
-      return Align;
-    }
-  }
-
-  // Since we got a "best match" index, just return it.
-  return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
-                 : Alignments[BestMatchIdx].PrefAlign;
-}
-
-namespace {
-
-class StructLayoutMap {
-  typedef DenseMap<StructType*, StructLayout*> LayoutInfoTy;
-  LayoutInfoTy LayoutInfo;
-
-public:
-  virtual ~StructLayoutMap() {
-    // Remove any layouts.
-    for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end();
-         I != E; ++I) {
-      StructLayout *Value = I->second;
-      Value->~StructLayout();
-      free(Value);
-    }
-  }
-
-  StructLayout *&operator[](StructType *STy) {
-    return LayoutInfo[STy];
-  }
-
-  // for debugging...
-  virtual void dump() const {}
-};
-
-} // end anonymous namespace
-
-DataLayout::~DataLayout() {
-  delete static_cast<StructLayoutMap*>(LayoutMap);
-}
-
-const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
-  if (!LayoutMap)
-    LayoutMap = new StructLayoutMap();
-
-  StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
-  StructLayout *&SL = (*STM)[Ty];
-  if (SL) return SL;
-
-  // Otherwise, create the struct layout.  Because it is variable length, we
-  // malloc it, then use placement new.
-  int NumElts = Ty->getNumElements();
-  StructLayout *L =
-    (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
-
-  // Set SL before calling StructLayout's ctor.  The ctor could cause other
-  // entries to be added to TheMap, invalidating our reference.
-  SL = L;
-
-  new (L) StructLayout(Ty, *this);
-
-  return L;
-}
-
-std::string DataLayout::getStringRepresentation() const {
-  std::string Result;
-  raw_string_ostream OS(Result);
-
-  OS << (LittleEndian ? "e" : "E");
-  SmallVector<unsigned, 8> addrSpaces;
-  // Lets get all of the known address spaces and sort them
-  // into increasing order so that we can emit the string
-  // in a cleaner format.
-  for (DenseMap<unsigned, PointerAlignElem>::const_iterator
-      pib = Pointers.begin(), pie = Pointers.end();
-      pib != pie; ++pib) {
-    addrSpaces.push_back(pib->first);
-  }
-  std::sort(addrSpaces.begin(), addrSpaces.end());
-  for (SmallVector<unsigned, 8>::iterator asb = addrSpaces.begin(),
-      ase = addrSpaces.end(); asb != ase; ++asb) {
-    const PointerAlignElem &PI = Pointers.find(*asb)->second;
-    OS << "-p";
-    if (PI.AddressSpace) {
-      OS << PI.AddressSpace;
-    }
-     OS << ":" << PI.TypeBitWidth*8 << ':' << PI.ABIAlign*8
-        << ':' << PI.PrefAlign*8;
-  }
-  OS << "-S" << StackNaturalAlign*8;
-
-  for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
-    const LayoutAlignElem &AI = Alignments[i];
-    OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':'
-       << AI.ABIAlign*8 << ':' << AI.PrefAlign*8;
-  }
-
-  if (!LegalIntWidths.empty()) {
-    OS << "-n" << (unsigned)LegalIntWidths[0];
-
-    for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i)
-      OS << ':' << (unsigned)LegalIntWidths[i];
-  }
-  return OS.str();
-}
-
-
-uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
-  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
-  switch (Ty->getTypeID()) {
-  case Type::LabelTyID:
-    return getPointerSizeInBits(0);
-  case Type::PointerTyID: {
-    unsigned AS = dyn_cast<PointerType>(Ty)->getAddressSpace();
-    return getPointerSizeInBits(AS);
-    }
-  case Type::ArrayTyID: {
-    ArrayType *ATy = cast<ArrayType>(Ty);
-    return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
-  }
-  case Type::StructTyID:
-    // Get the layout annotation... which is lazily created on demand.
-    return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
-  case Type::IntegerTyID:
-    return cast<IntegerType>(Ty)->getBitWidth();
-  case Type::HalfTyID:
-    return 16;
-  case Type::FloatTyID:
-    return 32;
-  case Type::DoubleTyID:
-  case Type::X86_MMXTyID:
-    return 64;
-  case Type::PPC_FP128TyID:
-  case Type::FP128TyID:
-    return 128;
-  // In memory objects this is always aligned to a higher boundary, but
-  // only 80 bits contain information.
-  case Type::X86_FP80TyID:
-    return 80;
-  case Type::VectorTyID: {
-    VectorType *VTy = cast<VectorType>(Ty);
-    return VTy->getNumElements()*getTypeSizeInBits(VTy->getElementType());
-  }
-  default:
-    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
-  }
-}
-
-/*!
-  \param abi_or_pref Flag that determines which alignment is returned. true
-  returns the ABI alignment, false returns the preferred alignment.
-  \param Ty The underlying type for which alignment is determined.
-
-  Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
-  == false) for the requested type \a Ty.
- */
-unsigned DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
-  int AlignType = -1;
-
-  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
-  switch (Ty->getTypeID()) {
-  // Early escape for the non-numeric types.
-  case Type::LabelTyID:
-    return (abi_or_pref
-            ? getPointerABIAlignment(0)
-            : getPointerPrefAlignment(0));
-  case Type::PointerTyID: {
-    unsigned AS = dyn_cast<PointerType>(Ty)->getAddressSpace();
-    return (abi_or_pref
-            ? getPointerABIAlignment(AS)
-            : getPointerPrefAlignment(AS));
-    }
-  case Type::ArrayTyID:
-    return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
-
-  case Type::StructTyID: {
-    // Packed structure types always have an ABI alignment of one.
-    if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
-      return 1;
-
-    // Get the layout annotation... which is lazily created on demand.
-    const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
-    unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
-    return std::max(Align, Layout->getAlignment());
-  }
-  case Type::IntegerTyID:
-    AlignType = INTEGER_ALIGN;
-    break;
-  case Type::HalfTyID:
-  case Type::FloatTyID:
-  case Type::DoubleTyID:
-  // PPC_FP128TyID and FP128TyID have different data contents, but the
-  // same size and alignment, so they look the same here.
-  case Type::PPC_FP128TyID:
-  case Type::FP128TyID:
-  case Type::X86_FP80TyID:
-    AlignType = FLOAT_ALIGN;
-    break;
-  case Type::X86_MMXTyID:
-  case Type::VectorTyID:
-    AlignType = VECTOR_ALIGN;
-    break;
-  default:
-    llvm_unreachable("Bad type for getAlignment!!!");
-  }
-
-  return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
-                          abi_or_pref, Ty);
-}
-
-unsigned DataLayout::getABITypeAlignment(Type *Ty) const {
-  return getAlignment(Ty, true);
-}
-
-/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
-/// an integer type of the specified bitwidth.
-unsigned DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const {
-  return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0);
-}
-
-
-unsigned DataLayout::getCallFrameTypeAlignment(Type *Ty) const {
-  for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
-    if (Alignments[i].AlignType == STACK_ALIGN)
-      return Alignments[i].ABIAlign;
-
-  return getABITypeAlignment(Ty);
-}
-
-unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
-  return getAlignment(Ty, false);
-}
-
-unsigned DataLayout::getPreferredTypeAlignmentShift(Type *Ty) const {
-  unsigned Align = getPrefTypeAlignment(Ty);
-  assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
-  return Log2_32(Align);
-}
-
-/// getIntPtrType - Return an integer type with size at least as big as that
-/// of a pointer in the given address space.
-IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
-                                       unsigned AddressSpace) const {
-  return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
-}
-
-/// getIntPtrType - Return an integer (vector of integer) type with size at
-/// least as big as that of a pointer of the given pointer (vector of pointer)
-/// type.
-Type *DataLayout::getIntPtrType(Type *Ty) const {
-  assert(Ty->isPtrOrPtrVectorTy() &&
-         "Expected a pointer or pointer vector type.");
-  unsigned NumBits = getTypeSizeInBits(Ty->getScalarType());
-  IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
-  if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
-    return VectorType::get(IntTy, VecTy->getNumElements());
-  return IntTy;
-}
-
-uint64_t DataLayout::getIndexedOffset(Type *ptrTy,
-                                      ArrayRef<Value *> Indices) const {
-  Type *Ty = ptrTy;
-  assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()");
-  uint64_t Result = 0;
-
-  generic_gep_type_iterator<Value* const*>
-    TI = gep_type_begin(ptrTy, Indices);
-  for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX;
-       ++CurIDX, ++TI) {
-    if (StructType *STy = dyn_cast<StructType>(*TI)) {
-      assert(Indices[CurIDX]->getType() ==
-             Type::getInt32Ty(ptrTy->getContext()) &&
-             "Illegal struct idx");
-      unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
-
-      // Get structure layout information...
-      const StructLayout *Layout = getStructLayout(STy);
-
-      // Add in the offset, as calculated by the structure layout info...
-      Result += Layout->getElementOffset(FieldNo);
-
-      // Update Ty to refer to current element
-      Ty = STy->getElementType(FieldNo);
-    } else {
-      // Update Ty to refer to current element
-      Ty = cast<SequentialType>(Ty)->getElementType();
-
-      // Get the array index and the size of each array element.
-      if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue())
-        Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty);
-    }
-  }
-
-  return Result;
-}
-
-/// getPreferredAlignment - Return the preferred alignment of the specified
-/// global.  This includes an explicitly requested alignment (if the global
-/// has one).
-unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const {
-  Type *ElemType = GV->getType()->getElementType();
-  unsigned Alignment = getPrefTypeAlignment(ElemType);
-  unsigned GVAlignment = GV->getAlignment();
-  if (GVAlignment >= Alignment) {
-    Alignment = GVAlignment;
-  } else if (GVAlignment != 0) {
-    Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
-  }
-
-  if (GV->hasInitializer() && GVAlignment == 0) {
-    if (Alignment < 16) {
-      // If the global is not external, see if it is large.  If so, give it a
-      // larger alignment.
-      if (getTypeSizeInBits(ElemType) > 128)
-        Alignment = 16;    // 16-byte alignment.
-    }
-  }
-  return Alignment;
-}
-
-/// getPreferredAlignmentLog - Return the preferred alignment of the
-/// specified global, returned in log form.  This includes an explicitly
-/// requested alignment (if the global has one).
-unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const {
-  return Log2_32(getPreferredAlignment(GV));
-}