Partial fix for PR1678: correct some parts of constant
[oota-llvm.git] / lib / VMCore / ConstantFold.cpp
index 46263060e5767a1811d6162fa93d6f71dcd6fa46..a61dd06ff1f6fed260838e37091eb5fc855b9cfe 100644 (file)
@@ -23,6 +23,7 @@
 #include "llvm/Instructions.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/Function.h"
+#include "llvm/GlobalAlias.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/Support/Compiler.h"
 #include "llvm/Support/GetElementPtrTypeIterator.h"
@@ -37,7 +38,7 @@ using namespace llvm;
 
 /// CastConstantVector - Convert the specified ConstantVector node to the
 /// specified vector type.  At this point, we know that the elements of the
-/// input packed constant are all simple integer or FP values.
+/// input vector constant are all simple integer or FP values.
 static Constant *CastConstantVector(ConstantVector *CV,
                                     const VectorType *DstTy) {
   unsigned SrcNumElts = CV->getType()->getNumElements();
@@ -68,7 +69,7 @@ static Constant *CastConstantVector(ConstantVector *CV,
         for (unsigned i = 0; i != SrcNumElts; ++i) {
           ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
           double V = CI->getValue().bitsToDouble();
-          Result.push_back(ConstantFP::get(Type::DoubleTy, V));
+          Result.push_back(ConstantFP::get(Type::DoubleTy, APFloat(V)));
         }
         return ConstantVector::get(Result);
       }
@@ -76,7 +77,7 @@ static Constant *CastConstantVector(ConstantVector *CV,
       for (unsigned i = 0; i != SrcNumElts; ++i) {
         ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
         float V = CI->getValue().bitsToFloat();
-        Result.push_back(ConstantFP::get(Type::FloatTy, V));
+        Result.push_back(ConstantFP::get(Type::FloatTy, APFloat(V)));
       }
       return ConstantVector::get(Result);
     }
@@ -86,8 +87,8 @@ static Constant *CastConstantVector(ConstantVector *CV,
     
     if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
       for (unsigned i = 0; i != SrcNumElts; ++i) {
-        uint64_t V =
-          DoubleToBits(cast<ConstantFP>(CV->getOperand(i))->getValue());
+        uint64_t V = cast<ConstantFP>(CV->getOperand(i))->
+                       getValueAPF().convertToAPInt().getZExtValue();
         Constant *C = ConstantInt::get(Type::Int64Ty, V);
         Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
       }
@@ -96,7 +97,8 @@ static Constant *CastConstantVector(ConstantVector *CV,
 
     assert(SrcEltTy->getTypeID() == Type::FloatTyID);
     for (unsigned i = 0; i != SrcNumElts; ++i) {
-      uint32_t V = FloatToBits(cast<ConstantFP>(CV->getOperand(i))->getValue());
+      uint32_t V = (uint32_t)cast<ConstantFP>(CV->getOperand(i))->
+                               getValueAPF().convertToAPInt().getZExtValue();
       Constant *C = ConstantInt::get(Type::Int32Ty, V);
       Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
     }
@@ -114,7 +116,7 @@ static Constant *CastConstantVector(ConstantVector *CV,
 /// This function determines which opcode to use to fold two constant cast 
 /// expressions together. It uses CastInst::isEliminableCastPair to determine
 /// the opcode. Consequently its just a wrapper around that function.
-/// @Determine if it is valid to fold a cast of a cast
+/// @brief Determine if it is valid to fold a cast of a cast
 static unsigned
 foldConstantCastPair(
   unsigned opc,          ///< opcode of the second cast constant expression
@@ -140,8 +142,13 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
                                             const Type *DestTy) {
   const Type *SrcTy = V->getType();
 
-  if (isa<UndefValue>(V))
+  if (isa<UndefValue>(V)) {
+    // zext(undef) = 0, because the top bits will be zero.
+    // sext(undef) = 0, because the top bits will all be the same.
+    if (opc == Instruction::ZExt || opc == Instruction::SExt)
+      return Constant::getNullValue(DestTy);
     return UndefValue::get(DestTy);
+  }
 
   // If the cast operand is a constant expression, there's a few things we can
   // do to try to simplify it.
@@ -170,20 +177,31 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
   switch (opc) {
   case Instruction::FPTrunc:
   case Instruction::FPExt:
-    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
-      return ConstantFP::get(DestTy, FPC->getValue());
+    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+       APFloat Val = FPC->getValueAPF();
+      Val.convert(DestTy==Type::FloatTy ? APFloat::IEEEsingle : 
+                                          APFloat::IEEEdouble, 
+                  APFloat::rmNearestTiesToEven);
+      return ConstantFP::get(DestTy, Val);
+    }
     return 0; // Can't fold.
   case Instruction::FPToUI: 
     if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+      APFloat V = FPC->getValueAPF();
+      bool isDouble = &V.getSemantics()==&APFloat::IEEEdouble;
       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
-      APInt Val(APIntOps::RoundDoubleToAPInt(FPC->getValue(), DestBitWidth));
+      APInt Val(APIntOps::RoundDoubleToAPInt(isDouble ? V.convertToDouble() : 
+                                   (double)V.convertToFloat(), DestBitWidth));
       return ConstantInt::get(Val);
     }
     return 0; // Can't fold.
   case Instruction::FPToSI:
     if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+      APFloat V = FPC->getValueAPF();
+      bool isDouble = &V.getSemantics()==&APFloat::IEEEdouble;
       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
-      APInt Val(APIntOps::RoundDoubleToAPInt(FPC->getValue(), DestBitWidth));
+      APInt Val(APIntOps::RoundDoubleToAPInt(isDouble ? V.convertToDouble() :
+                                    (double)V.convertToFloat(), DestBitWidth));
       return ConstantInt::get(Val);
     }
     return 0; // Can't fold.
@@ -196,12 +214,22 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
       return ConstantInt::get(DestTy, 0);
     return 0;                   // Other pointer types cannot be casted
   case Instruction::UIToFP:
-    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
-      return ConstantFP::get(DestTy, CI->getValue().roundToDouble());
+    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+      if (DestTy==Type::FloatTy) 
+        return ConstantFP::get(DestTy, 
+                            APFloat((float)CI->getValue().roundToDouble()));
+      else
+        return ConstantFP::get(DestTy, APFloat(CI->getValue().roundToDouble()));
+    }
     return 0;
   case Instruction::SIToFP:
-    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
-      return ConstantFP::get(DestTy, CI->getValue().signedRoundToDouble()); 
+    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+      double d = CI->getValue().signedRoundToDouble();
+      if (DestTy==Type::FloatTy)
+        return ConstantFP::get(DestTy, APFloat((float)d));
+      else
+        return ConstantFP::get(DestTy, APFloat(d));
+    }
     return 0;
   case Instruction::ZExt:
     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
@@ -258,7 +286,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
               const_cast<Constant*>(V), &IdxList[0], IdxList.size());
       }
         
-    // Handle casts from one packed constant to another.  We know that the src 
+    // Handle casts from one vector constant to another.  We know that the src 
     // and dest type have the same size (otherwise its an illegal cast).
     if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
       if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
@@ -303,12 +331,11 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
         return const_cast<Constant*>(V);
 
       if (DestTy->isFloatingPoint()) {
-        if (DestTy == Type::FloatTy)
-          return ConstantFP::get(DestTy, CI->getValue().bitsToFloat());
-        assert(DestTy == Type::DoubleTy && "Unknown FP type!");
-        return ConstantFP::get(DestTy, CI->getValue().bitsToDouble());
+        assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) && 
+               "Unknown FP type!");
+        return ConstantFP::get(DestTy, APFloat(CI->getValue()));
       }
-      // Otherwise, can't fold this (packed?)
+      // Otherwise, can't fold this (vector?)
       return 0;
     }
       
@@ -316,12 +343,10 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
     if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
       // FP -> Integral.
       if (DestTy == Type::Int32Ty) {
-        APInt Val(32, 0);
-        return ConstantInt::get(Val.floatToBits(FP->getValue()));
+        return ConstantInt::get(FP->getValueAPF().convertToAPInt());
       } else {
         assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
-        APInt Val(64, 0);
-        return ConstantInt::get(Val.doubleToBits(FP->getValue()));
+        return ConstantInt::get(FP->getValueAPF().convertToAPInt());
       }
     }
     return 0;
@@ -373,7 +398,7 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
   if (!CIdx) return 0;
   APInt idxVal = CIdx->getValue();
   if (isa<UndefValue>(Val)) { 
-    // Insertion of scalar constant into packed undef
+    // Insertion of scalar constant into vector undef
     // Optimize away insertion of undef
     if (isa<UndefValue>(Elt))
       return const_cast<Constant*>(Val);
@@ -391,7 +416,7 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
     return ConstantVector::get(Ops);
   }
   if (isa<ConstantAggregateZero>(Val)) {
-    // Insertion of scalar constant into packed aggregate zero
+    // Insertion of scalar constant into vector aggregate zero
     // Optimize away insertion of zero
     if (Elt->isNullValue())
       return const_cast<Constant*>(Val);
@@ -409,7 +434,7 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
     return ConstantVector::get(Ops);
   }
   if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
-    // Insertion of scalar constant into packed constant
+    // Insertion of scalar constant into vector constant
     std::vector<Constant*> Ops; 
     Ops.reserve(CVal->getNumOperands());
     for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
@@ -429,7 +454,7 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
   return 0;
 }
 
-/// EvalVectorOp - Given two packed constants and a function pointer, apply the
+/// EvalVectorOp - Given two vector constants and a function pointer, apply the
 /// function pointer to each element pair, producing a new ConstantVector
 /// constant.
 static Constant *EvalVectorOp(const ConstantVector *V1, 
@@ -554,6 +579,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
         if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X ^ 0 == X
         break;
       case Instruction::AShr:
+        // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
           return ConstantExpr::getLShr(const_cast<Constant*>(C1),
                                        const_cast<Constant*>(C2));
@@ -654,39 +680,50 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
     }
   } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
     if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
-      double C1Val = CFP1->getValue();
-      double C2Val = CFP2->getValue();
+      APFloat C1V = CFP1->getValueAPF();
+      APFloat C2V = CFP2->getValueAPF();
+      APFloat C3V = C1V;  // copy for modification
+      bool isDouble = CFP1->getType()==Type::DoubleTy;
       switch (Opcode) {
       default:                   
         break;
-      case Instruction::Add: 
-        return ConstantFP::get(CFP1->getType(), C1Val + C2Val);
+      case Instruction::Add:
+        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
+        return ConstantFP::get(CFP1->getType(), C3V);
       case Instruction::Sub:     
-        return ConstantFP::get(CFP1->getType(), C1Val - C2Val);
-      case Instruction::Mul:     
-        return ConstantFP::get(CFP1->getType(), C1Val * C2Val);
+        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
+        return ConstantFP::get(CFP1->getType(), C3V);
+      case Instruction::Mul:
+        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
+        return ConstantFP::get(CFP1->getType(), C3V);
       case Instruction::FDiv:
-        if (CFP2->isExactlyValue(0.0) || CFP2->isExactlyValue(-0.0))
-          if (CFP1->isExactlyValue(0.0) || CFP1->isExactlyValue(-0.0))
+        // FIXME better to look at the return code
+        if (C2V.isZero())
+          if (C1V.isZero())
             // IEEE 754, Section 7.1, #4
-            return ConstantFP::get(CFP1->getType(),
-                                   std::numeric_limits<double>::quiet_NaN());
-          else if (CFP2->isExactlyValue(-0.0) || C1Val < 0.0)
+            return ConstantFP::get(CFP1->getType(), isDouble ?
+                            APFloat(std::numeric_limits<double>::quiet_NaN()) :
+                            APFloat(std::numeric_limits<float>::quiet_NaN()));
+          else if (C2V.isNegZero() || C1V.isNegative())
             // IEEE 754, Section 7.2, negative infinity case
-            return ConstantFP::get(CFP1->getType(),
-                                   -std::numeric_limits<double>::infinity());
+            return ConstantFP::get(CFP1->getType(), isDouble ?
+                            APFloat(-std::numeric_limits<double>::infinity()) :
+                            APFloat(-std::numeric_limits<float>::infinity()));
           else
             // IEEE 754, Section 7.2, positive infinity case
-            return ConstantFP::get(CFP1->getType(),
-                                   std::numeric_limits<double>::infinity());
-        return ConstantFP::get(CFP1->getType(), C1Val / C2Val);
+            return ConstantFP::get(CFP1->getType(), isDouble ?
+                            APFloat(std::numeric_limits<double>::infinity()) :
+                            APFloat(std::numeric_limits<float>::infinity()));
+        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
+        return ConstantFP::get(CFP1->getType(), C3V);
       case Instruction::FRem:
-        if (CFP2->isExactlyValue(0.0) || CFP2->isExactlyValue(-0.0))
+        if (C2V.isZero())
           // IEEE 754, Section 7.1, #5
-          return ConstantFP::get(CFP1->getType(), 
-                                 std::numeric_limits<double>::quiet_NaN());
-        return ConstantFP::get(CFP1->getType(), std::fmod(C1Val, C2Val));
-
+          return ConstantFP::get(CFP1->getType(), isDouble ?
+                            APFloat(std::numeric_limits<double>::quiet_NaN()) :
+                            APFloat(std::numeric_limits<float>::quiet_NaN()));
+        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
+        return ConstantFP::get(CFP1->getType(), C3V);
       }
     }
   } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
@@ -909,12 +946,14 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
     // Now we know that the RHS is a GlobalValue or simple constant,
     // which (since the types must match) means that it's a ConstantPointerNull.
     if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
-      if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
-        return ICmpInst::ICMP_NE;
+      // Don't try to decide equality of aliases.
+      if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
+        if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
+          return ICmpInst::ICMP_NE;
     } else {
-      // GlobalVals can never be null.
       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
-      if (!CPR1->hasExternalWeakLinkage())
+      // GlobalVals can never be null.  Don't try to evaluate aliases.
+      if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
         return ICmpInst::ICMP_NE;
     }
   } else {
@@ -1085,7 +1124,8 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
   // icmp eq/ne(null,GV) -> false/true
   if (C1->isNullValue()) {
     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
-      if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
+      // Don't try to evaluate aliases.  External weak GV can be null.
+      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage())
         if (pred == ICmpInst::ICMP_EQ)
           return ConstantInt::getFalse();
         else if (pred == ICmpInst::ICMP_NE)
@@ -1093,7 +1133,8 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
   // icmp eq/ne(GV,null) -> false/true
   } else if (C2->isNullValue()) {
     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
-      if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
+      // Don't try to evaluate aliases.  External weak GV can be null.
+      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage())
         if (pred == ICmpInst::ICMP_EQ)
           return ConstantInt::getFalse();
         else if (pred == ICmpInst::ICMP_NE)
@@ -1117,52 +1158,47 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
     case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
     }
   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
-    double C1Val = cast<ConstantFP>(C1)->getValue();
-    double C2Val = cast<ConstantFP>(C2)->getValue();
+    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
+    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
+    APFloat::cmpResult R = C1V.compare(C2V);
     switch (pred) {
     default: assert(0 && "Invalid FCmp Predicate"); return 0;
     case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
     case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue();
     case FCmpInst::FCMP_UNO:
-      return ConstantInt::get(Type::Int1Ty, C1Val != C1Val || C2Val != C2Val);
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
     case FCmpInst::FCMP_ORD:
-      return ConstantInt::get(Type::Int1Ty, C1Val == C1Val && C2Val == C2Val);
+      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
     case FCmpInst::FCMP_UEQ:
-      if (C1Val != C1Val || C2Val != C2Val)
-        return ConstantInt::getTrue();
-      /* FALL THROUGH */
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+                                            R==APFloat::cmpEqual);
     case FCmpInst::FCMP_OEQ:   
-      return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
     case FCmpInst::FCMP_UNE:
-      if (C1Val != C1Val || C2Val != C2Val)
-        return ConstantInt::getTrue();
-      /* FALL THROUGH */
+      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
     case FCmpInst::FCMP_ONE:   
-      return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
+                                            R==APFloat::cmpGreaterThan);
     case FCmpInst::FCMP_ULT: 
-      if (C1Val != C1Val || C2Val != C2Val)
-        return ConstantInt::getTrue();
-      /* FALL THROUGH */
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+                                            R==APFloat::cmpLessThan);
     case FCmpInst::FCMP_OLT:   
-      return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
     case FCmpInst::FCMP_UGT:
-      if (C1Val != C1Val || C2Val != C2Val)
-        return ConstantInt::getTrue();
-      /* FALL THROUGH */
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+                                            R==APFloat::cmpGreaterThan);
     case FCmpInst::FCMP_OGT:
-      return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
     case FCmpInst::FCMP_ULE:
-      if (C1Val != C1Val || C2Val != C2Val)
-        return ConstantInt::getTrue();
-      /* FALL THROUGH */
+      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
     case FCmpInst::FCMP_OLE: 
-      return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
+                                            R==APFloat::cmpEqual);
     case FCmpInst::FCMP_UGE:
-      if (C1Val != C1Val || C2Val != C2Val)
-        return ConstantInt::getTrue();
-      /* FALL THROUGH */
+      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
     case FCmpInst::FCMP_OGE: 
-      return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
+      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
+                                            R==APFloat::cmpEqual);
     }
   } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
     if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
@@ -1344,7 +1380,7 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
 }
 
 Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
-                                          Constant* const *Idxs, 
+                                          Constant* const *Idxs,
                                           unsigned NumIdx) {
   if (NumIdx == 0 ||
       (NumIdx == 1 && Idxs[0]->isNullValue()))
@@ -1352,7 +1388,8 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
 
   if (isa<UndefValue>(C)) {
     const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(),
-                                                       (Value**)Idxs, NumIdx,
+                                                       (Value **)Idxs,
+                                                       (Value **)Idxs+NumIdx,
                                                        true);
     assert(Ty != 0 && "Invalid indices for GEP!");
     return UndefValue::get(PointerType::get(Ty));
@@ -1368,7 +1405,8 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
       }
     if (isNull) {
       const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(),
-                                                         (Value**)Idxs, NumIdx,
+                                                         (Value**)Idxs,
+                                                         (Value**)Idxs+NumIdx,
                                                          true);
       assert(Ty != 0 && "Invalid indices for GEP!");
       return ConstantPointerNull::get(PointerType::get(Ty));
@@ -1421,7 +1459,7 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
     //                        long 0, long 0)
     // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
     //
-    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue())
+    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
       if (const PointerType *SPT =
           dyn_cast<PointerType>(CE->getOperand(0)->getType()))
         if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
@@ -1430,6 +1468,28 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
             if (CAT->getElementType() == SAT->getElementType())
               return ConstantExpr::getGetElementPtr(
                       (Constant*)CE->getOperand(0), Idxs, NumIdx);
+    }
+    
+    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
+    // Into: inttoptr (i64 0 to i8*)
+    // This happens with pointers to member functions in C++.
+    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
+        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
+        cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
+      Constant *Base = CE->getOperand(0);
+      Constant *Offset = Idxs[0];
+      
+      // Convert the smaller integer to the larger type.
+      if (Offset->getType()->getPrimitiveSizeInBits() < 
+          Base->getType()->getPrimitiveSizeInBits())
+        Offset = ConstantExpr::getSExt(Offset, Base->getType());
+      else if (Base->getType()->getPrimitiveSizeInBits() <
+               Offset->getType()->getPrimitiveSizeInBits())
+        Base = ConstantExpr::getZExt(Base, Base->getType());
+      
+      Base = ConstantExpr::getAdd(Base, Offset);
+      return ConstantExpr::getIntToPtr(Base, CE->getType());
+    }
   }
   return 0;
 }