[vectorizer] Simplify code to use existing helpers on the Function
[oota-llvm.git] / lib / Transforms / Vectorize / LoopVectorize.cpp
index d4be08d6151be26c395023dd0629a07ded25b4c0..1ba0b77503e59c17d08bfa168c9864908e293e0d 100644 (file)
@@ -48,6 +48,7 @@
 #include "llvm/Transforms/Vectorize.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/ADT/Hashing.h"
 #include "llvm/ADT/MapVector.h"
 #include "llvm/ADT/SetVector.h"
 #include "llvm/ADT/SmallPtrSet.h"
@@ -55,7 +56,6 @@
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/StringExtras.h"
 #include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Dominators.h"
 #include "llvm/Analysis/LoopInfo.h"
 #include "llvm/Analysis/LoopIterator.h"
 #include "llvm/Analysis/LoopPass.h"
 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 #include "llvm/Analysis/TargetTransformInfo.h"
 #include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Analysis/Verifier.h"
 #include "llvm/IR/Constants.h"
 #include "llvm/IR/DataLayout.h"
 #include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
 #include "llvm/IR/Function.h"
 #include "llvm/IR/IRBuilder.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/IR/Module.h"
 #include "llvm/IR/Type.h"
 #include "llvm/IR/Value.h"
+#include "llvm/IR/Verifier.h"
 #include "llvm/Pass.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/raw_ostream.h"
 #include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
 #include "llvm/Target/TargetLibraryInfo.h"
 #include "llvm/Transforms/Scalar.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -113,6 +114,21 @@ TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
                                       "trip count that is smaller than this "
                                       "value."));
 
+/// This enables versioning on the strides of symbolically striding memory
+/// accesses in code like the following.
+///   for (i = 0; i < N; ++i)
+///     A[i * Stride1] += B[i * Stride2] ...
+///
+/// Will be roughly translated to
+///    if (Stride1 == 1 && Stride2 == 1) {
+///      for (i = 0; i < N; i+=4)
+///       A[i:i+3] += ...
+///    } else
+///      ...
+static cl::opt<bool> EnableMemAccessVersioning(
+    "enable-mem-access-versioning", cl::init(true), cl::Hidden,
+    cl::desc("Enable symblic stride memory access versioning"));
+
 /// We don't unroll loops with a known constant trip count below this number.
 static const unsigned TinyTripCountUnrollThreshold = 128;
 
@@ -123,9 +139,31 @@ static const unsigned RuntimeMemoryCheckThreshold = 8;
 /// Maximum simd width.
 static const unsigned MaxVectorWidth = 64;
 
+static cl::opt<unsigned> ForceTargetNumScalarRegs(
+    "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
+    cl::desc("A flag that overrides the target's number of scalar registers."));
+
+static cl::opt<unsigned> ForceTargetNumVectorRegs(
+    "force-target-num-vector-regs", cl::init(0), cl::Hidden,
+    cl::desc("A flag that overrides the target's number of vector registers."));
+
 /// Maximum vectorization unroll count.
 static const unsigned MaxUnrollFactor = 16;
 
+static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor(
+    "force-target-max-scalar-unroll", cl::init(0), cl::Hidden,
+    cl::desc("A flag that overrides the target's max unroll factor for scalar "
+             "loops."));
+
+static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor(
+    "force-target-max-vector-unroll", cl::init(0), cl::Hidden,
+    cl::desc("A flag that overrides the target's max unroll factor for "
+             "vectorized loops."));
+
+static cl::opt<unsigned> SmallLoopCost(
+    "small-loop-cost", cl::init(20), cl::Hidden,
+    cl::desc("The cost of a loop that is considered 'small' by the unroller."));
+
 namespace {
 
 // Forward declarations.
@@ -154,20 +192,23 @@ public:
                       unsigned UnrollFactor)
       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
-        OldInduction(0), WidenMap(UnrollFactor) {}
+        OldInduction(0), WidenMap(UnrollFactor), Legal(0) {}
 
   // Perform the actual loop widening (vectorization).
-  void vectorize(LoopVectorizationLegality *Legal) {
+  void vectorize(LoopVectorizationLegality *L) {
+    Legal = L;
     // Create a new empty loop. Unlink the old loop and connect the new one.
-    createEmptyLoop(Legal);
+    createEmptyLoop();
     // Widen each instruction in the old loop to a new one in the new loop.
     // Use the Legality module to find the induction and reduction variables.
-    vectorizeLoop(Legal);
+    vectorizeLoop();
     // Register the new loop and update the analysis passes.
     updateAnalysis();
   }
 
-private:
+  virtual ~InnerLoopVectorizer() {}
+
+protected:
   /// A small list of PHINodes.
   typedef SmallVector<PHINode*, 4> PhiVector;
   /// When we unroll loops we have multiple vector values for each scalar.
@@ -180,14 +221,29 @@ private:
   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
                    VectorParts> EdgeMaskCache;
 
-  /// Add code that checks at runtime if the accessed arrays overlap.
-  /// Returns the comparator value or NULL if no check is needed.
-  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
-                               Instruction *Loc);
+  /// \brief Add code that checks at runtime if the accessed arrays overlap.
+  ///
+  /// Returns a pair of instructions where the first element is the first
+  /// instruction generated in possibly a sequence of instructions and the
+  /// second value is the final comparator value or NULL if no check is needed.
+  std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
+
+  /// \brief Add checks for strides that where assumed to be 1.
+  ///
+  /// Returns the last check instruction and the first check instruction in the
+  /// pair as (first, last).
+  std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
+
   /// Create an empty loop, based on the loop ranges of the old loop.
-  void createEmptyLoop(LoopVectorizationLegality *Legal);
+  void createEmptyLoop();
   /// Copy and widen the instructions from the old loop.
-  void vectorizeLoop(LoopVectorizationLegality *Legal);
+  virtual void vectorizeLoop();
+
+  /// \brief The Loop exit block may have single value PHI nodes where the
+  /// incoming value is 'Undef'. While vectorizing we only handled real values
+  /// that were defined inside the loop. Here we fix the 'undef case'.
+  /// See PR14725.
+  void fixLCSSAPHIs();
 
   /// A helper function that computes the predicate of the block BB, assuming
   /// that the header block of the loop is set to True. It returns the *entry*
@@ -198,8 +254,13 @@ private:
   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
 
   /// A helper function to vectorize a single BB within the innermost loop.
-  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
-                            PhiVector *PV);
+  void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
+
+  /// Vectorize a single PHINode in a block. This method handles the induction
+  /// variable canonicalization. It supports both VF = 1 for unrolled loops and
+  /// arbitrary length vectors.
+  void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
+                           unsigned UF, unsigned VF, PhiVector *PV);
 
   /// Insert the new loop to the loop hierarchy and pass manager
   /// and update the analysis passes.
@@ -207,23 +268,22 @@ private:
 
   /// This instruction is un-vectorizable. Implement it as a sequence
   /// of scalars.
-  void scalarizeInstruction(Instruction *Instr);
+  virtual void scalarizeInstruction(Instruction *Instr);
 
   /// Vectorize Load and Store instructions,
-  void vectorizeMemoryInstruction(Instruction *Instr,
-                                  LoopVectorizationLegality *Legal);
+  virtual void vectorizeMemoryInstruction(Instruction *Instr);
 
   /// Create a broadcast instruction. This method generates a broadcast
   /// instruction (shuffle) for loop invariant values and for the induction
   /// value. If this is the induction variable then we extend it to N, N+1, ...
   /// this is needed because each iteration in the loop corresponds to a SIMD
   /// element.
-  Value *getBroadcastInstrs(Value *V);
+  virtual Value *getBroadcastInstrs(Value *V);
 
   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
   /// The sequence starts at StartIndex.
-  Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
+  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
 
   /// When we go over instructions in the basic block we rely on previous
   /// values within the current basic block or on loop invariant values.
@@ -233,7 +293,7 @@ private:
   VectorParts &getVectorValue(Value *V);
 
   /// Generate a shuffle sequence that will reverse the vector Vec.
-  Value *reverseVector(Value *Vec);
+  virtual Value *reverseVector(Value *Vec);
 
   /// This is a helper class that holds the vectorizer state. It maps scalar
   /// instructions to vector instructions. When the code is 'unrolled' then
@@ -291,6 +351,8 @@ private:
   /// The vectorization SIMD factor to use. Each vector will have this many
   /// vector elements.
   unsigned VF;
+
+protected:
   /// The vectorization unroll factor to use. Each scalar is vectorized to this
   /// many different vector instructions.
   unsigned UF;
@@ -324,6 +386,23 @@ private:
   /// Maps scalars to widened vectors.
   ValueMap WidenMap;
   EdgeMaskCache MaskCache;
+
+  LoopVectorizationLegality *Legal;
+};
+
+class InnerLoopUnroller : public InnerLoopVectorizer {
+public:
+  InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
+                    DominatorTree *DT, DataLayout *DL,
+                    const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
+    InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
+
+private:
+  virtual void scalarizeInstruction(Instruction *Instr);
+  virtual void vectorizeMemoryInstruction(Instruction *Instr);
+  virtual Value *getBroadcastInstrs(Value *V);
+  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
+  virtual Value *reverseVector(Value *Vec);
 };
 
 /// \brief Look for a meaningful debug location on the instruction or it's
@@ -354,79 +433,6 @@ static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
     B.SetCurrentDebugLocation(DebugLoc());
 }
 
-/// \brief Check if conditionally executed loads are hoistable.
-///
-/// This class has two functions: isHoistableLoad and canHoistAllLoads.
-/// isHoistableLoad should be called on all load instructions that are executed
-/// conditionally. After all conditional loads are processed, the client should
-/// call canHoistAllLoads to determine if all of the conditional executed loads
-/// have an unconditional memory access to the same memory address in the loop.
-class LoadHoisting {
-  typedef SmallPtrSet<Value *, 8> MemorySet;
-
-  Loop *TheLoop;
-  DominatorTree *DT;
-  MemorySet CondLoadAddrSet;
-
-public:
-  LoadHoisting(Loop *L, DominatorTree *D) : TheLoop(L), DT(D) {}
-
-  /// \brief Check if the instruction is a load with a identifiable address.
-  bool isHoistableLoad(Instruction *L);
-
-  /// \brief Check if all of the conditional loads are hoistable because there
-  /// exists an unconditional memory access to the same address in the loop.
-  bool canHoistAllLoads();
-};
-
-bool LoadHoisting::isHoistableLoad(Instruction *L) {
-  LoadInst *LI = dyn_cast<LoadInst>(L);
-  if (!LI)
-    return false;
-
-  CondLoadAddrSet.insert(LI->getPointerOperand());
-  return true;
-}
-
-static void addMemAccesses(BasicBlock *BB, SmallPtrSet<Value *, 8> &Set) {
-  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
-    if (LoadInst *LI = dyn_cast<LoadInst>(BI)) // Try a load.
-      Set.insert(LI->getPointerOperand());
-    else if (StoreInst *SI = dyn_cast<StoreInst>(BI)) // Try a store.
-      Set.insert(SI->getPointerOperand());
-  }
-}
-
-bool LoadHoisting::canHoistAllLoads() {
-  // No conditional loads.
-  if (CondLoadAddrSet.empty())
-    return true;
-
-  MemorySet UncondMemAccesses;
-  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
-  BasicBlock *LoopLatch = TheLoop->getLoopLatch();
-
-  // Iterate over the unconditional blocks and collect memory access addresses.
-  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
-    BasicBlock *BB = LoopBlocks[i];
-
-    // Ignore conditional blocks.
-    if (BB != LoopLatch && !DT->dominates(BB, LoopLatch))
-      continue;
-
-    addMemAccesses(BB, UncondMemAccesses);
-  }
-
-  // And make sure there is a matching unconditional access for every
-  // conditional load.
-  for (MemorySet::iterator MI = CondLoadAddrSet.begin(),
-       ME = CondLoadAddrSet.end(); MI != ME; ++MI)
-    if (!UncondMemAccesses.count(*MI))
-      return false;
-
-  return true;
-}
-
 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
 /// to what vectorization factor.
 /// This class does not look at the profitability of vectorization, only the
@@ -446,7 +452,7 @@ public:
                             DominatorTree *DT, TargetLibraryInfo *TLI)
       : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
         Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
-        MaxSafeDepDistBytes(-1U), LoadSpeculation(L, DT) {}
+        MaxSafeDepDistBytes(-1U) {}
 
   /// This enum represents the kinds of reductions that we support.
   enum ReductionKind {
@@ -482,7 +488,7 @@ public:
     MRK_FloatMax
   };
 
-  /// This POD struct holds information about reduction variables.
+  /// This struct holds information about reduction variables.
   struct ReductionDescriptor {
     ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
@@ -519,8 +525,8 @@ public:
     MinMaxReductionKind MinMaxKind;
   };
 
-  // This POD struct holds information about the memory runtime legality
-  // check that a group of pointers do not overlap.
+  /// This struct holds information about the memory runtime legality
+  /// check that a group of pointers do not overlap.
   struct RuntimePointerCheck {
     RuntimePointerCheck() : Need(false) {}
 
@@ -530,11 +536,13 @@ public:
       Pointers.clear();
       Starts.clear();
       Ends.clear();
+      IsWritePtr.clear();
+      DependencySetId.clear();
     }
 
     /// Insert a pointer and calculate the start and end SCEVs.
     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
-                unsigned DepSetId);
+                unsigned DepSetId, ValueToValueMap &Strides);
 
     /// This flag indicates if we need to add the runtime check.
     bool Need;
@@ -551,7 +559,7 @@ public:
     SmallVector<unsigned, 2> DependencySetId;
   };
 
-  /// A POD for saving information about induction variables.
+  /// A struct for saving information about induction variables.
   struct InductionInfo {
     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
     InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
@@ -598,7 +606,7 @@ public:
   /// pointer itself is an induction variable.
   /// This check allows us to vectorize A[idx] into a wide load/store.
   /// Returns:
-  /// 0 - Stride is unknown or non consecutive.
+  /// 0 - Stride is unknown or non-consecutive.
   /// 1 - Address is consecutive.
   /// -1 - Address is consecutive, and decreasing.
   int isConsecutivePtr(Value *Ptr);
@@ -618,6 +626,13 @@ public:
 
   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
 
+  bool hasStride(Value *V) { return StrideSet.count(V); }
+  bool mustCheckStrides() { return !StrideSet.empty(); }
+  SmallPtrSet<Value *, 8>::iterator strides_begin() {
+    return StrideSet.begin();
+  }
+  SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
+
 private:
   /// Check if a single basic block loop is vectorizable.
   /// At this point we know that this is a loop with a constant trip count
@@ -638,8 +653,9 @@ private:
   void collectLoopUniforms();
 
   /// Return true if all of the instructions in the block can be speculatively
-  /// executed.
-  bool blockCanBePredicated(BasicBlock *BB);
+  /// executed. \p SafePtrs is a list of addresses that are known to be legal
+  /// and we know that we can read from them without segfault.
+  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
 
   /// Returns True, if 'Phi' is the kind of reduction variable for type
   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
@@ -659,6 +675,12 @@ private:
   /// if the PHI is not an induction variable.
   InductionKind isInductionVariable(PHINode *Phi);
 
+  /// \brief Collect memory access with loop invariant strides.
+  ///
+  /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
+  /// invariant.
+  void collectStridedAcccess(Value *LoadOrStoreInst);
+
   /// The loop that we evaluate.
   Loop *TheLoop;
   /// Scev analysis.
@@ -698,8 +720,8 @@ private:
 
   unsigned MaxSafeDepDistBytes;
 
-  /// Utility to determine whether loads can be speculated.
-  LoadHoisting LoadSpeculation;
+  ValueToValueMap Strides;
+  SmallPtrSet<Value *, 8> StrideSet;
 };
 
 /// LoopVectorizationCostModel - estimates the expected speedups due to
@@ -799,10 +821,13 @@ struct LoopVectorizeHints {
   unsigned Width;
   /// Vectorization unroll factor.
   unsigned Unroll;
+  /// Vectorization forced (-1 not selected, 0 force disabled, 1 force enabled)
+  int Force;
 
-  LoopVectorizeHints(const Loop *L)
+  LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
   : Width(VectorizationFactor)
-  , Unroll(VectorizationUnroll)
+  , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
+  , Force(-1)
   , LoopID(L->getLoopID()) {
     getHints(L);
     // The command line options override any loop metadata except for when
@@ -811,6 +836,9 @@ struct LoopVectorizeHints {
       Width = VectorizationFactor;
     if (VectorizationUnroll.getNumOccurrences() > 0)
       Unroll = VectorizationUnroll;
+
+    DEBUG(if (DisableUnrolling && Unroll == 1)
+            dbgs() << "LV: Unrolling disabled by the pass manager\n");
   }
 
   /// Return the loop vectorizer metadata prefix.
@@ -837,6 +865,7 @@ struct LoopVectorizeHints {
         Vals.push_back(LoopID->getOperand(i));
 
     Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
+    Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
 
     MDNode *NewLoopID = MDNode::get(Context, Vals);
     // Set operand 0 to refer to the loop id itself.
@@ -900,24 +929,43 @@ private:
     unsigned Val = C->getZExtValue();
 
     if (Hint == "width") {
-      assert(isPowerOf2_32(Val) && Val <= MaxVectorWidth &&
-             "Invalid width metadata");
-      Width = Val;
+      if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
+        Width = Val;
+      else
+        DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
     } else if (Hint == "unroll") {
-      assert(isPowerOf2_32(Val) && Val <= MaxUnrollFactor &&
-             "Invalid unroll metadata");
-      Unroll = Val;
-    } else
-      DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint);
+      if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
+        Unroll = Val;
+      else
+        DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
+    } else if (Hint == "enable") {
+      if (C->getBitWidth() == 1)
+        Force = Val;
+      else
+        DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n");
+    } else {
+      DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
+    }
   }
 };
 
+static void addInnerLoop(Loop *L, SmallVectorImpl<Loop *> &V) {
+  if (L->empty())
+    return V.push_back(L);
+
+  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+    addInnerLoop(*I, V);
+}
+
 /// The LoopVectorize Pass.
-struct LoopVectorize : public LoopPass {
+struct LoopVectorize : public FunctionPass {
   /// Pass identification, replacement for typeid
   static char ID;
 
-  explicit LoopVectorize() : LoopPass(ID) {
+  explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
+    : FunctionPass(ID),
+      DisableUnrolling(NoUnrolling),
+      AlwaysVectorize(AlwaysVectorize) {
     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
   }
 
@@ -927,38 +975,77 @@ struct LoopVectorize : public LoopPass {
   TargetTransformInfo *TTI;
   DominatorTree *DT;
   TargetLibraryInfo *TLI;
+  bool DisableUnrolling;
+  bool AlwaysVectorize;
 
-  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
-    // We only vectorize innermost loops.
-    if (!L->empty())
-      return false;
-
+  virtual bool runOnFunction(Function &F) {
     SE = &getAnalysis<ScalarEvolution>();
     DL = getAnalysisIfAvailable<DataLayout>();
     LI = &getAnalysis<LoopInfo>();
     TTI = &getAnalysis<TargetTransformInfo>();
-    DT = &getAnalysis<DominatorTree>();
+    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
     TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
 
+    // If the target claims to have no vector registers don't attempt
+    // vectorization.
+    if (!TTI->getNumberOfRegisters(true))
+      return false;
+
     if (DL == NULL) {
-      DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout");
+      DEBUG(dbgs() << "LV: Not vectorizing: Missing data layout\n");
       return false;
     }
 
+    // Build up a worklist of inner-loops to vectorize. This is necessary as
+    // the act of vectorizing or partially unrolling a loop creates new loops
+    // and can invalidate iterators across the loops.
+    SmallVector<Loop *, 8> Worklist;
+
+    for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
+      addInnerLoop(*I, Worklist);
+
+    // Now walk the identified inner loops.
+    bool Changed = false;
+    while (!Worklist.empty())
+      Changed |= processLoop(Worklist.pop_back_val());
+
+    // Process each loop nest in the function.
+    return Changed;
+  }
+
+  bool processLoop(Loop *L) {
+    // We only handle inner loops, so if there are children just recurse.
+    if (!L->empty()) {
+      bool Changed = false;
+      for (Loop::iterator I = L->begin(), E = L->begin(); I != E; ++I)
+        Changed |= processLoop(*I);
+      return Changed;
+    }
+
     DEBUG(dbgs() << "LV: Checking a loop in \"" <<
           L->getHeader()->getParent()->getName() << "\"\n");
 
-    LoopVectorizeHints Hints(L);
+    LoopVectorizeHints Hints(L, DisableUnrolling);
+
+    if (Hints.Force == 0) {
+      DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
+      return false;
+    }
+
+    if (!AlwaysVectorize && Hints.Force != 1) {
+      DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
+      return false;
+    }
 
-    if (Hints.Width == 1) {
-      DEBUG(dbgs() << "LV: Not vectorizing.\n");
+    if (Hints.Width == 1 && Hints.Unroll == 1) {
+      DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
       return false;
     }
 
     // Check if it is legal to vectorize the loop.
     LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
     if (!LVL.canVectorize()) {
-      DEBUG(dbgs() << "LV: Not vectorizing.\n");
+      DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
       return false;
     }
 
@@ -968,13 +1055,14 @@ struct LoopVectorize : public LoopPass {
     // Check the function attributes to find out if this function should be
     // optimized for size.
     Function *F = L->getHeader()->getParent();
-    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
-    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
-    unsigned FnIndex = AttributeSet::FunctionIndex;
-    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
-    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
-
-    if (NoFloat) {
+    bool OptForSize =
+        Hints.Force != 1 && F->hasFnAttribute(Attribute::OptimizeForSize);
+
+    // Check the function attributes to see if implicit floats are allowed.a
+    // FIXME: This check doesn't seem possibly correct -- what if the loop is
+    // an integer loop and the vector instructions selected are purely integer
+    // vector instructions?
+    if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
             "attribute is used.\n");
       return false;
@@ -987,19 +1075,24 @@ struct LoopVectorize : public LoopPass {
     unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
                                         VF.Cost);
 
+    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
+          F->getParent()->getModuleIdentifier() << '\n');
+    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
+
     if (VF.Width == 1) {
       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
-      return false;
+      if (UF == 1)
+        return false;
+      DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
+      // We decided not to vectorize, but we may want to unroll.
+      InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
+      Unroller.vectorize(&LVL);
+    } else {
+      // If we decided that it is *legal* to vectorize the loop then do it.
+      InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
+      LB.vectorize(&LVL);
     }
 
-    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
-          F->getParent()->getModuleIdentifier()<<"\n");
-    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
-
-    // If we decided that it is *legal* to vectorize the loop then do it.
-    InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
-    LB.vectorize(&LVL);
-
     // Mark the loop as already vectorized to avoid vectorizing again.
     Hints.setAlreadyVectorized(L);
 
@@ -1008,15 +1101,14 @@ struct LoopVectorize : public LoopPass {
   }
 
   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-    LoopPass::getAnalysisUsage(AU);
     AU.addRequiredID(LoopSimplifyID);
     AU.addRequiredID(LCSSAID);
-    AU.addRequired<DominatorTree>();
+    AU.addRequired<DominatorTreeWrapperPass>();
     AU.addRequired<LoopInfo>();
     AU.addRequired<ScalarEvolution>();
     AU.addRequired<TargetTransformInfo>();
     AU.addPreserved<LoopInfo>();
-    AU.addPreserved<DominatorTree>();
+    AU.addPreserved<DominatorTreeWrapperPass>();
   }
 
 };
@@ -1028,12 +1120,53 @@ struct LoopVectorize : public LoopPass {
 // LoopVectorizationCostModel.
 //===----------------------------------------------------------------------===//
 
-void
-LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
-                                                       Loop *Lp, Value *Ptr,
-                                                       bool WritePtr,
-                                                       unsigned DepSetId) {
-  const SCEV *Sc = SE->getSCEV(Ptr);
+static Value *stripIntegerCast(Value *V) {
+  if (CastInst *CI = dyn_cast<CastInst>(V))
+    if (CI->getOperand(0)->getType()->isIntegerTy())
+      return CI->getOperand(0);
+  return V;
+}
+
+///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
+///
+/// If \p OrigPtr is not null, use it to look up the stride value instead of
+/// \p Ptr.
+static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
+                                             ValueToValueMap &PtrToStride,
+                                             Value *Ptr, Value *OrigPtr = 0) {
+
+  const SCEV *OrigSCEV = SE->getSCEV(Ptr);
+
+  // If there is an entry in the map return the SCEV of the pointer with the
+  // symbolic stride replaced by one.
+  ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
+  if (SI != PtrToStride.end()) {
+    Value *StrideVal = SI->second;
+
+    // Strip casts.
+    StrideVal = stripIntegerCast(StrideVal);
+
+    // Replace symbolic stride by one.
+    Value *One = ConstantInt::get(StrideVal->getType(), 1);
+    ValueToValueMap RewriteMap;
+    RewriteMap[StrideVal] = One;
+
+    const SCEV *ByOne =
+        SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
+    DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
+                 << "\n");
+    return ByOne;
+  }
+
+  // Otherwise, just return the SCEV of the original pointer.
+  return SE->getSCEV(Ptr);
+}
+
+void LoopVectorizationLegality::RuntimePointerCheck::insert(
+    ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
+    ValueToValueMap &Strides) {
+  // Get the stride replaced scev.
+  const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
   assert(AR && "Invalid addrec expression");
   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
@@ -1046,25 +1179,19 @@ LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
 }
 
 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
-  // Save the current insertion location.
-  Instruction *Loc = Builder.GetInsertPoint();
-
   // We need to place the broadcast of invariant variables outside the loop.
   Instruction *Instr = dyn_cast<Instruction>(V);
   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
 
   // Place the code for broadcasting invariant variables in the new preheader.
+  IRBuilder<>::InsertPointGuard Guard(Builder);
   if (Invariant)
     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
 
   // Broadcast the scalar into all locations in the vector.
   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
 
-  // Restore the builder insertion point.
-  if (Invariant)
-    Builder.SetInsertPoint(Loc);
-
   return Shuf;
 }
 
@@ -1091,10 +1218,35 @@ Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
   return Builder.CreateAdd(Val, Cv, "induction");
 }
 
+/// \brief Find the operand of the GEP that should be checked for consecutive
+/// stores. This ignores trailing indices that have no effect on the final
+/// pointer.
+static unsigned getGEPInductionOperand(DataLayout *DL,
+                                       const GetElementPtrInst *Gep) {
+  unsigned LastOperand = Gep->getNumOperands() - 1;
+  unsigned GEPAllocSize = DL->getTypeAllocSize(
+      cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
+
+  // Walk backwards and try to peel off zeros.
+  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
+    // Find the type we're currently indexing into.
+    gep_type_iterator GEPTI = gep_type_begin(Gep);
+    std::advance(GEPTI, LastOperand - 1);
+
+    // If it's a type with the same allocation size as the result of the GEP we
+    // can peel off the zero index.
+    if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
+      break;
+    --LastOperand;
+  }
+
+  return LastOperand;
+}
+
 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
-  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
+  assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
   // Make sure that the pointer does not point to structs.
-  if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
+  if (Ptr->getType()->getPointerElementType()->isAggregateType())
     return 0;
 
   // If this value is a pointer induction variable we know it is consecutive.
@@ -1112,8 +1264,6 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
     return 0;
 
   unsigned NumOperands = Gep->getNumOperands();
-  Value *LastIndex = Gep->getOperand(NumOperands - 1);
-
   Value *GpPtr = Gep->getPointerOperand();
   // If this GEP value is a consecutive pointer induction variable and all of
   // the indices are constant then we know it is consecutive. We can
@@ -1137,14 +1287,38 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
       return -1;
   }
 
-  // Check that all of the gep indices are uniform except for the last.
-  for (unsigned i = 0; i < NumOperands - 1; ++i)
-    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
+  unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
+
+  // Check that all of the gep indices are uniform except for our induction
+  // operand.
+  for (unsigned i = 0; i != NumOperands; ++i)
+    if (i != InductionOperand &&
+        !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
       return 0;
 
-  // We can emit wide load/stores only if the last index is the induction
-  // variable.
-  const SCEV *Last = SE->getSCEV(LastIndex);
+  // We can emit wide load/stores only if the last non-zero index is the
+  // induction variable.
+  const SCEV *Last = 0;
+  if (!Strides.count(Gep))
+    Last = SE->getSCEV(Gep->getOperand(InductionOperand));
+  else {
+    // Because of the multiplication by a stride we can have a s/zext cast.
+    // We are going to replace this stride by 1 so the cast is safe to ignore.
+    //
+    //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
+    //  %0 = trunc i64 %indvars.iv to i32
+    //  %mul = mul i32 %0, %Stride1
+    //  %idxprom = zext i32 %mul to i64  << Safe cast.
+    //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
+    //
+    Last = replaceSymbolicStrideSCEV(SE, Strides,
+                                     Gep->getOperand(InductionOperand), Gep);
+    if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
+      Last =
+          (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
+              ? C->getOperand()
+              : Last;
+  }
   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
     const SCEV *Step = AR->getStepRecurrence(*SE);
 
@@ -1168,6 +1342,10 @@ InnerLoopVectorizer::getVectorValue(Value *V) {
   assert(V != Induction && "The new induction variable should not be used.");
   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
 
+  // If we have a stride that is replaced by one, do it here.
+  if (Legal->hasStride(V))
+    V = ConstantInt::get(V->getType(), 1);
+
   // If we have this scalar in the map, return it.
   if (WidenMap.has(V))
     return WidenMap.get(V);
@@ -1189,9 +1367,7 @@ Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
                                      "reverse");
 }
 
-
-void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
-                                             LoopVectorizationLegality *Legal) {
+void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
   // Attempt to issue a wide load.
   LoadInst *LI = dyn_cast<LoadInst>(Instr);
   StoreInst *SI = dyn_cast<StoreInst>(Instr);
@@ -1202,6 +1378,10 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
   Type *DataTy = VectorType::get(ScalarDataTy, VF);
   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
+  // An alignment of 0 means target abi alignment. We need to use the scalar's
+  // target abi alignment in such a case.
+  if (!Alignment)
+    Alignment = DL->getABITypeAlignment(ScalarDataTy);
   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
   unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
   unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
@@ -1209,7 +1389,7 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
   if (ScalarAllocatedSize != VectorElementSize)
     return scalarizeInstruction(Instr);
 
-  // If the pointer is loop invariant or if it is non consecutive,
+  // If the pointer is loop invariant or if it is non-consecutive,
   // scalarize the load.
   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
   bool Reverse = ConsecutiveStride < 0;
@@ -1241,7 +1421,7 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
     // The last index does not have to be the induction. It can be
     // consecutive and be a function of the index. For example A[I+1];
     unsigned NumOperands = Gep->getNumOperands();
-    unsigned LastOperand = NumOperands - 1;
+    unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
     // Create the new GEP with the new induction variable.
     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
 
@@ -1250,9 +1430,9 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
 
       // Update last index or loop invariant instruction anchored in loop.
-      if (i == LastOperand ||
+      if (i == InductionOperand ||
           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
-        assert((i == LastOperand ||
+        assert((i == InductionOperand ||
                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
                "Must be last index or loop invariant");
 
@@ -1295,7 +1475,8 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
       }
 
-      Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
+      Value *VecPtr = Builder.CreateBitCast(PartPtr,
+                                            DataTy->getPointerTo(AddressSpace));
       Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
     }
     return;
@@ -1315,7 +1496,8 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
     }
 
-    Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
+    Value *VecPtr = Builder.CreateBitCast(PartPtr,
+                                          DataTy->getPointerTo(AddressSpace));
     Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
     cast<LoadInst>(LI)->setAlignment(Alignment);
     Entry[Part] = Reverse ? reverseVector(LI) :  LI;
@@ -1374,7 +1556,7 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
       Instruction *Cloned = Instr->clone();
       if (!IsVoidRetTy)
         Cloned->setName(Instr->getName() + ".cloned");
-      // Replace the operands of the cloned instrucions with extracted scalars.
+      // Replace the operands of the cloned instructions with extracted scalars.
       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
         Value *Op = Params[op][Part];
         // Param is a vector. Need to extract the right lane.
@@ -1395,23 +1577,68 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
   }
 }
 
-Instruction *
-InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
-                                     Instruction *Loc) {
+static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
+                                 Instruction *Loc) {
+  if (FirstInst)
+    return FirstInst;
+  if (Instruction *I = dyn_cast<Instruction>(V))
+    return I->getParent() == Loc->getParent() ? I : 0;
+  return 0;
+}
+
+std::pair<Instruction *, Instruction *>
+InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
+  Instruction *tnullptr = 0;
+  if (!Legal->mustCheckStrides())
+    return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
+
+  IRBuilder<> ChkBuilder(Loc);
+
+  // Emit checks.
+  Value *Check = 0;
+  Instruction *FirstInst = 0;
+  for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
+                                         SE = Legal->strides_end();
+       SI != SE; ++SI) {
+    Value *Ptr = stripIntegerCast(*SI);
+    Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
+                                       "stride.chk");
+    // Store the first instruction we create.
+    FirstInst = getFirstInst(FirstInst, C, Loc);
+    if (Check)
+      Check = ChkBuilder.CreateOr(Check, C);
+    else
+      Check = C;
+  }
+
+  // We have to do this trickery because the IRBuilder might fold the check to a
+  // constant expression in which case there is no Instruction anchored in a
+  // the block.
+  LLVMContext &Ctx = Loc->getContext();
+  Instruction *TheCheck =
+      BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
+  ChkBuilder.Insert(TheCheck, "stride.not.one");
+  FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
+
+  return std::make_pair(FirstInst, TheCheck);
+}
+
+std::pair<Instruction *, Instruction *>
+InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
   Legal->getRuntimePointerCheck();
 
+  Instruction *tnullptr = 0;
   if (!PtrRtCheck->Need)
-    return NULL;
+    return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
 
   unsigned NumPointers = PtrRtCheck->Pointers.size();
   SmallVector<TrackingVH<Value> , 2> Starts;
   SmallVector<TrackingVH<Value> , 2> Ends;
 
+  LLVMContext &Ctx = Loc->getContext();
   SCEVExpander Exp(*SE, "induction");
-
-  // Use this type for pointer arithmetic.
-  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
+  Instruction *FirstInst = 0;
 
   for (unsigned i = 0; i < NumPointers; ++i) {
     Value *Ptr = PtrRtCheck->Pointers[i];
@@ -1423,7 +1650,11 @@ InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
       Starts.push_back(Ptr);
       Ends.push_back(Ptr);
     } else {
-      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
+      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
+      unsigned AS = Ptr->getType()->getPointerAddressSpace();
+
+      // Use this type for pointer arithmetic.
+      Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
 
       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
@@ -1445,17 +1676,32 @@ InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
       if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
        continue;
 
-      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
-      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
-      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
-      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
+      unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
+      unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
+
+      assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
+             (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
+             "Trying to bounds check pointers with different address spaces");
+
+      Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
+      Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
+
+      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
+      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
+      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
+      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
 
       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
+      FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
+      FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
-      if (MemoryRuntimeCheck)
+      FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
+      if (MemoryRuntimeCheck) {
         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
                                          "conflict.rdx");
+        FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
+      }
       MemoryRuntimeCheck = IsConflict;
     }
   }
@@ -1463,15 +1709,14 @@ InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
   // We have to do this trickery because the IRBuilder might fold the check to a
   // constant expression in which case there is no Instruction anchored in a
   // the block.
-  LLVMContext &Ctx = Loc->getContext();
-  Instruction * Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
-                                                  ConstantInt::getTrue(Ctx));
+  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
+                                                 ConstantInt::getTrue(Ctx));
   ChkBuilder.Insert(Check, "memcheck.conflict");
-  return Check;
+  FirstInst = getFirstInst(FirstInst, Check, Loc);
+  return std::make_pair(FirstInst, Check);
 }
 
-void
-InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
+void InnerLoopVectorizer::createEmptyLoop() {
   /*
    In this function we generate a new loop. The new loop will contain
    the vectorized instructions while the old loop will continue to run the
@@ -1517,6 +1762,16 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
 
+  // The exit count might have the type of i64 while the phi is i32. This can
+  // happen if we have an induction variable that is sign extended before the
+  // compare. The only way that we get a backedge taken count is that the
+  // induction variable was signed and as such will not overflow. In such a case
+  // truncation is legal.
+  if (ExitCount->getType()->getPrimitiveSizeInBits() >
+      IdxTy->getPrimitiveSizeInBits())
+    ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
+
+  ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
   // Get the total trip count from the count by adding 1.
   ExitCount = SE->getAddExpr(ExitCount,
                              SE->getConstant(ExitCount->getType(), 1));
@@ -1551,9 +1806,25 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
   BasicBlock *ScalarPH =
   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
 
+  // Create and register the new vector loop.
+  Loop* Lp = new Loop();
+  Loop *ParentLoop = OrigLoop->getParentLoop();
+
+  // Insert the new loop into the loop nest and register the new basic blocks
+  // before calling any utilities such as SCEV that require valid LoopInfo.
+  if (ParentLoop) {
+    ParentLoop->addChildLoop(Lp);
+    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
+    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
+    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
+  } else {
+    LI->addTopLevelLoop(Lp);
+  }
+  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
+
   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
   // inside the loop.
-  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
+  Builder.SetInsertPoint(VecBody->getFirstNonPHI());
 
   // Generate the induction variable.
   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
@@ -1596,20 +1867,48 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
 
   BasicBlock *LastBypassBlock = BypassBlock;
 
+  // Generate the code to check that the strides we assumed to be one are really
+  // one. We want the new basic block to start at the first instruction in a
+  // sequence of instructions that form a check.
+  Instruction *StrideCheck;
+  Instruction *FirstCheckInst;
+  tie(FirstCheckInst, StrideCheck) =
+      addStrideCheck(BypassBlock->getTerminator());
+  if (StrideCheck) {
+    // Create a new block containing the stride check.
+    BasicBlock *CheckBlock =
+        BypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
+    if (ParentLoop)
+      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
+    LoopBypassBlocks.push_back(CheckBlock);
+
+    // Replace the branch into the memory check block with a conditional branch
+    // for the "few elements case".
+    Instruction *OldTerm = BypassBlock->getTerminator();
+    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
+    OldTerm->eraseFromParent();
+
+    Cmp = StrideCheck;
+    LastBypassBlock = CheckBlock;
+  }
+
   // Generate the code that checks in runtime if arrays overlap. We put the
   // checks into a separate block to make the more common case of few elements
   // faster.
-  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
-                                                 BypassBlock->getTerminator());
+  Instruction *MemRuntimeCheck;
+  tie(FirstCheckInst, MemRuntimeCheck) =
+      addRuntimeCheck(LastBypassBlock->getTerminator());
   if (MemRuntimeCheck) {
     // Create a new block containing the memory check.
-    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
-                                                          "vector.memcheck");
+    BasicBlock *CheckBlock =
+        LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
+    if (ParentLoop)
+      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
     LoopBypassBlocks.push_back(CheckBlock);
 
     // Replace the branch into the memory check block with a conditional branch
     // for the "few elements case".
-    Instruction *OldTerm = BypassBlock->getTerminator();
+    Instruction *OldTerm = LastBypassBlock->getTerminator();
     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
     OldTerm->eraseFromParent();
 
@@ -1772,24 +2071,6 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
   // Get ready to start creating new instructions into the vectorized body.
   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
 
-  // Create and register the new vector loop.
-  Loop* Lp = new Loop();
-  Loop *ParentLoop = OrigLoop->getParentLoop();
-
-  // Insert the new loop into the loop nest and register the new basic blocks.
-  if (ParentLoop) {
-    ParentLoop->addChildLoop(Lp);
-    for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
-      ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
-    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
-    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
-    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
-  } else {
-    LI->addTopLevelLoop(Lp);
-  }
-
-  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
-
   // Save the state.
   LoopVectorPreHeader = VectorPH;
   LoopScalarPreHeader = ScalarPH;
@@ -1797,6 +2078,9 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
   LoopExitBlock = ExitBlock;
   LoopVectorBody = VecBody;
   LoopScalarBody = OldBasicBlock;
+
+  LoopVectorizeHints Hints(Lp, true);
+  Hints.setAlreadyVectorized(Lp);
 }
 
 /// This function returns the identity element (or neutral element) for
@@ -1826,6 +2110,31 @@ LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
   }
 }
 
+static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
+                                              Intrinsic::ID ValidIntrinsicID) {
+  if (I.getNumArgOperands() != 1 ||
+      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
+      I.getType() != I.getArgOperand(0)->getType() ||
+      !I.onlyReadsMemory())
+    return Intrinsic::not_intrinsic;
+
+  return ValidIntrinsicID;
+}
+
+static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
+                                               Intrinsic::ID ValidIntrinsicID) {
+  if (I.getNumArgOperands() != 2 ||
+      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
+      !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
+      I.getType() != I.getArgOperand(0)->getType() ||
+      I.getType() != I.getArgOperand(1)->getType() ||
+      !I.onlyReadsMemory())
+    return Intrinsic::not_intrinsic;
+
+  return ValidIntrinsicID;
+}
+
+
 static Intrinsic::ID
 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
   // If we have an intrinsic call, check if it is trivially vectorizable.
@@ -1840,14 +2149,18 @@ getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
     case Intrinsic::log10:
     case Intrinsic::log2:
     case Intrinsic::fabs:
+    case Intrinsic::copysign:
     case Intrinsic::floor:
     case Intrinsic::ceil:
     case Intrinsic::trunc:
     case Intrinsic::rint:
     case Intrinsic::nearbyint:
+    case Intrinsic::round:
     case Intrinsic::pow:
     case Intrinsic::fma:
     case Intrinsic::fmuladd:
+    case Intrinsic::lifetime_start:
+    case Intrinsic::lifetime_end:
       return II->getIntrinsicID();
     default:
       return Intrinsic::not_intrinsic;
@@ -1860,8 +2173,9 @@ getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
   LibFunc::Func Func;
   Function *F = CI->getCalledFunction();
   // We're going to make assumptions on the semantics of the functions, check
-  // that the target knows that it's available in this environment.
-  if (!F || !TLI->getLibFunc(F->getName(), Func))
+  // that the target knows that it's available in this environment and it does
+  // not have local linkage.
+  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
     return Intrinsic::not_intrinsic;
 
   // Otherwise check if we have a call to a function that can be turned into a
@@ -1872,59 +2186,67 @@ getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
   case LibFunc::sin:
   case LibFunc::sinf:
   case LibFunc::sinl:
-    return Intrinsic::sin;
+    return checkUnaryFloatSignature(*CI, Intrinsic::sin);
   case LibFunc::cos:
   case LibFunc::cosf:
   case LibFunc::cosl:
-    return Intrinsic::cos;
+    return checkUnaryFloatSignature(*CI, Intrinsic::cos);
   case LibFunc::exp:
   case LibFunc::expf:
   case LibFunc::expl:
-    return Intrinsic::exp;
+    return checkUnaryFloatSignature(*CI, Intrinsic::exp);
   case LibFunc::exp2:
   case LibFunc::exp2f:
   case LibFunc::exp2l:
-    return Intrinsic::exp2;
+    return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
   case LibFunc::log:
   case LibFunc::logf:
   case LibFunc::logl:
-    return Intrinsic::log;
+    return checkUnaryFloatSignature(*CI, Intrinsic::log);
   case LibFunc::log10:
   case LibFunc::log10f:
   case LibFunc::log10l:
-    return Intrinsic::log10;
+    return checkUnaryFloatSignature(*CI, Intrinsic::log10);
   case LibFunc::log2:
   case LibFunc::log2f:
   case LibFunc::log2l:
-    return Intrinsic::log2;
+    return checkUnaryFloatSignature(*CI, Intrinsic::log2);
   case LibFunc::fabs:
   case LibFunc::fabsf:
   case LibFunc::fabsl:
-    return Intrinsic::fabs;
+    return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
+  case LibFunc::copysign:
+  case LibFunc::copysignf:
+  case LibFunc::copysignl:
+    return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
   case LibFunc::floor:
   case LibFunc::floorf:
   case LibFunc::floorl:
-    return Intrinsic::floor;
+    return checkUnaryFloatSignature(*CI, Intrinsic::floor);
   case LibFunc::ceil:
   case LibFunc::ceilf:
   case LibFunc::ceill:
-    return Intrinsic::ceil;
+    return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
   case LibFunc::trunc:
   case LibFunc::truncf:
   case LibFunc::truncl:
-    return Intrinsic::trunc;
+    return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
   case LibFunc::rint:
   case LibFunc::rintf:
   case LibFunc::rintl:
-    return Intrinsic::rint;
+    return checkUnaryFloatSignature(*CI, Intrinsic::rint);
   case LibFunc::nearbyint:
   case LibFunc::nearbyintf:
   case LibFunc::nearbyintl:
-    return Intrinsic::nearbyint;
+    return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
+  case LibFunc::round:
+  case LibFunc::roundf:
+  case LibFunc::roundl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::round);
   case LibFunc::pow:
   case LibFunc::powf:
   case LibFunc::powl:
-    return Intrinsic::pow;
+    return checkBinaryFloatSignature(*CI, Intrinsic::pow);
   }
 
   return Intrinsic::not_intrinsic;
@@ -1986,7 +2308,8 @@ Value *createMinMaxOp(IRBuilder<> &Builder,
   }
 
   Value *Cmp;
-  if (RK == LoopVectorizationLegality::MRK_FloatMin || RK == LoopVectorizationLegality::MRK_FloatMax)
+  if (RK == LoopVectorizationLegality::MRK_FloatMin ||
+      RK == LoopVectorizationLegality::MRK_FloatMax)
     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
   else
     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
@@ -1995,8 +2318,55 @@ Value *createMinMaxOp(IRBuilder<> &Builder,
   return Select;
 }
 
-void
-InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
+namespace {
+struct CSEDenseMapInfo {
+  static bool canHandle(Instruction *I) {
+    return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
+           isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
+  }
+  static inline Instruction *getEmptyKey() {
+    return DenseMapInfo<Instruction *>::getEmptyKey();
+  }
+  static inline Instruction *getTombstoneKey() {
+    return DenseMapInfo<Instruction *>::getTombstoneKey();
+  }
+  static unsigned getHashValue(Instruction *I) {
+    assert(canHandle(I) && "Unknown instruction!");
+    return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
+                                                           I->value_op_end()));
+  }
+  static bool isEqual(Instruction *LHS, Instruction *RHS) {
+    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
+        LHS == getTombstoneKey() || RHS == getTombstoneKey())
+      return LHS == RHS;
+    return LHS->isIdenticalTo(RHS);
+  }
+};
+}
+
+///\brief Perform cse of induction variable instructions.
+static void cse(BasicBlock *BB) {
+  // Perform simple cse.
+  SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
+  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
+    Instruction *In = I++;
+
+    if (!CSEDenseMapInfo::canHandle(In))
+      continue;
+
+    // Check if we can replace this instruction with any of the
+    // visited instructions.
+    if (Instruction *V = CSEMap.lookup(In)) {
+      In->replaceAllUsesWith(V);
+      In->eraseFromParent();
+      continue;
+    }
+
+    CSEMap[In] = In;
+  }
+}
+
+void InnerLoopVectorizer::vectorizeLoop() {
   //===------------------------------------------------===//
   //
   // Notice: any optimization or new instruction that go
@@ -2024,7 +2394,7 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
   // Vectorize all of the blocks in the original loop.
   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
        be = DFS.endRPO(); bb != be; ++bb)
-    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
+    vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
 
   // At this point every instruction in the original loop is widened to
   // a vector form. We are almost done. Now, we need to fix the PHI nodes
@@ -2049,7 +2419,7 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
     setDebugLocFromInst(Builder, RdxDesc.StartValue);
 
     // We need to generate a reduction vector from the incoming scalar.
-    // To do so, we need to generate the 'identity' vector and overide
+    // To do so, we need to generate the 'identity' vector and override
     // one of the elements with the incoming scalar reduction. We need
     // to do it in the vector-loop preheader.
     Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
@@ -2065,18 +2435,31 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
       // MinMax reduction have the start value as their identify.
-      VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue,
-                                                         "minmax.ident");
+      if (VF == 1) {
+        VectorStart = Identity = RdxDesc.StartValue;
+      } else {
+        VectorStart = Identity = Builder.CreateVectorSplat(VF,
+                                                           RdxDesc.StartValue,
+                                                           "minmax.ident");
+      }
     } else {
+      // Handle other reduction kinds:
       Constant *Iden =
-        LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
-                                                        VecTy->getScalarType());
-      Identity = ConstantVector::getSplat(VF, Iden);
-
-      // This vector is the Identity vector where the first element is the
-      // incoming scalar reduction.
-      VectorStart = Builder.CreateInsertElement(Identity,
-                                                RdxDesc.StartValue, Zero);
+      LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
+                                                      VecTy->getScalarType());
+      if (VF == 1) {
+        Identity = Iden;
+        // This vector is the Identity vector where the first element is the
+        // incoming scalar reduction.
+        VectorStart = RdxDesc.StartValue;
+      } else {
+        Identity = ConstantVector::getSplat(VF, Iden);
+
+        // This vector is the Identity vector where the first element is the
+        // incoming scalar reduction.
+        VectorStart = Builder.CreateInsertElement(Identity,
+                                                  RdxDesc.StartValue, Zero);
+      }
     }
 
     // Fix the vector-loop phi.
@@ -2132,37 +2515,40 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
                                         ReducedPartRdx, RdxParts[part]);
     }
 
-    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
-    // and vector ops, reducing the set of values being computed by half each
-    // round.
-    assert(isPowerOf2_32(VF) &&
-           "Reduction emission only supported for pow2 vectors!");
-    Value *TmpVec = ReducedPartRdx;
-    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
-    for (unsigned i = VF; i != 1; i >>= 1) {
-      // Move the upper half of the vector to the lower half.
-      for (unsigned j = 0; j != i/2; ++j)
-        ShuffleMask[j] = Builder.getInt32(i/2 + j);
-
-      // Fill the rest of the mask with undef.
-      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
-                UndefValue::get(Builder.getInt32Ty()));
-
-      Value *Shuf =
+    if (VF > 1) {
+      // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+      // and vector ops, reducing the set of values being computed by half each
+      // round.
+      assert(isPowerOf2_32(VF) &&
+             "Reduction emission only supported for pow2 vectors!");
+      Value *TmpVec = ReducedPartRdx;
+      SmallVector<Constant*, 32> ShuffleMask(VF, 0);
+      for (unsigned i = VF; i != 1; i >>= 1) {
+        // Move the upper half of the vector to the lower half.
+        for (unsigned j = 0; j != i/2; ++j)
+          ShuffleMask[j] = Builder.getInt32(i/2 + j);
+
+        // Fill the rest of the mask with undef.
+        std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
+                  UndefValue::get(Builder.getInt32Ty()));
+
+        Value *Shuf =
         Builder.CreateShuffleVector(TmpVec,
                                     UndefValue::get(TmpVec->getType()),
                                     ConstantVector::get(ShuffleMask),
                                     "rdx.shuf");
 
-      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
-        TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
-                                     "bin.rdx");
-      else
-        TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
-    }
+        if (Op != Instruction::ICmp && Op != Instruction::FCmp)
+          TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
+                                       "bin.rdx");
+        else
+          TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
+      }
 
-    // The result is in the first element of the vector.
-    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+      // The result is in the first element of the vector.
+      ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
+                                                    Builder.getInt32(0));
+    }
 
     // Now, we need to fix the users of the reduction variable
     // inside and outside of the scalar remainder loop.
@@ -2171,7 +2557,7 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
-      if (!LCSSAPhi) continue;
+      if (!LCSSAPhi) break;
 
       // All PHINodes need to have a single entry edge, or two if
       // we already fixed them.
@@ -2181,7 +2567,7 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
       // incoming bypass edge.
       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
         // Add an edge coming from the bypass.
-        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
+        LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
         break;
       }
     }// end of the LCSSA phi scan.
@@ -2193,23 +2579,26 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
     // Pick the other block.
     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
-    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
+    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
   }// end of for each redux variable.
 
-  // The Loop exit block may have single value PHI nodes where the incoming
-  // value is 'undef'. While vectorizing we only handled real values that
-  // were defined inside the loop. Here we handle the 'undef case'.
-  // See PR14725.
+  fixLCSSAPHIs();
+
+  // Remove redundant induction instructions.
+  cse(LoopVectorBody);
+}
+
+void InnerLoopVectorizer::fixLCSSAPHIs() {
   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
-    if (!LCSSAPhi) continue;
+    if (!LCSSAPhi) break;
     if (LCSSAPhi->getNumIncomingValues() == 1)
       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
                             LoopMiddleBlock);
   }
-}
+} 
 
 InnerLoopVectorizer::VectorParts
 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
@@ -2270,161 +2659,182 @@ InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
   return BlockMask;
 }
 
-void
-InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
-                                          BasicBlock *BB, PhiVector *PV) {
-  // For each instruction in the old loop.
-  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
-    VectorParts &Entry = WidenMap.get(it);
-    switch (it->getOpcode()) {
-    case Instruction::Br:
-      // Nothing to do for PHIs and BR, since we already took care of the
-      // loop control flow instructions.
-      continue;
-    case Instruction::PHI:{
-      PHINode* P = cast<PHINode>(it);
-      // Handle reduction variables:
-      if (Legal->getReductionVars()->count(P)) {
-        for (unsigned part = 0; part < UF; ++part) {
-          // This is phase one of vectorizing PHIs.
-          Type *VecTy = VectorType::get(it->getType(), VF);
-          Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
-                                        LoopVectorBody-> getFirstInsertionPt());
-        }
-        PV->push_back(P);
-        continue;
-      }
+void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
+                                              InnerLoopVectorizer::VectorParts &Entry,
+                                              unsigned UF, unsigned VF, PhiVector *PV) {
+  PHINode* P = cast<PHINode>(PN);
+  // Handle reduction variables:
+  if (Legal->getReductionVars()->count(P)) {
+    for (unsigned part = 0; part < UF; ++part) {
+      // This is phase one of vectorizing PHIs.
+      Type *VecTy = (VF == 1) ? PN->getType() :
+      VectorType::get(PN->getType(), VF);
+      Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
+                                    LoopVectorBody-> getFirstInsertionPt());
+    }
+    PV->push_back(P);
+    return;
+  }
 
-      setDebugLocFromInst(Builder, P);
-      // Check for PHI nodes that are lowered to vector selects.
-      if (P->getParent() != OrigLoop->getHeader()) {
-        // We know that all PHIs in non header blocks are converted into
-        // selects, so we don't have to worry about the insertion order and we
-        // can just use the builder.
-        // At this point we generate the predication tree. There may be
-        // duplications since this is a simple recursive scan, but future
-        // optimizations will clean it up.
-
-        unsigned NumIncoming = P->getNumIncomingValues();
-
-        // Generate a sequence of selects of the form:
-        // SELECT(Mask3, In3,
-        //      SELECT(Mask2, In2,
-        //                   ( ...)))
-        for (unsigned In = 0; In < NumIncoming; In++) {
-          VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
-                                            P->getParent());
-          VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
-
-          for (unsigned part = 0; part < UF; ++part) {
-            // We might have single edge PHIs (blocks) - use an identity
-            // 'select' for the first PHI operand.
-            if (In == 0)
-              Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
-                                                 In0[part]);
-            else
-              // Select between the current value and the previous incoming edge
-              // based on the incoming mask.
-              Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
-                                                 Entry[part], "predphi");
-          }
-        }
-        continue;
+  setDebugLocFromInst(Builder, P);
+  // Check for PHI nodes that are lowered to vector selects.
+  if (P->getParent() != OrigLoop->getHeader()) {
+    // We know that all PHIs in non-header blocks are converted into
+    // selects, so we don't have to worry about the insertion order and we
+    // can just use the builder.
+    // At this point we generate the predication tree. There may be
+    // duplications since this is a simple recursive scan, but future
+    // optimizations will clean it up.
+
+    unsigned NumIncoming = P->getNumIncomingValues();
+
+    // Generate a sequence of selects of the form:
+    // SELECT(Mask3, In3,
+    //      SELECT(Mask2, In2,
+    //                   ( ...)))
+    for (unsigned In = 0; In < NumIncoming; In++) {
+      VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
+                                        P->getParent());
+      VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
+
+      for (unsigned part = 0; part < UF; ++part) {
+        // We might have single edge PHIs (blocks) - use an identity
+        // 'select' for the first PHI operand.
+        if (In == 0)
+          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
+                                             In0[part]);
+        else
+          // Select between the current value and the previous incoming edge
+          // based on the incoming mask.
+          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
+                                             Entry[part], "predphi");
       }
+    }
+    return;
+  }
 
-      // This PHINode must be an induction variable.
-      // Make sure that we know about it.
-      assert(Legal->getInductionVars()->count(P) &&
-             "Not an induction variable");
-
-      LoopVectorizationLegality::InductionInfo II =
-        Legal->getInductionVars()->lookup(P);
-
-      switch (II.IK) {
-      case LoopVectorizationLegality::IK_NoInduction:
-        llvm_unreachable("Unknown induction");
-      case LoopVectorizationLegality::IK_IntInduction: {
-        assert(P->getType() == II.StartValue->getType() && "Types must match");
-        Type *PhiTy = P->getType();
-        Value *Broadcasted;
-        if (P == OldInduction) {
-          // Handle the canonical induction variable. We might have had to
-          // extend the type.
-          Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
-        } else {
-          // Handle other induction variables that are now based on the
-          // canonical one.
-          Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
-                                                   "normalized.idx");
-          NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
-          Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
-                                          "offset.idx");
-        }
-        Broadcasted = getBroadcastInstrs(Broadcasted);
-        // After broadcasting the induction variable we need to make the vector
-        // consecutive by adding 0, 1, 2, etc.
+  // This PHINode must be an induction variable.
+  // Make sure that we know about it.
+  assert(Legal->getInductionVars()->count(P) &&
+         "Not an induction variable");
+
+  LoopVectorizationLegality::InductionInfo II =
+  Legal->getInductionVars()->lookup(P);
+
+  switch (II.IK) {
+    case LoopVectorizationLegality::IK_NoInduction:
+      llvm_unreachable("Unknown induction");
+    case LoopVectorizationLegality::IK_IntInduction: {
+      assert(P->getType() == II.StartValue->getType() && "Types must match");
+      Type *PhiTy = P->getType();
+      Value *Broadcasted;
+      if (P == OldInduction) {
+        // Handle the canonical induction variable. We might have had to
+        // extend the type.
+        Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
+      } else {
+        // Handle other induction variables that are now based on the
+        // canonical one.
+        Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
+                                                 "normalized.idx");
+        NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
+        Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
+                                        "offset.idx");
+      }
+      Broadcasted = getBroadcastInstrs(Broadcasted);
+      // After broadcasting the induction variable we need to make the vector
+      // consecutive by adding 0, 1, 2, etc.
+      for (unsigned part = 0; part < UF; ++part)
+        Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
+      return;
+    }
+    case LoopVectorizationLegality::IK_ReverseIntInduction:
+    case LoopVectorizationLegality::IK_PtrInduction:
+    case LoopVectorizationLegality::IK_ReversePtrInduction:
+      // Handle reverse integer and pointer inductions.
+      Value *StartIdx = ExtendedIdx;
+      // This is the normalized GEP that starts counting at zero.
+      Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
+                                               "normalized.idx");
+
+      // Handle the reverse integer induction variable case.
+      if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
+        IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
+        Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
+                                               "resize.norm.idx");
+        Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
+                                               "reverse.idx");
+
+        // This is a new value so do not hoist it out.
+        Value *Broadcasted = getBroadcastInstrs(ReverseInd);
+        // After broadcasting the induction variable we need to make the
+        // vector consecutive by adding  ... -3, -2, -1, 0.
         for (unsigned part = 0; part < UF; ++part)
-          Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
-        continue;
+          Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
+                                             true);
+        return;
       }
-      case LoopVectorizationLegality::IK_ReverseIntInduction:
-      case LoopVectorizationLegality::IK_PtrInduction:
-      case LoopVectorizationLegality::IK_ReversePtrInduction:
-        // Handle reverse integer and pointer inductions.
-        Value *StartIdx = ExtendedIdx;
-        // This is the normalized GEP that starts counting at zero.
-        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
-                                                 "normalized.idx");
 
-        // Handle the reverse integer induction variable case.
-        if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
-          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
-          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
-                                                 "resize.norm.idx");
-          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
-                                                 "reverse.idx");
-
-          // This is a new value so do not hoist it out.
-          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
-          // After broadcasting the induction variable we need to make the
-          // vector consecutive by adding  ... -3, -2, -1, 0.
-          for (unsigned part = 0; part < UF; ++part)
-            Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
-                                               true);
+      // Handle the pointer induction variable case.
+      assert(P->getType()->isPointerTy() && "Unexpected type.");
+
+      // Is this a reverse induction ptr or a consecutive induction ptr.
+      bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
+                      II.IK);
+
+      // This is the vector of results. Notice that we don't generate
+      // vector geps because scalar geps result in better code.
+      for (unsigned part = 0; part < UF; ++part) {
+        if (VF == 1) {
+          int EltIndex = (part) * (Reverse ? -1 : 1);
+          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
+          Value *GlobalIdx;
+          if (Reverse)
+            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
+          else
+            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
+
+          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
+                                             "next.gep");
+          Entry[part] = SclrGep;
           continue;
         }
 
-        // Handle the pointer induction variable case.
-        assert(P->getType()->isPointerTy() && "Unexpected type.");
-
-        // Is this a reverse induction ptr or a consecutive induction ptr.
-        bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
-                        II.IK);
-
-        // This is the vector of results. Notice that we don't generate
-        // vector geps because scalar geps result in better code.
-        for (unsigned part = 0; part < UF; ++part) {
-          Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
-          for (unsigned int i = 0; i < VF; ++i) {
-            int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
-            Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
-            Value *GlobalIdx;
-            if (!Reverse)
-              GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
-            else
-              GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
-
-            Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
-                                               "next.gep");
-            VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
-                                                 Builder.getInt32(i),
-                                                 "insert.gep");
-          }
-          Entry[part] = VecVal;
+        Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+        for (unsigned int i = 0; i < VF; ++i) {
+          int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
+          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
+          Value *GlobalIdx;
+          if (!Reverse)
+            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
+          else
+            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
+
+          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
+                                             "next.gep");
+          VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+                                               Builder.getInt32(i),
+                                               "insert.gep");
         }
-        continue;
+        Entry[part] = VecVal;
       }
+      return;
+  }
+}
 
+void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
+  // For each instruction in the old loop.
+  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+    VectorParts &Entry = WidenMap.get(it);
+    switch (it->getOpcode()) {
+    case Instruction::Br:
+      // Nothing to do for PHIs and BR, since we already took care of the
+      // loop control flow instructions.
+      continue;
+    case Instruction::PHI:{
+      // Vectorize PHINodes.
+      widenPHIInstruction(it, Entry, UF, VF, PV);
+      continue;
     }// End of PHI.
 
     case Instruction::Add:
@@ -2483,8 +2893,10 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
       VectorParts &Cond = getVectorValue(it->getOperand(0));
       VectorParts &Op0  = getVectorValue(it->getOperand(1));
       VectorParts &Op1  = getVectorValue(it->getOperand(2));
-      Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
-                                                       Builder.getInt32(0));
+
+      Value *ScalarCond = (VF == 1) ? Cond[0] :
+        Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
+
       for (unsigned Part = 0; Part < UF; ++Part) {
         Entry[Part] = Builder.CreateSelect(
           InvariantCond ? ScalarCond : Cond[Part],
@@ -2515,7 +2927,7 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
 
     case Instruction::Store:
     case Instruction::Load:
-        vectorizeMemoryInstruction(it, Legal);
+      vectorizeMemoryInstruction(it);
         break;
     case Instruction::ZExt:
     case Instruction::SExt:
@@ -2545,7 +2957,8 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
         break;
       }
       /// Vectorize casts.
-      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
+      Type *DestTy = (VF == 1) ? CI->getType() :
+                                 VectorType::get(CI->getType(), VF);
 
       VectorParts &A = getVectorValue(it->getOperand(0));
       for (unsigned Part = 0; Part < UF; ++Part)
@@ -2563,15 +2976,26 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
       CallInst *CI = cast<CallInst>(it);
       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
       assert(ID && "Not an intrinsic call!");
-      for (unsigned Part = 0; Part < UF; ++Part) {
-        SmallVector<Value*, 4> Args;
-        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
-          VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
-          Args.push_back(Arg[Part]);
+      switch (ID) {
+      case Intrinsic::lifetime_end:
+      case Intrinsic::lifetime_start:
+        scalarizeInstruction(it);
+        break;
+      default:
+        for (unsigned Part = 0; Part < UF; ++Part) {
+          SmallVector<Value *, 4> Args;
+          for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+            VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
+            Args.push_back(Arg[Part]);
+          }
+          Type *Tys[] = {CI->getType()};
+          if (VF > 1)
+            Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
+
+          Function *F = Intrinsic::getDeclaration(M, ID, Tys);
+          Entry[Part] = Builder.CreateCall(F, Args);
         }
-        Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
-        Function *F = Intrinsic::getDeclaration(M, ID, Tys);
-        Entry[Part] = Builder.CreateCall(F, Args);
+        break;
       }
       break;
     }
@@ -2601,7 +3025,24 @@ void InnerLoopVectorizer::updateAnalysis() {
   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
 
-  DEBUG(DT->verifyAnalysis());
+  DEBUG(DT->verifyDomTree());
+}
+
+/// \brief Check whether it is safe to if-convert this phi node.
+///
+/// Phi nodes with constant expressions that can trap are not safe to if
+/// convert.
+static bool canIfConvertPHINodes(BasicBlock *BB) {
+  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+    PHINode *Phi = dyn_cast<PHINode>(I);
+    if (!Phi)
+      return true;
+    for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
+      if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
+        if (C->canTrap())
+          return false;
+  }
+  return true;
 }
 
 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
@@ -2609,24 +3050,44 @@ bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
     return false;
 
   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
-  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
+
+  // A list of pointers that we can safely read and write to.
+  SmallPtrSet<Value *, 8> SafePointes;
+
+  // Collect safe addresses.
+  for (Loop::block_iterator BI = TheLoop->block_begin(),
+         BE = TheLoop->block_end(); BI != BE; ++BI) {
+    BasicBlock *BB = *BI;
+
+    if (blockNeedsPredication(BB))
+      continue;
+
+    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+      if (LoadInst *LI = dyn_cast<LoadInst>(I))
+        SafePointes.insert(LI->getPointerOperand());
+      else if (StoreInst *SI = dyn_cast<StoreInst>(I))
+        SafePointes.insert(SI->getPointerOperand());
+    }
+  }
 
   // Collect the blocks that need predication.
-  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
-    BasicBlock *BB = LoopBlocks[i];
+  BasicBlock *Header = TheLoop->getHeader();
+  for (Loop::block_iterator BI = TheLoop->block_begin(),
+         BE = TheLoop->block_end(); BI != BE; ++BI) {
+    BasicBlock *BB = *BI;
 
     // We don't support switch statements inside loops.
     if (!isa<BranchInst>(BB->getTerminator()))
       return false;
 
     // We must be able to predicate all blocks that need to be predicated.
-    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
+    if (blockNeedsPredication(BB)) {
+      if (!blockCanBePredicated(BB, SafePointes))
+        return false;
+    } else if (BB != Header && !canIfConvertPHINodes(BB))
       return false;
-  }
 
-  // Check that we can actually speculate the hoistable loads.
-  if (!LoadSpeculation.canHoistAllLoads())
-    return false;
+  }
 
   // We can if-convert this loop.
   return true;
@@ -2650,19 +3111,17 @@ bool LoopVectorizationLegality::canVectorize() {
   if (!TheLoop->getExitingBlock())
     return false;
 
-  unsigned NumBlocks = TheLoop->getNumBlocks();
+  // We need to have a loop header.
+  DEBUG(dbgs() << "LV: Found a loop: " <<
+        TheLoop->getHeader()->getName() << '\n');
 
-  // Check if we can if-convert non single-bb loops.
+  // Check if we can if-convert non-single-bb loops.
+  unsigned NumBlocks = TheLoop->getNumBlocks();
   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
     return false;
   }
 
-  // We need to have a loop header.
-  BasicBlock *Latch = TheLoop->getLoopLatch();
-  DEBUG(dbgs() << "LV: Found a loop: " <<
-        TheLoop->getHeader()->getName() << "\n");
-
   // ScalarEvolution needs to be able to find the exit count.
   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
   if (ExitCount == SE->getCouldNotCompute()) {
@@ -2671,6 +3130,7 @@ bool LoopVectorizationLegality::canVectorize() {
   }
 
   // Do not loop-vectorize loops with a tiny trip count.
+  BasicBlock *Latch = TheLoop->getLoopLatch();
   unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
   if (TC > 0u && TC < TinyTripCountVectorThreshold) {
     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
@@ -2705,7 +3165,13 @@ bool LoopVectorizationLegality::canVectorize() {
 
 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
   if (Ty->isPointerTy())
-    return DL.getIntPtrType(Ty->getContext());
+    return DL.getIntPtrType(Ty);
+
+  // It is possible that char's or short's overflow when we ask for the loop's
+  // trip count, work around this by changing the type size.
+  if (Ty->getScalarSizeInBits() < 32)
+    return Type::getInt32Ty(Ty->getContext());
+
   return Ty;
 }
 
@@ -2730,7 +3196,7 @@ static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
       Instruction *U = cast<Instruction>(*I);
       // This user may be a reduction exit value.
       if (!TheLoop->contains(U)) {
-        DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
+        DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n');
         return true;
       }
     }
@@ -2806,6 +3272,12 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
 
           DEBUG(dbgs() << "LV: Found an induction variable.\n");
           Inductions[Phi] = InductionInfo(StartValue, IK);
+
+          // Until we explicitly handle the case of an induction variable with
+          // an outside loop user we have to give up vectorizing this loop.
+          if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
+            return false;
+
           continue;
         }
 
@@ -2842,7 +3314,8 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
           continue;
         }
         if (AddReductionVar(Phi, RK_FloatMinMax)) {
-          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<"\n");
+          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
+                "\n");
           continue;
         }
 
@@ -2859,9 +3332,10 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
       }
 
       // Check that the instruction return type is vectorizable.
-      if (!VectorType::isValidElementType(it->getType()) &&
-          !it->getType()->isVoidTy()) {
-        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
+      // Also, we can't vectorize extractelement instructions.
+      if ((!VectorType::isValidElementType(it->getType()) &&
+           !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
+        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
         return false;
       }
 
@@ -2870,8 +3344,14 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
         Type *T = ST->getValueOperand()->getType();
         if (!VectorType::isValidElementType(T))
           return false;
+        if (EnableMemAccessVersioning)
+          collectStridedAcccess(ST);
       }
 
+      if (EnableMemAccessVersioning)
+        if (LoadInst *LI = dyn_cast<LoadInst>(it))
+          collectStridedAcccess(LI);
+
       // Reduction instructions are allowed to have exit users.
       // All other instructions must not have external users.
       if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
@@ -2890,6 +3370,139 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
   return true;
 }
 
+///\brief Remove GEPs whose indices but the last one are loop invariant and
+/// return the induction operand of the gep pointer.
+static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
+                                 DataLayout *DL, Loop *Lp) {
+  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
+  if (!GEP)
+    return Ptr;
+
+  unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
+
+  // Check that all of the gep indices are uniform except for our induction
+  // operand.
+  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
+    if (i != InductionOperand &&
+        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
+      return Ptr;
+  return GEP->getOperand(InductionOperand);
+}
+
+///\brief Look for a cast use of the passed value.
+static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
+  Value *UniqueCast = 0;
+  for (Value::use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end(); UI != UE;
+       ++UI) {
+    CastInst *CI = dyn_cast<CastInst>(*UI);
+    if (CI && CI->getType() == Ty) {
+      if (!UniqueCast)
+        UniqueCast = CI;
+      else
+        return 0;
+    }
+  }
+  return UniqueCast;
+}
+
+///\brief Get the stride of a pointer access in a loop.
+/// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
+/// pointer to the Value, or null otherwise.
+static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
+                                   DataLayout *DL, Loop *Lp) {
+  const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
+  if (!PtrTy || PtrTy->isAggregateType())
+    return 0;
+
+  // Try to remove a gep instruction to make the pointer (actually index at this
+  // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
+  // pointer, otherwise, we are analyzing the index.
+  Value *OrigPtr = Ptr;
+
+  // The size of the pointer access.
+  int64_t PtrAccessSize = 1;
+
+  Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
+  const SCEV *V = SE->getSCEV(Ptr);
+
+  if (Ptr != OrigPtr)
+    // Strip off casts.
+    while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
+      V = C->getOperand();
+
+  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
+  if (!S)
+    return 0;
+
+  V = S->getStepRecurrence(*SE);
+  if (!V)
+    return 0;
+
+  // Strip off the size of access multiplication if we are still analyzing the
+  // pointer.
+  if (OrigPtr == Ptr) {
+    DL->getTypeAllocSize(PtrTy->getElementType());
+    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
+      if (M->getOperand(0)->getSCEVType() != scConstant)
+        return 0;
+
+      const APInt &APStepVal =
+          cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
+
+      // Huge step value - give up.
+      if (APStepVal.getBitWidth() > 64)
+        return 0;
+
+      int64_t StepVal = APStepVal.getSExtValue();
+      if (PtrAccessSize != StepVal)
+        return 0;
+      V = M->getOperand(1);
+    }
+  }
+
+  // Strip off casts.
+  Type *StripedOffRecurrenceCast = 0;
+  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
+    StripedOffRecurrenceCast = C->getType();
+    V = C->getOperand();
+  }
+
+  // Look for the loop invariant symbolic value.
+  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
+  if (!U)
+    return 0;
+
+  Value *Stride = U->getValue();
+  if (!Lp->isLoopInvariant(Stride))
+    return 0;
+
+  // If we have stripped off the recurrence cast we have to make sure that we
+  // return the value that is used in this loop so that we can replace it later.
+  if (StripedOffRecurrenceCast)
+    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
+
+  return Stride;
+}
+
+void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
+  Value *Ptr = 0;
+  if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
+    Ptr = LI->getPointerOperand();
+  else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
+    Ptr = SI->getPointerOperand();
+  else
+    return;
+
+  Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
+  if (!Stride)
+    return;
+
+  DEBUG(dbgs() << "LV: Found a strided access that we can version");
+  DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
+  Strides[Ptr] = Stride;
+  StrideSet.insert(Stride);
+}
+
 void LoopVectorizationLegality::collectLoopUniforms() {
   // We now know that the loop is vectorizable!
   // Collect variables that will remain uniform after vectorization.
@@ -2917,6 +3530,7 @@ void LoopVectorizationLegality::collectLoopUniforms() {
   }
 }
 
+namespace {
 /// \brief Analyses memory accesses in a loop.
 ///
 /// Checks whether run time pointer checks are needed and builds sets for data
@@ -2924,7 +3538,8 @@ void LoopVectorizationLegality::collectLoopUniforms() {
 class AccessAnalysis {
 public:
   /// \brief Read or write access location.
-  typedef std::pair<Value*, char> MemAccessInfo;
+  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
+  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 
   /// \brief Set of potential dependent memory accesses.
   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
@@ -2935,21 +3550,22 @@ public:
 
   /// \brief Register a load  and whether it is only read from.
   void addLoad(Value *Ptr, bool IsReadOnly) {
-    Accesses.insert(std::make_pair(Ptr, false));
+    Accesses.insert(MemAccessInfo(Ptr, false));
     if (IsReadOnly)
       ReadOnlyPtr.insert(Ptr);
   }
 
   /// \brief Register a store.
   void addStore(Value *Ptr) {
-    Accesses.insert(std::make_pair(Ptr, true));
+    Accesses.insert(MemAccessInfo(Ptr, true));
   }
 
   /// \brief Check whether we can check the pointers at runtime for
   /// non-intersection.
   bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
                        unsigned &NumComparisons, ScalarEvolution *SE,
-                       Loop *TheLoop);
+                       Loop *TheLoop, ValueToValueMap &Strides,
+                       bool ShouldCheckStride = false);
 
   /// \brief Goes over all memory accesses, checks whether a RT check is needed
   /// and builds sets of dependent accesses.
@@ -2963,8 +3579,9 @@ public:
   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
 
   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
+  void resetDepChecks() { CheckDeps.clear(); }
 
-  DenseSet<MemAccessInfo> &getDependenciesToCheck() { return CheckDeps; }
+  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
 
 private:
   typedef SetVector<MemAccessInfo> PtrAccessSet;
@@ -2985,7 +3602,7 @@ private:
   UnderlyingObjToAccessMap ObjToLastAccess;
 
   /// Set of accesses that need a further dependence check.
-  DenseSet<MemAccessInfo> CheckDeps;
+  MemAccessInfoSet CheckDeps;
 
   /// Set of pointers that are read only.
   SmallPtrSet<Value*, 16> ReadOnlyPtr;
@@ -3005,9 +3622,12 @@ private:
   bool IsRTCheckNeeded;
 };
 
+} // end anonymous namespace
+
 /// \brief Check whether a pointer can participate in a runtime bounds check.
-static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
-  const SCEV *PtrScev = SE->getSCEV(Ptr);
+static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
+                                Value *Ptr) {
+  const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
   if (!AR)
     return false;
@@ -3015,10 +3635,15 @@ static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
   return AR->isAffine();
 }
 
+/// \brief Check the stride of the pointer and ensure that it does not wrap in
+/// the address space.
+static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
+                        const Loop *Lp, ValueToValueMap &StridesMap);
+
 bool AccessAnalysis::canCheckPtrAtRT(
-                       LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
-                        unsigned &NumComparisons, ScalarEvolution *SE,
-                        Loop *TheLoop) {
+    LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
+    unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
+    ValueToValueMap &StridesMap, bool ShouldCheckStride) {
   // Find pointers with computable bounds. We are going to use this information
   // to place a runtime bound check.
   unsigned NumReadPtrChecks = 0;
@@ -3034,11 +3659,11 @@ bool AccessAnalysis::canCheckPtrAtRT(
   for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
        AI != AE; ++AI) {
     const MemAccessInfo &Access = *AI;
-    Value *Ptr = Access.first;
-    bool IsWrite = Access.second;
+    Value *Ptr = Access.getPointer();
+    bool IsWrite = Access.getInt();
 
     // Just add write checks if we have both.
-    if (!IsWrite && Accesses.count(std::make_pair(Ptr, true)))
+    if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
       continue;
 
     if (IsWrite)
@@ -3046,12 +3671,16 @@ bool AccessAnalysis::canCheckPtrAtRT(
     else
       ++NumReadPtrChecks;
 
-    if (hasComputableBounds(SE, Ptr)) {
+    if (hasComputableBounds(SE, StridesMap, Ptr) &&
+        // When we run after a failing dependency check we have to make sure we
+        // don't have wrapping pointers.
+        (!ShouldCheckStride ||
+         isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
       // The id of the dependence set.
       unsigned DepId;
 
       if (IsDepCheckNeeded) {
-        Value *Leader = DepCands.getLeaderValue(Access).first;
+        Value *Leader = DepCands.getLeaderValue(Access).getPointer();
         unsigned &LeaderId = DepSetId[Leader];
         if (!LeaderId)
           LeaderId = RunningDepId++;
@@ -3060,9 +3689,9 @@ bool AccessAnalysis::canCheckPtrAtRT(
         // Each access has its own dependence set.
         DepId = RunningDepId++;
 
-      RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
+      RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap);
 
-      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr <<"\n");
+      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
     } else {
       CanDoRT = false;
     }
@@ -3070,9 +3699,36 @@ bool AccessAnalysis::canCheckPtrAtRT(
 
   if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
     NumComparisons = 0; // Only one dependence set.
-  else
+  else {
     NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
                                            NumWritePtrChecks - 1));
+  }
+
+  // If the pointers that we would use for the bounds comparison have different
+  // address spaces, assume the values aren't directly comparable, so we can't
+  // use them for the runtime check. We also have to assume they could
+  // overlap. In the future there should be metadata for whether address spaces
+  // are disjoint.
+  unsigned NumPointers = RtCheck.Pointers.size();
+  for (unsigned i = 0; i < NumPointers; ++i) {
+    for (unsigned j = i + 1; j < NumPointers; ++j) {
+      // Only need to check pointers between two different dependency sets.
+      if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
+       continue;
+
+      Value *PtrI = RtCheck.Pointers[i];
+      Value *PtrJ = RtCheck.Pointers[j];
+
+      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
+      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
+      if (ASi != ASj) {
+        DEBUG(dbgs() << "LV: Runtime check would require comparison between"
+                       " different address spaces\n");
+        return false;
+      }
+    }
+  }
+
   return CanDoRT;
 }
 
@@ -3088,8 +3744,8 @@ void AccessAnalysis::processMemAccesses(bool UseDeferred) {
   PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
   for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
     const MemAccessInfo &Access = *AI;
-    Value *Ptr = Access.first;
-    bool IsWrite = Access.second;
+    Value *Ptr = Access.getPointer();
+    bool IsWrite = Access.getInt();
 
     DepCands.insert(Access);
 
@@ -3105,8 +3761,8 @@ void AccessAnalysis::processMemAccesses(bool UseDeferred) {
     }
 
     bool NeedDepCheck = false;
-    // Check whether there is the possiblity of dependency because of underlying
-    // objects being the same.
+    // Check whether there is the possibility of dependency because of
+    // underlying objects being the same.
     typedef SmallVector<Value*, 16> ValueVector;
     ValueVector TempObjects;
     GetUnderlyingObjects(Ptr, TempObjects, DL);
@@ -3127,7 +3783,7 @@ void AccessAnalysis::processMemAccesses(bool UseDeferred) {
                         !isa<Argument>(UnderlyingObj)) &&
            !isIdentifiedObject(UnderlyingObj))) {
         DEBUG(dbgs() << "LV: Found an unidentified " <<
-              (IsWrite ?  "write" : "read" ) << " ptr:" << *UnderlyingObj <<
+              (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
               "\n");
         IsRTCheckNeeded = (IsRTCheckNeeded ||
                            !isIdentifiedObject(UnderlyingObj) ||
@@ -3163,6 +3819,7 @@ void AccessAnalysis::processMemAccesses(bool UseDeferred) {
   }
 }
 
+namespace {
 /// \brief Checks memory dependences among accesses to the same underlying
 /// object to determine whether there vectorization is legal or not (and at
 /// which vectorization factor).
@@ -3197,16 +3854,18 @@ void AccessAnalysis::processMemAccesses(bool UseDeferred) {
 ///
 class MemoryDepChecker {
 public:
-  typedef std::pair<Value*, char> MemAccessInfo;
+  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
+  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 
-  MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) :
-    SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {}
+  MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L)
+      : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
+        ShouldRetryWithRuntimeCheck(false) {}
 
   /// \brief Register the location (instructions are given increasing numbers)
   /// of a write access.
   void addAccess(StoreInst *SI) {
     Value *Ptr = SI->getPointerOperand();
-    Accesses[std::make_pair(Ptr, true)].push_back(AccessIdx);
+    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
     InstMap.push_back(SI);
     ++AccessIdx;
   }
@@ -3215,7 +3874,7 @@ public:
   /// of a write access.
   void addAccess(LoadInst *LI) {
     Value *Ptr = LI->getPointerOperand();
-    Accesses[std::make_pair(Ptr, false)].push_back(AccessIdx);
+    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
     InstMap.push_back(LI);
     ++AccessIdx;
   }
@@ -3224,12 +3883,16 @@ public:
   ///
   /// Only checks sets with elements in \p CheckDeps.
   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
-                   DenseSet<MemAccessInfo> &CheckDeps);
+                   MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
 
   /// \brief The maximum number of bytes of a vector register we can vectorize
   /// the accesses safely with.
   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
 
+  /// \brief In same cases when the dependency check fails we can still
+  /// vectorize the loop with a dynamic array access check.
+  bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
+
 private:
   ScalarEvolution *SE;
   DataLayout *DL;
@@ -3247,6 +3910,10 @@ private:
   // We can access this many bytes in parallel safely.
   unsigned MaxSafeDepDistBytes;
 
+  /// \brief If we see a non-constant dependence distance we can still try to
+  /// vectorize this loop with runtime checks.
+  bool ShouldRetryWithRuntimeCheck;
+
   /// \brief Check whether there is a plausible dependence between the two
   /// accesses.
   ///
@@ -3260,13 +3927,16 @@ private:
   /// distance is smaller than any other distance encountered so far).
   /// Otherwise, this function returns true signaling a possible dependence.
   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
-                   const MemAccessInfo &B, unsigned BIdx);
+                   const MemAccessInfo &B, unsigned BIdx,
+                   ValueToValueMap &Strides);
 
   /// \brief Check whether the data dependence could prevent store-load
   /// forwarding.
   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
 };
 
+} // end anonymous namespace
+
 static bool isInBoundsGep(Value *Ptr) {
   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
     return GEP->isInBounds();
@@ -3275,18 +3945,20 @@ static bool isInBoundsGep(Value *Ptr) {
 
 /// \brief Check whether the access through \p Ptr has a constant stride.
 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
-                        const Loop *Lp) {
-  const Type *PtrTy = Ptr->getType();
-  assert(PtrTy->isPointerTy() && "Unexpected non ptr");
+                        const Loop *Lp, ValueToValueMap &StridesMap) {
+  const Type *Ty = Ptr->getType();
+  assert(Ty->isPointerTy() && "Unexpected non-ptr");
 
   // Make sure that the pointer does not point to aggregate types.
-  if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType()) {
-    DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr
-          << "\n");
+  const PointerType *PtrTy = cast<PointerType>(Ty);
+  if (PtrTy->getElementType()->isAggregateType()) {
+    DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
+          "\n");
     return 0;
   }
 
-  const SCEV *PtrScev = SE->getSCEV(Ptr);
+  const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
+
   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
   if (!AR) {
     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
@@ -3296,16 +3968,21 @@ static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
 
   // The accesss function must stride over the innermost loop.
   if (Lp != AR->getLoop()) {
-    DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << *Ptr
-          << " SCEV: " << *PtrScev << "\n");
+    DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
+          *Ptr << " SCEV: " << *PtrScev << "\n");
   }
 
   // The address calculation must not wrap. Otherwise, a dependence could be
-  // inverted. An inbounds getelementptr that is a AddRec with a unit stride
+  // inverted.
+  // An inbounds getelementptr that is a AddRec with a unit stride
   // cannot wrap per definition. The unit stride requirement is checked later.
+  // An getelementptr without an inbounds attribute and unit stride would have
+  // to access the pointer value "0" which is undefined behavior in address
+  // space 0, therefore we can also vectorize this case.
   bool IsInBoundsGEP = isInBoundsGep(Ptr);
   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
-  if (!IsNoWrapAddRec && !IsInBoundsGEP) {
+  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
+  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
           << *Ptr << " SCEV: " << *PtrScev << "\n");
     return 0;
@@ -3322,7 +3999,7 @@ static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
     return 0;
   }
 
-  int64_t Size = DL->getTypeAllocSize(PtrTy->getPointerElementType());
+  int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
   const APInt &APStepVal = C->getValue()->getValue();
 
   // Huge step value - give up.
@@ -3338,8 +4015,10 @@ static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
     return 0;
 
   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
-  // know we can't "wrap around the address space".
-  if (!IsNoWrapAddRec && IsInBoundsGEP && Stride != 1 && Stride != -1)
+  // know we can't "wrap around the address space". In case of address space
+  // zero we know that this won't happen without triggering undefined behavior.
+  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
+      Stride != 1 && Stride != -1)
     return 0;
 
   return Stride;
@@ -3383,23 +4062,24 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
 }
 
 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
-                                   const MemAccessInfo &B, unsigned BIdx) {
+                                   const MemAccessInfo &B, unsigned BIdx,
+                                   ValueToValueMap &Strides) {
   assert (AIdx < BIdx && "Must pass arguments in program order");
 
-  Value *APtr = A.first;
-  Value *BPtr = B.first;
-  bool AIsWrite = A.second;
-  bool BIsWrite = B.second;
+  Value *APtr = A.getPointer();
+  Value *BPtr = B.getPointer();
+  bool AIsWrite = A.getInt();
+  bool BIsWrite = B.getInt();
 
   // Two reads are independent.
   if (!AIsWrite && !BIsWrite)
     return false;
 
-  const SCEV *AScev = SE->getSCEV(APtr);
-  const SCEV *BScev = SE->getSCEV(BPtr);
+  const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
+  const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
 
-  int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
-  int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
+  int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
+  int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
 
   const SCEV *Src = AScev;
   const SCEV *Sink = BScev;
@@ -3433,7 +4113,8 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
 
   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
   if (!C) {
-    DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
+    DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
+    ShouldRetryWithRuntimeCheck = true;
     return true;
   }
 
@@ -3459,7 +4140,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
   if (Val == 0) {
     if (ATy == BTy)
       return false;
-    DEBUG(dbgs() << "LV: Zero dependence difference but different types");
+    DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
     return true;
   }
 
@@ -3468,7 +4149,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
   // Positive distance bigger than max vectorization factor.
   if (ATy != BTy) {
     DEBUG(dbgs() <<
-          "LV: ReadWrite-Write positive dependency with different types");
+          "LV: ReadWrite-Write positive dependency with different types\n");
     return false;
   }
 
@@ -3485,7 +4166,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
       2*TypeByteSize > MaxSafeDepDistBytes ||
       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
     DEBUG(dbgs() << "LV: Failure because of Positive distance "
-        << Val.getSExtValue() << "\n");
+        << Val.getSExtValue() << '\n');
     return true;
   }
 
@@ -3498,14 +4179,14 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
      return true;
 
   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
-        " with max VF=" << MaxSafeDepDistBytes/TypeByteSize << "\n");
+        " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
 
   return false;
 }
 
-bool
-MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
-                              DenseSet<MemAccessInfo> &CheckDeps) {
+bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
+                                   MemAccessInfoSet &CheckDeps,
+                                   ValueToValueMap &Strides) {
 
   MaxSafeDepDistBytes = -1U;
   while (!CheckDeps.empty()) {
@@ -3529,9 +4210,9 @@ MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
-            if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
+            if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
               return false;
-            if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
+            if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
               return false;
           }
         ++OI;
@@ -3547,11 +4228,6 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
   typedef SmallVector<Value*, 16> ValueVector;
   typedef SmallPtrSet<Value*, 16> ValueSet;
 
-  // Stores a pair of memory access location and whether the access is a store
-  // (true) or a load (false).
-  typedef std::pair<Value*, char> MemAccessInfo;
-  typedef DenseSet<MemAccessInfo> PtrAccessSet;
-
   // Holds the Load and Store *instructions*.
   ValueVector Loads;
   ValueVector Stores;
@@ -3578,6 +4254,13 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
       // but is not a load, then we quit. Notice that we don't handle function
       // calls that read or write.
       if (it->mayReadFromMemory()) {
+        // Many math library functions read the rounding mode. We will only
+        // vectorize a loop if it contains known function calls that don't set
+        // the flag. Therefore, it is safe to ignore this read from memory.
+        CallInst *Call = dyn_cast<CallInst>(it);
+        if (Call && getIntrinsicIDForCall(Call, TLI))
+          continue;
+
         LoadInst *Ld = dyn_cast<LoadInst>(it);
         if (!Ld) return false;
         if (!Ld->isSimple() && !IsAnnotatedParallel) {
@@ -3600,8 +4283,8 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
         Stores.push_back(St);
         DepChecker.addAccess(St);
       }
-    } // next instr.
-  } // next block.
+    } // Next instr.
+  } // Next block.
 
   // Now we have two lists that hold the loads and the stores.
   // Next, we find the pointers that they use.
@@ -3648,7 +4331,6 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
     return true;
   }
 
-  SmallPtrSet<Value *, 16> ReadOnlyPtr;
   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
     LoadInst *LD = cast<LoadInst>(*I);
     Value* Ptr = LD->getPointerOperand();
@@ -3661,7 +4343,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
     // read a few words, modify, and write a few words, and some of the
     // words may be written to the same address.
     bool IsReadOnlyPtr = false;
-    if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
+    if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
       ++NumReads;
       IsReadOnlyPtr = true;
     }
@@ -3685,8 +4367,8 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
   unsigned NumComparisons = 0;
   bool CanDoRT = false;
   if (NeedRTCheck)
-    CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
-
+    CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
+                                       Strides);
 
   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
         " pointer comparisons.\n");
@@ -3696,7 +4378,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
   if (NumComparisons == 0 && NeedRTCheck)
     NeedRTCheck = false;
 
-  // Check that we did not collect too many pointers or found a unsizeable
+  // Check that we did not collect too many pointers or found an unsizeable
   // pointer.
   if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
     PtrRtCheck.reset();
@@ -3719,12 +4401,35 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
   bool CanVecMem = true;
   if (Accesses.isDependencyCheckNeeded()) {
     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
-    CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
-                                       Accesses.getDependenciesToCheck());
+    CanVecMem = DepChecker.areDepsSafe(
+        DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
+
+    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
+      DEBUG(dbgs() << "LV: Retrying with memory checks\n");
+      NeedRTCheck = true;
+
+      // Clear the dependency checks. We assume they are not needed.
+      Accesses.resetDepChecks();
+
+      PtrRtCheck.reset();
+      PtrRtCheck.Need = true;
+
+      CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
+                                         TheLoop, Strides, true);
+      // Check that we did not collect too many pointers or found an unsizeable
+      // pointer.
+      if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
+        DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
+        PtrRtCheck.reset();
+        return false;
+      }
+
+      CanVecMem = true;
+    }
   }
 
-  DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
+  DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
         " need a runtime memory check.\n");
 
   return CanVecMem;
@@ -3849,7 +4554,7 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
     // Check  whether we found a reduction operator.
     FoundReduxOp |= !IsAPhi;
 
-    // Process users of current instruction. Push non PHI nodes after PHI nodes
+    // Process users of current instruction. Push non-PHI nodes after PHI nodes
     // onto the stack. This way we are going to have seen all inputs to PHI
     // nodes once we get to them.
     SmallVector<Instruction *, 8> NonPHIs;
@@ -3861,20 +4566,39 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
       // Check if we found the exit user.
       BasicBlock *Parent = Usr->getParent();
       if (!TheLoop->contains(Parent)) {
-        // Exit if you find multiple outside users.
-        if (ExitInstruction != 0)
+        // Exit if you find multiple outside users or if the header phi node is
+        // being used. In this case the user uses the value of the previous
+        // iteration, in which case we would loose "VF-1" iterations of the
+        // reduction operation if we vectorize.
+        if (ExitInstruction != 0 || Cur == Phi)
           return false;
+
+        // The instruction used by an outside user must be the last instruction
+        // before we feed back to the reduction phi. Otherwise, we loose VF-1
+        // operations on the value.
+        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
+         return false;
+
         ExitInstruction = Cur;
         continue;
       }
 
-      // Process instructions only once (termination).
+      // Process instructions only once (termination). Each reduction cycle
+      // value must only be used once, except by phi nodes and min/max
+      // reductions which are represented as a cmp followed by a select.
+      ReductionInstDesc IgnoredVal(false, 0);
       if (VisitedInsts.insert(Usr)) {
         if (isa<PHINode>(Usr))
           PHIs.push_back(Usr);
         else
           NonPHIs.push_back(Usr);
-      }
+      } else if (!isa<PHINode>(Usr) &&
+                 ((!isa<FCmpInst>(Usr) &&
+                   !isa<ICmpInst>(Usr) &&
+                   !isa<SelectInst>(Usr)) ||
+                  !isMinMaxSelectCmpPattern(Usr, IgnoredVal).IsReduction))
+        return false;
+
       // Remember that we completed the cycle.
       if (Usr == Phi)
         FoundStartPHI = true;
@@ -4056,16 +4780,28 @@ bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
   return !DT->dominates(BB, Latch);
 }
 
-bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
+bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
+                                            SmallPtrSet<Value *, 8>& SafePtrs) {
   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
     // We might be able to hoist the load.
-    if (it->mayReadFromMemory() && !LoadSpeculation.isHoistableLoad(it))
-      return false;
+    if (it->mayReadFromMemory()) {
+      LoadInst *LI = dyn_cast<LoadInst>(it);
+      if (!LI || !SafePtrs.count(LI->getPointerOperand()))
+        return false;
+    }
 
     // We don't predicate stores at the moment.
     if (it->mayWriteToMemory() || it->mayThrow())
       return false;
 
+    // Check that we don't have a constant expression that can trap as operand.
+    for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
+         OI != OE; ++OI) {
+      if (Constant *C = dyn_cast<Constant>(*OI))
+        if (C->canTrap())
+          return false;
+    }
+
     // The instructions below can trap.
     switch (it->getOpcode()) {
     default: continue;
@@ -4092,17 +4828,19 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
 
   // Find the trip count.
   unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
-  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
+  DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
 
   unsigned WidestType = getWidestType();
   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
   unsigned MaxSafeDepDist = -1U;
   if (Legal->getMaxSafeDepDistBytes() != -1U)
     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
-  WidestRegister = WidestRegister < MaxSafeDepDist ?  WidestRegister : MaxSafeDepDist;
+  WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
+                    WidestRegister : MaxSafeDepDist);
   unsigned MaxVectorSize = WidestRegister / WidestType;
   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
-  DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
+  DEBUG(dbgs() << "LV: The Widest register is: "
+          << WidestRegister << " bits.\n");
 
   if (MaxVectorSize == 0) {
     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
@@ -4138,7 +4876,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
 
   if (UserVF != 0) {
     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
-    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
+    DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
 
     Factor.Width = UserVF;
     return Factor;
@@ -4146,13 +4884,13 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
 
   float Cost = expectedCost(1);
   unsigned Width = 1;
-  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
+  DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
   for (unsigned i=2; i <= VF; i*=2) {
     // Notice that the vector loop needs to be executed less times, so
     // we need to divide the cost of the vector loops by the width of
     // the vector elements.
     float VectorCost = expectedCost(i) / (float)i;
-    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
+    DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
           (int)VectorCost << ".\n");
     if (VectorCost < Cost) {
       Cost = VectorCost;
@@ -4243,9 +4981,17 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
     return 1;
 
-  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
-  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
-        " vector registers\n");
+  unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
+  DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
+        " registers\n");
+
+  if (VF == 1) {
+    if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
+      TargetNumRegisters = ForceTargetNumScalarRegs;
+  } else {
+    if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
+      TargetNumRegisters = ForceTargetNumVectorRegs;
+  }
 
   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
   // We divide by these constants so assume that we have at least one
@@ -4258,12 +5004,24 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
   // registers. These registers are used by all of the unrolled instances.
   // Next, divide the remaining registers by the number of registers that is
   // required by the loop, in order to estimate how many parallel instances
-  // fit without causing spills.
-  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
+  // fit without causing spills. All of this is rounded down if necessary to be
+  // a power of two. We want power of two unroll factors to simplify any
+  // addressing operations or alignment considerations.
+  unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
+                              R.MaxLocalUsers);
 
   // Clamp the unroll factor ranges to reasonable factors.
   unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
 
+  // Check if the user has overridden the unroll max.
+  if (VF == 1) {
+    if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0)
+      MaxUnrollSize = ForceTargetMaxScalarUnrollFactor;
+  } else {
+    if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0)
+      MaxUnrollSize = ForceTargetMaxVectorUnrollFactor;
+  }
+
   // If we did not calculate the cost for VF (because the user selected the VF)
   // then we calculate the cost of VF here.
   if (LoopCost == 0)
@@ -4276,8 +5034,10 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
   else if (UF < 1)
     UF = 1;
 
-  if (Legal->getReductionVars()->size()) {
-    DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
+  // Unroll if we vectorized this loop and there is a reduction that could
+  // benefit from unrolling.
+  if (VF > 1 && Legal->getReductionVars()->size()) {
+    DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
     return UF;
   }
 
@@ -4285,14 +5045,14 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
   // We assume that the cost overhead is 1 and we use the cost model
   // to estimate the cost of the loop and unroll until the cost of the
   // loop overhead is about 5% of the cost of the loop.
-  DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
-  if (LoopCost < 20) {
-    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
-    unsigned NewUF = 20/LoopCost + 1;
+  DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
+  if (LoopCost < SmallLoopCost) {
+    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
+    unsigned NewUF = PowerOf2Floor(SmallLoopCost / LoopCost);
     return std::min(NewUF, UF);
   }
 
-  DEBUG(dbgs() << "LV: Not Unrolling. \n");
+  DEBUG(dbgs() << "LV: Not Unrolling.\n");
   return 1;
 }
 
@@ -4393,16 +5153,16 @@ LoopVectorizationCostModel::calculateRegisterUsage() {
     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
 
     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
-          OpenIntervals.size() <<"\n");
+          OpenIntervals.size() << '\n');
 
     // Add the current instruction to the list of open intervals.
     OpenIntervals.insert(I);
   }
 
   unsigned Invariant = LoopInvariants.size();
-  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
-  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
-  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
+  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
+  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
+  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
 
   R.LoopInvariantRegs = Invariant;
   R.MaxLocalUsers = MaxUsage;
@@ -4425,15 +5185,15 @@ unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
         continue;
 
       unsigned C = getInstructionCost(it, VF);
-      Cost += C;
-      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
-            VF << " For instruction: "<< *it << "\n");
+      BlockCost += C;
+      DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
+            VF << " For instruction: " << *it << '\n');
     }
 
     // We assume that if-converted blocks have a 50% chance of being executed.
     // When the code is scalar then some of the blocks are avoided due to CF.
     // When the code is vectorized we execute all code paths.
-    if (Legal->blockNeedsPredication(*bb) && VF == 1)
+    if (VF == 1 && Legal->blockNeedsPredication(*bb))
       BlockCost /= 2;
 
     Cost += BlockCost;
@@ -4442,6 +5202,65 @@ unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
   return Cost;
 }
 
+/// \brief Check whether the address computation for a non-consecutive memory
+/// access looks like an unlikely candidate for being merged into the indexing
+/// mode.
+///
+/// We look for a GEP which has one index that is an induction variable and all
+/// other indices are loop invariant. If the stride of this access is also
+/// within a small bound we decide that this address computation can likely be
+/// merged into the addressing mode.
+/// In all other cases, we identify the address computation as complex.
+static bool isLikelyComplexAddressComputation(Value *Ptr,
+                                              LoopVectorizationLegality *Legal,
+                                              ScalarEvolution *SE,
+                                              const Loop *TheLoop) {
+  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+  if (!Gep)
+    return true;
+
+  // We are looking for a gep with all loop invariant indices except for one
+  // which should be an induction variable.
+  unsigned NumOperands = Gep->getNumOperands();
+  for (unsigned i = 1; i < NumOperands; ++i) {
+    Value *Opd = Gep->getOperand(i);
+    if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
+        !Legal->isInductionVariable(Opd))
+      return true;
+  }
+
+  // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
+  // can likely be merged into the address computation.
+  unsigned MaxMergeDistance = 64;
+
+  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
+  if (!AddRec)
+    return true;
+
+  // Check the step is constant.
+  const SCEV *Step = AddRec->getStepRecurrence(*SE);
+  // Calculate the pointer stride and check if it is consecutive.
+  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+  if (!C)
+    return true;
+
+  const APInt &APStepVal = C->getValue()->getValue();
+
+  // Huge step value - give up.
+  if (APStepVal.getBitWidth() > 64)
+    return true;
+
+  int64_t StepVal = APStepVal.getSExtValue();
+
+  return StepVal > MaxMergeDistance;
+}
+
+static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
+  if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
+    return true;
+  return false;
+}
+
 unsigned
 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
   // If we know that this instruction will remain uniform, check the cost of
@@ -4484,6 +5303,9 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
   case Instruction::And:
   case Instruction::Or:
   case Instruction::Xor: {
+    // Since we will replace the stride by 1 the multiplication should go away.
+    if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
+      return 0;
     // Certain instructions can be cheaper to vectorize if they have a constant
     // second vector operand. One example of this are shifts on x86.
     TargetTransformInfo::OperandValueKind Op1VK =
@@ -4537,6 +5359,8 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
     unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
     unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
+      bool IsComplexComputation =
+        isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
       unsigned Cost = 0;
       // The cost of extracting from the value vector and pointer vector.
       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
@@ -4552,7 +5376,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
       }
 
       // The cost of the scalar loads/stores.
-      Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType());
+      Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
                                        Alignment, AS);
       return Cost;
@@ -4634,13 +5458,16 @@ char LoopVectorize::ID = 0;
 static const char lv_name[] = "Loop Vectorization";
 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(LCSSA)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
 
 namespace llvm {
-  Pass *createLoopVectorizePass() {
-    return new LoopVectorize();
+  Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
+    return new LoopVectorize(NoUnrolling, AlwaysVectorize);
   }
 }
 
@@ -4655,3 +5482,94 @@ bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
 
   return false;
 }
+
+
+void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) {
+  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
+  // Holds vector parameters or scalars, in case of uniform vals.
+  SmallVector<VectorParts, 4> Params;
+
+  setDebugLocFromInst(Builder, Instr);
+
+  // Find all of the vectorized parameters.
+  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+    Value *SrcOp = Instr->getOperand(op);
+
+    // If we are accessing the old induction variable, use the new one.
+    if (SrcOp == OldInduction) {
+      Params.push_back(getVectorValue(SrcOp));
+      continue;
+    }
+
+    // Try using previously calculated values.
+    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
+
+    // If the src is an instruction that appeared earlier in the basic block
+    // then it should already be vectorized.
+    if (SrcInst && OrigLoop->contains(SrcInst)) {
+      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
+      // The parameter is a vector value from earlier.
+      Params.push_back(WidenMap.get(SrcInst));
+    } else {
+      // The parameter is a scalar from outside the loop. Maybe even a constant.
+      VectorParts Scalars;
+      Scalars.append(UF, SrcOp);
+      Params.push_back(Scalars);
+    }
+  }
+
+  assert(Params.size() == Instr->getNumOperands() &&
+         "Invalid number of operands");
+
+  // Does this instruction return a value ?
+  bool IsVoidRetTy = Instr->getType()->isVoidTy();
+
+  Value *UndefVec = IsVoidRetTy ? 0 :
+  UndefValue::get(Instr->getType());
+  // Create a new entry in the WidenMap and initialize it to Undef or Null.
+  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
+
+  // For each vector unroll 'part':
+  for (unsigned Part = 0; Part < UF; ++Part) {
+    // For each scalar that we create:
+
+    Instruction *Cloned = Instr->clone();
+      if (!IsVoidRetTy)
+        Cloned->setName(Instr->getName() + ".cloned");
+      // Replace the operands of the cloned instructions with extracted scalars.
+      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+        Value *Op = Params[op][Part];
+        Cloned->setOperand(op, Op);
+      }
+
+      // Place the cloned scalar in the new loop.
+      Builder.Insert(Cloned);
+
+      // If the original scalar returns a value we need to place it in a vector
+      // so that future users will be able to use it.
+      if (!IsVoidRetTy)
+        VecResults[Part] = Cloned;
+  }
+}
+
+void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
+  return scalarizeInstruction(Instr);
+}
+
+Value *InnerLoopUnroller::reverseVector(Value *Vec) {
+  return Vec;
+}
+
+Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
+  return V;
+}
+
+Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
+                                               bool Negate) {
+  // When unrolling and the VF is 1, we only need to add a simple scalar.
+  Type *ITy = Val->getType();
+  assert(!ITy->isVectorTy() && "Val must be a scalar");
+  Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
+  return Builder.CreateAdd(Val, C, "induction");
+}
+