Start using the nicer terminator auto-insertion API
[oota-llvm.git] / lib / Transforms / Utils / InlineFunction.cpp
index 2fafef3f7ebf57a59da40f6fad4e4fe74d761d26..a0fc9bf1cff128169fba0ebb35408afcc6c133ce 100644 (file)
@@ -1,4 +1,11 @@
 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
 //
 // This file implements inlining of a function into a call site, resolving
 // parameters and the return value as appropriate.
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Constant.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/Module.h"
-#include "llvm/iTerminators.h"
-#include "llvm/iPHINode.h"
-#include "llvm/iMemory.h"
-#include "llvm/iOther.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Support/CallSite.h"
 #include "llvm/Transforms/Utils/Local.h"
 
+namespace llvm {
+
+bool InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
+bool InlineFunction(InvokeInst *II) { return InlineFunction(CallSite(II)); }
+
 // InlineFunction - This function inlines the called function into the basic
 // block of the caller.  This returns false if it is not possible to inline this
 // call.  The program is still in a well defined state if this occurs though.
 // exists in the instruction stream.  Similiarly this will inline a recursive
 // function by one level.
 //
-bool InlineFunction(CallInst *CI) {
-  assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
-  assert(CI->getParent() && "Instruction not embedded in basic block!");
-  assert(CI->getParent()->getParent() && "Instruction not in function!");
+bool InlineFunction(CallSite CS) {
+  Instruction *TheCall = CS.getInstruction();
+  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
+         "Instruction not in function!");
 
-  const Function *CalledFunc = CI->getCalledFunction();
+  const Function *CalledFunc = CS.getCalledFunction();
   if (CalledFunc == 0 ||          // Can't inline external function or indirect
       CalledFunc->isExternal() || // call, or call to a vararg function!
       CalledFunc->getFunctionType()->isVarArg()) return false;
 
-  BasicBlock *OrigBB = CI->getParent();
+  BasicBlock *OrigBB = TheCall->getParent();
   Function *Caller = OrigBB->getParent();
 
-  // Call splitBasicBlock - The original basic block now ends at the instruction
-  // immediately before the call.  The original basic block now ends with an
-  // unconditional branch to NewBB, and NewBB starts with the call instruction.
-  //
-  BasicBlock *NewBB = OrigBB->splitBasicBlock(CI,
-                                              CalledFunc->getName()+".entry");
-  NewBB->setName(OrigBB->getName()+".split");
+  // We want to clone the entire callee function into the whole between the
+  // "starter" and "ender" blocks.  How we accomplish this depends on whether
+  // this is an invoke instruction or a call instruction.
+
+  BasicBlock *InvokeDest = 0;     // Exception handling destination
+  std::vector<Value*> InvokeDestPHIValues; // Values for PHI nodes in InvokeDest
+  BasicBlock *AfterCallBB;
+
+  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
+    InvokeDest = II->getExceptionalDest();
 
-  // Remove (unlink) the CallInst from the start of the new basic block.  
-  NewBB->getInstList().remove(CI);
+    // If there are PHI nodes in the exceptional destination block, we need to
+    // keep track of which values came into them from this invoke, then remove
+    // the entry for this block.
+    for (BasicBlock::iterator I = InvokeDest->begin();
+         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+      // Save the value to use for this edge...
+      InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
+    }
+
+    // Add an unconditional branch to make this look like the CallInst case...
+    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
+
+    // Split the basic block.  This guarantees that no PHI nodes will have to be
+    // updated due to new incoming edges, and make the invoke case more
+    // symmetric to the call case.
+    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
+                                          CalledFunc->getName()+".entry");
+
+    // Remove (unlink) the InvokeInst from the function...
+    OrigBB->getInstList().remove(TheCall);
+
+  } else {  // It's a call
+    // If this is a call instruction, we need to split the basic block that the
+    // call lives in.
+    //
+    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
+                                          CalledFunc->getName()+".entry");
+    // Remove (unlink) the CallInst from the function...
+    AfterCallBB->getInstList().remove(TheCall);
+  }
 
   // If we have a return value generated by this call, convert it into a PHI 
   // node that gets values from each of the old RET instructions in the original
   // function.
   //
   PHINode *PHI = 0;
-  if (!CI->use_empty()) {
+  if (!TheCall->use_empty()) {
     // The PHI node should go at the front of the new basic block to merge all 
     // possible incoming values.
     //
-    PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
-                      NewBB->begin());
+    PHI = new PHINode(CalledFunc->getReturnType(), TheCall->getName(),
+                      AfterCallBB->begin());
 
     // Anything that used the result of the function call should now use the PHI
     // node as their operand.
     //
-    CI->replaceAllUsesWith(PHI);
+    TheCall->replaceAllUsesWith(PHI);
   }
 
   // Get an iterator to the last basic block in the function, which will have
@@ -75,27 +118,21 @@ bool InlineFunction(CallInst *CI) {
 
   // Calculate the vector of arguments to pass into the function cloner...
   std::map<const Value*, Value*> ValueMap;
-  assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) == 
-         CI->getNumOperands()-1 && "No varargs calls can be inlined yet!");
+  assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) == 
+         std::distance(CS.arg_begin(), CS.arg_end()) &&
+         "No varargs calls can be inlined!");
 
-  unsigned i = 1;
+  CallSite::arg_iterator AI = CS.arg_begin();
   for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
-       I != E; ++I, ++i)
-    ValueMap[I] = CI->getOperand(i);
+       I != E; ++I, ++AI)
+    ValueMap[I] = *AI;
 
-  // Since we are now done with the CallInst, we can delete it.
-  delete CI;
+  // Since we are now done with the Call/Invoke, we can delete it.
+  delete TheCall;
 
   // Make a vector to capture the return instructions in the cloned function...
   std::vector<ReturnInst*> Returns;
 
-  // Populate the value map with all of the globals in the program.
-  Module &M = *Caller->getParent();
-  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
-    ValueMap[I] = I;
-  for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
-    ValueMap[I] = I;
-
   // Do all of the hard part of cloning the callee into the caller...
   CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
 
@@ -105,8 +142,8 @@ bool InlineFunction(CallInst *CI) {
     ReturnInst *RI = Returns[i];
     BasicBlock *BB = RI->getParent();
 
-    // Add a branch to the merge point where the PHI node would live...
-    new BranchInst(NewBB, RI);
+    // Add a branch to the merge point where the PHI node lives if it exists.
+    new BranchInst(AfterCallBB, RI);
 
     if (PHI) {   // The PHI node should include this value!
       assert(RI->getReturnValue() && "Ret should have value!");
@@ -128,8 +165,8 @@ bool InlineFunction(CallInst *CI) {
     PHI->getParent()->getInstList().erase(PHI);
   }
 
-  // Change the branch that used to go to NewBB to branch to the first basic 
-  // block of the inlined function.
+  // Change the branch that used to go to AfterCallBB to branch to the first
+  // basic block of the inlined function.
   //
   TerminatorInst *Br = OrigBB->getTerminator();
   assert(Br && Br->getOpcode() == Instruction::Br && 
@@ -141,25 +178,93 @@ bool InlineFunction(CallInst *CI) {
   // calculate which instruction they should be inserted before.  We insert the
   // instructions at the end of the current alloca list.
   //
-  BasicBlock::iterator InsertPoint = Caller->begin()->begin();
-  while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
-
-  for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
-       I != E; )
-    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
-      ++I;  // Move to the next instruction
-      LastBlock->getInstList().remove(AI);
-      Caller->front().getInstList().insert(InsertPoint, AI);
-      
-    } else {
-      ++I;
+  if (isa<AllocaInst>(LastBlock->begin())) {
+    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
+    while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
+    
+    for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
+         I != E; )
+      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
+        if (isa<Constant>(AI->getArraySize())) {
+          LastBlock->getInstList().remove(AI);
+          Caller->front().getInstList().insert(InsertPoint, AI);      
+        }
+  }
+
+  // If we just inlined a call due to an invoke instruction, scan the inlined
+  // function checking for function calls that should now be made into invoke
+  // instructions, and for unwind's which should be turned into branches.
+  if (InvokeDest) {
+    for (Function::iterator BB = LastBlock, E = Caller->end(); BB != E; ++BB) {
+      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
+        // We only need to check for function calls: inlined invoke instructions
+        // require no special handling...
+        if (CallInst *CI = dyn_cast<CallInst>(I)) {
+          // Convert this function call into an invoke instruction...
+
+          // First, split the basic block...
+          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
+          
+          // Next, create the new invoke instruction, inserting it at the end
+          // of the old basic block.
+          InvokeInst *II =
+            new InvokeInst(CI->getCalledValue(), Split, InvokeDest, 
+                           std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
+                           CI->getName(), BB->getTerminator());
+
+          // Make sure that anything using the call now uses the invoke!
+          CI->replaceAllUsesWith(II);
+
+          // Delete the unconditional branch inserted by splitBasicBlock
+          BB->getInstList().pop_back();
+          Split->getInstList().pop_front();  // Delete the original call
+          
+          // Update any PHI nodes in the exceptional block to indicate that
+          // there is now a new entry in them.
+          unsigned i = 0;
+          for (BasicBlock::iterator I = InvokeDest->begin();
+               PHINode *PN = dyn_cast<PHINode>(I); ++I, ++i)
+            PN->addIncoming(InvokeDestPHIValues[i], BB);
+
+          // This basic block is now complete, start scanning the next one.
+          break;
+        } else {
+          ++I;
+        }
+      }
+
+      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
+        // An UnwindInst requires special handling when it gets inlined into an
+        // invoke site.  Once this happens, we know that the unwind would cause
+        // a control transfer to the invoke exception destination, so we can
+        // transform it into a direct branch to the exception destination.
+        new BranchInst(InvokeDest, UI);
+
+        // Delete the unwind instruction!
+        UI->getParent()->getInstList().pop_back();
+
+        // Update any PHI nodes in the exceptional block to indicate that
+        // there is now a new entry in them.
+        unsigned i = 0;
+        for (BasicBlock::iterator I = InvokeDest->begin();
+             PHINode *PN = dyn_cast<PHINode>(I); ++I, ++i)
+          PN->addIncoming(InvokeDestPHIValues[i], BB);
+      }
     }
 
+    // Now that everything is happy, we have one final detail.  The PHI nodes in
+    // the exception destination block still have entries due to the original
+    // invoke instruction.  Eliminate these entries (which might even delete the
+    // PHI node) now.
+    for (BasicBlock::iterator I = InvokeDest->begin();
+         PHINode *PN = dyn_cast<PHINode>(I); ++I)
+      PN->removeIncomingValue(AfterCallBB);
+  }
   // Now that the function is correct, make it a little bit nicer.  In
   // particular, move the basic blocks inserted from the end of the function
   // into the space made by splitting the source basic block.
   //
-  Caller->getBasicBlockList().splice(NewBB, Caller->getBasicBlockList(), 
+  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 
                                      LastBlock, Caller->end());
 
   // We should always be able to fold the entry block of the function into the
@@ -170,8 +275,10 @@ bool InlineFunction(CallInst *CI) {
   
   // Okay, continue the CFG cleanup.  It's often the case that there is only a
   // single return instruction in the callee function.  If this is the case,
-  // then we have an unconditional branch from the return block to the 'NewBB'.
-  // Check for this case, and eliminate the branch is possible.
-  SimplifyCFG(NewBB);
+  // then we have an unconditional branch from the return block to the
+  // 'AfterCallBB'.  Check for this case, and eliminate the branch is possible.
+  SimplifyCFG(AfterCallBB);
   return true;
 }
+
+} // End llvm namespace